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Abstract: Control barrier functions (CBFs) are important in safety-critical sys-
tems and robot control applications. Neural networks have been used to param-
eterize and synthesize CBFs with bounded control input for complex systems.
However, it is still challenging to verify pre-trained neural networks CBFs (neural
CBFs) in an efficient symbolic manner. To this end, we propose a new efficient
verification framework for ReLU-based neural CBFs through symbolic derivative
bound propagation by combining the linearly bounded nonlinear dynamic sys-
tem and the gradient bounds of neural CBFs. Specifically, with Heaviside step
function form for derivatives of activation functions, we show that the symbolic
bounds can be propagated through the inner product of neural CBF Jacobian and
nonlinear system dynamics. Through extensive experiments on different robot dy-
namics, our results outperform the interval arithmetic based baselines in verified
rate and verification time along the CBF boundary, validating the effectiveness
and efficiency of the proposed method with different model complexity. The
code can be found at https://github.com/intelligent-control-lab/

verify-neural-CBF.
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1 Introduction

Safe control is of great importance in online decision making for robot learning through filtering
out unsafe explorative actions [1, 2, 3, 4], guaranteeing safety during sim-to-real transfer in a hi-
erarchical manner [5]. As an effective tool of safe control, control barrier functions (CBFs) have
been studied for years on both verification and synthesis [6, 7, 8, 9, 10]. A valid CBF guaran-
tees safety by ensuring the function values non-positive for any states along the safe trajectory,
implicitly enforcing the non-trivial forward invariance that feasible control inputs always exist to
maintain the following non-positive energy values once the state is safe. To ensure forward in-
variance, polynomial-based CBFs have been proposed based on hand-crafted parametric functions
[11, 12, 13], which can be verified through algebraic geometry techniques like sum-of-squares (SOS)
optimization [14, 15, 16]. However, polynomial-based CBFs cannot encode complicated safety con-
straints [17], and the generic parameterization of non-conservative safe control for various nonlinear
dynamics and nonconvex safety specifications is needed.

Neural network parameterized CBFs (neural CBFs) have shown promising results due to their pow-
erful expressiveness in modeling complex dynamics with bounded control inputs [18, 19, 20, 21, 22].
But it is challenging to guarantee that the learned neural CBF is valid because of its poor mathemat-
ical interpretability. One way to ensure the safety/stability of the dynamic system is to learn neural
barrier/Lyapunov certificates [23, 24, 25, 26, 27, 28, 29], but it may be too conservative and cause
false negatives if the formal verification only relies on a specific control policy [17, 30]. Recent
works to directly verify the forward invariance of learned neural CBFs are based on SMT-based
counterexample falsification [31, 32], mixed integer programming [33], Lipschitz neural networks
[34], and CROWN-based linear bound propagation [35, 36, 37]. Although linear bound based verifi-
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Figure 1: Overview of the verification pipeline with symbolic bound propagation, from input speci-
fications of boundary state and control to the output specification of the CBF condition.

cation methods have shown promising scalability to larger neural networks [38, 39, 40], the bounds
do not have linear symbolic format when calculating the inner product of neural networks Jacobian
and the nonlinear system dynamics [36], which may be too loose and not efficient due to interval
arithmetic.

Therefore, we introduce an efficient incomplete verification framework for ReLU-based neural
CBFs using the fully linear symbolic bound propagation w.r.t state by combining the gradient of
CBFs and neural dynamics, as shown in Fig. 1. By leveraging the fact that the derivative of ReLU
activation function is the Heaviside step function, we show that linear symbolic bounds can be prop-
agated through the inner product. Extensive experiments on various robot dynamic systems show
that our method surpasses current state-of-the-art verification baselines in terms of verified rate and
verification time along the CBF boundary. In summary, our contributions are listed below.

• We propose a novel neural CBF verification framework using derivative bound propagation to
efficiently establish symbolic bounds for verifying forward invariance.

• We simplify the problem of propagating linear bounds through the inner product between neural
CBF Jacobian and system dynamics.

• Extensive experiments validate that our proposed method achieves a 20% higher verified rate with
less total verification time to verify the boundary of neural CBFs compared to the baselines.

2 Problem Formulation

2.1 Safe Control with Neural CBF

Given a control-affine system ẋ = f(x) + g(x)u with state x ∈ X ⊂ Rn and bounded con-
trol input u ∈ U ⊂ Rm and user-specified safe set X0 ⊆ X , neural control barrier func-
tion (neural CBFs) are defined as continuous and piecewise smooth functions ϕ : Rn → R
with neural network parameterization. Generally, the neural CBF consists of L feedforward lay-
ers yi : Rni−1 → Rni , i = 1, 2, . . . , L, associated with L − 1 ReLU activation functions
σi : Rni → Rni , i = 1, 2, . . . , L− 1 after each linear feedforward layer. Therefore, the neural CBF
is formulated as the compositional function ϕ(x) = yL ◦σL−1 ◦yL−1 ◦σL−2 ◦yL−2 · · ·◦σ1 ◦y1(x),
where yi : Rni−1 → Rni and n0 = n, nL = 1. Furthermore, each feedforward layer yi is parame-
terized with weight Wi ∈ Rni×ni−1 and bias bi ∈ Rni as ẑi = yi(zi−1) = Wizi−1 + bi, where
ẑi−1 ∈ Rni is the pre-activation output of yi and zi−1 ∈ Rni−1 is the output of last activation layer
zi−1 = σi−1(ẑi−1). A neural CBF parameterized with neural network θ is valid if the sublevel set
Xϕ := {x ∈ X | ϕθ(x) ≤ 0} ⊆ X0 satisfies forward invariance, as defined below. In the absence of
ambiguity, we omit the subscript θ and directly use the notation ϕ to represent neural CBF.

Definition 1. A set Xϕ is forward invariant if for state x(0) ∈ Xϕ at time t = 0, at any following
time t > 0, there always exists control input u(t) ∈ U such that x(t) ∈ Xϕ according to ẋ =
f(x) + g(x)u.

