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ABSTRACT

One of the major challenges in training deep neural networks for text-to-image
generation is the significant linguistic discrepancy between ground-truth captions
of each image in most popular datasets. The large difference in the choice of words
in such captions results in synthesizing images that are semantically dissimilar to
each other and to their ground-truth counterparts. Moreover, existing models ei-
ther fail to generate the fine-grained details of the image or require a huge number
of parameters that renders them inefficient for text-to-image synthesis. To fill this
gap in the literature, we propose using the contrastive learning approach with a
novel combination of two loss functions: fake-to-fake loss to increase the seman-
tic consistency between generated images of the same caption, and fake-to-real
loss to reduce the gap between the distributions of real images and fake ones.
We test this approach on two baseline models: SSAGAN and AttnGAN (with
style blocks to enhance the fine-grained details of the images.) Results show that
our approach improves the qualitative results on AttnGAN with style blocks on
the CUB dataset. Additionally, on the challenging COCO dataset, our approach
achieves competitive results against the state-of-the-art Lafite model, outperforms
the FID scores of SSAGAN and DALL-E models by 44% and 66.83% respec-
tively, yet with only around 1% of the model size and training data of the huge
DALL-E model.

1 INTRODUCTION

The main aim behind the Text-to-Image generation (T2I) problem is to synthesize high-quality,
photo-realistic images that semantically reflect input textual descriptions. It is a challenging com-
puter vision problem that has many applications, including computer-aided design, image editing,
and art generation. Most recent attempts at this problem utilize Generative Adversarial Networks
(GANS5) as the backbone model. Text-conditioned GANs have proven to be a powerful method to
generate high-quality images that are semantically consistent with input captions. In practice, such
models generate images that are significantly different from the ground truth. That’s because, in
most datasets, each image has several human-typed captions that are highly diverse in terms of con-
tent and structure. Also, models have to learn to understand two domains: textual description and
visual description.

Most models in the literature either lack the details in the generated images or generate fine details
in the image but with less accurate match to the textual description. The former problem happens
due to employing a loss function that ensures sentence and word level matching between the image
and the text such as the DAMSM loss (Xu et al., [2018; Ye et al., |2021; [Zhu et al., [2019) without
designing a generator capable of ensuring details are generated in the image at both fine and coarse
grained levels. This leads to mainly washed images that have the general structure that matches the
text (e.g., a bird with red wings) without the details that makes the image looks real such as the
feathers and the color of the eyes. Moreover, these models mostly use multiple generators like |[Xu
et al.| (2018)); Zhu et al.[(2019);|Qiao et al.|(2019b) which can increase the aforementioned problem
if the progressive growing of the details are not done to ensure that image features are learned well
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at each step. This happens if the early generated image is poor, affecting the latter stages in the
generator network.

Another problem with T2I is controllability and forcing the distribution of the generated images
to be similar to the real ones. In general, we want similar textual descriptions to have similar im-
age features and slight changes in the text to produce corresponding changes to the image without
changing irrelevant features. Moreover, we want to push the generated images to look more like
the real ones for all the given captions of the same real image. There are two approaches that can
be done simultaneously to ensure these constrains: adding proper loss functions and changing the
architecture of the generator like Hu et al.| (2021)).

This work aims to tackle these two problems by studying two directions: using a Style-based gen-
erator with the blocks of StyleGAN (Karras et al., 2020) either using the traditional style generator
or fusing the style blocks with another architecture like AttnGAN to show how it will improve an
already existing architecture. The aim of style blocks is to produce good fine and coarse grained
features as well as give controllability of the generation as it did for its traditional use in the uncon-
ditional image generation. The other direction is to introduce contrastive learning in two flavors:
real-to-fake contrastive learning and fake-to-fake contrastive learning. The purpose of these loss
components is force the fake image distribution to be close to the real ones as well and to maximize
the similarity between fake images for similar or the same caption. Experimentation with both di-
rections lead to very promising results. Adding the style component evidently increase the quality of
the generated images but produces low variability while adding the two flavors of contrastive losses
gives a significant increase in visual quality of the generated images as well as the quality metrics
(e.g., FID) when tried on the SSAGAN network (Hu et al., 2021), making it better than the reported
state-of-the-art-models on the CUB birds dataset

