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Abstract

Modeling the joint distribution of data samples and their properties allows to construct a
single model for both data generation and property prediction, with synergistic benefits
reaching beyond purely generative or predictive models. However, training joint models
presents daunting architectural and optimization challenges. Here, we propose Hyformer,
a transformer-based joint model that successfully blends the generative and predictive
functionalities, using an alternating attention mechanism and a joint pre-training scheme.
We show that Hyformer is simultaneously optimized for molecule generation and property
prediction, while exhibiting synergistic benefits in conditional sampling, out-of-distribution
property prediction and representation learning. Finally, we demonstrate the benefits of
joint learning in a drug design use case of discovering novel antimicrobial peptides.

1 Introduction

Developing models that simultaneously excel in both generative and predictive tasks is a long-standing
challenge in machine learning (Bishop, 1994; Jaakkola & Haussler, 1998; Lasserre et al., 2006). Joint models,
which unify these tasks, offer synergistic benefits, including improved control over the generative process
of the model, improved predictive robustness towards unseen, e.g., newly generated or out-of-distribution
(OOD) data, and learning representations predictive of high-level molecular features (Nalisnick et al., 2019;
Grathwohl et al., 2020; Cao & Zhang, 2022; Tomczak, 2022). These benefits are crucial for applications such
as drug design, where success depends on balancing the generation of novel molecules from unexplored regions
of the chemical space coupled with robust property prediction extrapolating towards the newly generated
molecules (Grisoni, 2023; Steshin, 2023; van Tilborg et al., 2025).

However, molecule generation and property prediction are predominantly approached in separation. This
division persists even though transformer-based models are state-of-the-art across both tasks (Bagal et al.,
2022; Gao et al., 2024b; Irwin et al., 2022; Xia et al., 2023; Zhou et al., 2023). A likely reason is that joint
training poses daunting challenges, as combining a generative and a predictive part into a single model may
over-regularize both parts (Lasserre et al., 2006) or cause gradient interference between the generative and
predictive objectives (Nalisnick et al., 2019). As a result, molecular models continue to forgo the potential
benefits of joint learning. This raises a natural question, whether one can develop a transformer-based joint
model optimized for both generative and predictive performance, at the same time offering the synergistic
benefits of joint learning?

To address this challenge, we introduce Hyformer, a joint model that combines an autoregressive transformer
decoder with a bidirectional transformer encoder in a single model with shared parameters. Upon training,
we alternate between using the model as a decoder and as an encoder, with either a causal or bidirectional
self-attention mechanism, alleviating problems typical for joint models. We evaluate the generative and
predictive performance, as well as synergistic benefits of joint learning using Hyformer across a variety of
molecular tasks (Wu et al., 2018; Brown et al., 2019; Steshin, 2023; Chen et al., 2023). Our contributions are:

1. We propose a novel joint model, Hyformer, that unifies the generative and the predictive task in a
single set of parameters.
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2. We demonstrate the synergistic benefits of joint modeling, where Hyformer outperforms baselines
on (i) conditional molecule generation, (ii) out-of-distribution property prediction and (iii) molecular
representation learning via probing.

3. We show that Hyformer rivals the generative and predictive performance of state-of-the-art purely
generative and predictive models.

4. We showcase the applicability of joint modeling in a real-world drug design use case of discovering
novel antimicrobial peptides.

2 Related Work

Molecule Generation Existing generative approaches can be categorized into sequence- and graph-based
models. Sequence-based methods represent molecules as SMILES (Weininger, 1988) or SELFIES (Krenn
et al., 2020) and process tokenized strings using recurrent or transformer-based language models (Segler
et al., 2018; Flam-Shepherd et al., 2022; Bagal et al., 2022). In contrast, graph-based models treat molecules
as graphs and have been implemented using variational autoencoders (Liu et al., 2018; Jin et al., 2019;
Maziarz et al., 2022; Hetzel et al., 2023), normalizing flows (Luo et al., 2021), energy-based models (Liu
et al., 2021a), and graph transformers (Gao et al., 2024b). More recently, 3D-based generative models have
been proposed to capture the spatial geometry of molecules (Hoogeboom et al., 2022; Guan et al., 2023; Gao
et al., 2024a), however real world drug discovery pipelines continue to rely predominantly on 2D-molecular
representations (Xiang et al., 2024).

Molecular Property Prediction Analogously, prediction models leverage distinct molecular representa-
tions. Methods based on pre-trained language models predominantly work with SMILES (Wang et al., 2019;
Fabian et al., 2020; Irwin et al., 2022; Sultan et al., 2024), while other approaches represent molecules as
graphs (Li et al., 2021; Wang et al., 2022). Recent methods leverage the three-dimensional spatial structure of
a molecule, either using graph neural networks (Fang et al., 2022) or transformers (Zhou et al., 2023). Finally,
Yang et al. (2019); Fabian et al. (2020); Stokes et al. (2020) incorporate pre-computed physicochemical
descriptors of molecules into training.

Joint Models for Molecules Early joint models combine variational autoencoders with latent-space
predictors (Gómez-Bombarelli et al., 2018; Maziarz et al., 2022). Regression Transformer (Born & Manica,
2023) frames property prediction as conditional sequence generation, but lacks unconditional generative
capability. Graph2Seq (Gao et al., 2024b) is a graph-based encoder-decoder transformer, trained separately
as a generative or as a predictive model, but evaluated on both molecule generation and property prediction.
UniGEM (Feng et al., 2024) is a diffusion-based model for unified generation and prediction, however
specializing in 3D molecular modeling and not directly applicable to standard SMILES-based benchmarks.

Therefore, the question of whether the transformer architecture can be used to implement a joint model for
both SMILES-based generation and prediction, while enjoying synergistic benefits, remains open.

3 Background

Problem Formulation The aim of joint modeling is to learn the joint distribution of the data and its
properties p(x, y), i.e., to identify a model that at the same time generates new data and predicts its properties.
We assume access to a labeled dataset D = {(xn, yn)}N

n=1, sampled from the joint data distribution p(x, y),
often accompanied with an unlabeled dataset DU = {xn}NU

n=1, sampled from p(x). Here, examples x can be
thought of as molecules and labels y as molecular properties.

In the general formulation of Lasserre et al. (2006), joint modeling aims to learn the joint distribution p(x, y)
by defining a joint model pθ,ϕ(x, y) that factorizes into a generative model pθ(x) and a predictive model
pϕ(y | x) such that

pθ,ϕ(x, y) = pϕ(y | x)pθ(x), (1)
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where θ denotes the parameters of the generative model, and ϕ the parameters of the predictive model.
Training of the joint model is equivalent to minimizing the negative log-likelihood, i.e., the joint loss

ℓλ(θ, ϕ) = −E(x,y)∼p(x,y)[ln pθ(x) + λ ln pϕ(y | x)], (2)

where λ ∈ R weights the predictive and the generative parts.

Choosing the extent to which parameters θ and ϕ are shared and the the way the joint loss is optimized, is
crucial for obtaining a model with both a high generative and predictive performance, at the same time
maintaining the synergistic benefits of joint learning (Lasserre et al., 2006).