By Nagumo theorem [41], the forward invariance holds if the following boundary condition holds,

2



Theorem 1 (from [11, 6]). Given neural CBF ϕ, if the following boundary condition over boundary
set ∂Xϕ := {x ∈ X | ϕ(x) = 0} holds for the sublevel set Xϕ := {x ∈ X | ϕ(x) ≤ 0},

∀x ∈ ∂Xϕ := {x ∈ X | ϕ(x) = 0},∃u ∈ U , s.t. ϕ̇(x,u) = ∇xϕ
⊤(f(x) + g(x)u) ≤ 0, (1)

then the sublevel set Xϕ = {x ∈ X | ϕ(x) ≤ 0} is forward invariant.

Due to the universal representability of neural networks, neural CBFs have potential superiority
in modeling complex forward invariant sets, showing that it is of great significance to verify that
learned neural CBFs are valid.

2.2 Goal of Verifying Nerual CBF

Given a pre-trained neural CBF ϕ, our goal is to formally verify that it is valid in two aspects. One is
to ensure that the sublevel set Xϕ := {x ∈ X | ϕ(x) ≤ 0} is a valid subset of the user-specified safe
set X0, and the other is to guarantee the forward invariance in Definition 1. Since the neural CBF can
be bounded above by ϕC = ϕ+C,C > 0 to shrink the forward invariance set into the user-specified
safe set, without loss of generality, we reasonably assume that Xϕ := {x ∈ X | ϕ(x) ≤ 0} ⊆ X0

holds, and mainly focus on the verification of boundary condition (1). More generally, for better
local attractiveness of the boundary in the discrete-time CBF-based safe control when sequential
states cross the boundary, we incorporate non-negative constant α ∈ R into Equation (1) and adopt
the following equivalent condition in a more general form with α ≥ 0 [11, 17],

∀x ∈ ∂Xϕ,∃u ∈ U , s.t. ϕ̇(x,u) + αϕ(x) = ∇xϕ
⊤(f(x) + g(x)u) + αϕ(x) ≤ 0. (2)

Rewriting the condition using minimax, the final verification goal in this work is to prove

max
x∈∂Xϕ

min
u∈U

ϕ̇(x,u) + αϕ(x) = max
x∈∂Xϕ

min
u∈U

∇xϕ
⊤f(x) +∇xϕ

⊤g(x)u+ αϕ(x) ≤ 0. (3)

3 Symbolic Derivative Bounds Propagation

In this section, we present a method using symbolic bound propagation to verify Equation (3). Since
it is hard to precisely characterize the boundary x ∈ ∂Xϕ in Equation (3), we first relax it as the
union set of K hyper-rectangles to over-approximate all the roots of ϕ(x) = 0 following [18, 17],
∂Xϕ ⊂ ∆Xϕ := ∪K

k=1∆X (k), where ∆X (k) := [x(k),x(k)] = {x | x(k) ≤ x ≤ x(k)}. We
then mainly focus on the verification of maxx∈∆X (k) minu∈U ϕ̇(x,u) + αϕ(x) as an exchangeable
goal when referring Equation (3) with hyper-rectangle bounded input u ∈ U := [u,u] = {u ∈
Rm | u ≤ u ≤ u} and each hyper-rectangle bounded state ∆X (k). For simplicity, we omit
the super-script (k) in the following context. Our method first finds a piece-wise linear symbolic
upper bound for the minimax expression in Equation (3), then resorts to out-of-the-shelf neural
network verification algorithms to generate the proof. We use three steps to obtain the symbolic
upper bound as shown in Figure 1. In Section 3.1, we first find the linear symbolic bounds for
dynamic propagation in the inner minimization of Equation (3). We then characterize the linear
bounds for ∇xϕ using gradient reachability analysis in Section 3.2. Lastly, we introduce a tight
method to compute symbolic propagation through the inner product between the linear symbolic
bounds for dynamic propagation and the linear bounds for ∇xϕ in Section 3.3.

3.1 Linear Symbolic Bounds for Dynamics Propagation with Optimal Control Inputs

To simplify the verification goal in Equation (3) by solving the inner minimization of control input u
over hyper-rectangle U , instead of traversing the vertices in literature [18, 36], we have the following
proposition to efficiently give the equivalent expression of minu∈U ϕ̇(x,u) with the optimal control
input uv . Proof can be found in Appendix A.1.
Proposition 1. When u is within a hyper-rectangle U = [u,u] = {u ∈ Rm | u ≤ u ≤ u}, given
x ∈ X , the minimum value of ϕ̇(x,u) over u ∈ U can be found explicitly as,

min
u∈U

ϕ̇(x,u) = ∇xϕ
⊤f(x) + [∇xϕ

⊤g(x)]+u+ [∇xϕ
⊤g(x)]−u = ϕ̇(x,uv(x)), (4)
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where [∗]+ = max{0, ∗}, [∗]− = min{0, ∗} and the optimal control input uv(x) =
argminu∈V (U) ϕ̇(x,u) lies among the vertices V (U) of hyper-rectangle U given state x.

Suppose the control-affine system h(x,u) = f(x)+g(x)u is analytical and its second-order deriva-
tive exists w.r.t. x, with the optimal control input uv ∈ [u,u] from Equation (4), the linear lower
and upper bounds w.r.t x can be found based on 1-order Taylor models [42, 43, 44] as follows,

h(x,uv) = Wvx+ bv ≤ h(x,uv) = f(x) + g(x)uv ≤ Wvx+ bv = h(x,uv), (5)

where Wv = Wv = ∇⊤
x h(x,uv) and bv,bv are shown in Remark 1 in Appendix A.2 through

Lagrange remainder with bounded ℓ2 operator norm of Hessian matrix for each entry of h(x,uv),
following [45].

