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Abstract
The commitment of language processing is001
largely restricted by knowing the context002
around it. However, Transformer, as one of003
the most powerful neural network architectures,004
has its input length restricted due to a quadratic005
time and memory complexity. Despite rich006
work advancing its efficiency, long context is007
still an issue that requires large computational008
resources in training. We realize a novel reser-009
voir Transformer that bounds the learning in010
linear time by handling different input lengths011
in a cascaded way. For a long-term context, the012
reservoir with non-linear readout learns sam-013
ple dependencies from the beginning to the end014
of a sequential dataset; To learn more accu-015
rately the medium-term context such as previ-016
ous sentences, we apply a recurrent memory017
mechanism; and finally for the short-term de-018
pendencies in one sentence, we learn with the019
Transformer. Experiments show that our reser-020
voir Transformer improves BERT and Blender-021
bot performance and significantly increases our022
prediction accuracy in (small) language model-023
ing, text classification, and chatbot tasks over024
the state-of-the-art methods. This shows that025
a reservoir Transformer makes it possible to026
efficiently learn from extremely long context.027

1 Introduction028

Transformer has updated state-of-the-art in a wide029

range of AI tasks including but not limited to NLP,030

computer vision, bioinformatics, etc. (Vaswani031

et al., 2017; Devlin et al., 2018; Dosovitskiy et al.,032

2020). One important limitation of Transformer is033

the quadratic time and memory complexity of the034

input length, e.g., BERT has a restriction of 512035

input tokens, and GPT-3 2048 for efficiency. Even036

LlaMA 3 (Meta, 2024), Gemma (Team et al., 2024),037

GPT-4 (Achiam et al., 2023), and Mistral (Jiang038

et al., 2023) have maximum input tokens as 8K.039

However, long sequential inputs can be extremely040

useful for learning contextual information. For041

example, in language understanding, words have042

different meanings in different contexts; In dia- 043

logue modeling, the lack of effective contextual 044

understanding can lead to incoherent or irrelevant 045

responses in longer conversations. Therefore, the 046

Transformer’s length restriction must be solved so 047

that long histories can be retained and utilized. 048

Several studies have investigated how to increase 049

Transformer input lengths, such as (Kitaev et al., 050

2020; Kim and Cho, 2020; Beltagy et al., 2020; 051

Choromanski et al., 2020; Katharopoulos et al., 052

2020; Zhou et al., 2021; Guo et al., 2021; Ma et al., 053

2021; Hua et al., 2022; Tay et al., 2022; Bertsch 054

et al., 2023; Liu et al., 2023; Li et al., 2023; Mo- 055

htashami and Jaggi, 2023; Ainslie et al., 2023; Bula- 056

tov et al., 2023; Liu and Abbeel, 2024; Munkhdalai 057

et al., 2024; Tworkowski et al., 2024; Bertsch et al., 058

2024; Martins et al., 2021; Han et al., 2023; Mo- 059

htashami and Jaggi, 2024). Existing solutions, how- 060

ever, either modifying the attention model with 061

heuristic assumptions or projecting long input into 062

a fixed dimension. Since most work does not con- 063

sider temporal patterns of the input, there is still 064

room to reduce the information loss learned from 065

the long context and improve the prediction accu- 066

racy and efficiency. 067

In this work, we introduce a novel approach that 068

enhances the Transformer with reservoir comput- 069

ing to efficiently handle long sequences. Reser- 070

voir Computing (RC) is a class of simple and effi- 071

cient Recurrent Neural Networks where internal 072

weights are fixed at random, and only a linear 073

output layer is trained. Reservoir computing re- 074

quires a small number of training data samples 075

and computing resources with great advantages 076

for processing sequential data in linear time and 077

constant space (Gauthier et al., 2021). Here, we 078

improve reservoir with non-linear readout to take 079

long conversational context into account for time 080

and memory efficiency (Gauthier et al., 2021). 081

Figure 1 shows the architecture of our Reser- 082

voir Transformer. We handle the input sequence 083
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Figure 1: A schematic representation of the integrated
memory system combining Reservoir, LTM, MTM, and
STM with the Neural Network Block. The Long-Term
Memory module (reservoir) processes all the previous
states u1 : ut−1. The Medium-Term Memory module
processes only the immediately preceding states ut−γ :
ut−1. The Short-Term Memory module (Embedding)
processes the current state ut with the window size k
and tokens w1, · · · , wk.

