All Context Aware Reservoir Transformer Possible

Anonymous EMNLP submission

Abstract

The commitment of language processing is
largely restricted by knowing the context
around it. However, Transformer, as one of
the most powerful neural network architectures,
has its input length restricted due to a quadratic
time and memory complexity. Despite rich
work advancing its efficiency, long context is
still an issue that requires large computational
resources in training. We realize a novel reser-
voir Transformer that bounds the learning in
linear time by handling different input lengths
in a cascaded way. For a long-term context, the
reservoir with non-linear readout learns sam-
ple dependencies from the beginning to the end
of a sequential dataset; To learn more accu-
rately the medium-term context such as previ-
ous sentences, we apply a recurrent memory
mechanism; and finally for the short-term de-
pendencies in one sentence, we learn with the
Transformer. Experiments show that our reser-
voir Transformer improves BERT and Blender-
bot performance and significantly increases our
prediction accuracy in (small) language model-
ing, text classification, and chatbot tasks over
the state-of-the-art methods. This shows that
a reservoir Transformer makes it possible to
efficiently learn from extremely long context.

1 Introduction

Transformer has updated state-of-the-art in a wide
range of Al tasks including but not limited to NLP,
computer vision, bioinformatics, etc. (Vaswani
et al., 2017; Devlin et al., 2018; Dosovitskiy et al.,
2020). One important limitation of Transformer is
the quadratic time and memory complexity of the
input length, e.g., BERT has a restriction of 512
input tokens, and GPT-3 2048 for efficiency. Even
LlaMA 3 (Meta, 2024), Gemma (Team et al., 2024),
GPT-4 (Achiam et al., 2023), and Mistral (Jiang
et al., 2023) have maximum input tokens as 8K.
However, long sequential inputs can be extremely
useful for learning contextual information. For
example, in language understanding, words have

different meanings in different contexts; In dia-
logue modeling, the lack of effective contextual
understanding can lead to incoherent or irrelevant
responses in longer conversations. Therefore, the
Transformer’s length restriction must be solved so
that long histories can be retained and utilized.

Several studies have investigated how to increase
Transformer input lengths, such as (Kitaev et al.,
2020; Kim and Cho, 2020; Beltagy et al., 2020;
Choromanski et al., 2020; Katharopoulos et al.,
2020; Zhou et al., 2021; Guo et al., 2021; Ma et al.,
2021; Hua et al., 2022; Tay et al., 2022; Bertsch
et al., 2023; Liu et al., 2023; Li et al., 2023; Mo-
htashami and Jaggi, 2023; Ainslie et al., 2023; Bula-
tov et al., 2023; Liu and Abbeel, 2024; Munkhdalai
et al., 2024; Tworkowski et al., 2024; Bertsch et al.,
2024; Martins et al., 2021; Han et al., 2023; Mo-
htashami and Jaggi, 2024). Existing solutions, how-
ever, either modifying the attention model with
heuristic assumptions or projecting long input into
a fixed dimension. Since most work does not con-
sider temporal patterns of the input, there is still
room to reduce the information loss learned from
the long context and improve the prediction accu-
racy and efficiency.

In this work, we introduce a novel approach that
enhances the Transformer with reservoir comput-
ing to efficiently handle long sequences. Reser-
voir Computing (RC) is a class of simple and effi-
cient Recurrent Neural Networks where internal
weights are fixed at random, and only a linear
output layer is trained. Reservoir computing re-
quires a small number of training data samples
and computing resources with great advantages
for processing sequential data in linear time and
constant space (Gauthier et al., 2021). Here, we
improve reservoir with non-linear readout to take
long conversational context into account for time
and memory efficiency (Gauthier et al., 2021).

Figure 1 shows the architecture of our Reser-
voir Transformer. We handle the input sequence

loss (Sec 3.5, Eq 11)

last hidden layer H,

(neural network block (Transformer) (Sec 3.3, Eq 8) ‘

combination (Sec 3.2, Eq 7)

= d @ di yd @ (Ai

e — E— —
memory | LTM MTM STM
modules (reservoir) ‘ (attention pooling) ‘ (embedding) ’l
(Sec3.1)| (Eq5 & 6) (Eq 8,9 &10) (Eq 5) |
________ L e eee—
add to all add to each
previous sentences previous sentences sentence

v B~

Figure 1: A schematic representation of the integrated
memory system combining Reservoir, LTM, MTM, and
STM with the Neural Network Block. The Long-Term
Memory module (reservoir) processes all the previous
states uq : u¢—1. The Medium-Term Memory module
processes only the immediately preceding states ;- :
u;—1. The Short-Term Memory module (Embedding)
processes the current state u, with the window size k
and tokens w1, - -+ , Wg.

ugu,, u i,

at three cascaded processes depending on the in-
put context length: For long context, e.g., the total
training data like the full article, our reservoir reads
sentence by sentence sequentially from the entire
training data; for intermediate long context such as
the previous five sentences, we apply a recurrent
neural network (RNN) for a more accurate learn-
ing; for short context, i.e., the current sentence, we
will maintain learning the token dependency using
a Transformer.

Figure 1 shows our system architecture. The
main novelty of our model is the three memory
modules, i.e. short-term (STM), medium-term
(MTM), and long-term (LTM) to represent different
context lengths. For time step ¢, the current sen-
tence wu; is fed only to the STM which embeds it
to get the sentence’s embedding matrix e(u;). The
MTM takes y previous sentences -, - - , U1
to an Attention Pooling. The LTM is a reservoir
that processes the Transformer encoder’s final layer
output H; for all the previous sentences in the
whole dataset uj,--- ,u;—1. The output of these
three modules is concatenated together and then
fed to the Neural Network Block model, such as a
BERT, Blenderbot, and BART.

Our reservoir method makes it possible for the
Transformer to process an infinite number of input
tokens. Our contributions include the following:
(a) We introduce reservoir computing to handle
arbitrary long input of Transformer; (b) We en-
hance the conventional reservoir computing model

by replacing linear with a non-linear readout for
dimension reduction and better feature learning;
(c) We introduce integrating the reservoir, RNN,
and Transformer to handle long, intermediate, and
short contexts, respectively; (d) We collect exper-
imental evidence that our reservoir Transformer
significantly enhances the performance and gener-
alizes the model learning robustness of the Trans-
former on various NLP tasks showcasing an im-
provement of 2.7 in perplexity score compared to
the Transformer-XL (Dai et al., 2019) Large model
and 2.4% points in accuracy compared to LONG-
FORMER (Beltagy et al., 2020), for the language
modelling and the text classification tasks respec-
tively.

2 Problem Definition

sequence of words wit =

wiwy - wg - wg (k€ 1,2,---) K), where K
is the input length, and its segmentation boundaries
k{, a corpus can be represented in the form of a
sequence of sentences u{ = ujug-- “Uj Uy
(j € 1,2,---,J), and each individual sentence

uj is defined as uj = wy, 41 wp, = w:jil,
where ui is composed of two sources of
information, the word sequence and its sentences.