3.2 Bounding the Jacobian of Neural CBF

Now we consider the gradient of neural CBF ϕ : Rn → R. As shown in Section 2.1, neural CBFs
alternatively consist of linear layers ẑi = yi(zi−1) = Wizi−1 + bi and ReLU activation layers
zi−1 = σi−1(ẑi−1) , with input and output as z0 = x, ẑL = ϕ(x). For the gradients of ϕ with
respect to intermediate vectors zi−1, ẑi,∀i = 1, 2, . . . , L, based on chain rule, we have

∇zi−1
ϕ = ∇⊤

zi−1
yi∇ẑi

ϕ = W⊤
i ∇ẑi

ϕ, ∇ẑi
ϕ =

∂zi
∂ẑi

⊙∇zi
ϕ = σ′(ẑi)⊙∇zi

ϕ, (6)

where ⊙ denotes element-wise Hadamard product for two inputs with the same size. Based on
the initial condition ∇ẑL

ϕ = 1, the recursive formula (6) will result in the gradient w.r.t the input
∇xϕ = ∇z0

ϕ in a back-propagation manner. More specifically, with initial trivial linear bounds of
0x+W⊤

L ≤ ∇zL−1
ϕ ≤ 0x+W⊤

L , the final gradient ∇xϕ can be linearly bounded as

∇(x) = Λx+ d ≤ ∇xϕ ≤ ∇(x) = Λx+ d, where Λ = Λ ≡ 0 and for j-th entry of ∇xϕ, (7)

[d]j = min
x∈∆X

[
[

L−1∏
i=1

W⊤
i Diag(σ′(ẑi))]W

⊤
L

]
j

,
[
d
]
j
= max

x∈∆X

[
[

L−1∏
i=1

W⊤
i Diag(σ′(ẑi))]W

⊤
L

]
j

.

We remark that the bound above is essentially equivalent to the linear bounds in [46] because the
initial gradient of the last dense layer ∇ẑL

ϕ = 1 is not related to input x and each derivative of ReLU
activation function σ′(ẑi) is 0 − 1 bounded Heaviside step function. Therefore, the input x in the
pre-activation bound ẑi will never appear in the bound propagation of ∇xϕ, resulting in the weight
term with respect to x always being 0. Equation (7) greatly simplifies linear bound propagation
through the inner product, as shown in the next section. We give the following simple example to
show the Jacobian and optimal control input.

Example 1. Consider 1D double-integrator ẋ =

[
0 1
0 0

]
x +

[
0
1

]
u with

[
−0.1
−0.1

]
≤ x ≤

[
0
0.1

]
and −1 ≤ u ≤ 1, given a 2-layer neural CBF ϕ(x) = [1 1]ReLU(

[√
2 1√
2 −1

]
x) − 0.05, based

on Equation (7), the linear bounds of ∇xϕ(x) are 0x +

[
0
−1

]
≤ ∇xϕ ≤ 0x +

[√
2
1

]
. Also, the

optimal control input from Equation (4) is uv = −1 when
[√

2 1
]
x > 0 and uv = 1 when[√

2 −1
]
x > 0.

3.3 Verification with Symbolic Bound Propagation through Inner Product

By solving the inner minimization w.r.t control input u based on Proposition 1, the equivalent veri-
fication goal of maxx∈∆Xϕ

minu∈U ϕ̇(x,u) + αϕ(x) in Equation (3) is

max
x∈∆Xϕ

ϕ̇(x,uv) + αϕ(x) = max
x∈∆Xϕ

∇xϕ
⊤h(x,uv) + αϕ(x) ≤ 0, (8)

which contains the inner product of bounded neural CBF Jacobian ∇xϕ in Equation (7) and linearly
bounded system dynamics h(x,uv) in Equation (5). We define the problem of bound propagation
through the inner product below.
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Problem 1. Given two vector functions f1(x), f2(x) : Rn → Rm with linear symbolic bounds w.r.t
input x ∈ Rn, i.e. W1x+b1 ≤ f1(x) ≤ W1x+b1,W2x+b2 ≤ f2(x) ≤ W2x+b2, the problem
is to find the linear symbolic bounds for the inner product of f1(x), f2(x), i.e. find Wp,bp,Wp,bp

s.t. Wpx+ bp ≤ ⟨f1(x), f2(x)⟩ = f⊤
1 (x)f2(x) ≤ Wpx+ bp.

In our setting of Equation (8), we have f1(x) = ∇xϕ, f2(x) = h(x,uv). To the best of our
knowledge, it is not trivial to solve the problem above. However, with the Jacobian of ReLU-based
ϕ where Λ = Λ ≡ 0 in Equation (7), the problem will be simplified and more straightforward to
solve. We derive the following theorem as a sound upper bound of the left-hand side of Equation (8)
to verify our goal in Equation (3). Proof can be found in Appendix A.2.

Theorem 2. For any control-affine system h(x,u) = f(x) + g(x)u with bounded control input
u ∈ U , given a learned neural CBF ϕ(x) with ReLU activation functions, suppose the boundary
state set ∂Xϕ is the union of K hyper-rectangles ∆X as ∂Xϕ ⊂ ∆Xϕ := ∪K

k=1∆X (k), then the
goal in Equation (3) is achieved if as a sound upper bound of ∇xϕ

⊤h(x,uv)+αϕ(x), the following
inequality holds for any x in each hyper-rectangle state set ∆X ∈ ∆Xϕ,

[d
⊤
]+[h(x,uv)]+ + [d⊤]+[h(x,uv)]− + [d

⊤
]−[h(x,uv)]+ + [d⊤]−[h(x,uv)]− + αϕ(x) ≤ 0,

where [∗]+ = max{0, ∗} = ReLU(∗), [∗]− = min{0, ∗} = −ReLU(−∗), and d,d and
h(x,uv), h(x,uv) can be found through Equation (7) and Equation (5), respectively.

If h(x,uv), h(x,uv) are concretized and non-symbolic, our result degrades to the interval arithmetic
case [47, 36], showing our symbolic bounds are more general and tighter. Note that for efficient
implementation, given ∆X , the optimal control input u is approximated as fixed by Proposition 1.
The symbolic upper bound of Theorem 2 can be viewed as the summation of new MLPs with ReLU
activation functions, which can be verified through CROWN [38, 39]. Combining branch-and-bound
scheme [48, 36, 17], the new optimal control input u′ can be found for each new split branch ∆X ′

for the recursive verification. Based on Example 1, we continue to find the corresponding symbolic
upper bound of Theorem 2 with branch-and-bound below.