3.1 Transformer-based Models

Transformers (Vaswani et al., 2017) achieve state-of-the-art performance in both molecule generation (Bagal
et al., 2022) and property prediction (Zhou et al., 2023) tasks.

Transformer Encoders and Decoders Transformers used for generation and for property prediction
differ in the use of the self-attention mechanism. Transformer decoders, used for generative tasks, employ a
causal self-attention

Att→(Q, K, V) = softmax
(

Q KT

√
d

+ M→

)
V, (3)

where Q, K, V ∈ RT ×d are query, key and value matrices, respectively, M→ ∈ RT ×T is a causal mask, i.e., a
matrix such that (M→)ij = 0, if i ≥ j, and (M→)ij = −∞, otherwise, T is the sequence length and d is the
head dimension.1 On the other hand, transformer encoders, used for predictive tasks, employ a bidirectional
self-attention

Att↔(Q, K, V) = softmax
(

Q KT

√
d

+ M↔

)
V, (4)

where M↔ ∈ RT ×T is a bidirectional mask, i.e., (M↔)ij = 0 for all i, j ∈ [T ].

Alternating attention The definition of the transformer decoder and encoder can be generalized by using
an alternating attention scheme (Dong et al., 2019):

AttATT_Type(Q, K, V) = softmax
(

Q KT

√
d

+ MATT_Type

)
V, (5)

where ATT_Type ∈ {→, ↔} and MATT_Type = M→ is a causal mask upon using the model as a transformer
decoder and MATT_Type = M↔, otherwise.

Training transformers Training transformers proceeds in a two-step manner, by first pre-training the
model on an unlabeled dataset and then fine-tuning the pre-trained model on a downstream task. Transformer
decoders and encoders are pre-trained using different losses.

Pre-training Transformer decoders, optimized for generative performance, are predominantly pre-trained
using the negative log-likelihood loss −Ex∼p(x)[ln pθ(x)]. As the causal mask induces a factorization of the
transformer decoder into an autoregressive model pθ(x) =

∏T
t=1 pθ(xt | x<t), where x = (x1, . . . , xT ), the

generative loss reduces to the language modeling (LM) loss

ℓLM(θ) = −Ex∼p(x)

[
T∑

t=1
ln pθ(xt | x<t)

]
. (6)

On the other hand, transformer encoders are usually pre-trained using masked language modeling (MLM) loss

ℓMLM(θ) = −Ex∼p(x)EM

[
ln pθ(xM | xR)

]
, (7)

1We assume that the dimensions of the query, key, and value matrices are equal.
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where x = (x1, . . . , xT ), M is a set of indices drawn uniformly at random from the set of token indices
{1, . . . , T} and the set of all tokens whose indices belongs to M are masked tokens xM. The rest of the
tokens xR are defined such that x = xM ∪ xR.

Fine-tuning Next, the pretrained model is fine-tuned by defining a predictive head on top of the pretrained
model and training it as a predictor on a labeled dataset using the prediction loss

ℓpred(ϕ) = −E(x,y)∼p(x,y)[ln pϕ(y | x)]. (8)

4 Hyformer
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Figure 1: A schematic representation of Hyformer. De-
pending on the task token [TASK], Hyformer uses either a
causal or a bidirectional mask, outputting token probabilities
or predicted property values.

We propose Hyformer, a joint transformer-
based model that unifies a generative decoder
with a predictive encoder in a single set of
shared parameters, using an alternating train-
ing scheme.

4.1 Model Formulation

Hyformer unifies a decoder with an encoder
using a transformer backbone fθ(x; [TASK])
conditioned on a task token [TASK] ∈
{[LM], [PRED], [MLM]}. The task token facili-
tates switching between respective losses dur-
ing training (see Section 4.2) and determines
whether the backbone fθ processes input x in
an autoregressive manner using a causal, or a
bidirectional mask

ATT_Type =
{

→ if [TASK] = [LM],

↔ if [TASK] ∈ {[PRED], [MLM]}.

Finally, the generative pθ(x) and predictive pθ(y | x) parts of the joint model, factorized as

pθ(x, y) := pθ(x)pθ(y | x), (9)

are implemented by adding a generative and a predictive head on the top of the shared backbone fθ.

Algorithm 1 Training of Hyformer
Input: Dataset D (labeled or unlabeled); model parameters θ; task probabilities p[TASK].

For pre-training: [TASK] ∈ {[LM], [PRED], [MLM]}, for fine-tuning: [TASK] ∈ {[LM], [PRED]}.
1: while stopping criterion not met do
2: Sample task [TASK] ∼ Cat(p[TASK])
3: Select loss ℓ[TASK] and the corresponding attention mask
4: Update model parameters θ using the gradient of ℓ[TASK]
5: end while

4.2 Hyformer Training

As with standard transformer-based models, the training of Hyformer is divided into a pre-training and a
fine-tuning stage.
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Joint Pre-training To unify the generative and the predictive functionalities in a single model, we pre-train
Hyformer using a variant of the joint loss (Eq. 2). For the generative part, we use the language modeling
loss ℓLM, while for the predictive part, we use the masked language modeling loss ℓMLM and the predictive
loss ℓpred, with the combined loss being defined as:

ℓHyformer = ℓLM + µℓMLM + ηℓPRED. (10)

As pre-training labels, we use values analytically computable from the input sequences, e.g., molecular
descriptors, such as molecular weight for small molecules, or hydrophobicity for peptides. When the pre-
training labels are not available, Hyformer is pre-trained without the predictive loss ℓPRED. Analogously to
multitask learning (Raffel et al., 2023), the weighted loss ℓHyformer (Eq. 10) is effectively implemented using
a vector of task probabilities p[TASK] = (p[LM], p[MLM], p[PRED]), which defines how the generative and predictive
capabilities of the joint model are balanced.

During training, the shared parameters θ are updated differently depending on the task token. If [TASK] ∈
{[PRED], [MLM]}, a bidirectional attention mask M↔ is applied and all attention module weights are updated,
since the bidirectional mask does not restrict information flow. Conversely, if [TASK] = [LM], a causal mask
M→ is applied, restricting each token to attend only to its left context, altering the gradients of the attention
module, due to the functional form of the Jacobian of the softmax function, alleviating gradient interference
typical for joint modeling (Appendix C.1).

Fine-tuning We fine-tune Hyformer using the joint loss (Eq. 2), defined as

ℓHyformer = ℓLM + λℓpred. (11)

Analogously to pre-training, Hyformer alternates between the generative and predictive task, to balance
their objectives, based on a pre-defined vector of task probabilities p[TASK] = (p[LM], p[pred]). We assume
that fine-tuning labels used in loss ℓpred are different than in the pre-training phase and are defined by
the downstream prediction task. Specifically, we omit the masked language modeling loss, to focus on the
downstream task while retaining the generative capabilities of the model.

4.3 Sampling

Sampling from Hyformer exploits the generative pθ(x) and predictive part pθ(y | x) depending on the
sampling mode: unconditional or conditional.

Unconditional Generation In unconditional generation, we sample x ∼ pθ(x) using the autoregressive
part of the model. This addresses a limitation of conditionally trained generative models (Bagal et al., 2022)
and joint models trained without a pure unsupervised objective (Born & Manica, 2023), where generating a
single example requires conditioning on a fixed property value inferred from a dataset.