at three cascaded processes depending on the in-084

put context length: For long context, e.g., the total085

training data like the full article, our reservoir reads086

sentence by sentence sequentially from the entire087

training data; for intermediate long context such as088

the previous five sentences, we apply a recurrent089

neural network (RNN) for a more accurate learn-090

ing; for short context, i.e., the current sentence, we091

will maintain learning the token dependency using092

a Transformer.093

Figure 1 shows our system architecture. The094

main novelty of our model is the three memory095

modules, i.e. short-term (STM), medium-term096

(MTM), and long-term (LTM) to represent different097

context lengths. For time step t, the current sen-098

tence ut is fed only to the STM which embeds it099

to get the sentence’s embedding matrix e(ut). The100

MTM takes γ previous sentences ut−γ , · · · , ut−1101

to an Attention Pooling. The LTM is a reservoir102

that processes the Transformer encoder’s final layer103

output Hi for all the previous sentences in the104

whole dataset u1, · · · , ut−1. The output of these105

three modules is concatenated together and then106

fed to the Neural Network Block model, such as a107

BERT, Blenderbot, and BART.108

Our reservoir method makes it possible for the109

Transformer to process an infinite number of input110

tokens. Our contributions include the following:111

(a) We introduce reservoir computing to handle112

arbitrary long input of Transformer; (b) We en-113

hance the conventional reservoir computing model114

by replacing linear with a non-linear readout for 115

dimension reduction and better feature learning; 116

(c) We introduce integrating the reservoir, RNN, 117

and Transformer to handle long, intermediate, and 118

short contexts, respectively; (d) We collect exper- 119

imental evidence that our reservoir Transformer 120

significantly enhances the performance and gener- 121

alizes the model learning robustness of the Trans- 122

former on various NLP tasks showcasing an im- 123

provement of 2.7 in perplexity score compared to 124

the Transformer-XL (Dai et al., 2019) Large model 125

and 2.4% points in accuracy compared to LONG- 126

FORMER (Beltagy et al., 2020), for the language 127

modelling and the text classification tasks respec- 128

tively. 129

2 Problem Definition 130

Given a sequence of words wK
1 = 131

w1w2 · · ·wk · · ·wK (k ∈ 1, 2, · · · ,K), where K 132

is the input length, and its segmentation boundaries 133

kJ1 , a corpus can be represented in the form of a 134

sequence of sentences uJ1 = u1u2 · · ·uj · · ·uJ 135

(j ∈ 1, 2, · · · , J), and each individual sentence 136

uj is defined as uj = wkj−1+1 · · ·wkj = w
kj
kj−1

, 137

where uJ1 is composed of two sources of 138

information, the word sequence and its sentences. 139

Taking language model as an example, we pre- 140

dict the masked token w̄i (kj−1 < i < kj + 1) 141

within a sentence j in the context of discrimina- 142

tive language modeling, and for generative lan- 143

guage modeling, we predict the next token con- 144

sidering the last token is the masked token, i.e., 145

w̄i ≡ wkj . we aim to predict masked tokens ŵi 146

(kj−1 < i < kj + 1) within a sentence j, as ex- 147

pressed by: 148

Pr(wi|u1, u2, · · · , wkj−1+1 · · · w̄i · · ·wkj ) (1) 149

= softmax(yji), (2) 150

where t is the reservoir state time step, and is also 151

the sentence index, i.e. t ≡ j and yji ≡ yti in 152

Equation 10. Besides language modeling, we apply 153

the similar analogy to text classification, dialogue 154

modeling, and text summarization. 155

Complexity: Conventional Transformers to en- 156

capsulate dependencies across these long se- 157

quences resulting in the time complexity of 158

O(K2 × d), with d as the model dimension. As 159

the sequence length K is extremely long, there- 160

fore quadratic time complexity becomes imprac- 161

tical. To counter this problem, we propose a 162
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novel framework for Reservoir Transformer (RT).163