Taking language model as an example, we pre-
dict the masked token w; (kj—1 < 7 < k;j + 1)
within a sentence j in the context of discrimina-
tive language modeling, and for generative lan-
guage modeling, we predict the next token con-
sidering the last token is the masked token, i.e.,
W; = wg,;. We aim to predict masked tokens w;
(kj—1 < i < kj + 1) within a sentence j, as ex-
pressed by:

Given a

Pr(w;|uy,ug, - - wg;) (1)

= softmax (y;;), ()

,wkj71+1...u7i..

where ¢t is the reservoir state time step, and is also
the sentence index, i.e. ¢ = j and yj; = yy in
Equation 10. Besides language modeling, we apply
the similar analogy to text classification, dialogue
modeling, and text summarization.

Complexity: Conventional Transformers to en-
capsulate dependencies across these long se-
quences resulting in the time complexity of
O(K? x d), with d as the model dimension. As
the sequence length K is extremely long, there-
fore quadratic time complexity becomes imprac-
tical. To counter this problem, we propose a

novel framework for Reservoir Transformer (RT).
This consists of the memory module which deal
with handling three different lengths of context.
The short-term memory module (STM) handles
only the current sentence u;. The medium-term
memory module (MTM) handles ~ previous sen-
tences us_~,- -+ ,us—1. The long-term memory
module (LTM) handles all the previous sentences
U, -+ ,Us—1. The time complexity of LTM is n?
where 7 is the number of neurons in the reservoir.
The time complexity for MTM is v x gd and the
time complexity of STM is ¢2d, where ¢ is the sen-
tence length. Therefore both LTM and MTM are
linear in terms of the input length and even though
the total complexity is still quadratic, however in
practice as we set ¢ to a small value of 512 while
the max value of K we experiment with is 29K
but can potentially be even higher.

3 Reservoir Transformer

We propose a novel architecture we call Reservoir
Transformer (RT). It combines the idea from reser-
voir computing (Gallicchio et al., 2017) with the
Transformer architecture. The novelty of our ap-
proach is that we propose three different memory
mechanisms to capture information at different lev-
els. The long-term, medium-term, and short-term
memory modules focus on different lengths of con-
text to balance the precision and the efficiency. We
also discuss the non-linear readout that significantly
improves the linear readout of the RC.

3.1 Memory Modules

We propose a novel idea of using three mem-
ory modules as part of a context-aware memory
framework that not only addresses the challenge
of handling long context but also efficiently con-
trols which previous input sentence should be given
more importance especially when the previous con-
text length becomes very large. These three mem-
ory modules help to capture dependency at differ-
ent levels. The long-term memory module handles
the whole context and therefore can capture long
dependency present in all the previous input sen-
tences. The medium-term memory module cap-
tures dependency from immediately preceding in-
put sentences. The short-term memory module
captures the local dependencies existing within a
single sentence.

We introduce three modules to handle different
ranges of input lengths to balance the efficiency and

accuracy. These three mechanisms are (i) Short-
Term Memory (STM), (ii) Medium-Term Memory
(MTM), and (iii) Long-Term Memory (LTM).

Short-Term Memory (STM) - Transformer:
Unlike LTM which handles the long-term context,
the STM only inputs the t’th input sentence wu;.
Each of the ¢ tokens w1, - ,w, are fed to the
embedding layer as input and we get the sentence
embedding e(w1), - - - , e(wy) as the output.

Here e(w;) is the embedding layer output for the
token w;. As Short-Term Memory does not learn
any relation between sentences, this step makes the
training much more efficient when dealing with
shorter inputs. We use Transformer with the self-
attention mechanism, which computes the attention
scores with the input itself.

Medium-Term Memory (MTM): LTM allows
the handling long context as input. However, the
modeling is not precise enough. Therefore, we
add the medium-term memory module to handle
the medium-term context so that far-away samples
will be taken care of by the reservoir and close-by
previous samples will be learned by the Medium-
Term Memory.

The MTM focuses on capturing and processing
only the immediately preceding states for the cur-
rent context. For a given current state ¢, MTM
considers the v immediate preceding hidden states,
represented as H;_,..., H; o, H; 1. While the
output of the Reservoir Transformer for each state
input is a ¢ X d dimensional vector, the MTM re-
quires scalar inputs. Conventionally, max pooling
is used to convert these vector outputs into scalar
forms; however, this method potentially omits valu-
able multidimensional data from the Transformer’s
output. To address this, we adopt attention pooling,
as proposed by Alam et al. (2023), which offers
improved performance by preserving more infor-
mation.

The objective of the attention pooling mecha-
nism is to construct a condensed representation,
Bi—rs -y Bi—2,Bi—1 € RY*¢ from the inputs
H, .,...,Hy_o, H; 1 and the output is used for
the MTM. We achieve this by emphasizing the most
significant frames in the context of the sequence.
Specifically, for the state H;_1, the attention pool-
ing is defined as:

q
Bro1 = aiH} 3)
=1

Here each a; € |0, 1] represents the normal-
ized attention weight allocated to the frame H}_;.
These weights are computed through a softmax
function, ensuring they sum to 1, as shown in Equa-
tion 4. The intrinsic non-linearity of the softmax
function within the attention mechanism ensures
the model’s capacity to capture complex, hierarchi-
cal dependencies.

0 = o) 4)

S exp(e;)

Here, the score ¢; is derived from H} ; using the
learnable parameters v;, W;, and b;. This transfor-
mation, followed by the application of a hyperbolic
tangent function, is expressed as:

e; = v tanh(W; - Hi_| + b;), (5)

These parameters (v;, W;, b;) are fine-tuned during
the training phase, allowing the attention pooling to
dynamically assign optimal weights to each frame,
tailored to the specific task.

Long-Term Memory (LTM) using Reservoir
Computing (RC): Reservoir Computing (RC)
is a framework within Recurrent Neural Networks
(RNN) that capitalizes on the high-dimensional
non-linear dynamics of neurons to process se-
quences. We use the LTM module to model all
input sentences to a fixed reservoir memory. The
LTM module treats each input sentence as a unique
state, enabling it to incorporate historical infor-
mation efficiently without increasing the input se-
quence length. This helps not only in processing
lengthy sequences but also in reducing the RC out-
put dimension for better performance.

The reservoir network (Gallicchio et al., 2017)
in Equation 6 processes all previous context.

Ty =

(1 — K)xy—1 + ktanh(W,xy—1 + W;H,—1) (6)

Here H;_; is output of the Transformer’s last
layer for the ¢ — 1°th sentence, z;_1 is the previ-
ous reservoir network state, < € [0, 1] is the leaky
parameter, and W,. € R™*"™ and W; € R™** rep-
resent the reservoir and input weight matrices, re-
spectively. These matrices are fixed and generated
randomly, with each weight being drawn from an
i.i.d. Gaussian distribution with variances o, and
0;2, respectively.