Example 2. To verify Example 1 with α = 0.5, initially with
[
−0.1
−0.1

]
≤ x ≤

[
0
0.1

]
,

the verification condition in Theorem 2 with approximated optimal control input uv =

−1 is
[√

2 1
]

ReLU(

[
0 1
0 0

]
x +

[
0
−1

]
) − [0 −1]ReLU(−

[
0 1
0 0

]
x −

[
0
−1

]
) + 0.5 ×

([1 1]ReLU(

[√
2 1√
2 −1

]
x)−0.05) ≤ 0, which cannot be verified directly. Then we further split x

specification into two new branches
[
−0.1
−0.1

]
≤ x ≤

[
0
0

]
and

[
−0.1
0

]
≤ x ≤

[
0
0.1

]
, and the verifica-

tion condition of the first branch is
[√

2 0
]

ReLU(

[
0 1
0 0

]
x+

[
0
1

]
)−[0 −1]ReLU(−

[
0 1
0 0

]
x−[

0
1

]
)+0.5×([0 −1]ReLU(

[√
2 1√
2 −1

]
x)−0.05) ≤ 0 with uv = 1, and the verification condition

of the second branch is
[√

2 1
]

ReLU(

[
0 1
0 0

]
x+

[
0
−1

]
)− [0 0]ReLU(−

[
0 1
0 0

]
x−

[
0
−1

]
)+

0.5 × ([0 −1]ReLU(

[√
2 1√
2 −1

]
x) − 0.05) ≤ 0 with uv = −1, which can be verified or further

split through off-the-shelf verification tools [46] following such branch-and-bound scheme.

4 Experiments

In this section, we aim to answer the following questions. Given pre-trained neural CBFs, how
does our proposed verification method perform compared to the existing verification baseline under
different robot dynamics? In terms of tightness and scalability, how are our proposed method and
the baselines influenced by different input specification sizes and model complexity? We answer the
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(a) (b) (c) (d)
Figure 2: Illustration of the verification results for Dubins car using (a) NNCB-IBP [28], (b) BBV
[36] and (c) ours. The obstacle is in gray. The state boundary of ϕ(x) = 0 given orientation −14◦

is over-approximated by boxes. Green boxes denote the results of “hold” while red ones denote the
results of “unknown” to verify ϕ̇+ 0.5ϕ ≤ 0, whose value is shown as heatmap in Fig. (d).

CBF training type Regular training Adversarial training
Verification condition α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0

Dubins Car
3-dim state

BBV [36] 0.617 0.492 0.448 0.750 0.719 0.695
NNCB-IBP [28] 0.446 0.437 0.425 0.623 0.601 0.577

Ours 0.700 0.729 0.706 0.778 0.730 0.732

Point Robot
4-dim state

BBV [36] 0.384 0.355 0.317 0.391 0.367 0.337
NNCB-IBP [28] 0.280 0.261 0.237 0.317 0.304 0.282

Ours 0.404 0.401 0.391 0.404 0.397 0.385

Planar Quadrotor
6-dim state

BBV [36] 0.314 0.319 0.290 0.352 0.335 0.313
NNCB-IBP [28] 0.301 0.279 0.249 0.216 0.205 0.168

Ours 0.354 0.382 0.341 0.359 0.404 0.475

Table 1: Comparison of Verified Rate with baselines on different dynamics models under different
neural CBF training settings.

first question in Section 4.2 through quantitative and qualitative comparison and answer the second
one in Section 4.3 as the ablation study. Prior to that, we first introduce the experiment setup of
robot dynamics and verification details.

4.1 Experimental Setup

Robot dynamics and neural CBF training We conduct experiments using three different robot
dynamics, Point Robot [49, 36] with state dimension of 4, Dubins Car [50] with state dimension of
3 and Planar Quadrotor [51] with state dimension of 6. Following [36], for any random trajectories
with bounded control input and state, the robots should avoid obstacles in a non-convex environment
as shown in Figure 2. To this end, the neural CBF is learned to ensure forward invariance of the
collision-free states. Similar to [17], for each robot dynamics, we train the neural CBF based on
[14] as regular training and further adopt gradient-based adversarial training [37, 52] to enhance
the forward invariance under worst-case state [18]. As default models, we adopt 4-layer MLPs with
ReLU with layer dimensions of (16,64,16,1) to model neural CBFs, and further investigate small
model with layer dimensions of (8,8,8,1) and large models with layer dimensions of (64,128,64,1)
in ablation study of model complexity. More details can be found in Appendix B.1.

Verification details and evaluation metric. Given the pre-trained neural CBF, the goal is to verify
the forward invariance in Equation (3) over the boundary states, which can be found through grid
search as all the hyper-rectangles that contain zero roots of ϕ(x) = 0 following [35, 18]. The default
number of grids for each dimension is 20. By traversing all boundary hyper-rectangles, we report
the ratio of hyper-rectangles that satisfy the verification condition of Equation (3) as the evaluation
metric Verified Rate. We choose two recent incomplete verification methods as the baselines, NNCB-
IBP in the non-stochastic continuous version adapted from [28] and BBV [36], which are both based
on interval arithmetic through CROWN bounds [38, 39] and the latter adopts branch-and-bound
scheme. For a fair comparison, ours adopts the same maximum splitting iteration number in the
branch-and-bound scheme as BBV. Also, following [53, 54, 14], we adopt efficient sampling-based
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Figure 3: Verified Rate under different number of boundary hyper-rectangles under different grid
sizes. The grid number per dimension for each figure (from left to right): 10, 20, 50, 100. The
dashed line denotes the results of falsification by counterexample as upper bounds.

counterexample falsification to obtain an (unsound) upper bound for the verified rate [37]. We
remark that since we purely focus on verification given pre-trained CBFs in this work, we do not
fully explore CBF training potential and the performance of Verified Rate can be further improved
by combining verification-in-the-loop training [36, 55], counterexample falsification [27, 40], etc.

4.2 Results Comparison

Quantitative results. From Table 1, we can see that under different robot dynamics, ours performs
better than the baselines, although the verification becomes more challenging to scale up for higher
state dimensions. Specifically, ours and BBV [36] have better performance compared to NNCB-
IBP [28] due to the branch-and-bound scheme. With larger α in verification condition (3), the
performance of the baseline method decays significantly due to larger over-approximation errors by
interval arithmetic, while ours is tighter and keeps relatively higher Verified Rate. The advantage of
our method over baselines is larger for neural CBFs with regular training than for neural CBFs with
adversarial training, showing adversarial training can enforce the forward invariance to hold.