Conditional Generation To generate (x, y) ∼ pθ(x, y) that satisfies a condition Y ⊆ Y, Hyformer
samples K-many examples x1, . . . , xK ∼ pθ(x) and, for every k = 1, . . . , K, accepts sample xk, if the predictor
pθ(y | x) classifies xk as having property Y . As a simple consequence of the Bayes rule, the above procedure
yields a correct conditional sampling procedure (Lemma 4.1).
Lemma 4.1. Let p(x, y) be a joint probability distribution over X × Y. If yc ∈ Y is a property value such
that p(yc) > 0, then

p(x | yc) ∝ 1{y=yc}(y)p(y | x)p(x).

Proof. See Appendix C.2.

Note that the conditional sampling procedure of Hyformer is a variant of best-of-K sampling, a provably
near-optimal solution to the KL-regularized RL problem (Yang et al., 2019) that has been shown to outperform
other conditional sampling methods for LLMs, including state-of-the-art reinforcement learning methods like
PPO and DPO (Touvron et al., 2023; Mudgal et al., 2023; Gao et al., 2023; Rafailov et al., 2023). Crucially,
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Hyformer leverages a jointly trained predictor pθ(y | x) over a unified representation space, resulting in
tighter alignment between generation and control. This coherence is particularly valuable in drug discovery,
where the primary objective is not throughput, but precision and sample efficiency, that is, generating a
small number of high-quality candidates with minimal false positives.

5 Experiments

We evaluate Hyformer across a broad range of molecular modeling tasks. First, we demonstrate the
synergistic benefits of joint modeling in three settings: (i) conditional generation on GuacaMol dataset (Brown
et al., 2019), (ii) out-of-distribution (OOD) property prediction on Hit Identification task from the Lo-Hi
benchmark (Steshin, 2023) and (iii) representation learning via probing on MoleculeNet benchmark (Wu
et al., 2018). Subsequently, we show that Hyformer rivals state-of-the-art generative and predictive models
in both unconditional generation on GuacaMol and property prediction on MoleculeNet. Finally, we apply
Hyformer to antimicrobial peptide (AMP) design, showcasing the benefits of our joint modeling approach.
Experimental details and additional results are provided in Appendix D, E and F.

5.1 Synergistic Benefits of Hyformer

5.1.1 Conditional Molecule Generation

To demonstrate the synergistic benefits of Hyformer in generating molecules with specific molecular
properties, we follow the setup of Bagal et al. (2022) and pre-train Hyformer scaled to 8.5M parameters
on GuacaMol dataset with 1.3M molecules, using pre-computed molecular descriptors (Yang et al., 2019).
We subsequently jointly fine-tune Hyformer on GuacaMol dataset with QED, SA, and LogP molecular
properties, as fine-tuning labels, and generate molecules with specific properties using Hyformer’s conditional
sampling procedure. Pre-training and experimental details alongside results for all property settings can be
found in Appendix D and E.1.

Table 1: Conditional generative performance on GuacaMol
dataset. Best model is marked bold.

Model Joint Metric QED SA logP Avg.

MolGPT ✗
MAD ↓ 0.087 0.019 0.276 0.127
SD ↓ 0.074 0.017 0.262 0.118
Validity ↑ 0.985 0.986 0.982 0.984

GraphGPT ✗
MAD ↓ 0.039 0.011 0.158 0.069
SD ↓ 0.082 0.047 0.653 0.261
Validity ↑ 0.998 0.997 0.992 0.995

Hyformer
✗

MAD ↓ 0.029 0.014 0.154 0.066
SD ↓ 0.041 0.018 0.199 0.086
Validity ↑ 0.991 0.977 0.991 0.986

✓
MAD ↓ 0.008 0.005 0.026 0.013
SD ↓ 0.013 0.008 0.033 0.018
Validity ↑ 0.995 0.983 0.995 0.991

Following (Gao et al., 2024b), we compare
Hyformer to MolGPT (Bagal et al., 2022)
and GraphGPT (Gao et al., 2024b) using: mean
absolute deviation (MAD) from the target prop-
erty value, standard deviation (SD) of the
generated property values and validity of the
generated molecules. Evaluation is averaged
across three target values per each property:
QED:{0.5, 0.7, 0.9}, SA:{0.7, 0.8, 0.9}, and
logP:{0.0, 2.0, 4.0}. Additionally, we compare
to a non-joint variant of Hyformer, in which
the predictive head is fine-tuned with prediction
loss, on top of a frozen, pre-trained generative
part, i.e., without joint fine-tuning.

The jointly fine-tuned Hyformer achieves the lowest MAD and SD across all properties, while maintaining
high validity, outperforming all baselines. Notably, Hyformer improves controllability over it’s non-
joint counterpart, confirming that joint fine-tuning enhances conditional generation. Although GraphGPT
attains slightly higher validity, it does so at the cost of reduced controllability. These results demonstrate
that joint modeling enables robust property-conditioned molecular generation across a range of chemically
relevant targets.

5.1.2 Out-of-Distribution Molecular Property Prediction

To evaluate the ability of Hyformer to predict molecular properties in an out-of-distribution (OOD) setting,
we pre-train Hyformer scaled to 50M parameters on 19M molecules from (Zhou et al., 2023), together with
pre-computed molecular descriptors (Yang et al., 2019), and benchmark on the Hit Identification (Hi) task
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from the Lo-Hi benchmark (Steshin, 2023). The Hi task requires generalization to molecular scaffolds not
seen during training, with the test set constructed such that no molecule has a Tanimoto similarity greater
than 0.4 (based on ECFP4 fingerprints) to any molecule in the training set. This setup mimics realistic drug
discovery scenarios, where generalization beyond known chemical space is essential. For experimental details,
see Appendix D and E.2.

Table 2: Predictive performance on Hit Identification (Hi) task from Lo-Hi
benchmark. Mean and standard deviation across 3 random seeds. The best
model in each category is marked bold.

Dataset, AUPRC (↑)

Model DRD2-Hi HIV-Hi KDR-Hi Sol-Hi

Dummy baseline 0.677±0.061 0.040±0.014 0.609±0.081 0.215±0.008
KNN (ECFP4) 0.706±0.047 0.067±0.029 0.646±0.048 0.426±0.022
KNN (MACCS) 0.702±0.042 0.072±0.036 0.610±0.072 0.422±0.009
GB (ECFP4) 0.736±0.050 0.080±0.038 0.607±0.067 0.429±0.006
GB (MACCS) 0.751±0.063 0.058±0.030 0.603±0.074 0.502±0.045
SVM (ECFP4) 0.677±0.061 0.040±0.014 0.611±0.081 0.298±0.047
SVM (MACCS) 0.713±0.050 0.042±0.015 0.605±0.082 0.308±0.021
MLP (ECFP4) 0.717±0.063 0.049±0.019 0.626±0.047 0.403±0.017
MLP (MACCS) 0.696±0.048 0.052±0.018 0.613±0.077 0.462±0.048

Chemprop 0.782±0.062 0.148±0.114 0.676±0.026 0.618±0.030
Graphormer 0.729±0.039 0.096±0.070 - -
Hyformer (no-joint) 0.778±0.070 0.154±0.108 0.675±0.046 0.601±0.040
Hyformer 0.784±0.082 0.158±0.128 0.701±0.022 0.640±0.036

We follow the setup of (Steshin,
2023) and compare jointly fine-
tuned Hyformer to all mod-
els reported in (Steshin, 2023);
machine learning models: k-
NN, gradient boosting (GB),
SVM and MLP, trained on
molecular fingerprints (ECFP4,
MACCS) and deep learning
models: Chemformer (Yang
et al., 2019), Graphformer
(Ying et al., 2021; Shi et al.,
2022). Specifically, we compare
to Hyformer (no-joint), which
is a version of our model pre-
trained using MLM loss, hence
without alternating attention,
and fine-tuned using the predic-
tion loss only.