This consists of the memory module which deal164

with handling three different lengths of context.165

The short-term memory module (STM) handles166

only the current sentence ut. The medium-term167

memory module (MTM) handles γ previous sen-168

tences ut−γ , · · · , ut−1. The long-term memory169

module (LTM) handles all the previous sentences170

u1, · · · , ut−1. The time complexity of LTM is n2171

where n is the number of neurons in the reservoir.172

The time complexity for MTM is γ × qd and the173

time complexity of STM is q2d, where q is the sen-174

tence length. Therefore both LTM and MTM are175

linear in terms of the input length and even though176

the total complexity is still quadratic, however in177

practice as we set q to a small value of 512 while178

the max value of K we experiment with is 29K179

but can potentially be even higher.180

3 Reservoir Transformer181

We propose a novel architecture we call Reservoir182

Transformer (RT). It combines the idea from reser-183

voir computing (Gallicchio et al., 2017) with the184

Transformer architecture. The novelty of our ap-185

proach is that we propose three different memory186

mechanisms to capture information at different lev-187

els. The long-term, medium-term, and short-term188

memory modules focus on different lengths of con-189

text to balance the precision and the efficiency. We190

also discuss the non-linear readout that significantly191

improves the linear readout of the RC.192

3.1 Memory Modules193

We propose a novel idea of using three mem-194

ory modules as part of a context-aware memory195

framework that not only addresses the challenge196

of handling long context but also efficiently con-197

trols which previous input sentence should be given198

more importance especially when the previous con-199

text length becomes very large. These three mem-200

ory modules help to capture dependency at differ-201

ent levels. The long-term memory module handles202

the whole context and therefore can capture long203

dependency present in all the previous input sen-204

tences. The medium-term memory module cap-205

tures dependency from immediately preceding in-206

put sentences. The short-term memory module207

captures the local dependencies existing within a208

single sentence.209

We introduce three modules to handle different210

ranges of input lengths to balance the efficiency and211

accuracy. These three mechanisms are (i) Short- 212

Term Memory (STM), (ii) Medium-Term Memory 213

(MTM), and (iii) Long-Term Memory (LTM). 214

Short-Term Memory (STM) - Transformer: 215

Unlike LTM which handles the long-term context, 216

the STM only inputs the t’th input sentence ut. 217

Each of the q tokens w1, · · · , wq are fed to the 218

embedding layer as input and we get the sentence 219

embedding e(w1), · · · , e(wq) as the output. 220

Here e(wi) is the embedding layer output for the 221

token wi. As Short-Term Memory does not learn 222

any relation between sentences, this step makes the 223

training much more efficient when dealing with 224

shorter inputs. We use Transformer with the self- 225

attention mechanism, which computes the attention 226

scores with the input itself. 227

Medium-Term Memory (MTM): LTM allows 228

the handling long context as input. However, the 229

modeling is not precise enough. Therefore, we 230

add the medium-term memory module to handle 231

the medium-term context so that far-away samples 232

will be taken care of by the reservoir and close-by 233

previous samples will be learned by the Medium- 234

Term Memory. 235

The MTM focuses on capturing and processing 236

only the immediately preceding states for the cur- 237

rent context. For a given current state t, MTM 238

considers the γ immediate preceding hidden states, 239

represented as Ht−γ , . . . ,Ht−2, Ht−1. While the 240

output of the Reservoir Transformer for each state 241

input is a q × d dimensional vector, the MTM re- 242

quires scalar inputs. Conventionally, max pooling 243

is used to convert these vector outputs into scalar 244

forms; however, this method potentially omits valu- 245

able multidimensional data from the Transformer’s 246

output. To address this, we adopt attention pooling, 247

as proposed by Alam et al. (2023), which offers 248

improved performance by preserving more infor- 249

mation. 250

The objective of the attention pooling mecha- 251

nism is to construct a condensed representation, 252

βt−γ , . . . , βt−2, βt−1 ∈ Rγ×d, from the inputs 253

Ht−γ , . . . ,Ht−2, Ht−1 and the output is used for 254

the MTM. We achieve this by emphasizing the most 255

significant frames in the context of the sequence. 256

Specifically, for the state Ht−1, the attention pool- 257

ing is defined as: 258

βt−1 =

q∑
i=1

αiH
i
t−1, (3) 259

3



Here each αi ∈ [0, 1] represents the normal-260

ized attention weight allocated to the frame H i
t−1.261

These weights are computed through a softmax262

function, ensuring they sum to 1, as shown in Equa-263

tion 4. The intrinsic non-linearity of the softmax264

function within the attention mechanism ensures265

the model’s capacity to capture complex, hierarchi-266

cal dependencies.267

αi =
exp(ei)∑d
i=1 exp(ei)

, (4)268

Here, the score ei is derived from H i
t−1 using the269

learnable parameters vi, Wi, and bi. This transfor-270

mation, followed by the application of a hyperbolic271

tangent function, is expressed as:272

ei = vi tanh(Wi ·H i
t−1 + bi), (5)273

These parameters (vi, Wi, bi) are fine-tuned during274

the training phase, allowing the attention pooling to275

dynamically assign optimal weights to each frame,276

tailored to the specific task.277

Long-Term Memory (LTM) using Reservoir278

Computing (RC): Reservoir Computing (RC)279

is a framework within Recurrent Neural Networks280

(RNN) that capitalizes on the high-dimensional281

non-linear dynamics of neurons to process se-282

quences. We use the LTM module to model all283

input sentences to a fixed reservoir memory. The284

LTM module treats each input sentence as a unique285

state, enabling it to incorporate historical infor-286

mation efficiently without increasing the input se-287

quence length. This helps not only in processing288

lengthy sequences but also in reducing the RC out-289

put dimension for better performance.290

The reservoir network (Gallicchio et al., 2017)291

in Equation 6 processes all previous context.292

xt =293

(1− κ)xt−1 + κ tanh(Wrxt−1 +WiHt−1) (6)294

Here Ht−1 is output of the Transformer’s last295

layer for the t − 1’th sentence, xt−1 is the previ-296

ous reservoir network state, κ ∈ [0, 1] is the leaky297

parameter, and Wr ∈ Rn×n and Wi ∈ Rn×s rep-298

resent the reservoir and input weight matrices, re-299

spectively. These matrices are fixed and generated300

randomly, with each weight being drawn from an301

i.i.d. Gaussian distribution with variances σr2 and302

σi
2, respectively.303

Instead of a linear readout of ot = Woxt, we304

propose a non-linear readout given in Equation 7305

for enhanced prediction capabilities. 306

ot = σ(Woxt) (7) 307

Here, σ is a non-linear activation. We use ReLU 308

as default non-linear activation but we compare 309

with other activation functions in Section 4.2, and 310

Wo ∈ Rr×n denotes the output weights, where r 311

represents the output dimension. 312

The output of non-linear readout is then passed 313

to the self-attention mechanism. 314

Q = WQot, K = WKot, V = W V ot 315

o′t =
softmax(QKT )V√

dk
(8) 316

Here WQ,WK ,W V are learnable weight matrices. 317

dk is the dimensions of the key. 318

3.2 Combining Memory Modules 319

The outputs of each of the memory modules are 320

given as input to a concatenation layer. We add a 321

small trainable weight parameter to the concatena- 322

tion layer for each module. Equation 9 shows the 323

concatenation layer. ⊕ is the concatenation oper- 324

ator and the coefficients µ1, µ2, µ3 ∈ [0, 1] act as 325

controlling parameters. 326

zt = µ1 · o′t ⊕ µ2 · (βt−γ ⊕ · · · ⊕ βt−2 ⊕ βt−1) 327

⊕ µ3 · (e(w1)⊕ e(w2)⊕ · · · ⊕ e(wtK)) (9) 328

Here, o′t is from Equation 8 in LTM, 329

βt−γ , · · · , βt−2, βt−1 are from Equation 3 in 330

MTM, and e(w1), e(w2), · · · , e(wtK) are the em- 331

bedding output from STM. ⊕ is the concatenation 332

operator and the coefficients µ1, µ2, µ3 ∈ [0, 1] act 333

as controlling parameters. These parameters deter- 334

mine the relative influence of the LTM, MTM, and 335

STM on the present state. By adjusting these pa- 336

rameters, the model can learn the balance between 337

relying on long-term, medium-term, or short-term 338

context. 339

3.3 Neural Network Block 340

A neural network block can be any neural network 341

architecture for classification or generation. Here, 342

we use BERT, Blenderbot, and BART, respectively 343

for different tasks. The concatenated memory rep- 344

resentation in Equation 9 is then fed into the Neural 345

Network Block to perform the prediction task. The 346

output of the concatenation layer is fed to a Neural 347

Network block: 348
yti = M(zt;wti) (10) 349
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Here, given zt is the output from Equation 9 and350