2 RELATED WORK

2.1 TEXT-TO-IMAGE GENERATION

Great progress has been recently achieved in text-to-image generation by a large number of promis-
ing studies (Reed et al.| 2016; [Zhang et al.| 2017; [2018a; |Xu et al., [2018}; [Hong et al., 2018; Zhang
et al.} 2018b; |Qiao et al.| 2019b; |Zhu et al.| 2019} [Yin et al., 2019; |Li et al., 2019b; [Tao et al., [2020;
Qi1ao et al., | 2019a; |Li et al., [2019a; |Cha et al., |2019; |Hinz et al., |2019; [El-Nouby et al.,[2019; |Liang
et al., 2020; |Cheng et al.,|2020; |Q1ao0 et al.| 2019b; Ramesh et al., [2021; [Zhang et al., [2017}|2021)),
most of which employ GAN’s as the backbone model. In this section, we provide a summary of some
of the most famous and relevant models. AttnGAN (Xu et al., 2018)) utilizes attention to compute the
similarity between the synthesized images and their corresponding captions using Deep Attentional
Multimodal Similarity Model (DAMSM) loss. In this method, both the sentence and word-level
information are used to compute the DAMSM loss. The stacked GAN architecture, proposed by
Zhang et al.|(2017), generates images incrementally from low-resolution to high-resolution. DM-
GAN (Zhu et al.l 2019) generates high-quality images using a dynamic memory GAN which refines
the initial generated images. It then employs a memory writing gate to give more weight to rele-
vant words and a response gate to enhance image representations accordingly. SD-GAN (Yin et al.,
2019) uses a Siamese structure that takes a pair of captions as input and employs contrastive loss
to train the model. For fine-grained image generation, SD-GAN adopts conditional batch normal-
ization. Contrastive loss is also utilized in XMC-GAN (Zhang et al., 2021) but, unlike SD-GAN,
they reduce training complexity by not requiring mining for information negatives. CP-GAN (Liang
et al., 2019) adopts an object-aware image encoder together with a fine-grained discriminator for
higher-quality image generation. While it achieves a promising Inception Score (Salimans et al.,
2016), it has been shown to perform poorly when evaluated with a stronger FID (Heusel et al.|[2017)
metric. These approaches utilize several generators and discriminators to ultimately synthesize im-
ages at high resolutions. Other approaches have proposed inferring semantic layouts and explicitly
generating different objects in hierarchical models (Hong et al.,[2018; Hinz et al., 2019} [Koh et al.,
2021). In such models, generation is a multi-step process that requires more detailed labels (e.g.,
segmentation maps and bounding boxes), which represents a significant drawback. To tackle these
issues, we employ a single generator and discriminator architecture in our model that is end-to-end
trainable and generates much higher quality images.
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2.2 STYLE BLOCKS

We discuss style-based image generation, focusing on the advances of the StyleGAN architecture.
The StyleGAN (Karras et al.l|[2019) generator consists of two main components: the mapping and
the synthesis networks. First, the mapping network transforms a noise vector Z into a latent space
W; then, it applies affine transformations on W to generate styles A. This style code A is later used to
enable scale-specific control of the synthesis process allowing for better disentanglement, enabling
better control over the produced features. The synthesis network is the second major part of the
StyleGAN generator, and it is responsible for generating the images. It consists of style blocks,
where each block controls a specific level of details in the image based on style A. One of the
regularization methods for style-based generators is style mixing. It works by feeding sampled styled
codes A into different layers of the synthesis network independently at inference time to generate an
image. The original StyleGAN (Karras et al., 2019) architecture used AdalN to achieve style mixing;
however, this resulted in artifacts in the generated images. In StyleGAN2 (Karras et al.,[2020), this
problem was tackled by basing the normalization on the expected statistics of the incoming feature
maps. In other words, StyleGAN2 applies modulation and demodulation to the convolution weights
within each style block, an alternative that removes artifacts while maintaining full controllability.
Progressive Growing (Karras et al., 2017) was used for stabilizing high-resolution image generation,
but it has its own characteristic artifacts and can impair shift equivariance. StyleGAN?2 (Karras et al.|
2020) tackled this problem by incorporating a multi-scale training technique. They tried different
variations of the generator and discriminator to achieve that high-resolution synthesis, which was
originally inspired by MSG-GAN (Karnewar & Wang, [2020) architecture. Based on an ablation the
authors did, the winner network is using a skip generator and a residual discriminator.