Hyformer outperforms all baseline models across all datasets (Table 2), including methods based on molecular
fingerprints, indicating the potential of deep learning methods in real-world drug discovery applications.
Specifically Hyformer outperforms Hyformer (no-joint), clearly showing the benefits of joint modeling in
an out-of-distribution molecular property prediction setting.

5.1.3 Molecular Representation Learning

Table 3: Molecular representation learning performance of predictive, generative and joint models on
MoleculeNet benchmark, evaluated using linear and KNN probing. Best model within each probing method
is marked bold.

Dataset, RMSE ↓ Dataset, AUCROC ↑

Type Model Esol Freesolv Lipo BBBP BACE ClinTox Tox21 ToxCast SIDER HIV

Li
ne

ar

P. Uni-Mol 1.350 2.503 1.002 65.5 66.3 74.3 70.1 59.9 58.1 73.6
P. Hyformer (no-joint) 1.256 2.640 0.894 68.4 73.6 98.8 73.4 61.2 58.8 75.9
G. MolGPT 1.299 4.110 1.033 66.8 79.1 97.8 71.9 60.5 59.2 77.5
J. MoLeR 1.223 4.935 0.938 67.8 79.5 84.6 71.1 59.3 58.3 74.6
J. RT 2.510 4.515 1.158 54.7 63.1 57.3 50.5 52.8 54.5 65.6
J. Graph2Seq 1.498 3.486 0.890 66.0 76.7 72.0 71.2 60.4 50.5 57.1
J. Hyformer 1.527 4.294 0.887 68.5 77.2 99.5 72.4 60.7 60.8 74.7

K
N

N

P. Uni-Mol 1.579 3.403 1.025 60.0 75.9 78.0 64.7 57.5 61.0 64.3
P. Hyformer (no-joint) 1.380 3.254 0.978 67.8 75.4 89.0 66.3 57.6 58.1 71.4
G. MolGPT 1.232 3.075 0.987 68.4 71.9 94.2 66.0 56.9 61.0 70.5
J. MoLeR 1.802 4.061 1.096 59.4 72.0 71.2 64.9 53.3 57.3 67.3
J. RT 2.411 4.734 1.242 59.3 56.1 59.4 50.8 52.2 51.2 54.1
J. Graph2Seq 1.361 3.796 0.967 71.0 80.6 56.3 67.7 57.8 49.9 52.4
J. Hyformer 1.260 3.999 0.902 69.5 78.4 93.8 71.2 59.3 64.1 71.8

To assess the quality of molecular representations learned by Hyformer, we introduce a novel probing
protocol that emulates a typical drug discovery setting, where fixed molecular embeddings are used as
inputs to downstream predictive models. In this setup, we train simple linear models with L2 regularization,
and k-nearest neighbor (KNN) predictors on the top of frozen embeddings extracted from the respective
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pre-trained models. To ensure comparability with MoleculeNet benchmark (Section 5.2.2), we reuse the same
datasets, data splits, and model checkpoints. Implementation details are provided in Appendix E.3.

We compare representations extracted from pre-trained Hyformer to those extracted from a range of
baselines, including state-of-the-art generative (MolGPT (Bagal et al., 2022)), predictive (Uni-Mol (Zhou
et al., 2023)), and joint models: MoLeR (Maziarz et al., 2022), Regression Transformer (RT) (Born & Manica,
2023) and Graph2Seq (Gao et al., 2024b). Moreover, to quantify the effect of alternating attention and joint
pre-training, we compare to Hyformer (no-joint), the version of our model trained solely with MLM loss.

The pre-trained representations from Hyformer are the most predictive across both KNN and linear
probings, achieving the best performance on 4 out of 10 datasets for linear, and 5 out of 10 datasets for KNN,
outperforming all other baselines (Table 3). The next best models, Hyformer (no-joint) and MoLeR for linear
and MolGPT for KNN probing, rank first on 2 and 3 out of 10 datasets, respectively. Notably, joint models
outperform UniMol, the state-of-the-art property predictor, on all datasets, except for Freesolv with linear
probing, highlighting the effectiveness of joint modeling for transferable molecular representation learning.

5.2 Generative and predictive performance of Hyformer

We next confirm that Hyformer effectively addresses the challenges of joint training, while it enjoys the
synergistic benefits described above, it does not sacrifice generative or predictive performance compared to
state-of-the-art models trained separately for these tasks.

5.2.1 Unconditional Molecule Generation

Table 4: Unconditional generative performance on GuacaMol
distribution learning benchmarks. The best model in each
category is marked bold.

Model FCD ↑ KL div. ↑ Val. ↑ Uniq. ↑ Nov. ↑

Graph-based
JT-VAE 0.750 0.940 1.000 - -
MoLeR 0.625 0.964 1.000 1.000 0.991
MAGNet 0.760 0.950 1.000 - -
MiCaM 0.731 0.989 1.000 0.994 0.986

SMILES-based
VAE 0.863 0.982 0.870 0.999 0.974
LSTM 0.913 0.991 0.959 1.000 0.912
MolGPT 0.907 0.992 0.981 0.998 1.000
Hyformerτ=0.9 0.901 0.995 0.987 0.999 0.870
Hyformerτ=1.0 0.916 0.990 0.979 1.000 0.904
Hyformerτ=1.1 0.891 0.978 0.968 1.000 0.930

To evaluate the unconditional generative perfor-
mance of Hyformer, we perform an evaluation
on the Guacamol distribution learning bench-
mark (Brown et al., 2019). We use Hyformer
scaled to 8.5M parameters and trained on Gua-
caMol dataset with 1.3M molecules, together
with pre-computed molecular descriptors (Yang
et al., 2019), and investigate the impact of sam-
pling temperature τ . For experimental details,
see Appendix E.4.

We compare to state-of-the-art unconditional
generative models; SMILES-based: VAE
(Kingma & Welling, 2013), LSTM (Gers &
Schmidhuber, 2001), MolGPT (Bagal et al.,
2022) and graph-based: JT-VAE (Jin et al.,
2019), MoLeR (Maziarz et al., 2022), MAGNet (Hetzel et al., 2023), MiCaM (Geng et al., 2023). We omit RT
(Born & Manica, 2023) and GraphGPT (Gao et al., 2024b) as they do not generate molecules unconditionally
or provide results on the GuacaMol benchmark.