Instead of a linear readout of 0, = Wyxs, we
propose a non-linear readout given in Equation 7

for enhanced prediction capabilities.
Oy = U(WOZ’t) (7)

Here, o is a non-linear activation. We use ReLU
as default non-linear activation but we compare
with other activation functions in Section 4.2, and
W, € R"™ ™ denotes the output weights, where r
represents the output dimension.

The output of non-linear readout is then passed
to the self-attention mechanism.

Q=W%,;, K=WF¥o, V=WV
o — softmax(QKT)V
' Vi

Here W®, WX WV are learnable weight matrices.
dy, is the dimensions of the key.

(®)

3.2 Combining Memory Modules

The outputs of each of the memory modules are
given as input to a concatenation layer. We add a
small trainable weight parameter to the concatena-
tion layer for each module. Equation 9 shows the
concatenation layer. & is the concatenation oper-
ator and the coefficients p1, g, ug € [0, 1] act as
controlling parameters.

2t =p1 -0y D g - (Bi—ny B D Br_2 B Bi—1)
@ psz - (e(wr) ®e(wz) ®-- De(w)) (9)

Here, o} is from Equation 8 in LTM,
Bt—~s-++ 5 Bt—2,B4—1 are from Equation 3 in
MTM, and e(w;), e(wz), - - , e(wyx) are the em-
bedding output from STM. & is the concatenation
operator and the coefficients 1, po, s € [0, 1] act
as controlling parameters. These parameters deter-
mine the relative influence of the LTM, MTM, and
STM on the present state. By adjusting these pa-
rameters, the model can learn the balance between
relying on long-term, medium-term, or short-term
context.

3.3 Neural Network Block

A neural network block can be any neural network
architecture for classification or generation. Here,
we use BERT, Blenderbot, and BART, respectively
for different tasks. The concatenated memory rep-
resentation in Equation 9 is then fed into the Neural
Network Block to perform the prediction task. The
output of the concatenation layer is fed to a Neural
Network block:

Yri = M(2¢; wy;) (10)

Here, given z; is the output from Equation 9 and
M is the neural model. For this neural model, we
experiment with BERT (Devlin et al., 2018) as
the Transformer encoder-only model, and Blender-
bot (Xu et al., 2021a) and BART (Lewis et al.,
2019) as the Transformer encoder-decoder models.

Figure 1 shows the model architecture when us-
ing the vanilla Transformer (Vaswani et al., 2017),
however, our system is agnostic of the type of
the neural network used. Therefore, in theory,
we can replace it with any other neural network.
In practice, we experimented with two different
transformer-based models (see Section 4). For
encoder-decoder architectures, e.g. BART (Lewis
et al., 2019), we use the same architecture with
both encoder and decoder. Then, we extract the fi-
nal layer’s hidden states and give it to the attention-
pooling layer.

3.4 Training and Parallelize STM

Training Loss In this work, given y* as true la-
bels, we use the cross entropy loss function as our
objective:

T

1
L(y*,y) = fzyf log(yt) (11)
t=1

Training models with integrated reservoir needs
to process the whole dataset sequentially to learn
the inherent memory dependency between samples.
Traditional batch training is impractical as each
sample’s computation is contingent on its prede-
cessor. Therefore, we introduce a batch training to
accelerate the training process.

As in Figure 1, a sentence is processed by a
Transformer to learn within sentence dependency,
then this embedded sentence is further fed into
RNN and reservoir. In reservoir, each new incom-
ing embedded sentence is fed into the model and
added to the old memory based on all previous em-
bedded sentences. Thus reservoir learns the full
contextual dependency in the whole dataset. This
means that reservoir needs to wait for the Trans-
former to process each sentence which is very time
consuming. To accelerate this process, we par-
allelize the training process of the Transformer,
where we embed S sentences at the same time, and
then fed them together to the reservoir. In this way,
the training time of waiting is reduced by S.

For example, for a sequence of sentence input
w1y, wa, - -+, wr. We feed wy to the first STM, then
wsy to the second STM, after that w3 to the third

STM, until wg to the S-th STM. These STM out-
puts are collected and fed together to the reservoir.
Afterwards, We feed wg41 to the first STM, wg2
to the second STM, until wag to the S-th STM,
then fed their output to the reservoir as the second
batch of the input. This is done interatively until
all sentences are read, where STM processing time
is reduced by S due to the parallelization.

4 Experiments and Results

In this section, we discuss the experiments we car-
ried out to evaluate our proposed Reservoir Trans-
former as well as the results we obtained. Specifi-
cally, we want to verify that RT can handle context
of any length, so we experiment with three NLP
tasks, (i) language modeling, (ii) dialogue mod-
eling, and (iii) text classification. The maximum
length for each of the dataset varies from 1.4K for
the language modeling task to more than 29K for
the text summarization task. This allows us to test
each of the memory module mentioned in Section
3. The language modeling task will test how our
model handles long-term context, dialogue model-
ing will verify the medium-term context and text
classification will test for the short-term context.
All the training details, including the hyperparame-
ters are discussed in the Appendix A.1.

4.1 NLP Tasks

We experimented with four NLP tasks, (1) language
modeling, (2) dialogue modeling, (3) text classifi-
cation, and (4) text summarization.

4.1.1 Language Modeling

Data and Pre-processing: We conduct lan-
guage modeling experiments on the WikiText-103
dataset (Merity et al., 2018), which consists of 103
million words extracted from English Wikipedia
articles, to assess the performance of various lan-
guage models. We convert the data into sequential
batches (see Section 3.4) and then use BERT tok-
enizer for the pre-processing.

Model Training: We adopt the parameter set-
tings described in the original BERT paper (Devlin
et al., 2018). For the reservoir (LTM), we use 3000
units with a spectral radius of 0.50. The leaky rate
is set to 0.35. The reservoir readout size is set to
50, and the medium-term memory (MTM) is 50.