Qualitative results. In this section, we visualize the verification results of Dubins Car for qual-
itative comparison with baselines in Figure 2. Given a fixed orientation angle, the boundary of
ϕ(x) = 0 is over-approximated as position boxes as input specifications. It can be seen that it is
more challenging for both baselines [28, 36] in Figure 2(a,b) to verify the boxes that face the car
head, which are intuitively more likely to result in collision. However, due to the tighter bounds
of our symbolic propagation during verification, ours can verify all the boundary boxes, which is
consistent with the heatmap visualization of the boundary condition values in Equation (2).

4.3 Ablation Study

Different numbers of boundary hyper-rectangles under different grid sizes. Since the bound-
ary hyper-rectangles are found through grid search with fixed grid size, the finer the grids are, the
more boundary hyper-rectangles will be. As shown in Figure 3, we evaluate the performance with
different fine-grained boundaries from 10, 20, 50, and 100 grids for each dimension, respectively.
It can be seen that the performance of both ours and baselines increases as the number of bound-
ary hyper-rectangles goes up, but ours consistently presents higher Verified Rate than the baselines
do. More specifically, with fewer boundary hyper-rectangles, our superiority over the baselines be-
comes more significant even for branch-and-bound based BBV [36], validating the efficiency of our
method. Although there is still a margin with respect to the unsound upper bound, our performance
can be further boosted through complete verification methods [48] for tighter bounds.
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Verified rate of Dubins Car
under different model sizes

Regular training Adversarial training
Small Default Large Small Default Large

α = 0.1
BBV [36] 0.506 0.617 0.729 0.785 0.750 0.458

Ours 0.558 0.700 0.752 0.788 0.778 0.481

α = 0.5
BBV [36] 0.365 0.492 0.635 0.781 0.719 0.411

Ours 0.562 0.729 0.688 0.792 0.730 0.444

α = 1.0
BBV [36] 0.208 0.448 0.510 0.750 0.695 0.367

Ours 0.540 0.706 0.592 0.758 0.732 0.413

Table 2: The influence of neural CBFs with different model sizes on branch-and-bound based verifi-
cation baseline and ours with Dubins Car. The Small, Default and Large denote 4-layer ReLU-MLPs
with layer output dimensions of (8,8,8,1), (16,64,16,1) and (64,128,64,1), respectively.
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Figure 4: Comparison of verification time using branch-and-bound to achieve 100% Verified Rate
with different model complexity with regular training. The more hyper-rectangles the boundary set
contains, the finer the state input specification will be.

Different complexity of neural CBF models. As shown in Table 2, we investigate the verification
performance under different sizes of neural CBFs under regular training and adversarial training. We
can see that for regular training, as models become larger, the verified rate will mostly increase due to
better overall performance, especially for the baseline BBV [36]. However, since even small models
can be effectively robustified and obtain good overall performance through adversarial training,
the verified rate tends to decrease as model complexity increases because larger models are more
difficult to verify. Besides, , ours can consistently give higher verified rates compared to the baseline.

Verification time of branch-and-bound. For a fair comparison of time consumption, we allow
branch-and-bound to run forever until achieving 100% verified rate of α = 0.1 under Dubins Car
with regular training . From Figure 4, we can see that with small model size, the total time along the
boundary is mainly dominated by the number of boundary hyper-rectangle inputs, and ours performs
faster on small NNs. However, with a large model size, the total time is mainly dominated by the
single-input verification time and the more hyper-rectangles along the boundary, the finer the input
spec will be and the faster the single-input verification will be . In this case, ours cannot always
beat BBV since the non-symbolic interval arithmetic is more computationally efficient for single-
input verification with a larger model size. In between, the default model size tells us that the total
verification time for ours has the bottleneck of the number of hyper-rectangles, while the baseline
has the bottleneck of single-input verification time.

5 Conclusion

In this work, we propose an efficient verification framework for neural CBFs using symbolic bound
propagation, which combines the linearly bounded nonlinear dynamic system and the linear bounds
of neural CBFs Jacobian. By utilizing bounded derivatives of activation functions in neural net-
works, we demonstrate that linear symbolic bounds can be propagated through the inner product
of the neural CBF gradient and nonlinear system dynamics, fully keeping the symbolic bound for
better tightness. Extensive experiments on various robot dynamics show that our method outper-
forms interval arithmetic based baselines in terms of verified rate and verification time along the
CBF boundary with different model complexity. These results validate the tightness and efficiency
of our proposed method.
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A Proofs

A.1 Proof of Proposition 1

Lemma 1 (Interval Arithmetic, restated from Section 4.1 in [47].). For any matrix multiplication
A · x : Rn → Rm, if x is entry-wisely bounded as x ≤ x ≤ x, i.e. ,xi ≤ xi ≤ xi,∀i = 1 . . . n, the
following inequalities hold for each entry of Ax,

[A]+x+ [A]−x ≤ Ax ≤ [A]−x+ [A]+x (9)

where [·]+ := max{0, ·}, [·]− := min{0, ·}.

Proof. For the lower bound [A]+x + [A]−x, consider the j-th entry of [Ax]j =
∑n

i=1 Aj,ixi.
With the entry-wise bounds xi ≤ xi ≤ xi,∀i = 1 . . . n, if Aj,i ≥ 0, it holds that Aj,ixi ≤ Aj,ixi;
similarly, if Aj,i < 0, it holds that Aj,ixi ≤ Aj,ixi. Writing it compactly, we have

[Aj,i]+xi + [Aj,i]−xi = max{0,Aj,i}xi +min{0,Aj,i}xi ≤ Aj,ixi

. By summing the inequality above over i = 1, . . . , n, it holds that

[[A]+x]j + [[A]−x]j =

n∑
i=1

[Aj,i]+xi +

n∑
i=1

[Aj,i]−xi ≤ [Ax]j =

n∑
i=1

Aj,ixi

, which indicates [A]+x + [A]−x ≤ Ax holds for each entry j. Similarly, the upper bound Ax ≤
[A]−x+ [A]+x can be derived in the same way, concluding the proof the interval arithmetic.