Hyformer, with top FCD and KL div. values, outperforms graph-based models, while achieving the highest
validity among SMILES-based models. Across various sampling temperatures τ , Hyformer consistently
lies on the Pareto front, balancing distributional fidelity (FCD, KL div.), validity and uniqueness. Overall,
SMILES-based models outperform those based on theoretically more informative graph representations in
terms of FCD, at the expense of not always sampling valid molecules.

5.2.2 Molecular Property Prediction

To evaluate the predictive performance of Hyformer, we use Hyformer scaled to 50M parameters on
19M molecules from (Zhou et al., 2023), together with pre-computed molecular descriptors (Yang et al.,
2019), and fine-tune end-to-end on MoleculeNet benchmark (Wu et al., 2018). For experimental details, see
Appendix E.5.
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Table 5: Predictive performance of predictive and joint models on the MoleculeNet benchmark. Mean and
standard deviation across 3 random seeds. The best model in each category is marked bold.

Dataset, RMSE ↓ Dataset, AUCROC ↑

Model Esol Freesolv Lipo BBBP BACE ClinTox Tox21 ToxCast SIDER HIV

P
re

di
ct

iv
e

D-MPNN 1.050(0.008) 2.082(0.082) 0.683(0.016) 71.0(0.3) 80.9(0.6) 90.6(0.6) 75.9(0.7) 65.5(0.3) 57.0(0.7) 77.1(0.5)
Attentive FP 0.877(0.029) 2.073(0.183) 0.721(0.001) 64.3(1.8) 78.4(0.02) 84.7(0.3) 76.1(0.5) 63.7(0.2) 60.6(3.2) 75.7(1.4)
N-GramRF 1.074(0.107) 2.688(0.085) 0.812(0.028) 69.7(0.6) 77.9(1.5) 77.5(4.0) 74.3(0.4) - 66.8(0.7) 77.2(0.1)
N-GramXGB 1.083(0.082) 5.061(0.744) 2.072(0.030) 69.1(0.8) 79.1(1.3) 87.5(2.7) 75.8(0.9) - 65.5(0.7) 78.7(0.4)
PretrainGNN 1.100(0.006) 2.764(0.002) 0.739(0.003) 68.7(1.3) 84.5(0.7) 72.6(1.5) 78.1(0.6) 65.7(0.6) 62.7(0.8) 79.9(0.7)
GROVERbase 0.983(0.090) 2.176(0.052) 0.817(0.008) 70.0(0.1) 82.6(0.7) 81.2(3.0) 74.3(0.1) 65.4(0.4) 64.8(0.6) 62.5(0.9)
GROVERlarge 0.895(0.017) 2.272(0.051) 0.823(0.010) 69.5(0.1) 81.0(1.4) 76.2(3.7) 73.5(0.1) 65.3(0.5) 65.4(0.1) 68.2(1.1)
GraphMVP 1.029(0.033) - 0.681(0.010) 72.4(1.6) 81.2(0.9) 79.1(2.8) 75.9(0.5) 63.1(0.4) 63.9(1.2) 77.0(1.2)
MolCLR 1.271(0.040) 2.594(0.249) 0.691(0.004) 72.2(2.1) 82.4(0.9) 91.2(3.5) 75.0(0.2) - 58.9(1.4) 78.1(0.5)
Mole-BERT 1.015 (0.030) - 0.676 (0.017) 71.9 (1.6) 80.8 (1.4) 78.9 (3.0) 76.8 (0.5) 64.3 (0.2) - -
GEM 0.798(0.029) 1.877(0.094) 0.660(0.008) 72.4(0.4) 85.6(1.1) 90.1(1.3) 78.1(0.1) 69.2(0.4) 67.2(0.4) 80.6(0.9)
Uni-Mol 0.788(0.029) 1.480(0.048) 0.603(0.010) 72.9(0.6) 85.7(0.2) 91.9(1.8) 79.6(0.5) 69.6(0.1) 65.9(1.3) 80.8(0.3)

Jo
in

t Graph2Seq 0.860(0.024) 1.797(0.237) 0.716(0.019) 72.8(1.5) 83.4(1.0) - 76.9(0.3) 65.4(0.5) 68.2(0.9) 79.4(3.9)
Hyformer 0.774(0.026) 2.047(0.076) 0.643(0.002) 75.9(0.9) 83.8(1.1) 99.2(0.5) 79.2(0.1) 65.5(0.6) 65.7(1.6) 80.0(1.0)

We follow the experimental protocol of (Zhou et al., 2023), use scaffold splitting and compare to predictive
models: D-MPNN (Yang et al., 2019), AttentiveFP (Xiong et al., 2019), N-gram (Liu et al., 2019) with
Random Forest and XGBoost (Chen & Guestrin, 2016), PretrainGNN (Hu et al., 2019), GROVER (Rong
et al., 2020), MolCLR (Wang et al., 2022), Mole-BERT (Xia et al., 2023), GraphMVP (Liu et al., 2021b),
GEM (Fang et al., 2022), UniMol (Zhou et al., 2023) and a joint model: Graph2Seq (Gao et al., 2024b). We
omit RT (Born & Manica, 2023) and other models that use random splitting.

Hyformer outperforms all models on Esol, BBBP and ClinTox (3 out of 10) datasets (Table 5). Moreover,
Hyformer outperforms Graph2Seq, the only other joint model capable of simultaneous molecule generation
and property prediction, on 8 out of 10 datasets. Altogether, Hyformer outperform the other joint learning
model, Graph2Seq, and successfully rivals the performance of purely predictive models, demonstrating the
efficiency of our joint learning strategy.

5.3 Antimicrobial Peptide Design

To show the benefits of joint learning in a real-world use case related to drug discovery, we apply Hyformer
to the task of antimicrobial peptide (AMP) design (Chen et al., 2023), i.e., generating AMPs with low
minimal inhibitory concentration values (MIC) against E. coli bacteria. We pre-train Hyformer on 3.5M
general-purpose peptide sequences, and subsequently on 1M AMP sequences, together with 39 physicochemical
descriptors from peptidy package (Özçelik et al., 2025). Next, we jointly fine-tune Hyformer on 4,547
peptides with their MIC values (Szymczak et al., 2023) and conditionally sample 50K peptides with an MIC
regressor threshold set to ≤ 100.3 ≈ 2 µM. For experimental details, see Appendix E.6.

We compare Hyformer AMP generation baselines: PepCVAE (Das et al., 2018), AMPGAN (Van Oort
et al., 2021), HydrAMP (Szymczak et al., 2023), and AMP-Diffusion (Chen et al., 2023). Evaluation is based
on four criteria: Perplexity (Torres et al., 2025), Diversity and Fitness (Li et al., 2024), and success rates in
generating AMPs and low-MIC candidates. For the latter, we use HydrAMPMIC, Amplify (Li et al., 2022),
and amPEPpy (Lawrence et al., 2020) classifiers as state-of-the-art in-silico oracles.