Results: Table 1 provides an overview of the
models utilized in the experiments, along with their

Model Name PPL Model | METERO | GBLEU | BLEU | ROUGE1/2/L/Lsum
Transformer-N (Sun and lyyer, 2021) 25.2 BB 24.9 10.1 7.0 27.5/10.2/23.0/23.1
Transformer-XL Standard (Dai et al., 2019) | 24.0 BB+RT 25.2 10.3 7.2 28.0/10.5/23.3/23.3
Feedback Transformer (Fan et al., 2020) 22.4
BERT-Large-CAS (Wang et al., 2019a) 204 Table 2: BB+RT outperforms baseline Blenderbot (BB).
Transformer-XL Large (Dai et al., 2019) 18.3 GBLEU is Google’s BLEU score
Feedback Transformer (Fan et al., 2020) 18.2 ModelDataset ’ AND 120N | B57K
Shortformer (Press et al., 2020) 18.2 o EER?F ase 9.0 1848 1 731
Sandwich Transformer (Press et al., 2019) 18.0 BERT TextRank (Park et al., 2022) 91‘2 85‘0 72‘9
. extRank (Park et al., . . .
SegaTransformer-XL (Bai et al., 2021) 17.1 BERT-+Random (Park et al., 2022) 202 | 846! 732
Compressive Transformer (Rae et al., 2019) | 17.1 ToBERT (Pappagari et al ’2 019) g 9‘ 5 85‘5 67.6
3?533 Igao ; tlal"l 2?2? 2019 12'3 CogLTX (Ding et al., 2020a) 94.8 | 84.6 | 70.1
-LM (Khandelwal et al., 2019) : LONGFORMER (Beltagy et al., 2020) | 94.8 | 834 | 54.5
Routing Transformer (Roy et al., 2021) 15.8 BIG BIRD (Zaheer et al., 2020) 902 .)
Reservoir Transformer (RT) 156 Reservoir Transformer 97.2 | 89.7 | 74.0

Table 1: Language modeling on WikiText-103.

corresponding perplexity scores. Using our pro-
posed Reservoir Transformer, which merges as the
highest-performing model, achieving a deduction
of 9.6 perplexity score, i.e., 38.0% relatively com-
pared to the Transformer-N model.

4.1.2 Dialogue Modeling

Data and Pre-processing: We verify our
model’s performance for medium-length context
on a dialogue modeling task. We create a custom
conversational data by prompting GPT 3.5. The
dataset containing total 400K conversation cover-
ing a wide range of topics including sports, history,
travel, art, music, health, and wellness etc. We
randomly select 30 conversations for test.!

Model Training: We use Blenderbot (Xu et al.,
2021a) as the baseline model and compare it with
RC and Blenderbot+RC, where we follow Roller
et al. (2020) for the fine-tuning. For the reservoir,
we use 1000 units with a spectral radius of 0.50.
The leaky rate is set to 0.35. We set the readout
size to 50 and for MTM we set the memroy size
to 15. Each fine-tuning is run for 3 epochs and the
final evaluation is carried out using BLEU score
and ROUGE score.

Results: Experiments show that our method out-
performs the baseline method in conversational
modeling. We observe a consistent improvement
of both our methods above the baseline model.
Blenderbot+RT shows the highest improvement
with +0.3 BLEU score and +0.5 ROUGEI1 score
higher than the Blenderbot. This comparative anal-
ysis allows us to evaluate the improvements at-
tained by our chatbot in terms of its ability to
generate coherent and contextually appropriate re-
sponses.

'We will release the test data along with the paper.

Table 3: Text classification on three datasets.

4.1.3 Text Classification

Data and pre-processing: For the text classifica-
tion task, we present the results on three dataset; hy-
perpartisan news detection (HND), 20Newsgroups
(20N), and EURLEX-57K (E57K). Each dataset is
split into training, validation, and test following the
approach outlined in Park et al. (2022).

Model Training: We use BERT for the neural
network block. We set the model dropout to 0.1,
attention dropout to 0.1, and weight decay to 0.05.
Additionally, we set the reservoir size to 500 with
a spectral radius of 0.7. The leaky rate is set to
0.35. The readout size is set to 20 and the MTM
memory size is set to 5. We compare our method
with various transformer-based models and also
compare with LLMs including LONGFORMER
and BIG BIRD.

Results: Table 3 shows the performance of RT
compared to other state-of-the-art models. We can
see that our system consistently achieves a higher
performance for all the three tasks. For HND, we
get an improvement of at least 0.6% points above
the ERNIE-DOC-LARGE model. Similarly, we
get an improvement of 1.2% points above SGC
model for 20N task and 0.8% improvement above
BERT+Random model for E57K task.

4.1.4 Text Summarization

Data and Pre-processing: To verify our model
on very long context, we also experiment with
the text summarization task. We used the XSum
dataset (Narayan et al., 2018) for training and test-
ing our approach. The maximum context length for
data is up to 29K tokens.

Model Training: We use the BART (Lewis et al.,
2019) model as the Neural Network Block for the

Model ROUGE-1
BART (Lewis et al., 2019) 42.43
BERTSumExtAbs (Liu and Lapata, 2019) 16.30
EXT-ORACLE (Narayan et al., 2018) 29.79
Reservoir Transformer 44.54

Table 4: Text Summarization results for XSum dataset

Memory Modules | HND | 20N
STM 92.0 | 84.8
MTM+STM 96.3 | 89.0
LTM+STM 95.5 | 88.3
LTM+MTM+STM | 97.2 | 89.7

Table 5: System performance by removing specific
memory modules from the network.
MTM vs Perplexity

=@~ Perplexity

N
NS}

[y}
(=]

Perplexity
o

Min: 15.6

—_
N

0 20 40 60
Number of MTM (y)

Figure 2: Perplexity score versus v for MTM.

Reservoir Transformer. We apply the Figure 1 ar-
chitecture separately for the encoder and decoder
part of the BART model.

Results: Table 4 shows the results for the text
summarization.The RT model gets a higher perfor-
mance of +2.11% points above only BART model.

4.2 Ablation Study

Comparison of Memory Modules: For the abla-
tion study, we compare how each of the three mem-
ory modules influences the model’s performance.
We try various combinations of the memory mod-
ules by removing one at a time. We experiment
with the text classification task using the HND and
the 20N datasets. Table 5 shows the reduction in
performance when each of the memory modules
is ‘switched off’. The row ‘LTM+MTM+STM’ is
our default setting where we use all three modules
(same as Table 3).

Optimizing v for MTM: We also try to opti-
mize the value of v to find the optimal number
of previous steps given as input to the recurrent
memory (MTM). Figure 2 shows the results for the
language modeling task (WikiText-103). We can
see the minimum perplexity is setting the v = 60.

Additionally, we also optimize for the text
classification task. For these experiments, the de-

No. Sentences
Dataset 1) 3 3
HND 92.04 94.63 97.18 96.92
20N 84.83 88.63 89.67 89.07
E57K 68.56 70.82 73.37 73.97

Table 6: Performance for number of sentences in MTM.

0.7 sty ‘ ___________ —
0.6
o4 ()
30.5
53
197 ..
T 0.4
0.3 @+ BERT
’ == Longformer .
o CogLTX .
0.2 == RT .

0.5K> 1K> 1.5K> 2K> 3K> 4K> 4K<
Number of Tokens

Figure 3: Increasing the number of short-term recurrent
memory leads to a gradual reduction in perplexity, indi-
cating improved performance.

fault value of gammea is set to four. However, we
also experimented with changing the number of
these previous sentences used to see how the per-
formance changes. Table 6 shows the results on the
number of previous sentences used in MTM, which
helps to further improve the prediction accuracy on
three tasks.