M is the neural model. For this neural model, we351

experiment with BERT (Devlin et al., 2018) as352

the Transformer encoder-only model, and Blender-353

bot (Xu et al., 2021a) and BART (Lewis et al.,354

2019) as the Transformer encoder-decoder models.355

Figure 1 shows the model architecture when us-356

ing the vanilla Transformer (Vaswani et al., 2017),357

however, our system is agnostic of the type of358

the neural network used. Therefore, in theory,359

we can replace it with any other neural network.360

In practice, we experimented with two different361

transformer-based models (see Section 4). For362

encoder-decoder architectures, e.g. BART (Lewis363

et al., 2019), we use the same architecture with364

both encoder and decoder. Then, we extract the fi-365

nal layer’s hidden states and give it to the attention-366

pooling layer.367

3.4 Training and Parallelize STM368

Training Loss In this work, given y∗ as true la-369

bels, we use the cross entropy loss function as our370

objective:371

L(y∗, y) = 1

T

T∑
t=1

y∗t log(yt) (11)372

Training models with integrated reservoir needs373

to process the whole dataset sequentially to learn374

the inherent memory dependency between samples.375

Traditional batch training is impractical as each376

sample’s computation is contingent on its prede-377

cessor. Therefore, we introduce a batch training to378

accelerate the training process.379

As in Figure 1, a sentence is processed by a380

Transformer to learn within sentence dependency,381

then this embedded sentence is further fed into382

RNN and reservoir. In reservoir, each new incom-383

ing embedded sentence is fed into the model and384

added to the old memory based on all previous em-385

bedded sentences. Thus reservoir learns the full386

contextual dependency in the whole dataset. This387

means that reservoir needs to wait for the Trans-388

former to process each sentence which is very time389

consuming. To accelerate this process, we par-390

allelize the training process of the Transformer,391

where we embed S sentences at the same time, and392

then fed them together to the reservoir. In this way,393

the training time of waiting is reduced by S.394

For example, for a sequence of sentence input395

w1, w2, · · · , wT . We feed w1 to the first STM, then396

w2 to the second STM, after that w3 to the third397

STM, until wS to the S-th STM. These STM out- 398

puts are collected and fed together to the reservoir. 399

Afterwards, We feed wS+1 to the first STM, wS+2 400

to the second STM, until w2S to the S-th STM, 401

then fed their output to the reservoir as the second 402

batch of the input. This is done interatively until 403

all sentences are read, where STM processing time 404

is reduced by S due to the parallelization. 405

4 Experiments and Results 406

In this section, we discuss the experiments we car- 407

ried out to evaluate our proposed Reservoir Trans- 408

former as well as the results we obtained. Specifi- 409

cally, we want to verify that RT can handle context 410

of any length, so we experiment with three NLP 411

tasks, (i) language modeling, (ii) dialogue mod- 412

eling, and (iii) text classification. The maximum 413

length for each of the dataset varies from 1.4K for 414

the language modeling task to more than 29K for 415

the text summarization task. This allows us to test 416

each of the memory module mentioned in Section 417

3. The language modeling task will test how our 418

model handles long-term context, dialogue model- 419

ing will verify the medium-term context and text 420

classification will test for the short-term context. 421

All the training details, including the hyperparame- 422

ters are discussed in the Appendix A.1. 423

4.1 NLP Tasks 424

We experimented with four NLP tasks, (1) language 425

modeling, (2) dialogue modeling, (3) text classifi- 426

cation, and (4) text summarization. 427

4.1.1 Language Modeling 428

Data and Pre-processing: We conduct lan- 429

guage modeling experiments on the WikiText-103 430

dataset (Merity et al., 2018), which consists of 103 431

million words extracted from English Wikipedia 432

articles, to assess the performance of various lan- 433

guage models. We convert the data into sequential 434

batches (see Section 3.4) and then use BERT tok- 435

enizer for the pre-processing. 436

Model Training: We adopt the parameter set- 437

tings described in the original BERT paper (Devlin 438

et al., 2018). For the reservoir (LTM), we use 3000 439

units with a spectral radius of 0.50. The leaky rate 440

is set to 0.35. The reservoir readout size is set to 441

50, and the medium-term memory (MTM) is 50. 442

Results: Table 1 provides an overview of the 443

models utilized in the experiments, along with their 444
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Model Name PPL
Transformer-N (Sun and Iyyer, 2021) 25.2
Transformer-XL Standard (Dai et al., 2019) 24.0
Feedback Transformer (Fan et al., 2020) 22.4
BERT-Large-CAS (Wang et al., 2019a) 20.4
Transformer-XL Large (Dai et al., 2019) 18.3
Feedback Transformer (Fan et al., 2020) 18.2
Shortformer (Press et al., 2020) 18.2
Sandwich Transformer (Press et al., 2019) 18.0
SegaTransformer-XL (Bai et al., 2021) 17.1
Compressive Transformer (Rae et al., 2019) 17.1
Hybrid H3 (Dao et al., 2022) 16.9
kNN-LM (Khandelwal et al., 2019) 15.8
Routing Transformer (Roy et al., 2021) 15.8
Reservoir Transformer (RT) 15.6