Hyformer outperforms all baseline models by a large margin in terms of generating peptides with a high
fitness and AMP probability, as evaluated by all oracle classifiers (Table 6). Despite the stringent conditioning
MIC threshold of 2 µM, Hyformer maintains competitive perplexity and high diversity. These results
suggest that even when constrained to explore less charted regions of sequence space, Hyformer is able to
generate biologically plausible and novel peptide candidates.

To further validate the biological relevance of the generated peptides, we show that both unconditional
sampling from pre-trained Hyformer, and conditional sampling from the fine-tuned model produces amino-
acid distributions in close agreement with the training data (Figure 2a). Despite this very close agreement,
the conditionally sampled peptides obtain a significant improvement of charge, aromaticity, and isoelectric
point over the known non-AMPs, as compared to known AMPs (Fig. 2b). Finally, to gain insight into
which amino acids contribute most to antimicrobial activity, we analyze the attention weights of Hyformer

9



Under review as submission to TMLR

Figure 2: (a) Amino-acid distributions between the pre-trained and unconditionally generated sequences.
(b) Distributions of charge, aromaticity, and isoelectric point (pI) for: non-AMP, AMP and conditionally
generated sequences. (c) Frequency of crossing an attention threshold (x-axis) vs. mean attention weight
(y-axis) for distinct amino-acids, colored by charge and sized by hydrophobicity.

(Fig. 2c). The attention mechanism frequently prioritizes highly charged Arginine (R) and Arginine (K),
which is expected as high AMP activity is associated with increased charge. The high attention frequency on
Tryptophan (W) agrees with previous reports about this amino-acid’s unique ability to interact with the
interface of the bacterial membrane (Bi et al., 2014). Finally, the high attention that Hyformer puts on
Proline (P) agrees with the known high potency of Proline-rich AMPs, which kill bacteria via a specific,
non-lytic mechanism (Lai et al., 2019).

Table 6: Conditional generative performance on antimicrobial peptide design. The best model is bold.

Model Perplexity2 Diversity ↑ Fitness ↑ HydrAMPMIC ↑ AMPlify ↑ amPEPpy ↑

PepCVAE 20.08 0.86 0.07 0.20 0.49 0.52
AMPGAN 18.49 0.80 0.12 0.32 0.64 0.54
HydrAMP 20.14 0.86 0.09 0.49 0.59 0.52
AMP-Diffusion 16.84 0.82 0.12 0.26 0.20 0.38
Hyformer 17.24 0.80 0.19 0.80 0.94 0.72

6 Discussion

In this paper, we introduced Hyformer, a transformer-based joint model that combines an autoregressive
decoder and a bidirectional encoder within a single set of shared parameters, using an alternating attention
mechanism and joint pre-training. We showed that Hyformer provides synergistic benefits in conditional
sampling, representation learning and out-of-distribution property prediction, with ablations highlighting
the specific contributions of alternating attention and joint training. Furthermore, we validated the utility
of joint modeling in a real-world antimicrobial peptide design task. Our results indicate that Hyformer
successfully unifies molecular generation and property prediction for SMILES-based molecular representations,
opening the avenue for the integration into real-world drug discovery pipelines, where informative molecular
representations, robustness to OOD examples and robust conditional sampling are crucial.

Limitations & Future Work However, joint modeling introduces an inherent trade-off. While shared
parameters promote synergistic benefits and learning unified representations, they may limit task-specific
specialization. Therefore, a promising direction for future work is designing dynamic or modular attention
architectures that allocate capacity across tasks more flexibly, while preserving synergistic benefits. Moreover,
to ensure fair comparison with prior work and isolate the effect of joint learning, we deliberately restricted
model scale and relied on a fixed set of analytically computed descriptors. The extent to which the observed
synergistic benefits carry over to other modalities, such as 3D structures, morphology or transcriptomics,
remains an open question.

2We report perplexity, but do not seek to minimize it, as it inherently balances plausibility and novelty.
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A Impact Statement

The goal of this this work is to improve the field of deep generative modeling and, potentially, drug design. An
example of potential malicious use of our approach would be training a deep generative model for generating
new toxic molecules. However, the intention of this paper is to provide tools that will facilitate designing new
potential medications.

B Notation

Symbol Meaning
[N ] Set of integers 1, . . . , N
A Matrix

AT Transposed matrix A
Ai, Aij , Aij Matrix indexed for some purpose
(A)i, A[i], Ai The i-th row of matrix A

(A)ij , A[i, j], Aij The i-th, j-th entry of matrix A
a Vector (column-vector)

ai, aij , aij Vector indexed for some purpose
(a)i, a[i], ai The i-th entry of vector a

a Scalar
X input space, i.e. the space of all possible inputs, data examples
Y target space i.e. the space of all possible property values

p(x, y) joint data distribution
pθ(x, y) joint model parametrized by parameters θ ∈ Θ
pθ(y | x) predictive model parametrized by parameters θ ∈ Θ

pθ(x) generative model parametrized by parameters θ ∈ Θ

C Proofs

C.1 Gradient Interference

Lemma C.1. Let x ∈ RI and define

ai = softmax(x)i = exp xi∑I
k=1 exp xk

, for i = 1, . . . , I.

The Jacobian of the softmax is given by
∂ai

∂xj
= ai

(
δij − aj

)
, i, j = 1, . . . , I,

where δij is the Kronecker delta, i.e., δij = 1 if i = j and 0 otherwise.

Proof. Differentiate the quotient ai = exp xi

/∑
k exp xk using the product and chain rules (Petersen et al.,

2008).

Corollary C.2. Let Q, K ∈ RT ×d and the attention score matrix S→ with a causal mask M→ be defined as

S→ = Q KT

√
d

+ M→ , where (M→)ij =
{

0 , if i ≥ j

−∞ , if i < j.

For a fixed row index t ∈ [T ], define the attention score row-vector st = (S)t ∈ RT and the corresponding
row-wise softmax output as at = softmax(st) ∈ RT . The Jacobian of the softmax output at with respect to
masked attention score st is given by

∂(at)i

∂(st)j
= (at)i

(
δij − (at)j

)
.
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Hence, if i < t or j < t, while i ̸= j, then ∂(at)i

∂(st)j
= 0.

Proof. Lemma C.1 gives the derivative of the softmax. As the causal mask sets (st)j = −∞ for every j < t,
the corresponding probabilities satisfy (at)j = 0.

C.2 Proof of Lemma 4.1

Lemma C.3. Let p(x, y) be a joint probability distribution over X × Y. Let yc ∈ Y be such that p(yc) > 0.
Then

p(x | yc) ∝ 1{y=yc}(y)p(y | x)p(x).

Proof. Assume that p(x, y) is a joint probability distribution over X × Y. Choose ymax ∈ Y to be such that
p(y ≥ yc) > 0. Then a simple application of Bayes rule yields

p(x | {y ≥ yc}) = p(x, {y ≥ yc})
p({y ≥ yc}) =

1{y≥yc}(y)p(y | x)p(x)
p({y ≥ yc}) .

Since p({y ≥ yc}) > 0 and it does not depend on x, we have that

p(x | {y ≥ yc}) ∝ 1{y≥yc}(y)p(y | x)p(x).