2.3 TEXT-IMAGE CORRESPONDENCE

Part of the text-to-image generation problem is to maximize the semantic correspondence for image-
text pairs by learning their joint representations. To that end, Deep Attentional Multimodal Similar-
ity Model (DAMSM) (Xu et al.|[2018]) loss is used to learn such low-level text-image representations.
The idea behind DAMSM loss is to train an image encoder and a text encoder simultaneously to en-
code certain words from the captions together with their corresponding sub-regions in the image to
a common semantic space to ultimately compute the loss for image synthesis accordingly.

2.4 TEXT AND IMAGE ENCODERS

For text embeddings, Bi-directional Long Short-Term Memory (LSTM) (Schuster & Paliwal, |1997)
has been recently utilized to extract semantic vectors from input captions. In Bi-directional LSTM,
the semantic meaning of each word is represented by concatenating its two hidden states (one for
each direction). Meanwhile, the global sentence vector is produced by concatenating the last hid-
den states from the Bi-directional LSTM. As for image encoding, most models in the literature use
Convolutional Neural Networks (CNNs) to extract semantic vectors from images. The local image
features of each image are learned by the intermediate layers of CNNs, while global features are
learned from later layers. The Inception-v3 (Szegedy et al., [2016) model, pre-trained on ImageNet
(Russakovsky et al, 2015)), is commonly used as the image encoder, where local features are ex-
tracted from intermediate layers and global ones are extracted from the last average pooling layer.
Ultimately, these image features are encoded together with text embeddings to a common feature
space, where each image region is mapped to a visual feature vector.

2.5 CONTRASTIVE LEARNING

Contrastive learning has proven very effective in self-supervised representation learning of visual
features through various contrastive methods (Arora et al.| | 2019; (Chen et al.,2020b; He et al.,2020;
Chen et al.| |2020c; Khosla et al., 2020 [Tian et al., |2020b; Robinson et al., |2020; |Chuang et al.,
2020; [Hassani & Khasahmadil [2020; [Henaff, [2020; |[Kalantidis et al.l [2020; Misra & Maaten, 2020}
Tian et al 2020a; Wang & Isola, [2020). Three major findings have been presented by SimCLR
(Chen et al., [2020b) to learn better representations. First, introducing a composition of data aug-
mentations. Second, adding a non-linear transformation (learnable) between the contrastive loss and
the representation. Third, increasing the batch size and training step. Similar to|Ye et al.| (2021), we
adopt this simple contrastive learning framework. We do so with a relatively small computational
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cost and a simple implementation following the first proposal by SimCLR. We improve the quality
of text representations by pushing together the captions that describe the same image and pushing
away those that describe different ones.

3 METHODOLOGY

3.1 TEXT AND IMAGE ENCODERS

AttnGAN suggested a pair of encoders, one for the text and the other for image to be trained on the
DAMSM loss in order to learn the suitable text and image encodings of the same space. The idea
used here is by training a simple Bi-LSTM network along with a pre-trained sub-model from the
Inception V3 model followed by a linear layer mapping the image encoding to the same dimensions
of the text encoder. Using this combination allows the Bi-LSTM to learn suitable mapping from the
pure tokenized text to the image encoding space representation. We tried improving on this solution
by replacing the LSTM with BERT encoding. However, the models failed to converge since the
layer after the image encoder was not enough to map the image encodings to the BERT encodings.
Therefore, for the rest of our paper, we decided to use the pre-trained Bi-LSTM provided by Ye et al.
(2021).

3.2 ATTNGAN STYLE-BASED ARCHITECTURE

Due to the state-of-the-art results achieved using StyleGAN in style-based image generation, we
decided to use a combination of the style blocks with the attention mechanism of AttnGAN. The
modified architecture can is shown in Figure [Il The combination is done by adding a mapping
network composed of eight fully connected layers to map the text encoding and the random noise
to a disentangled space W. The rest of the generator architecture is based on replacing the normal
generator block from AttnGAN with StyleGAN2 blocks. Similarly, the discriminator blocks of
AttnGAN are replaced with the Style based discriminator blocks.
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Figure 1: AttnGAN with Style Blocks

3.3 CONTRASTIVE LOSS ON SSAGAN ARCHITECTURE

SSA-GAN (Hu et al., [2021) follows the one generator-discriminator pair architecture to tackle the
issue of image quality in stacked generator-discriminator architectures. The core element of this
framework is the SSA-CN block, which uses Semantic-Spatial Condition Batch Normalization and
a mask predictor to fuse the text and image features effectively and deeply.