Table 1: Language modeling on WikiText-103.

corresponding perplexity scores. Using our pro-445

posed Reservoir Transformer, which merges as the446

highest-performing model, achieving a deduction447

of 9.6 perplexity score, i.e., 38.0% relatively com-448

pared to the Transformer-N model.449

4.1.2 Dialogue Modeling450

Data and Pre-processing: We verify our451

model’s performance for medium-length context452

on a dialogue modeling task. We create a custom453

conversational data by prompting GPT 3.5. The454

dataset containing total 400K conversation cover-455

ing a wide range of topics including sports, history,456

travel, art, music, health, and wellness etc. We457

randomly select 30 conversations for test.1458

Model Training: We use Blenderbot (Xu et al.,459

2021a) as the baseline model and compare it with460

RC and Blenderbot+RC, where we follow Roller461

et al. (2020) for the fine-tuning. For the reservoir,462

we use 1000 units with a spectral radius of 0.50.463

The leaky rate is set to 0.35. We set the readout464

size to 50 and for MTM we set the memroy size465

to 15. Each fine-tuning is run for 3 epochs and the466

final evaluation is carried out using BLEU score467

and ROUGE score.468

Results: Experiments show that our method out-469

performs the baseline method in conversational470

modeling. We observe a consistent improvement471

of both our methods above the baseline model.472

Blenderbot+RT shows the highest improvement473

with +0.3 BLEU score and +0.5 ROUGE1 score474

higher than the Blenderbot. This comparative anal-475

ysis allows us to evaluate the improvements at-476

tained by our chatbot in terms of its ability to477

generate coherent and contextually appropriate re-478

sponses.479

1We will release the test data along with the paper.

Model METERO GBLEU BLEU ROUGE1/2/L/Lsum
BB 24.9 10.1 7.0 27.5/10.2/23.0/23.1

BB+RT 25.2 10.3 7.2 28.0/10.5/23.3/23.3

Table 2: BB+RT outperforms baseline Blenderbot (BB).
GBLEU is Google’s BLEU score.

Model/Dataset HND 20N E57K
BERT 92.0 84.8 73.1

BERT+TextRank (Park et al., 2022) 91.2 85.0 72.9
BERT+Random (Park et al., 2022) 89.2 84.6 73.2
ToBERT (Pappagari et al., 2019) 89.5 85.5 67.6

CogLTX (Ding et al., 2020a) 94.8 84.6 70.1
LONGFORMER (Beltagy et al., 2020) 94.8 83.4 54.5

BIG BIRD (Zaheer et al., 2020) 92.2 - -
Reservoir Transformer 97.2 89.7 74.0

Table 3: Text classification on three datasets.

4.1.3 Text Classification 480

Data and pre-processing: For the text classifica- 481

tion task, we present the results on three dataset; hy- 482

perpartisan news detection (HND), 20Newsgroups 483

(20N), and EURLEX-57K (E57K). Each dataset is 484

split into training, validation, and test following the 485

approach outlined in Park et al. (2022). 486

Model Training: We use BERT for the neural 487

network block. We set the model dropout to 0.1, 488

attention dropout to 0.1, and weight decay to 0.05. 489

Additionally, we set the reservoir size to 500 with 490

a spectral radius of 0.7. The leaky rate is set to 491

0.35. The readout size is set to 20 and the MTM 492

memory size is set to 5. We compare our method 493

with various transformer-based models and also 494

compare with LLMs including LONGFORMER 495

and BIG BIRD. 496

Results: Table 3 shows the performance of RT 497

compared to other state-of-the-art models. We can 498

see that our system consistently achieves a higher 499

performance for all the three tasks. For HND, we 500

get an improvement of at least 0.6% points above 501

the ERNIE-DOC-LARGE model. Similarly, we 502

get an improvement of 1.2% points above SGC 503

model for 20N task and 0.8% improvement above 504

BERT+Random model for E57K task. 505

4.1.4 Text Summarization 506

Data and Pre-processing: To verify our model 507

on very long context, we also experiment with 508

the text summarization task. We used the XSum 509

dataset (Narayan et al., 2018) for training and test- 510

ing our approach. The maximum context length for 511

data is up to 29K tokens. 512

Model Training: We use the BART (Lewis et al., 513

2019) model as the Neural Network Block for the 514
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Model ROUGE-1
BART (Lewis et al., 2019) 42.43

BERTSumExtAbs (Liu and Lapata, 2019) 16.30
EXT-ORACLE (Narayan et al., 2018) 29.79

Reservoir Transformer 44.54

Table 4: Text Summarization results for XSum dataset
Memory Modules HND 20N

STM 92.0 84.8
MTM+STM 96.3 89.0
LTM+STM 95.5 88.3

LTM+MTM+STM 97.2 89.7

Table 5: System performance by removing specific
memory modules from the network.

Figure 2: Perplexity score versus γ for MTM.