Changing Token Length: Figure 3 shows a com-
parative analysis of the performance of four NLP
models—BERT, LONGFORMER, CogL.TX, and
RT— for long sequences classification task. The
Pan Trigger Detection dataset comprises texts rang-
ing from 50 to 6,000 words, each tagged with
one or more out of 32 distinct trigger warnings.
These warnings follow a long-tailed frequency
distribution, where a few labels are highly fre-
quent, whereas the majority are increasingly scarce.
We use F1 Score as an evaluation metric, reveal-
ing that BERT’s effectiveness wanes with longer
texts. In contrast, LONGFORMER demonstrates
remarkable consistency across varying text lengths.
CogLTX experiences a slight drop in performance
as text length increases. RT stands out with robust
performance, showing only a slight reduction in
longer documents. In summary, LONGFORMER
and RT prove to be more adept at managing ex-
tended sequences compared to BERT and CogLTX.

Linear vs Non-linear Readout: Table 7 com-
pares the performance of different activation func-
tions of the reservoir readout layer across experi-
mented datasets; WikiText-103, HND, 20N, and
E57K. The activation functions tested are Linear,

Activation Datasets
Function WikiText-103 | HND | 20N | E57K
Linear 18.4 94.1 | 85.8 | 733

Tanh 17.4 949 | 86.7 | 73.3
Relu 16.1 95.8 | 89.1 73.5
Leaky Relu 16.7 958 | 88.6 | 73.6
Attention 15.6 97.2 | 89.7 74.0

Table 7: Comparative analysis of activation function ef-
ficacy in the reservoir readout layer, with WikiText-103
results measured by perplexity and remaining datasets
evaluated based on accuracy.

Model Time Complexity | Memory Complexity
Transformer O(K3d) O(Kd+ K?)
RNN O(Kd?) O(Kd)
LONGFORMER | O(Kd? + gKd) O(Kqd)
Mamba O(Krd) O(rd?)

RT O(K qd) Ogd + ¢ +n°)

Table 8: Comparison of time and memory complexity.

Tanh, Relu, Leaky Relu, and Attention. Across
all datasets, the Attention activation function con-
sistently outperforms the others. This shows that
non-linear activation functions like Attention can
enhance network performance in language process-
ing tasks.

Time Complexity Comparison Table 8 shows
the time and memory comparison of our method
with other popular models. K is the input length,
q is the sentence length (or window size in case
of LONGFORMER), g is tokens used for global
attention, r is the rank in low-rank projection of
the state space for the Mamba (Gu and Dao, 2023)
model, and n is the number of neurons in reservoir.

5 Related Work

A common approach when dealing with long con-
text is to modify the attention mechanism using
heuristics (Liu and Abbeel, 2024; Zaheer et al.,
2020) and represent very long context as fixed-
length representation (Peters et al., 2018; Devlin
et al., 2018). These approaches by themselves
cause information loss and thus result in lower per-
formance for downstream tasks (Li et al., 2024).
As the amount of input data increases, a naive
idea to handle long context is to make the model ar-
chitecture much larger, e.g. LlaMa 3 (Meta, 2024)
and Mistral (Jiang et al., 2023) which can han-
dle up to 8K context length. However, this ap-
proach cannot be scaled to an ever-increasing con-
text length (Mohtashami and Jaggi, 2024; Krys-
cinski et al., 2021). Therefore, a common approach
to handle long context is to represent the previ-
ous history as a fixed size representation (Kan-
erva, 1988) or to modify the attention mechanism

using heuristics (Liu and Abbeel, 2024; Zaheer
et al., 2020; Beltagy et al., 2020) and represent very
long context as fixed-length representation (Pe-
ters et al., 2018; Devlin et al., 2018). For exam-
ple, (Munkhdalai et al., 2024) use this idea and
empirically verify for up to 1 million length input
sequence. One idea is to offload cross-attention
to a single k-NN index (Bertsch et al., 2024).
Tworkowski et al. (2024) modify the LlaMA model
to handle long context. Other ideas modify the
attention mechanism, including block-wise compu-
tation (Liu and Abbeel, 2024) of the self-attention
mechanism, ring attention (Liu et al., 2023), and
sparse attention(Zaheer et al., 2020). Researchers
have also used RNN blocks within a deep neural
network (Munkhdalai et al., 2019) or the trans-
former model (Feng et al., 2024; Bulatov et al.,
2022; Wang et al., 2019b; Kim et al., 2018; Bu-
latov et al., 2023). State-space models represent
the model’s state as fixed-size representation (Gu
and Dao, 2023). These approaches by themselves
cause information loss and there is certainly room
to improve on downstream tasks (Li et al., 2024).

Researchers have tried integrating traditional
Reservoir Computing (RC) models (Jaeger, 2001;
Maass et al., 2002; Xia et al., 2023) with state-of-
the-art models for processing temporal data(Wang
et al., 2023). This integration has shown promise
in fields like speech recognition (Nako et al.,
2023; Ibrahim et al., 2021) and time series pre-
diction (Shahi et al., 2022; Bianchi et al., 2020;
Platt et al., 2022; Shen et al., 2020). However, to
the best of our knowledge, this idea has not been
used for textual input. We propose the novel idea
of capturing dependencies from three different con-
text lengths and representing them as fixed-length
representations.

6 Conclusion

We propose a Reservoir Transformer model that
can handle long input sequences without increasing
training data sets or training time. The novelty of
our approach is the memory module which helps
the model represent variable-length context. This
ensures that the model can capture these tempo-
ral dependencies within text thus improving the
model’s performance on downstream tasks. We in-
tegrate our method with two different transformer
architectures; BERT and BlenderBot, and show sig-
nificant improvement for the language modeling,
dialogue modeling, and text classification tasks.

7 Limitations

The Reservoir Transformer model presents a no-
table step forward in processing extensive se-
quences in natural language tasks. However, it is
important to acknowledge its constraints. Primarily,
its proficiency in managing shorter sequences or
tasks that do not significantly depend on long-span
connections may not be as pronounced. Further-
more, a traditional Transformer model that con-
siders every token theoretically could outperform
the Reservoir model, albeit with a substantial in-
crease in computational demands. This positions
the Reservoir approach as a balance between ef-
ficiency and performance. Nonetheless, there re-
mains a potential for loss of information, particu-
larly with dependencies that extend over very long
terms.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Joshua Ainslie, Tao Lei, Michiel de Jong, Santiago
Ontafién, Siddhartha Brahma, Yury Zemlyanskiy,
David Uthus, Mandy Guo, James Lee-Thorp, Yi Tay,
et al. 2023. Colt5: Faster long-range transform-
ers with conditional computation. arXiv preprint
arXiv:2303.09752.

Jahangir Alam, Woo Hyun Kang, and Abderrahim
Fathan. 2023. Hybrid neural network with cross-and
self-module attention pooling for text-independent
speaker verification. In ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1-5. IEEE.