Proposition 2. (restated of Proposition 1) When u is within a hyper-rectangle U = [u,u] = {u ∈
Rm | u ≤ u ≤ u}, given x ∈ X , the minimum value of ϕ̇(x,u) over u ∈ U can be found explicitly
as,

min
u∈U

ϕ̇(x,u) = ∇xϕ
⊤f(x) + [∇xϕ

⊤g(x)]+u+ [∇xϕ
⊤g(x)]−u = ϕ̇(x,uv(x)), (10)

where [∗]+ = max{0, ∗}, [∗]− = min{0, ∗} and the optimal control input uv(x) =
argminu∈V (U) ϕ̇(x,u) lies among the vertices V (U) of hyper-rectangle U given state x.

Proof. Based on the chain rule, it holds that

ϕ̇(x,u) = ∇xϕ
⊤ẋ = ∇xϕ

⊤f(x) +∇xϕ
⊤g(x)u.

With u ≤ u ≤ u, based on Lemma 1, it holds that

[∇xϕ
⊤g(x)]+u+ [∇xϕ

⊤g(x)]−u ≤ ∇xϕ
⊤g(x)u.

Besides, consider the vertices V (U) := {uv | [uv]i ∈ {ui,ui},∀i = 1, . . . ,m}, we can find the
equivalent expression for the lower bounds,

[∇xϕ
⊤g(x)]+u+ [∇xϕ

⊤g(x)]−u = ∇xϕ
⊤g(x)uv(x),

where [uv(x)]i = ui if [∇xϕ
⊤g(x)]i ≥ 0 and [uv(x)]i = ui if [∇xϕ

⊤g(x)]i < 0, showing that
there exists uv ∈ V (U) s.t. the lower bound [∇xϕ

⊤g(x)]+u + [∇xϕ
⊤g(x)]−u can be achieved

equivalently, which concludes that proof.

A.2 Proof of Theorem 2

Theorem 3. (restated of Theorem 2.) For any control-affine system h(x,u) = f(x) + g(x)u with
bounded control input u ∈ U , given a learned neural CBF ϕ(x) with ReLU activation functions,
suppose the boundary state set ∂Xϕ is the union of K hyper-rectangles ∆X as ∂Xϕ ⊂ ∆Xϕ :=

∪K
k=1∆X (k), then the following inequality maxx∈∂Xϕ

minu∈U ϕ̇(x,u) + αϕ(x) ≤ 0 is satisfied if
as a sound upper bound of ∇xϕ

⊤h(x,uv)+αϕ(x), the following inequality holds for any x in each
hyper-rectangle state set ∆X ∈ ∆Xϕ,

[d
⊤
]+[h(x,uv)]+ + [d⊤]+[h(x,uv)]− + [d

⊤
]−[h(x,uv)]+ + [d⊤]−[h(x,uv)]− + αϕ(x) ≤ 0,

where [∗]+ = max{0, ∗} = ReLU(∗), [∗]− = min{0, ∗} = −ReLU(−∗), and d,d and
h(x,uv), h(x,uv) are the lower and upper bounds of ∇xϕ and h(x,uv), respectively.
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Proof. Based on Proposition 2, we have the following inequality hold for any ∆X ∈ ∆Xϕ,

max
x∈∆X

min
u∈U

ϕ̇(x,u) + αϕ(x) = max
x∈∆X

ϕ̇(x,uv(x)) + αϕ(x) ≤ max
x∈∆X

ϕ̇(x,uv) + αϕ(x), (11)

where uv is an approximated constant vertex of optimal control input uv(x) for a sound upper bound
of ϕ̇(x,uv(x)) over x ∈ ∆X . Now with the bounded dynamics h(x,uv) ≤ h(x,uv) ≤ h(x,uv),
by Lemma 1, for any x ∈ ∆X we have

ϕ̇(x,uv) + αϕ(x) = ∇⊤
x ϕh(x,uv) + αϕ(x) ≤ [∇⊤

x ϕ]−h(x,uv) + [∇⊤
x ϕ]+h(x,uv) + αϕ(x).

Besides, with the bounded gradient d ≤ ∇xϕ ≤ d, the following inequalities hold

[d]+ ≤ [∇xϕ]+ ≤ [d]+, [d]− ≤ [∇xϕ]− ≤ [d]−.

Then applying Lemma 1 for [∇⊤
x ϕ]−h(x,uv) and [∇⊤

x ϕ]+h(x,uv), we further have the following
inequality hold for any x ∈ ∆X ,

ϕ̇(x,uv) ≤ [d
⊤
]+[h(x,uv)]+ + [d⊤]+[h(x,uv)]− + [d

⊤
]−[h(x,uv)]+ + [d⊤]−[h(x,uv)]−.

Therefore, if for any x in each hyper-rectangle state set ∆X ∈ ∆Xϕ, it holds that

[d
⊤
]+[h(x,uv)]+ + [d⊤]+[h(x,uv)]− + [d

⊤
]−[h(x,uv)]+ + [d⊤]−[h(x,uv)]− + αϕ(x) ≤ 0,

and then we have ϕ̇(x,uv) + αϕ(x) ≤ 0 for any x ∈ ∆X . Combining Equation (11), we have

max
x∈∆X

min
u∈U

ϕ̇(x,u) + αϕ(x) ≤ max
x∈∆X

ϕ̇(x,uv) + αϕ(x) ≤ 0,∀∆X ∈ ∆Xϕ.

Since the exact boundary of ϕ(x) = 0 is the subset of all ∆X , i.e. , ∂Xϕ ⊂ ∆Xϕ := ∪K
k=1∆X (k),

it holds that

max
x∈∂Xϕ

min
u∈U

ϕ̇(x,u) + αϕ(x) ≤ max
∆X∈∆Xϕ

max
x∈∆X

min
u∈U

ϕ̇(x,u) + αϕ(x) ≤ 0,

which concludes the proof.