D Pre-training Details

We implement Hyformer using a LLAMA backbone (Touvron et al., 2023). Depending on the size of
the pretraining dataset, we scale Hyformer to 8.7M parameters for GuacaMol and 50M parameters for
the UniMol and peptide datasets. These configurations align model capacity with dataset size and ensure
a fair comparison with prior work: the 8.7M model is comparable to MolGPT (Bagal et al., 2022), while
the 50M variant matches the scale of Uni-Mol (Zhou et al., 2023) and Graph2Seq (Gao et al., 2024b). For
GuacaMol, we apply 2× data augmentation using non-canonical SMILES enumeration (Bjerrum, 2017; Arús-
Pous et al., 2019) to increase molecular diversity. All models are pretrained using pre-computed molecular
descriptors (Yang et al., 2019). The balancing of the tasks (p[LM], p[MLM], p[PRED]) is set to (0.90, 0.05, 0.05)
and (0.80, 0.10, 0.10), respectively.

We use SMILES (Weininger, 1988) or amino acid sequences as molecular representations across all experiments.
For tokenization, we adopt an extended character-level tokenizer for SMILES, based on Schwaller et al. (2020),
and use the ESM-2 tokenizer (Lin et al., 2023) for peptides.

We pre-train Hyformer using a batch size of 1024 for up to 50K or 250K iterations, depending on model
size. Training is performed with the AdamW optimizer (β1 = 0.9, β2 = 0.95, ϵ = 1 × 10−5, weight decay
= 1 × 10−1), using a peak learning rate of 6 × 10−4 with cosine decay and 5000 warm-up steps. We use
gradient clipping with a maximum norm of 1.0. All input sequences are padded to a fixed length of 128
tokens. Training is conducted using bfloat16 precision on a single NVIDIA H100 80GB HBM3 GPU.

Table 7: Architectural details of Hyformer.

Num. param. Embed. dim Hidden dim #Layers # Att. Heads

8.7M 256 1024 8 8
50M 512 2048 12 8

E Experimental Details

All fine-tuning and inference is conducted using float32 precision on a single NVIDIA V100 32GB GPU.
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E.1 Conditional Molecule Generation

We jointly fine-tune Hyformer, pretrained on GuacaMol dataset, for 10 epochs with a batch size of 256. The
peak learning rate is selected from the set {1e−4, 2e−4, 3e−4, 4e−4, 5e−4, 5e−4, 6e−4}, based on root mean
squared error (RMSE) with respect to the target property. During fine-tuning, we set the task probability
vector to (p[LM], p[PRED]) = (0.5, 0.5) and do not perform hyperparameter search over this setting, as it yields
satisfactory performance by default. For the non-joint variant of Hyformer, we freeze the pretrained model
and fine-tune only the prediction head. This avoids catastrophic forgetting of the generative capability
when removing the generative loss during training. For each target property value, we sample 100K unique
molecules, with a wall-clock time of 78 ± 1 seconds, and retain those passing a manually defined threshold,
using multinomial top-k sampling with τ = 0.9 and k = 10. Note that reported SA scores are normalized,
following (Gao et al., 2024b).

Table 8: Conditional generative performance on GuacaMol dataset across all targets. Best model is marked
bold.

Pretrain Joint Metric QED=0.5 QED=0.7 QED=0.9 SA=0.7 SA=0.8 SA=0.9 logP=0.0 logP=2.0 logP=4.0 Avg.

M
ol

G
P

T

✗ ✗

MAD ↓ 0.081 0.082 0.097 0.024 0.019 0.013 0.304 0.239 0.286 0.127
SD ↓ 0.065 0.066 0.092 0.022 0.016 0.013 0.295 0.232 0.258 0.118
Validity ↑ 0.985 0.985 0.984 0.975 0.988 0.995 0.982 0.983 0.982 0.984

G
ra

ph
G

P
T

-1
W

-C

✗ ✗

MAD ↓ 0.041 0.031 0.077 0.012 0.028 0.031 0.103 0.189 0.201 0.079
SD ↓ 0.079 0.077 0.121 0.055 0.062 0.070 0.460 0.656 0.485 0.229
Validity ↑ 0.988 0.995 0.991 0.995 0.991 0.998 0.980 0.992 0.991 0.991

✓ ✗

MAD ↓ 0.032 0.033 0.051 0.002 0.009 0.022 0.017 0.190 0.268 0.069
SD ↓ 0.080 0.075 0.090 0.042 0.037 0.062 0.463 0.701 0.796 0.261
Validity ↑ 0.996 0.998 0.999 0.995 0.999 0.996 0.994 0.990 0.992 0.995

H
yf

or
m

er ✓ ✗

MAD ↓ 0.036 0.037 0.015 0.019 0.015 0.008 0.169 0.149 0.144 0.066
SD ↓ 0.051 0.053 0.019 0.026 0.018 0.011 0.227 0.183 0.186 0.086
Validity ↑ 1.000 0.972 1.000 0.964 0.967 1.000 1.000 0.986 0.987 0.986

✓ ✓

MAD ↓ 0.012 0.007 0.005 0.007 0.005 0.002 0.023 0.027 0.027 0.013
SD ↓ 0.023 0.009 0.006 0.011 0.007 0.005 0.036 0.029 0.033 0.018
Validity ↑ 0.985 1.000 1.000 0.950 1.000 1.000 1.000 1.000 0.985 0.991

Algorithm 2 Conditional sampling with Hyformer
Input: Number of examples to sample K, batch size B, condition Y , model parameters θ.

1: Dsampled = ∅
2: while |Dsampled| < K do
3: Sample B many examples (x, y) ∼ pθ(x, y)
4: Accept examples Dbatch = {(x, y) | y ∈ Y }
5: Append dataset Dsampled = Dsampled ∪ Dbatch

6: end while

E.2 Out-of-Distribution Molecular Property Prediction Task

We use Hyformer pre-trained on UniMol dataset and perform a grid search over hyperparameters, as
detailed in Table 9, with end-to-end joint fine-tuning, with early stopping triggered if the validation loss does
not improve for 5 consecutive epochs. Results in Table 2 are reported from (Steshin, 2023).

E.3 Molecular Representation Learning Task

For KNN probe, we use the euclidean norm to pick K most similar molecules. For each dataset, we search
the parameter K in the set {1, 3, 5, 100, 300, 500, 1000, 3000, 5000} and pick K with the best performance on
the validation split. For linear probe, we report the results of linear probe with L2 regularization added. If
the validation loss between the epochs does not decrease by more than 0.0001 for 10 consecutive epochs, we
terminate the training process early. All results in Table 3 are ours.
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Table 9: Hyperparameter ranges for the grid search hyperparameter optimization on out-of-distribution
molecular property prediction task.

Hyperparameter Search Range

Max Epochs {20, 50, 100}
Batch Size {64, 128, 256}
Learning Rate [1e-5, 6e-4]
Weight Decay [1e-2, 1e-1]
Pooler Dropout [0.0, 0.2]
Learning Rate Decay {True, False}
(p[LM], p[PRED]) {(0.0, 1.0), (0.1, 0.9)}

E.4 Molecule Generation Task

For generation, we use Hyformer pre-trained on GuacaMol and sample using multinomial top-k sampling,
with k = 10 and varying temperature τ = {0.9, 1.0, 1.1}.