Reservoir Transformer. We apply the Figure 1 ar-515

chitecture separately for the encoder and decoder516

part of the BART model.517

Results: Table 4 shows the results for the text518

summarization.The RT model gets a higher perfor-519

mance of +2.11% points above only BART model.520

4.2 Ablation Study521

Comparison of Memory Modules: For the abla-522

tion study, we compare how each of the three mem-523

ory modules influences the model’s performance.524

We try various combinations of the memory mod-525

ules by removing one at a time. We experiment526

with the text classification task using the HND and527

the 20N datasets. Table 5 shows the reduction in528

performance when each of the memory modules529

is ‘switched off’. The row ‘LTM+MTM+STM’ is530

our default setting where we use all three modules531

(same as Table 3).532

Optimizing γ for MTM: We also try to opti-533

mize the value of γ to find the optimal number534

of previous steps given as input to the recurrent535

memory (MTM). Figure 2 shows the results for the536

language modeling task (WikiText-103). We can537

see the minimum perplexity is setting the γ = 60.538

Additionally, we also optimize γ for the text539

classification task. For these experiments, the de-540

Dataset No. Sentences
1 2 3 4

HND 92.04 94.63 97.18 96.92
20N 84.83 88.63 89.67 89.07

E57K 68.56 70.82 73.37 73.97

Table 6: Performance for number of sentences in MTM.

Figure 3: Increasing the number of short-term recurrent
memory leads to a gradual reduction in perplexity, indi-
cating improved performance.

fault value of gamma is set to four. However, we 541

also experimented with changing the number of 542

these previous sentences used to see how the per- 543

formance changes. Table 6 shows the results on the 544

number of previous sentences used in MTM, which 545

helps to further improve the prediction accuracy on 546

three tasks. 547

Changing Token Length: Figure 3 shows a com- 548

parative analysis of the performance of four NLP 549

models—BERT, LONGFORMER, CogLTX, and 550

RT— for long sequences classification task. The 551

Pan Trigger Detection dataset comprises texts rang- 552

ing from 50 to 6,000 words, each tagged with 553

one or more out of 32 distinct trigger warnings. 554

These warnings follow a long-tailed frequency 555

distribution, where a few labels are highly fre- 556

quent, whereas the majority are increasingly scarce. 557

We use F1 Score as an evaluation metric, reveal- 558

ing that BERT’s effectiveness wanes with longer 559

texts. In contrast, LONGFORMER demonstrates 560

remarkable consistency across varying text lengths. 561

CogLTX experiences a slight drop in performance 562

as text length increases. RT stands out with robust 563

performance, showing only a slight reduction in 564

longer documents. In summary, LONGFORMER 565

and RT prove to be more adept at managing ex- 566

tended sequences compared to BERT and CogLTX. 567

568
Linear vs Non-linear Readout: Table 7 com- 569

pares the performance of different activation func- 570

tions of the reservoir readout layer across experi- 571

mented datasets; WikiText-103, HND, 20N, and 572

E57K. The activation functions tested are Linear, 573
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Activation Datasets
Function WikiText-103 HND 20N E57K

Linear 18.4 94.1 85.8 73.3
Tanh 17.4 94.9 86.7 73.3
Relu 16.1 95.8 89.1 73.5

Leaky Relu 16.7 95.8 88.6 73.6
Attention 15.6 97.2 89.7 74.0

Table 7: Comparative analysis of activation function ef-
ficacy in the reservoir readout layer, with WikiText-103
results measured by perplexity and remaining datasets
evaluated based on accuracy.

Model Time Complexity Memory Complexity
Transformer O(K2d) O(Kd+K2)
RNN O(Kd2) O(Kd)
LONGFORMER O(Kd2 + gKd) O(Kqd)
Mamba O(Krd) O(rd2)
RT O(Kqd) O(qd+ q2 + n2)

Table 8: Comparison of time and memory complexity.