He Bai, Peng Shi, Jimmy Lin, Yuqing Xie, Luchen Tan,
Kun Xiong, Wen Gao, and Ming Li. 2021. Segatron:
Segment-aware transformer for language modeling
and understanding. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
12526-12534.

1z Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Amanda Bertsch, Uri Alon, Graham Neubig, and
Matthew Gormley. 2024. Unlimiformer: Long-range
transformers with unlimited length input. Advances
in Neural Information Processing Systems, 36.

Amanda Bertsch, Uri Alon, Graham Neubig, and
Matthew R Gormley. 2023. Unlimiformer: Long-
range transformers with unlimited length input.
arXiv preprint arXiv:2305.01625.

Filippo Maria Bianchi, Simone Scardapane, Sigurd
Lgkse, and Robert Jenssen. 2020. Reservoir comput-
ing approaches for representation and classification
of multivariate time series. IEEE transactions on
neural networks and learning systems, 32(5):2169—
2179.

Aydar Bulatov, Yuri Kuratov, Yermek Kapushev, and
Mikhail S Burtsev. 2023. Scaling transformer to
Im tokens and beyond with rmt. arXiv preprint
arXiv:2304.11062.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev.
2022. Recurrent memory transformer. Advances
in Neural Information Processing Systems, 35:11079-
11091.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-
siotis, and Ion Androutsopoulos. 2019. Large-scale
multi-label text classification on eu legislation. arXiv
preprint arXiv:1906.02192.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. 2020. Rethinking attention with
performers. arXiv preprint arXiv:2009.14794.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language mod-
els beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.

Tri Dao, Daniel Y Fu, Khaled K Saab, Armin W
Thomas, Atri Rudra, and Christopher Ré. 2022.
Hungry hungry hippos: Towards language mod-
eling with state space models. arXiv preprint
arXiv:2212.14052.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ming Ding, Chang Zhou, Hongxia Yang, and Jie Tang.
2020a. Cogltx: Applying bert to long texts. Ad-
vances in Neural Information Processing Systems,
33:12792-12804.

Siyu Ding, Junyuan Shang, Shuohuan Wang, Yu Sun,
Hao Tian, Hua Wu, and Haifeng Wang. 2020b. Ernie-
doc: A retrospective long-document modeling trans-
former. arXiv preprint arXiv:2012.15688.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Angela Fan, Thibaut Lavril, Edouard Grave, Armand
Joulin, and Sainbayar Sukhbaatar. 2020. Address-
ing some limitations of transformers with feedback
memory. arXiv preprint arXiv:2002.09402.

Leo Feng, Frederick Tung, Hossein Hajimirsadeghi,
Mohamed Osama Ahmed, Yoshua Bengio, and Greg
Mori. 2024. Attention as an rnn. arXiv preprint
arXiv:2405.13956.

Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli.
2017. Deep reservoir computing: A critical experi-
mental analysis. Neurocomputing, 268:87-99.

Daniel J Gauthier, Erik Bollt, Aaron Griffith, and Wend-
son AS Barbosa. 2021. Next generation reservoir
computing. Nature communications, 12(1):5564.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago On-
tanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei Yang.
2021. Longt5: Efficient text-to-text transformer for
long sequences. arXiv preprint arXiv:2112.07916.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng
Ji, and Sinong Wang. 2023. Lm-infinite: Simple
on-the-fly length generalization for large language
models. arXiv preprint arXiv:2308.16137.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le.
2022. Transformer quality in linear time. In Inter-

national Conference on Machine Learning, pages
9099-9117. PMLR.

Hemin Ibrahim, Chu Kiong Loo, and Fady Alnajjar.
2021. Speech emotion recognition by late fusion
for bidirectional reservoir computing with random
projection. IEEE Access, 9:122855-122871.

Herbert Jaeger. 2001. The “echo state” approach to
analysing and training recurrent neural networks-with
an erratum note. Bonn, Germany.: German National
Research Center for Information Technology GMD
Technical Report, 148(34):13.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Pentti Kanerva. 1988. Sparse distributed memory. MIT
press.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and Francois Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention. In International Conference on Machine
Learning, pages 5156-5165. PMLR.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language
models. arXiv preprint arXiv:1911.00172.

Gyuwan Kim and Kyunghyun Cho. 2020. Length-
adaptive transformer: Train once with length
drop, use anytime with search. arXiv preprint
arXiv:2010.07003.

10

Hyunwoo Kim, Jack Hessel, Liwei Jiang, Peter West,
Ximing Lu, Youngjae Yu, Pei Zhou, Ronan Le Bras,
Malihe Alikhani, Gunhee Kim, Maarten Sap, and
Yejin Choi. 2022. Soda: Million-scale dialogue dis-
tillation with social commonsense contextualization.
ArXiv, abs/2212.10465.

Seungryong Kim, Stephen Lin, Sang Ryul Jeon,
Dongbo Min, and Kwanghoon Sohn. 2018. Recur-
rent transformer networks for semantic correspon-
dence. Advances in neural information processing
systems, 31.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451.

Wojciech Kryscinski, Nazneen Rajani, Divyansh Agar-
wal, Caiming Xiong, and Dragomir Radev. 2021.
Booksum: A collection of datasets for long-
form narrative summarization. arXiv preprint
arXiv:2105.08209.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Jia-Nan Li, Quan Tu, Cunli Mao, Zhengtao Yu, Ji-
Rong Wen, and Rui Yan. 2024. Streamingdia-
logue: Prolonged dialogue learning via long context

compression with minimal losses. arXiv preprint
arXiv:2403.08312.

Shanda Li, Chong You, Guru Guruganesh, Joshua
Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit
Sanghai, Yiming Yang, Sanjiv Kumar, and Srinadh
Bhojanapalli. 2023. Functional interpolation for rel-
ative positions improves long context transformers.
arXiv preprint arXiv:2310.04418.

Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han,
Kun Kuang, Jiwei Li, and Fei Wu. 2021. Bertgcn:
Transductive text classification by combining gen and
bert. arXiv preprint arXiv:2105.05727.

Hao Liu and Pieter Abbeel. 2024. Blockwise parallel
transformers for large context models. Advances in
Neural Information Processing Systems, 36.

Hao Liu, Matei Zaharia, and Pieter Abbeel. 2023.
Ring attention with blockwise transformers for near-
infinite context. arXiv preprint arXiv:2310.01889.

Yang Liu and Mirella Lapata. 2019. Text summa-
rization with pretrained encoders. arXiv preprint
arXiv:1908.08345.

Yang Liu, Jiaxiang Liu, Li Chen, Yuxiang Lu, Shikun
Feng, Zhida Feng, Yu Sun, Hao Tian, Hua Wu, and
Haifeng Wang. 2022. Ernie-sparse: Learning hi-
erarchical efficient transformer through regularized
self-attention. arXiv preprint arXiv:2203.12276.