Each SSA-CN block consists of an up-sample block, a residual block, a mask predictor, and a
Semantic-Spatial Condition Batch Normalization (SSCBN) block. It predicts a mask map that indi-
cates which parts of the current image feature maps still need to be reinforced with text information
so that the refined image feature maps are more semantically consistent with the given text. The
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Figure 2: SSAGAN + Contrastive Loss

SSCBN achieves semantic and spatial conditional batch normalization, which leads to accurate and
deep text and image features fusion as needed.

In this paper, we introduce two contrastive losses to the current SSA-GAN (Hu et al.| |2021)) architec-
ture (as shown in Figure[2). We define the fake-to-fake contrastive loss between a pair of generated
images using semantically similar captions. This allows us to increase the semantic consistency
between images generated from related descriptions, while maximizing the distance between those
generated from different descriptions.

Similarly, we are calculating the real-to-fake contrastive loss between the generated images and the
real ones, aiming at reducing the semantic difference between our generated images and the ground
truth. (as shown in Figure[3).

Combining these contrastive learning methods, we are able to generate semantically consistent im-
ages when given semantically similar captions; in addition, we also decreased the discrepancy be-
tween the distributions of the real and fake images.
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3.4 Loss FUNCTIONS

We use the normal adversarial loss for both the generator and the discriminator networks. Any of the
other loss functions are added on top of the generator loss. We also use the DAMSM Loss defined
in (Xu et al., 2018)) as is with only changes to the weight applied to it. Next, we define three other
loss functions.

3.4.1 FAKE-TO-REAL CONTRASTIVE LOSS

The fake-to-real contrastive loss is introduced to minimize the distance between the encoding of the
ground truth image and the encodings of the synthesized images to ensure images similar to the real
image are being generated and vice versa.

We utilize the Normalized Temperature-scaled Cross-Entropy Loss (NT-Xent) (Sohn, 2016; Wu
et al.,|2018; [Chen et al.;[2020a)) as the contrastive loss. For a pair of fake and real images a and b, let
sim(a,b) = a’ b/||al|||b]| denote the dot product between I normalized a and b. The loss function
for the ith sample is as follows:

exp(sim(ui, u;)/T)
PN Tigieap(sim(ui, ) /7)

L(i) = —log (D

where the ith and jth samples make the positive pair, 1;; is an indicator function whose value is 1
if and only if k # i, 7 is a temperature parameter, and N is the batch size. The overall contrastive
loss is computed across all positive pairs in a mini-batch, which is computed as follow:

1
Lo = —X7

3.4.2 FAKE-TO-FAKE CONTRASTIVE LOSS

The fake-to-fake contrastive loss is adopted to minimize the distance between the encodings of
generated images that are conditioned on two captions related to the same image and maximize
those conditioned on captions related to different images. This approach ensures that the produced
images are more similar to each other for the input captions related to the same image. In a very
similar fashion, We use the NT-Xent loss introduced earlier in Equation E] in order to calculate the
overall fake-to-fake contrastive loss.

3.4.3 IMAGE RE-CAPTIONING LOSS

The previous two losses aim to have the model converge on having similar features between the
images of the same set of captions and between the real and the fake images. The third loss aims
to verify that the image, when fed to a captioning model, will have the same caption features as the
original model. Let Fi- be the captioning model, the loss can be written as:

Lep = Lo(Fo(Fake;), C) 3)

where Fake; is the fake image, C; is the correct caption, and L. is the normal Cross Entropy Loss.