Remark 1 (Linearly bounded dynamics.). We remark that although the linear bounds of dynamics
h(x,uv), h(x,uv) can be found through 1-order Taylor models [42, 43, 44] in practice, we can
give a generally valid lower and upper bounds by assuming bounded ℓ2 operator norm of Hessian
matrix following [45]. For the control-affine system with fixed control input u0, ẋ = h(x,u0) with
bounded state x ≤ x ≤ x, suppose the ℓ2 operator norm of Hessian matrix of i-th entry of h(x,u0)
is bounded as ∥∇2

xh
(i)(x,u0)∥2 ≤ M (i), then at x0 ∈ [x,x] the following linear bounds can be

found as

h(x,u0) = W0x+ b0 ≤ h(x,u0) ≤ W0x+ b0 = h(x,u0) where W0 = W0 = ∇⊤
x h(x0,u0),

b
(i)
0 = h(i)(x0,u0)−∇⊤

x h
(i)(x0,u0)x0 −

1

2
∥x− x∥22M (i), for i-th entry of b0,

b
(i)

0 = h(i)(x0,u0)−∇⊤
x h

(i)(x0,u0)x0 +
1

2
∥x− x∥22M (i), for i-th entry of b0.

Specifically, if the control-affine system is linear and time-invariant, i.e. , f(x) = Ax and g(x) = B
with constant A,B, where the lower and upper bounds will trivially be W0 = W0 = A,b0 =
b0 = Bu0.

B Experiments

In this work, symbolic bounds are bounds that are linearly related to the input specification, com-
pared to the concretized bounds where the input dependencies are thrown away. Besides, if a sound
but incomplete verifier returns a result of not-hold, maybe the statement will actually hold, but the
current verifier is too loose to verify that. In contrast, if sound and complete verifiers return not-hold
results, there must exist counterexamples that violate the statement. This motivates us to develop
tighter sound and incomplete verification with symbolic bounds.
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Figure 5: Verified rate with different α in the neural CBF verification condition using different grid
sizes (different number of boundary hyper-rectangles) for Dubins Car.

B.1 Experiment Environments and Dynamics

All the robot dynamic models are based on the open-sourced package RobotZoo.jl, where Point
Robot is modified based on DoubleIntegrator(D=2) with zero gravity, Dubins Car is mod-
ified based on DubinsCar with radius=0.175, and Planar Quadrotor is modified based on
PlanarQuadrotor with mass=1.0kg, gravity=9.81m/s² and tip-to-tip distance=0.3m.
Moreover, for the state space, all robots move on a 2D plane within (0,4m)*(0,4m) (hori-
zontal for Point Robot and Dubins Car but vertical for Planar Quadrotor) with a static rect-
angle obstacle located at the center coordinate (2m,1m) with sizes of 1m*2m. More specif-
ically, the states of Dubins Car are 2D positions and orientation angle within the 3-dim
hyper-rectangle (0,4)*(0,4)*(0,π) and the unsafe states are within 3-dim hyper-rectangle
(1.5,2.5)*(0,2)*(0,π). The states of Point Robot are 2D positions and 2D velocities within
the 4-dim hyper-rectangle (0,4)*(0,4)*(-1, 1)*(-1, 1) and the unsafe states are within 4-
dim hyper-rectangle (1.5,2.5)*(0,2)*(-1, 1)*(-1, 1). The states of Planar Quadrotor are
2D positions, orientation angle, 2D velocities and angular velocity within the 6-dim hyper-rectangle
(0,4)*(0,4)*(-0.1,0.1)*(-1,1)*(-1, 1)*(-1, 1) and the unsafe states are within 6-dim
hyper-rectangle (1.5,2.5)*(0,2)*(-0.1,0.1)*(-1,1)*(-1, 1)*(-1, 1). For the control
inputs, Dubins Car adopts speed and angular speed within the 2D rectangle (-1,1)*(-1,1). Point
Robot adopts 2D accelerations as control input within the 2D rectangle (-1,1)*(-1,1). Planar
Quadrotor adopts the thrust forces exerted by the two motors as control input within the 2D rectan-
gle (4,6)*(4,6) to overcome its gravity and move on the vertical plane.

B.2 Implementation Details

Data collection. As shown in the main text, we adopt supervised learning to train the neural CBFs.
The data is collected from random trajectories from the safe state space and control input space
through the dynamics. To empirically ensure the forward invariance, we discard the second half
states and control inputs to avoid the unsafe region of attraction, and only collect the other states
and control inputs with the safe labels. To collect unsafe data, we collect random states from the
unsafe state space with a similar amount of safe data for balance. To be more detailed, the time of
random trajectory is 10s with the time step of 0.1s and the states in the last 5s are omitted. Also,
the trajectories that are less than 5s (e.g. when the robot collides with obstacles or goes beyond
the feasible states) are discarded as well. By repeatedly initializing random states and collecting

15

https://github.com/RoboticExplorationLab/RobotZoo.jl


Number of grids per dimension 10 20 50 100

Regular training Ours w/o BaB 0.329 0.437 0.875 0.953
Ours w/ BaB 0.507 0.729 0.926 0.963

Adversarial training Ours w/o BaB 0.247 0.592 0.837 0.910
Ours w/ BaB 0.519 0.730 0.899 0.941

Table 3: The ablation study of the branch-and-bound (BaB) in our proposed method under different
grid densities with α = 0.5 for Dubins Car.

trajectories with random control inputs through dynamics, we collect 2.5M total pairs of state and
control input with 1.4M safe ones for Point Robot, 4.5M total pairs with 2.5M safe ones for Dubins
Car and 1.2M total pairs with 0.7M safe ones for Planar Quadrotor as dataset. Then, we randomly
choose 10k data as a validation set and use the rest for model training for each robotic dynamics.

Model training. During the model training, we adopt the empirical mean of the positive model
predictions as the safe set loss [17] and use the projected gradient descent to find the best-case control
input to construct the forward invariance condition loss. To enhance the training efficiency, we only
consider the training data along the empirical boundary of |ϕ(x)| < 0.1 for forward invariance
condition loss with α = 0. For adversarial training, we adopt project gradient descent over an
adjacent cube of each state data to maximize the forward invariance loss, then the gradient descent
is based on the worst-case projected states. The size of the adjacent cube in the adversarial training
is 1/20 of each dimension. All the models are trained with Adam for 20 epochs with an initial
learning rate of 0.01 and a decay rate of 0.2 every 4 epochs. The neural CBFs for Planar Quadrotor
are trained with the weight decay of 0.001.