In Table 4, baseline results for JTVAE and MAGNeT are reported from (Hetzel et al., 2023), for MoLeR and
MiCaM from (Geng et al., 2023), for VAE, LSTM from (Brown et al., 2019), for MolGPT from (Bagal et al.,
2022).

E.5 Molecular Property Prediction Task

We use Hyformer pre-trained on UniMol dataset and perform a grid search over hyperparameters, as
detailed in Table 10, with end-to-end predictive fine-tuning run for a maximum of 20 epochs, with early
stopping triggered if the validation loss does not improve for 5 consecutive epochs. Results in Table 5 are
reported from (Zhou et al., 2023; Gao et al., 2024b).

Table 10: Hyperparameter ranges for the grid search hyperparameter optimization on molecular property
prediction task.

Hyperparameter Search Range

Batch Size {16, 64, 128, 256}
Learning Rate [1e-5, 1e-3]
Weight Decay [1e-2, 3e-1]
Pooler Dropout [0.0, 0.2]
Learning Rate Decay {True, False}

E.6 Antimicrobial Peptide Design

Dataset We construct a general-purpose peptide dataset and an AMP-specific dataset. For the general
purpose dataset, we collect 3459247 peptide sequences with length 8-50 from the combined Peptipedia
(Cabas-Mora et al., 2024) and UniProt (Consortium, 2024) datasets and apply CDHIT filtering with a
similarity threshold of 90%. For the AMP-specific dataset, we collect 1056321 sequences from combining
the Peptipedia (Cabas-Mora et al., 2024), filtered with Antigram (-), Antigram (+), Antibacterial and
Antimicrobial keywords, Uniprot (Consortium, 2024) with the keywords antimicrobial and AMPSphere
(Santos-Júnior et al., 2022), and applying CDHIT filtering with a similarity threshold of 90%.

Pre-trainig We pre-train Hyformer in a two-stage manner, by first training on the general-purpose,
followed by training on the AMP specific dataset with peak learning rate equal to 4e−4. All additional details
follow Appendix D.

Fine-tuning We fine-tune Hyformer for a maximum of 10 epochs, with batch size 64, peak learning rate
5e−5 and early stopping, with task probabilities (p[LM], p[PRED]) equal to (0.6, 0.4). Additionally, we freeze
the first four layers of the model.
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Table 11: Unconditional generative performance on MOSES benchmark. The best model in each category is
marked bold.

Model Validity ↑ Unique ↑ Novelty ↑ IntDiv1 ↑ IntDiv2 ↑

Unconditional
HMM 0.076 0.567 0.999 0.847 0.810
NGram 0.238 0.922 0.969 0.874 0.864
Combinatorial 1.000 0.991 0.988 0.873 0.867
CharRNN 0.975 0.999 0.842 0.856 0.850
VAE 0.977 0.998 0.695 0.856 0.850
AEE 0.937 0.997 0.793 0.856 0.850
LatentGAN 0.897 0.997 0.949 0.857 0.850
JT-VAE 1.000 0.999 0.914 0.855 0.849
MolGPT 0.994 1.000 0.797 0.857 0.851
Hyformerτ=0.9 0.996 1.000 0.701 0.851 0.845
Hyformerτ=1.0 0.991 1.000 0.749 0.856 0.850
Hyformerτ=1.1 0.986 1.000 0.791 0.861 0.855

Few-Shot
GraphGPT-1Ws=0.25 0.995 0.995 0.255 0.854 0.850
GraphGPT-1Ws=0.5 0.993 0.996 0.334 0.856 0.848
GraphGPT-1Ws=1.0 0.978 0.997 0.871 0.860 0.857
GraphGPT-1Ws=2.0 0.972 1.000 1.000 0.850 0.847

F Additional Experiments

F.1 Unconditional Molecule Generation on MOSES benchmark

To additionally evaluate the unconditional generative performance of Hyformer, we perform an evaluation
on the MOSES benchmark. Analogously to unconditional molecule generation in Section 5.2.1, we scale
Hyformer to 8.5M parameters and follow all the training details in Appendix D for GuacaMol dataset.
We compare Hyformer, across various sampling temperatures τ , to baseline unconditional and few-shot
generative models, as reported in (Gao et al., 2024b).

Hyformer successfully generates valid, unique, novel and diverse molecules, rivaling other unconditional
and few-shot generative models.

F.2 Qualitative Evaluation of Generated Molecules

To investigate the effect of sampling temperature on the structural diversity and chemical quality of generated
molecules, we show molecules sampled in the unconditional generation task (Section 5.2.1), at temperatures
τ = 0.9, 1.0, and 1.1. For each sampled molecule, we additionally report four chemical properties: molecular
partition coefficient (LogP), topological polar surface area (TPSA), quantitative estimate of drug-likeness
(QED) and molecular weight (MW). At τ = 0.9, the model generates drug-like molecules, with the majority
exhibiting QED ≥ 0.7 and MW < 500 g/mol (Fig. 3). At τ = 1.0, the sampling process yields molecules with
greater structural diversity (Fig. 4). Despite the increased exploration of chemical space, some molecules
exhibit lower QED values. At τ = 1.1, the model produces molecules with less common substituent patterns.
Some of these structures exceed traditional drug-likeness thresholds, such as MW > 500 g/mol or LogP
> 5, according to Lipinski’s Rule of Five (Fig. 5). Additionally, we investigate molecules generated in the
conditional generation task in Section 5.1.1 (Figure 6, 7 and 8).

F.3 Qualitative Evaluation of Learned Representations

We next examine the Hyformer embeddings in the context of the chemical properties of the molecules
(Fig. 9). To this end, we randomly sample 20,000 molecules and pass them through Hyformer’s encoder,
pre-trained for molecular property prediction in Section 5.2.2, to obtain molecule embeddings. We visualize
the embeddings in two dimensions through principal components analysis (PCA) and color them according
to their four chosen chemical properties (LogP, TPSA, QES, MW).

Qualitatively, the spatial arrangement of molecules is clearly connected to their chemical properties. Further-
more, embeddings exhibit a smooth profile of change w.r.t. each property. These observations indicate that
Hyformer learns well-behaved, information-rich molecular representations.

20



Under review as submission to TMLR

Figure 3: Structures of the twelve generated molecules with Hyformer when the sampling temperature is 0.9,
visualized using RDKit, together with their properties.
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Figure 4: Structures of the twelve generated molecules with Hyformer when the sampling temperature is 1.0,
visualized using RDKit, together with their properties.
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Figure 5: Structures of the twelve generated molecules with Hyformer when the sampling temperature is 1.1,
visualized using RDKit, together with their properties.
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Figure 6: Structures of molecules generated by Hyformer conditioned on QED values, visualized using RDKit,
along with their chemical properties.
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Figure 7: Structures of molecules generated by Hyformer conditioned on SA score, visualized using RDKit,
along with their chemical properties.
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Figure 8: Structures of molecules generated by Hyformer conditioned on LogP values, visualized using RDKit,
along with their chemical properties.
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Figure 9: Hyformer’s molecular embeddings. The considered chemical properties are normalized to lie in the
[0, 1] interval.
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