3.4.4 OVERALL LOSS FUNCTION

After the pretraining of the image encoder and the text encoder using the DAMSM + Contrastive
Loss functions, the image encoder and text encoder spaces should be able to produce similar repre-
sentations (image and text are projected to a similar space). Let L be the generator loss, Lp anrsas
be the DAMSM loss, Lcp be the recaptioing loss, Lo g be the contrastive real-to-fake loss (F2R),
L be the contrastive fake-to-fake loss (F2F) illustrated in figure[3] Then, the overall loss function
is:

L=Lc+ M -Lpamsm+X2-Ler+A3-Lerp+As- Lep 4
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Where A ...\ are the weights of the losses. We can turn of the losses we don’t want by setting
their weight to zero so that we can test the effect of individual loss components. Our typical values
for these weights are Ao = A3 = 0.2, Ay = 1, Ay is about 0.05 for the SSA-GAN architecture and 5
for the Style based architecture.

4 EXPERIMENTAL SETUP

4.1 DATASETS

The Caltech-UCSD Birds 200 (CUB-200, or CUB for short) (Wah et al) 2011) is an image
dataset of 200 bird species. The CUB dataset has almost 13k images of birds belonging to 200,
mostly North American, bird species and a textual description for each image. CUB has one class
of images, which made it easier to train on and provided a simpler mapping space for the generator
network.

The Microsoft Common Objects in Context (MS COCO, or COCO for short) dataset (Lin et al.,
2014) is a large-scale object detection, segmentation, keypoint detection, and captioning dataset.
The dataset consists of 328K images of 80 object categories. The numerous COCO object classes
make it more challenging than the CUB-200 dataset and more difficult for text-to-image models to
converge on. Additionally, the hardware requirements and the time needed to train a model on the
COCO dataset are substantially more than those required by the CUB dataset, to an extent that was
not available to us. Such limitations urged us to initially train our different model architectures on
the CUB dataset before training them on the COCO dataset. Accordingly, some models were not
trained on the COCO dataset; yet AttnGAN and SSAGAN, both with and without the contrastive
loss, and SSAGAN with the real-to-fake contrastive loss were trained.

4.2 METRICS

Following previous work, we now introduce the Frechet Inception Distance (FID), the Inception
Score (IS), and the R-precision metrics we adopted to quantitatively evaluate the performance of our
work.

4.2.1 QUALITY METRICS

FID (Heusel et al.,|2017) is a prevalent evaluation metric used to evaluate the quality of generated
images from GANSs. Specifically, it measures the Frechet distance between the distribution of the
synthetic images and the real images in the feature space of a pre-trained Inception v3 network
(Heusel et al.,[2017)). The Frechet distance, also known as the Wasserstein-2 distance when the two
distributions are normal distributions (Kynkadnniemi et al., |2022), is a distance function used to
compare the probability distributions of two variables or to measure the similarity between curves
taking into account the location and ordering of points along the curves. The Frechet distance
between two multivariate Gaussian distributions X and Y is:

FID = ||ty — pyl® — Tr(Sz + Iy — 25,5,), (5)

, where the means and covariance matrices of X and Y are mu,, mu, and ¥, ¥,, respectively,
and 7T'r is the trace of the matrix.

IS (Salimans et al., [2016) is another ad-hoc evaluation metric of the quality of image generative
models. The IS uses a pre-trained Inception v3 network and calculates the conditional probabilities
for each generated image p(x—y). To that end, the Kullback-Leibler (KL)-divergence is computed
for each image between the conditional and marginal class distributions:

KL — divergence = p(y|z) x (log(p(y|x)) — log(p(y))) (6)

, where p(y—x) is the conditional class distribution, and p(y) = 3, p(y|z)p,z is the marginal class
distribution, where p,x is the distribution of generated images. That is, the IS score is computed by:

I8 = exp(Eymp, Dicr (p(y]2)|[p()))- 7
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Architecture ISt FID] R-Precisionf
AttnGAN 4.36  23.98 58.06
AttnGAN + CL 442  16.34 60.52
Stylel AttnGAN 4.20 36.82 61.25
Style1 AttnGAN + CL (F2F) 3.09 41.32 62.30
Style2AttnGAN + CL (R2F) 3.59 38.51 64.53
SSAGAN 4.89 9.76 75.67
SSAGAN + CL (F2F) 4.95  9.62 70.49
SSAGAN + CL (R2F+F2F) 518 9.12 72.85
SSAGAN + CL (R2F+F2F+R) 5.03  9.16 72.28

Table 1: Comparison between the performance of different models when trained on the CUB dataset with
different combinations of loss functions.