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou,
Jonathan May, Hao Ma, and Luke Zettlemoyer. 2021.
Luna: Linear unified nested attention. Advances
in Neural Information Processing Systems, 34:2441—
2453.

Wolfgang Maass, Thomas Natschldger, and Henry
Markram. 2002. Real-time computing without sta-
ble states: A new framework for neural computa-
tion based on perturbations. Neural computation,
14(11):2531-2560.

Pedro Henrique Martins, Zita Marinho, and André FT
Martins. 2021. oo-former: Infinite memory trans-
former. arXiv preprint arXiv:2109.00301.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. An analysis of neural language
modeling at multiple scales. arXiv preprint
arXiv:1803.08240.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Meta. 2024. Llama 3.

Amirkeivan Mohtashami and Martin Jaggi. 2023.
Landmark attention: Random-access infinite con-

text length for transformers. arXiv preprint
arXiv:2305.16300.

Amirkeivan Mohtashami and Martin Jaggi. 2024.
Random-access infinite context length for transform-
ers. Advances in Neural Information Processing Sys-
tems, 36.

Tsendsuren Munkhdalai, Manaal Faruqui, and Sid-
dharth Gopal. 2024. Leave no context behind:
Efficient infinite context transformers with infini-
attention. arXiv preprint arXiv:2404.07143.

Tsendsuren Munkhdalai, Alessandro Sordoni, Tong
Wang, and Adam Trischler. 2019. Metalearned neu-
ral memory. Advances in Neural Information Pro-
cessing Systems, 32.

Eishin Nako, Kasidit Toprasertpong, Ryosho Nakane,
Mitsuru Takenaka, and Shinichi Takagi. 2023. Reser-
voir computing system with hzo/si fefets in parallel
configuration: Experimental demonstration of speech
classification. /EEE Transactions on Electron De-
vices.

Shashi Narayan, Shay B Cohen, and Mirella Lap-
ata. 2018. Don’t give me the details, just the
summary! topic-aware convolutional neural net-
works for extreme summarization. arXiv preprint
arXiv:1808.08745.

Raghavendra Pappagari, Piotr Zelasko, Jests Villalba,
Yishay Carmiel, and Najim Dehak. 2019. Hierarchi-
cal transformers for long document classification. In
2019 IEEE automatic speech recognition and under-
standing workshop (ASRU), pages 838-844. IEEE.

11

Hyunji Hayley Park, Yogarshi Vyas, and Kashif Shah.
2022. Efficient classification of long documents us-
ing transformers. arXiv preprint arXiv:2203.11258.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227-2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Jason A Platt, Stephen G Penny, Timothy A Smith,
Tse-Chun Chen, and Henry DI Abarbanel. 2022. A
systematic exploration of reservoir computing for
forecasting complex spatiotemporal dynamics. Neu-
ral Networks, 153:530-552.

Ofir Press, Noah A Smith, and Omer Levy. 2019. Im-
proving transformer models by reordering their sub-
layers. arXiv preprint arXiv:1911.03864.

Ofir Press, Noah A Smith, and Mike Lewis. 2020. Short-
former: Better language modeling using shorter in-
puts. arXiv preprint arXiv:2012.15832.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,
and Timothy P Lillicrap. 2019. Compressive trans-
formers for long-range sequence modelling. arXiv
preprint arXiv:1911.05507.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Kurt Shuster, Eric M Smith, et al. 2020. Recipes
for building an open-domain chatbot. arXiv preprint
arXiv:2004.13637.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021. Efficient content-based sparse
attention with routing transformers. Transactions of

the Association for Computational Linguistics, 9:53—
68.

Shahrokh Shahi, Flavio H Fenton, and Elizabeth M
Cherry. 2022. Prediction of chaotic time series using
recurrent neural networks and reservoir computing
techniques: A comparative study. Machine learning
with applications, 8:100300.

Sheng Shen, Alexei Baevski, Ari S Morcos,
Kurt Keutzer, Michael Auli, and Douwe Kiela.
2020. Reservoir transformers. arXiv preprint
arXiv:2012.15045.

Eric Michael Smith, Mary Williamson, Kurt Shuster,
Jason Weston, and Y-Lan Boureau. 2020. Can you
put it all together: Evaluating conversational agents’
ability to blend skills.

Simeng Sun and Mohit Iyyer. 2021. Revisiting simple
neural probabilistic language models. arXiv preprint
arXiv:2104.03474.

http://arxiv.org/abs/2004.08449
http://arxiv.org/abs/2004.08449
http://arxiv.org/abs/2004.08449
http://arxiv.org/abs/2004.08449
http://arxiv.org/abs/2004.08449

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-
zler. 2022. Efficient transformers: A survey. ACM
Computing Surveys, 55(6):1-28.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Szymon Tworkowski, Konrad Staniszewski, Mikotlaj
Pacek, Yuhuai Wu, Henryk Michalewski, and Piotr
Mitos. 2024. Focused transformer: Contrastive train-
ing for context scaling. Advances in Neural Informa-
tion Processing Systems, 36.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Chenguang Wang, Mu Li, and Alexander J Smola.
2019a. Language models with transformers. arXiv
preprint arXiv:1904.09408.

Tiancheng Wang, Huaping Liu, Di Guo, and Xi-Ming
Sun. 2023. Continual deep residual reservoir com-
puting for remaining useful life prediction. [EEE
Transactions on Industrial Informatics.

Zhiwei Wang, Yao Ma, Zitao Liu,
Tang. 2019b. R-transformer:
network enhanced transformer.
arXiv:1907.05572.

and Jiliang
Recurrent neural
arXiv preprint

Ji Xia, Junyu Chu, Siyang Leng, and Huanfei Ma.
2023. Reservoir computing decoupling memory—
nonlinearity trade-off. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 33(11).

Jing Xu, Arthur Szlam, and Jason Weston. 2021a. Be-
yond goldfish memory: Long-term open-domain con-
versation. arXiv preprint arXiv:2107.07567.

Peng Xu, Xinchi Chen, Xiaofei Ma, Zhiheng Huang,
and Bing Xiang. 2021b. Contrastive document rep-
resentation learning with graph attention networks.
arXiv preprint arXiv:2110.10778.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in neural information
processing systems, 33:17283-17297.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai
Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
2021. Informer: Beyond efficient transformer for
long sequence time-series forecasting. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 35, pages 11106-11115.

12

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In The IEEE International Con-
ference on Computer Vision (ICCV).