Tanh, Relu, Leaky Relu, and Attention. Across574

all datasets, the Attention activation function con-575

sistently outperforms the others. This shows that576

non-linear activation functions like Attention can577

enhance network performance in language process-578

ing tasks.579

Time Complexity Comparison Table 8 shows580

the time and memory comparison of our method581

with other popular models. K is the input length,582

q is the sentence length (or window size in case583

of LONGFORMER), g is tokens used for global584

attention, r is the rank in low-rank projection of585

the state space for the Mamba (Gu and Dao, 2023)586

model, and n is the number of neurons in reservoir.587

5 Related Work588

A common approach when dealing with long con-589

text is to modify the attention mechanism using590

heuristics (Liu and Abbeel, 2024; Zaheer et al.,591

2020) and represent very long context as fixed-592

length representation (Peters et al., 2018; Devlin593

et al., 2018). These approaches by themselves594

cause information loss and thus result in lower per-595

formance for downstream tasks (Li et al., 2024).596

As the amount of input data increases, a naive597

idea to handle long context is to make the model ar-598

chitecture much larger, e.g. LlaMa 3 (Meta, 2024)599

and Mistral (Jiang et al., 2023) which can han-600

dle up to 8K context length. However, this ap-601

proach cannot be scaled to an ever-increasing con-602

text length (Mohtashami and Jaggi, 2024; Kryś-603

ciński et al., 2021). Therefore, a common approach604

to handle long context is to represent the previ-605

ous history as a fixed size representation (Kan-606

erva, 1988) or to modify the attention mechanism607

using heuristics (Liu and Abbeel, 2024; Zaheer 608

et al., 2020; Beltagy et al., 2020) and represent very 609

long context as fixed-length representation (Pe- 610

ters et al., 2018; Devlin et al., 2018). For exam- 611

ple, (Munkhdalai et al., 2024) use this idea and 612

empirically verify for up to 1 million length input 613

sequence. One idea is to offload cross-attention 614

to a single k-NN index (Bertsch et al., 2024). 615

Tworkowski et al. (2024) modify the LlaMA model 616

to handle long context. Other ideas modify the 617

attention mechanism, including block-wise compu- 618

tation (Liu and Abbeel, 2024) of the self-attention 619

mechanism, ring attention (Liu et al., 2023), and 620

sparse attention(Zaheer et al., 2020). Researchers 621

have also used RNN blocks within a deep neural 622

network (Munkhdalai et al., 2019) or the trans- 623

former model (Feng et al., 2024; Bulatov et al., 624

2022; Wang et al., 2019b; Kim et al., 2018; Bu- 625

latov et al., 2023). State-space models represent 626

the model’s state as fixed-size representation (Gu 627

and Dao, 2023). These approaches by themselves 628

cause information loss and there is certainly room 629

to improve on downstream tasks (Li et al., 2024). 630

Researchers have tried integrating traditional 631

Reservoir Computing (RC) models (Jaeger, 2001; 632

Maass et al., 2002; Xia et al., 2023) with state-of- 633

the-art models for processing temporal data(Wang 634

et al., 2023). This integration has shown promise 635

in fields like speech recognition (Nako et al., 636

2023; Ibrahim et al., 2021) and time series pre- 637

diction (Shahi et al., 2022; Bianchi et al., 2020; 638

Platt et al., 2022; Shen et al., 2020). However, to 639

the best of our knowledge, this idea has not been 640

used for textual input. We propose the novel idea 641

of capturing dependencies from three different con- 642

text lengths and representing them as fixed-length 643

representations. 644

6 Conclusion 645

We propose a Reservoir Transformer model that 646

can handle long input sequences without increasing 647

training data sets or training time. The novelty of 648

our approach is the memory module which helps 649

the model represent variable-length context. This 650

ensures that the model can capture these tempo- 651

ral dependencies within text thus improving the 652

model’s performance on downstream tasks. We in- 653

tegrate our method with two different transformer 654

architectures; BERT and BlenderBot, and show sig- 655

nificant improvement for the language modeling, 656

dialogue modeling, and text classification tasks. 657
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7 Limitations658

The Reservoir Transformer model presents a no-659

table step forward in processing extensive se-660

quences in natural language tasks. However, it is661

important to acknowledge its constraints. Primarily,662

its proficiency in managing shorter sequences or663

tasks that do not significantly depend on long-span664

connections may not be as pronounced. Further-665

more, a traditional Transformer model that con-666

siders every token theoretically could outperform667

the Reservoir model, albeit with a substantial in-668

crease in computational demands. This positions669

the Reservoir approach as a balance between ef-670

ficiency and performance. Nonetheless, there re-671

mains a potential for loss of information, particu-672

larly with dependencies that extend over very long673

terms.674
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A Equations1039

Reservoir:1040

xt =
1√
n
f(Wrxt−1 +WiHt−1)1041

1042

Linear Readout:1043

ot = Woxt1044

1045

Non-Linear Readout:1046

o′t = σ(Woxt)1047

1048

Concatenation:1049

zt = µ1 · ot ⊕ µ2 · (βt−γ ⊕ · · · ⊕ βt−2 ⊕ βt−1)1050

⊕µ3 · (e(w1)⊕ e(w2)⊕ · · · ⊕ e(wtK))1051

1052

Neural Network:1053

yti = M(zt;wti)1054

1055

Loss Function:1056

L(y∗, y) = 1
T

∑T
t=1 y

∗
t log(yt)1057

1058

Attention Pooling:1059

βt−1 =
∑s

i=1 αiH
i
t−1,1060

1061

Attention Pooling Softmax:1062

αi =
exp(ei)∑d
i=1 exp(ei)