Architecture ISt FID| R-Precision T
AttnGAN 6.08  30.67 83.8
AttnGAN + CL 6.29  26.89 84.24
SSAGAN 7.18 19.37 82.45
SSAGAN + CL (R2F) 7.6  12.08 85.20
SSAGAN + CL (R2F + F2F) 7.62  10.89 88.21

Table 2: Comparison between the performance of different models when trained on the COCO dataset with
different combinations of loss functions.

4.2.2 ACCURACY METRICS

R-precision (Xu et al., 2018)) is a standard evaluation measure for ranking retrieval results of a
system. It is defined as the top-R retrieved documents that are relevant, where R is the number of
relevant documents for the current query. In other words, R-precision is 1/R when there are r relevant
documents among the top-R retrieved documents. Similarly, R-precision is used in text-to-image
generation tasks to measure the correlation between a generated image and its corresponding text.
R-precision is especially important since the FID and the IS cannot reflect the relevance between an
image and a text description. Specifically, we use the generated images to query their corresponding
text descriptions. The image encoder and text encoder learned in the pre-trained DAMSM are then
utilized to extract global feature vectors of the generated images and their text descriptions, which
are used to compare the Cosine similarities between them. Finally, candidate text descriptions for
each image are ranked in descending order of similarity, and the top r relevant descriptions are
found to compute the R-precision. Each model generates 30,000 images from randomly selected
unseen text descriptions to compute the IS and the R-precision. The candidate text descriptions for
each query image consist of one ground truth (i.e., R = 1) and 99 randomly selected mismatching
descriptions.

5 RESULTS AND DISCUSSION

We first tackled the T2I generation problem on the CUB dataset because it contains birds only, which
is easier to tackle than the multi-class COCO dataset. We compare our proposed model against
several architectures; however, we will focus on the comparison with SSA-GAN because it is the
baseline model. The main quantitative results can be shown in Table[T} while the qualitative results
can be shown in Figure [3| The variants of our proposed model notably outperform the SSA-GAN
model on both FID and IS metrics. Table[T|also shows that adding the Real-to-Fake contrastive loss
leads to lower FID and higher IS and R-precision compared to using only Fake-to-Fake contrastive
loss. It is also worth noting that the qualitative results [3|of our approach are better than the baseline
results. The generated images are more diverse, semantically closer to the captions, and contain
fine-grained and coarse details. Table [2] shows our quantitative results on the more challenging
COCO dataset, while Figure [ shows the qualitative results. The results on the COCO dataset also
show that our model significantly outperforms the baseline model. Particularly, the FID score is
11% better than the SSAGAN+CL (R2F) model on the COCO dataset. Comparing this to the 5%
enhancement on the CUB dataset, we can conclude that our approach performs even better when the
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SSAGAN
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F2F Loss
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F2F Loss +
F2R Loss

Table 3: Comparison of example images between our approach and baselines on the CUB dataset

problem gets harder. We emphasize that, on the challenging COCO dataset, our approach achieves
competitive results against the state-of-the-art Lafite model, outperforms the FID scores of SSA-
GAN and DALL-E models by 44% and 66.83% respectively, yet with only around 1% of the model
size and training data of the huge DALL-E model.

5.1 WHY STYLEGAN SCORES ARE LOW

As seen consistently in the results tables [I] and [2] despite that adding style blocks to AttnGAN
architecture has a significant impact on the quality and level of details of generated images, the
quality metrics (FID and IS) are low compared to AttnGAN. After several experiments, we can see
that this is because the variance of generated images is low compared to the other architectures.
While the network focuses on learning to represent both fine and coarse grained details, it learns a
small number of poses, sizes and shapes of birds and a limited set of backgrounds. This leads to
a notable decrease in the variance and consequently larger FID values. We attribute this behavior
to the fact that disentanglement of the noise via the mapping network as well as the style injection
make the generator focus on the visual features specified in the text like colors and sizes and ignore
those that are not in the text like poses and backgrounds. It is important to emphasize that the image-
text matching was learned well by the network, so the only issue was the variability of the outputs.
Moreover, the effect of contrastive learning was very evident on the visual quality in the style based
architecture.
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Table 4: Comparison of example images between our approach and baselines on the COCO dataset.