A Equations

Reservoir:
= ﬁf(Wra?t—l + W;H; 1)

Linear Readout:
o = Woxy

Non-Linear Readout:
Olt =0 (Wowt)

Concatenation:
Ze =1 0t D p2 By B B Bro ® Pi—1)
Bus - (e(wr) de(w) & - - b e(wir))

Neural Network:
Yri = M(2; wy;)

Loss Function:
L(y*,y) =+ 31 yi log(ye)

Attention Pooling:
Btfl = Zle Oéng—lv

Attention Pooling Softmax:
exp(e;)

Q; =
L explen)

Attention Pooling Score:
e; = v; tanh(W; - HY_{ + b;)

A.1 Training details

We utilize three Transformer implementations:
BERT, BART, and on Blenderbot. The architec-
ture and hyperparameter settings are the default
ones from the original papers (Devlin et al., 2018;
Roller et al., 2020). During the training process,
we utilize the Adam optimizer with a decay of
0.01 and a linear schedule learning rate starting
from 2e — 5. However, in mask language modeling
(MLM) tasks, the cross-entropy loss is commonly
employed to optimize the model’s predictions. In
MLM, a certain percentage of input tokens are ran-
domly masked to train the model to predict the
masked tokens based on their surrounding context.

Mathematically, the cross-entropy loss is defined
as follows:

1 T V
Lcg = _T Z Z Yij 10g p’Lj (12)

where T is the total number of instances, V is
the size of the vocabulary, ;; is the binary indicator

13

(0 or 1) for whether the true label is j for the ¢-th
instance, and p;; is the predicted probability of the
i-th instance belonging to class j.

In mask language modeling, the input sequences
are modified by randomly replacing some tokens
with a special [MASK] token. The model’s ob-
jective is then to predict the original tokens based
on the context provided by the surrounding tokens.
The cross-entropy loss is calculated by comparing
the predicted probabilities of the masked tokens
with their true labels.

Additionally, BERT often includes next-sentence
prediction (NSP) as an auxiliary task during pre-
training. NSP determines whether two sentences in
a pair are contiguous in the original text. This task
helps the model capture relationships between sen-
tences. Cross-entropy loss is also used to optimize
the predictions of sentence pairs for the NSP task.

Furthermore, in token generation models like
BlenderBot, the Cross-entropy loss is again em-
ployed to train these models, comparing the pre-
dicted probability distribution of tokens in the gen-
erated sequence with the target sequence.

We train our model by adopting the methodology
outlined in Algorithm 1. The pretraining phase
encompasses two models: BERT and Blenderbot.

For BERT, we adopt the parameter settings de-
scribed in the original BERT paper by Devlin et al.
(Devlin et al., 2018). Our primary focus lies in op-
timizing the Masked Language Model (MLM) and
Next Sentence Prediction (NSP) objectives for the
pretraining model M. Pretraining, the Reservoir
Bert model, involves employing the Book Corpus
dataset (Zhu et al., 2015) and fine-tuning with the
WikiText-103 dataset (Merity et al., 2016). In the
reservoir setting, we use 3000 units with a spectral
radius of 0.5. The leaky rate is set to 0.35. Further-
more, we allocate 50 units of memory for recurrent
settings and 50 for long-term memory which is
reservoir readout size.

Similar to BERT, training the Blenderbot model
adheres to the original Blenderbot hyperparame-
ters outlined by Roller et al. (Roller et al., 2020).
Pretraining of Reservoir Blenderbot involves utiliz-
ing the Soda dataset (Kim et al., 2022), followed
by fine-tuning with the Blend Skills Talk dataset
(Smith et al., 2020). In the reservoir setting of
Blenderbot, we use 1000 units with a spectral ra-
dius of 0.5. The leaky rate is set to 0.35. Addition-
ally, we reserve 15 units of memory for recurrent
settings and 50 for long-term memory.

For the text classification dataset, we use 500
reservoir size with a spectral radius of 0.7. The
leaky rate is set to 0.35. We set 5 recurrent memory
and 20 for long-term memory. For all experiments,
we have used the Transformer model dropout 0.1,
attention dropout of 0.1, and weight decay 0.05.

B Training Algorithm

Algorithm 1 Training algorithm of Deep Reservoir
Computing with Recurrent Transformer

Require:
Ui.r, Yir : Dataset

function R(u;) > Reservoir

Tt < ﬁf(wr$t71 + qut) > By
Equation 6
return o; > By equation 7

end function

Ensure: Optimize Pr(Y;|S1.) distribution by
learning a model F'(.)
W;, W, + N(0,1) > Weights initialization of
Reservoir

o<+ N(0,1) > Weights initialization of
Reservoir non-linear output
¢+ N(0,1) > Weights initialization of

Transformer F'(.)
while epoch < epochs do
while ¢ < 7" do
ot < R(uy; Wi, Wy, 0) > Non-
linear readout from R(.) reservoir described in
Equation 7
Brny =30 il
from Equation 3
ze=p1-0t®Dp2- (B—1 B Pr—2®...
Bios) @ pig - (e(wn) & e(ws) & - @ e(wy))
> Concatenation of all embedding described in
described in Euqation 9
Y < F(2159)
end while
loss < Lcg(y1.7,y1.7) > Calculating loss
for every time step z by equation 12
¢, 0, e,k < update > Update parameters
end while

> Get STM

C Additional Results

Table 9 shows additional baseline results for the
text classification task.

14

Model/Dataset
GRAPH-ROBERTA (Xu
et al., 2021b)
ERNIE-DOC-LARGE
(Ding et al., 2020b)
ERNIE-SPARSE
et al., 2022)

RMT BERT (Bulatov
etal., 2022)

TextGCN (Lin et al., 2021) -
BertGAT (Lin et al., 2021) -
RoBERTaGAT (Lin et al., -
2021)
SGC (Lin et al., 2021) - 88.5 -
ZERO-BIGRU-LWAN - - 65.2
(Chalkidis et al., 2019)
BIGRU-LWAN (L2V) - -
(Chalkidis et al., 2019)
BIGRU-LWAN (ELMO) - -
(Chalkidis et al., 2019)
Reservoir Transformer

HND | 20N | ES7K
96.2 - -

96.6 | - -
(Liu | 928 | - -
943 | - -
863 | -

87.4 -
86.5 -

71.1

71.9

97.2 | 89.7 | 74.0

Table 9: Text classification on three datasets.

D Dataset Statistics

Table 10 shows the training data samples for all the
datasets we used including our custom conversa-
tional dataset.

Dataset Training Samples
WikiText-103 1.8M
Custom Dialog data 600K
XSum 204K
HND 600K
20N 20K
E57K 57K

Table 10: Training data samples for each dataset

E Length comparison

Figure 4 shows the maximum sequence length for
all the datasets we used in our experiments. ‘Di-
alog’ is our custom generated data we use for the
dialogue modeling task. As shown in the plot, we
experimented with varying length of context from
1.4K tokens for WikiTest-103 up to 11.7K tokens
for 20N dataset.

30000
2 25000
% 20000
£ 15000
£ 10000
3

= 5000

0 WikiText Dialog XSum HND 20N E57K
Dataset

Figure 4: Maximum length of a single data sample for
all the four datasets.

15