1063

1064

Attention Pooling Score:1065

ei = vi tanh(Wi ·H i
t−1 + bi)1066

A.1 Training details1067

We utilize three Transformer implementations:1068

BERT, BART, and on Blenderbot. The architec-1069

ture and hyperparameter settings are the default1070

ones from the original papers (Devlin et al., 2018;1071

Roller et al., 2020). During the training process,1072

we utilize the Adam optimizer with a decay of1073

0.01 and a linear schedule learning rate starting1074

from 2e− 5. However, in mask language modeling1075

(MLM) tasks, the cross-entropy loss is commonly1076

employed to optimize the model’s predictions. In1077

MLM, a certain percentage of input tokens are ran-1078

domly masked to train the model to predict the1079

masked tokens based on their surrounding context.1080

Mathematically, the cross-entropy loss is defined1081

as follows:1082

LCE = − 1

T

T∑
i=1

V∑
j=1

yij log(pij), (12)1083

where T is the total number of instances, V is1084

the size of the vocabulary, yij is the binary indicator1085

(0 or 1) for whether the true label is j for the i-th 1086

instance, and pij is the predicted probability of the 1087

i-th instance belonging to class j. 1088

In mask language modeling, the input sequences 1089

are modified by randomly replacing some tokens 1090

with a special [MASK] token. The model’s ob- 1091

jective is then to predict the original tokens based 1092

on the context provided by the surrounding tokens. 1093

The cross-entropy loss is calculated by comparing 1094

the predicted probabilities of the masked tokens 1095

with their true labels. 1096

Additionally, BERT often includes next-sentence 1097

prediction (NSP) as an auxiliary task during pre- 1098

training. NSP determines whether two sentences in 1099

a pair are contiguous in the original text. This task 1100

helps the model capture relationships between sen- 1101

tences. Cross-entropy loss is also used to optimize 1102

the predictions of sentence pairs for the NSP task. 1103

Furthermore, in token generation models like 1104

BlenderBot, the Cross-entropy loss is again em- 1105

ployed to train these models, comparing the pre- 1106

dicted probability distribution of tokens in the gen- 1107

erated sequence with the target sequence. 1108

We train our model by adopting the methodology 1109

outlined in Algorithm 1. The pretraining phase 1110

encompasses two models: BERT and Blenderbot. 1111

For BERT, we adopt the parameter settings de- 1112

scribed in the original BERT paper by Devlin et al. 1113

(Devlin et al., 2018). Our primary focus lies in op- 1114

timizing the Masked Language Model (MLM) and 1115

Next Sentence Prediction (NSP) objectives for the 1116

pretraining model M . Pretraining, the Reservoir 1117

Bert model, involves employing the Book Corpus 1118

dataset (Zhu et al., 2015) and fine-tuning with the 1119

WikiText-103 dataset (Merity et al., 2016). In the 1120

reservoir setting, we use 3000 units with a spectral 1121

radius of 0.5. The leaky rate is set to 0.35. Further- 1122

more, we allocate 50 units of memory for recurrent 1123

settings and 50 for long-term memory which is 1124

reservoir readout size. 1125

Similar to BERT, training the Blenderbot model 1126

adheres to the original Blenderbot hyperparame- 1127

ters outlined by Roller et al. (Roller et al., 2020). 1128

Pretraining of Reservoir Blenderbot involves utiliz- 1129

ing the Soda dataset (Kim et al., 2022), followed 1130

by fine-tuning with the Blend Skills Talk dataset 1131

(Smith et al., 2020). In the reservoir setting of 1132

Blenderbot, we use 1000 units with a spectral ra- 1133

dius of 0.5. The leaky rate is set to 0.35. Addition- 1134

ally, we reserve 15 units of memory for recurrent 1135

settings and 50 for long-term memory. 1136
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For the text classification dataset, we use 5001137

reservoir size with a spectral radius of 0.7. The1138

leaky rate is set to 0.35. We set 5 recurrent memory1139

and 20 for long-term memory. For all experiments,1140

we have used the Transformer model dropout 0.1,1141

attention dropout of 0.1, and weight decay 0.05.1142

B Training Algorithm1143

Algorithm 1 Training algorithm of Deep Reservoir
Computing with Recurrent Transformer

Require:
Ui:T , Yi:T : Dataset
function R(ut) ▷ Reservoir

xt ← 1√
N
f(Wrxt−1 +Wiut) ▷ By

Equation 6
return ot ▷ By equation 7

end function
Ensure: Optimize Pr(Yt|S1:t) distribution by

learning a model F (.)
Wi,Wr ← N (0, 1) ▷ Weights initialization of
Reservoir
σ ← N (0, 1) ▷ Weights initialization of
Reservoir non-linear output
ϕ← N (0, 1) ▷ Weights initialization of
Transformer F (.)
while epoch < epochs do

while t < T do
ot ← R(ut;Wi,Wr, σ) ▷ Non-

linear readout from R(.) reservoir described in
Equation 7

βt−γ =
∑s

i=1 αiH
i
t−γ ▷ Get STM

from Equation 3
zt = µ1 · ot⊕µ2 · (βt−1⊕βt−2⊕ . . .⊕

βt−γ) ⊕ µ3 · (e(w1) ⊕ e(w2) ⊕ · · · ⊕ e(wq))
▷ Concatenation of all embedding described in
described in Euqation 9

ȳt ← F (zt;ϕ)
end while
loss← LCE(ȳ1:T , y1:T ) ▷ Calculating loss

for every time step z by equation 12
ϕ, σ, e, κ← update ▷ Update parameters

end while

C Additional Results1144

Table 9 shows additional baseline results for the1145

text classification task.1146

Model/Dataset HND 20N E57K
GRAPH-ROBERTA (Xu
et al., 2021b)

96.2 - -

ERNIE-DOC-LARGE
(Ding et al., 2020b)

96.6 - -

ERNIE-SPARSE (Liu
et al., 2022)

92.8 - -

RMT BERT (Bulatov
et al., 2022)

94.3 - -

TextGCN (Lin et al., 2021) - 86.3 -
BertGAT (Lin et al., 2021) - 87.4 -
RoBERTaGAT (Lin et al.,
2021)

- 86.5 -

SGC (Lin et al., 2021) - 88.5 -
ZERO-BIGRU-LWAN
(Chalkidis et al., 2019)

- - 65.2

BIGRU-LWAN (L2V)
(Chalkidis et al., 2019)

- - 71.1

BIGRU-LWAN (ELMO)
(Chalkidis et al., 2019)

- - 71.9

Reservoir Transformer 97.2 89.7 74.0

Table 9: Text classification on three datasets.

D Dataset Statistics 1147

Table 10 shows the training data samples for all the 1148

datasets we used including our custom conversa- 1149

tional dataset. 1150

Dataset Training Samples
WikiText-103 1.8M

Custom Dialog data 600K
XSum 204K
HND 600K
20N 20K

E57K 57K

Table 10: Training data samples for each dataset
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E Length comparison1151

Figure 4 shows the maximum sequence length for1152

all the datasets we used in our experiments. ‘Di-1153

alog’ is our custom generated data we use for the1154

dialogue modeling task. As shown in the plot, we1155

experimented with varying length of context from1156

1.4K tokens for WikiTest-103 up to 11.7K tokens1157

for 20N dataset.1158

Figure 4: Maximum length of a single data sample for
all the four datasets.

15