6 CONCLUSION

In this paper, we propose a novel approach for text-to-image generation using contrastive learning.
Our goal is to address the semantic inconsistency between generated images and their corresponding
captions while keeping the fine-grained details and maintaining a small model size. We achieve this
goal by incorporating a mix of two distribution-sensitive contrastive losses: fake-to-fake and fake-to-
real losses. The fake-to-fake loss increases the invariability of generated images to linguistic changes
and the fake-to-real loss increases image quality and relevance to the text. To test our hypothesis, we
use two generative baselines: SSA-GAN and a modified version of AttnGAN in which style blocks
are incorporated. Our results show an increase in the quality of generated images, surpassing the
SOTA FID results using both contrastive learning and style mixing on the CUB dataset. In addition,
we achieve competitive results on the COCO dataset, outperforming the FID score of our baseline
SSAGAN model by 44%, and that of DALL-E by 66.83% a with much smaller model capacity and
training data.

REFERENCES

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saun-
shi. A theoretical analysis of contrastive unsupervised representation learning. arXiv preprint
arXiv:1902.09229, 2019.

Miriam Cha, Youngjune L Gwon, and HT Kung. Adversarial learning of semantic relevance in text
to image synthesis. In Proceedings of the AAAI conference on artificial intelligence, volume 33,
pp. 3272-3279, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi 0002, and Geoffrey E. Hinton. A simple
framework for contrastive learning of visual representations. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, vol-
ume 119 of Proceedings of Machine Learning Research, pp. 1597-1607. PMLR, 2020a. URL
http://proceedings.mlr.press/v119/chen20j.html.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597-1607. PMLR, 2020b.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020c.

10


http://proceedings.mlr.press/v119/chen20j.html

Under review as a conference paper at ICLR 2023

Jun Cheng, Fuxiang Wu, Yanling Tian, Lei Wang, and Dapeng Tao. Rifegan: Rich feature generation
for text-to-image synthesis from prior knowledge. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10911-10920, 2020.

Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Stefanie Jegelka. De-
biased contrastive learning. Advances in neural information processing systems, 33:8765-8775,
2020.

Alaaeldin El-Nouby, Shikhar Sharma, Hannes Schulz, Devon Hjelm, Layla EIl Asri,
Samira Ebrahimi Kahou, Yoshua Bengio, and Graham W Taylor. Tell, draw, and repeat: Gen-
erating and modifying images based on continual linguistic instruction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10304-10312, 2019.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International Conference on Machine Learning, pp. 4116-4126. PMLR, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729-9738, 2020.

Olivier Henaff. Data-efficient image recognition with contrastive predictive coding. In International
Conference on Machine Learning, pp. 4182—4192. PMLR, 2020.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Tobias Hinz, Stefan Heinrich, and Stefan Wermter. Generating multiple objects at spatially distinct
locations. arXiv preprint arXiv:1901.00686, 2019.

Seunghoon Hong, Dingdong Yang, Jongwook Choi, and Honglak Lee. Inferring semantic layout for
hierarchical text-to-image synthesis. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 79867994, 2018.

Kai Hu, Wentong Liao, Michael Ying Yang, and Bodo Rosenhahn. Text to image generation with
semantic-spatial aware gan. arXiv preprint arXiv:2104.00567, 2021.

Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard
negative mixing for contrastive learning. Advances in Neural Information Processing Systems,

33:21798-21809, 2020.

Animesh Karnewar and Oliver Wang. Msg-gan: Multi-scale gradients for generative adversarial net-
works. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp- 7799-7808, 2020.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401-4410, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110-8119, 2020.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in Neural
Information Processing Systems, 33:18661-18673, 2020.

Jing Yu Koh, Jason Baldridge, Honglak Lee, and Yinfei Yang. Text-to-image generation grounded
by fine-grained user attention. In Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pp. 237-246, 2021.

11



Under review as a conference paper at ICLR 2023

Tuomas Kynkiédnniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko Lehtinen. The role of
imagenet classes in fr\’echet inception distance. arXiv preprint arXiv:2203.06026, 2022.

Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip Torr. Controllable text-to-image genera-
tion. Advances in Neural Information Processing Systems, 32, 2019a.

Wenbo Li, Pengchuan Zhang, Lei Zhang, Qiuyuan Huang, Xiaodong He, Siwei Lyu, and Jian-
feng Gao. Object-driven text-to-image synthesis via adversarial training. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12174-12182, 2019b.