Verification procedure. The first step of verifying neural CBFs is to find the hyper-rectangles
to over-approximate the boundary, i.e. , find the superset of all the roots ϕ(x) = 0. Assuming
the hyper-rectangles are small enough such that the CBF is continuous and monotonic for each
dimension of the state, we check all the gridded hyper-rectangles to find if all the vertices give
positive or negative CBF values. Based on the mean value theorem and the assumption above, the
roots exist in the hyper-rectangles whose vertices give CBF values with opposite signs. Once the
hyper-rectangles are obtained along the boundary, we verify the forward invariance condition based
on off-the-shelf neural network verification toolboxes [56, 57, 58, 59]. More specifically, given the
state specification, we first approximate the optimal control input using one vertex and then find the
linear bounds based on TaylorModels.jl [43]. Then with the Jacobian bounds [46], the condition
in Theorem 3 is found to verify if it is no larger than 0. If it does not hold, we adopt branch-and-
bound by half-splitting the state specification along each dimension, and conduct the breath-first
search to verify Theorem 3 recursively until reaching maximum iteration of 1000. By maintaining
all verified sub-specifications, we approximate the optimal control input for other vertex traversals
to verify if the union set of all verified sub-specifications equals the whole state specification. All
the baselines are conducted in a similar way but with concretized bounds instead of the symbolic
one in Theorem 3. We remark that although the procedure may not be the most efficient due to
approximating optimal control input, the verification result is sound and the scalability is satisfactory
for current robot dynamics. It is marked as future work to make the procedure more efficient for
robot dynamics with higher dimensions.

B.3 Additional Results and Analysis

Comparison with different α in the verification condition. As shown in Figure 5, we compare
our results and the branch-and-bound based baseline BBV [36] with different α in the verification
condition with different grid numbers per dimension. The upper bound indicates how challenging
the verification will be with different α. It can be seen that with larger α, the performance of BBV
decreases more than ours due to larger over-approximation errors. The reason why our results can get
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Figure 6: Visualization of branch-and-bound for both baseline BBV [36] (first row) and ours (second
row) for Dubins Car with regular-training CBF and uv = [1, 1]. For each branch after splitting, the
green boxes indicate verified specifications while the red ones indicate unknown specifications.

better when α goes up lies in that the approximation errors of gradient bounds through ReLU [46]
become less dominant and the symbolic property becomes more significant. Besides, with more
fine-grained state specifications, the influence of α becomes less because of fewer approximation
errors of both interval arithmetic and ReLU gradient. Adversarial training can also help boost the
verification performance of BBV when the grid size is large, while it can hurt our performance with
small grid sizes due to more training noise during projected gradient descent.

Influence of Branch-and-Bound (BaB) on the proposed method. Here we conduct an experi-
ment as an ablation study to show the influence of branch-and-bound in the proposed method. As
shown in Table 3, we can find that without branch-and-bound, the performance is significantly re-
duced, especially with fewer boundary hyper-rectangles (larger sizes of grids), showing that branch-
and-bound scheme is essential to the proposed method to alleviate the extra approximation error
caused by finding gradient bounds through ReLU [46].

Visulizaton of branch-and-bound scheme. From Figure 6, we can see that after each splitting for
the previous unknown specifications, branches will be doubled and the branch-and-bound follows
breadth-first search. With fewer split branches, it can be seen that the coarse specifications cannot
be verified for both base BBV [36] and ours. However, with more splitting, ours can successfully
verify all branches after 5 splits while BBV can only verify some of the finer specifications, leaving
lots of unknown branches to be further split due to looser bounds and larger over-approximation.
The visualization shows that even though with the same approximated optimal control input uv ,
ours can give tighter bounds for neural CBF verification with much fewer split times, resulting in a
higher verified rate and shorter verification time.

Comparison with symbolic interval analysis based method. Since ReluVal [60] is also based on
symbolic bounds and adopts iterative interval refinement, we fairly compare it with CROWN-based
baseline BBV [36] and ours with branch-and-bound in Table 4. The experiment is conducted under
Dubins Car dynamics with the same amount of maximum split times (1000) of BFS and 10 grids per
dimension for input specs. From the result table, we can see that ours still has the best performance.
With the default size (16,64,16,1) model, ReluVal performs better than BBV and keeps on par with
ours, showing that symbolic ReluVal bounds work well with relatively small model complexity.
However, with a larger model size (64,128,64,1) and more unstable ReLU neurons, the bounds of
ReluVal become looser, and ReluVal is more likely to perform worse than CROWN-based methods.
The main reason lies in different symbolic bounds for crossing-zero unstable ReLU layers. Ours
and BBV adopt fully linear symbolic bounds as CROWN does, while ReluVal only adopts symbolic
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Verfication condition α = 0.1 α = 0.5 α = 1.0
Model size Default Large Default Large Default Large

BBV [36] 0.450 0.564 0.371 0.486 0.357 0.329

ReluVal [60] 0.471 0.557 0.507 0.479 0.536 0.450

Ours 0.486 0.593 0.507 0.564 0.536 0.486

Table 4: Comparison between CROWN-based baseline BBV [36] and ours with symbolic interval
analysis based method ReluVal [60] under different model sizes.

bounds when the lower bound of symbolic pre-activation upper bound is less than 0. Therefore,
CROWN-like symbolic bounds are generally tighter than ReluVal [48].

C Limitation

One limitation of this work is that it requires an analytical control-affine dynamic model and is not
directly applicable to work with (non-control-affine) neural network dynamic models [61, 62, 45].
Besides, it is challenging to efficiently verify neural CBF with high dimensions (> 10) of state due to
the exponential growth of the number of boundary boxes. Since the scalability also highly depends
on the property of the neural CBF, e.g., unstable neuron patterns, local Lipschitiz, etc. Future work
can involve robust or certified training techniques [63, 64, 65, 66], to enhance the scalability of
verification, e.g., new loss from verification conditions, reducing the number of unstable neurons,
etc. Future work could also incorporate the linear bounds into verification-in-the-loop training for
verified neural CBFs in real-world applications.
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