Jiadong Liang, Wenjie Pei, and Feng Lu. Cpgan: full-spectrum content-parsing generative adver-
sarial networks for text-to-image synthesis. arXiv preprint arXiv:1912.08562, 2019.

Jiadong Liang, Wenjie Pei, and Feng Lu. Cpgan: Content-parsing generative adversarial networks
for text-to-image synthesis. In European Conference on Computer Vision, pp. 491-508. Springer,
2020.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740-755. Springer, 2014.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representa-
tions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6707-6717, 2020.

Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao. Learn, imagine and create: Text-to-
image generation from prior knowledge. Advances in Neural Information Processing Systems,
32,2019a.

Tingting Qiao, Jing Zhang, Duanqging Xu, and Dacheng Tao. Mirrorgan: Learning text-to-image
generation by redescription. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 1505-1514, 2019b.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, pp. 8821-8831. PMLR, 2021.

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.
Generative adversarial text to image synthesis. In International conference on machine learning,
pp- 1060-1069. PMLR, 2016.

Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with
hard negative samples. arXiv preprint arXiv:2010.04592, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211-252, 2015.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE transactions
on Signal Processing, 45(11):2673-2681, 1997.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In NIPS, 2016.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818-2826, 2016.

Ming Tao, Hao Tang, Songsong Wu, Nicu Sebe, Xiao-Yuan Jing, Fei Wu, and Bingkun Bao. Df-
gan: Deep fusion generative adversarial networks for text-to-image synthesis. arXiv preprint
arXiv:2008.05865, 2020.

12



Under review as a conference paper at ICLR 2023

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In European
conference on computer vision, pp. 776—794. Springer, 2020a.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning? Advances in Neural Information Processing
Systems, 33:6827-6839, 2020b.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929-9939. PMLR, 2020.

Z. Wu, Y. Xiong, S. X. Yu, and D. Lin. Unsupervised feature learning via non-parametric in-
stance discrimination. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 3733-3742, Los Alamitos, CA, USA, jun 2018. IEEE Computer Society.
doi: 10.1109/CVPR.2018.00393. URL https://doi.ieeecomputersociety.orqg/
10.1109/CVPR.2018.00393.

Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong
He. Attngan: Fine-grained text to image generation with attentional generative adversarial net-
works. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

1316-1324, 2018.

Hui Ye, Xiulong Yang, Martin Takac, Rajshekhar Sunderraman, and Shihao Ji. Improving text-to-
image synthesis using contrastive learning. arXiv preprint arXiv:2107.02423, 2021.

Guojun Yin, Bin Liu, Lu Sheng, Nenghai Yu, Xiaogang Wang, and Jing Shao. Semantics disen-
tangling for text-to-image generation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 2327-2336, 2019.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dim-
itris N Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative ad-
versarial networks. In Proceedings of the IEEE international conference on computer vision, pp.
5907-5915, 2017.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dim-
itris N Metaxas. Stackgan++: Realistic image synthesis with stacked generative adversarial net-
works. IEEE transactions on pattern analysis and machine intelligence, 41(8):1947-1962, 2018a.

Han Zhang, Jing Yu Koh, Jason Baldridge, Honglak Lee, and Yinfei Yang. Cross-modal contrastive
learning for text-to-image generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 833-842, 2021.

Zizhao Zhang, Yuanpu Xie, and Lin Yang. Photographic text-to-image synthesis with a
hierarchically-nested adversarial network. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 6199-6208, 2018b.

Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang. Dm-gan: Dynamic memory generative ad-
versarial networks for text-to-image synthesis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5802-5810, 2019.

13


https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00393
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00393

	Introduction
	Related Work
	Text-to-Image Generation
	Style Blocks
	Text-Image correspondence
	Text and Image Encoders
	Contrastive Learning

	Methodology
	Text and Image Encoders
	AttnGAN Style-based Architecture
	Contrastive Loss on SSAGAN Architecture
	Loss Functions
	Fake-to-Real Contrastive Loss
	Fake-to-Fake Contrastive Loss
	Image Re-captioning Loss
	Overall Loss function


	Experimental Setup
	Datasets
	Metrics
	Quality Metrics
	Accuracy Metrics


	Results and Discussion
	Why StyleGAN Scores Are Low

	Conclusion

