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ABSTRACT

Time series forecasting is a challenging due to complex temporal dependencies
and unobserved external factors, which can lead to incorrect predictions by even
the best forecasting models. Using more training data is one way to improve the
accuracy, but this source is often limited. In contrast, we are building on successful
denoising approaches for image generation. When a time series is corrupted by
the common isotropic Gaussian noise, it yields unnaturally behaving time series.
To avoid generating unnaturally behaving time series that do not represent the
true error mode in modern forecasting models, we propose to employ Gaussian
Processes to generate smoothly-correlated corrupted time series. However, instead
of directly corrupting the training data, we propose a joint forecast-corrupt-denoise
model to encourage the forecasting model to focus on accurately predicting coarse-
grained behavior, while the denoising model focuses on capturing fine-grained
behavior. All three parts are interacting via a corruption model which enforces the
model to be resilient. Our extensive experiments demonstrate that our proposed
approach is able to improve the forecasting accuracy of several state-of-the-art
forecasting models as well as several other denoising approaches. The code for
reproducing our main result is open-sourced and available online.1

1 INTRODUCTION

Time series forecasting is a vital foundational technology in many important domains such as in
economics Capistrán et al. (2010), health care Lim (2018), demand forecasting Salinas et al. (2020)
and autonomous driving Chang et al. (2019). Despite the recent advances in neural networks, time
series forecasting still remains a challenging problem due to the complex and dynamic temporal
dependencies across different time scales. Furthermore, the existence of hidden external factors is a
challenge for forecasting models to correctly mimic the temporal behavior of the variable of interest.
Thus, developing creative approaches to improve the model accuracy and resilience without adding
more training data is important to overcome these challenges.

Denoising models Ho et al. (2020) have recently gained popularity in generating high quality images.
Typically denoising models Vincent et al. (2010) are trained to reverse an image corrupting process,
thereby learning correlation patterns of the application domain. Including weak supervision via
a denoising objective will train models to simultaneously predict and denoise, resulting in more
resilient models overall.

In this work, we rethink ideas from variational denoising models in applications to time series
forecasting task, which is defined as follows:

Time series forecasting task. Given κ time series observations prior to cutoff a time step t0, the
task is to predict values of the target variable γ for the next τ time steps into the future (from t0 to
t0 + τ ). We refer to the given time series as X = {xt;γt}t0t=t0−κ, and the to be predicted series as
Y = {γt}t0+τt=t0

. The target variable can be multivariate with γt ∈ Rdy , although we focus on datasets
with univariate target variables (dy = 1). The given time series observations X include dx covariates,
such as season or time of day. Additionally, each observation Xt encompasses the target variable γt
prior to time step t0, yielding Xt ∈ Rdx+dy .

1Code available at https://anonymous.4open.science/r/Corruption-resilient-Forecasting-Models-15E8
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a) Isotropic Gaussian noise b) Gaussian Process noise

Figure 1: A synthetic example of corrupting and denoising the prediction. The left figure a) illustrates that
corrupting and denoising the prediction with isotropic Gaussian noise results in less desirable forecasts, where
the denoising model attempts to remove the jitters. However, as depicted in the right figure b) corrupting and
denoising the prediction with our proposed Gaussian Process model results in a smooth behavior with improved
fine-grained details.

Idea. When applied to image generation, denoising models usually revert a corruption process
of pixel-wise isotropic Gaussian noise. With application to time series forecasting, however, this
isotropic corruption will introduce what we call jitters (see red function in Figure 1 left), as the noise
added to one time step is independent of noise added to subsequent time steps. Since most time
series exhibit smooth behavior, the result of the isotropic corruption process yields time series that
are rather unnaturally behaving. Moreover, according to our preliminary experiments, most of the
state-of-the-art forecasting models do not produce predictions with many jitters, hence the isotropic
corruption model is not representing the typical error modes of modern forecasting models. Hence,
we hypothesize that the benefit of isotropic corruption is somewhat limited.

In this work we explore alternative corruption processes for training denoising models for time series
forecasting. The goal is to train a corruption model that is most beneficial for improving performance
in the time series domain. The typically erroneous predictions are usually of smooth, yet incorrect
temporal behavior. As our goal is to train a denoiser to correct forecasting mistakes, we are interested
in a corruption model that generates such smooth, yet faulty temporal behavior. As the isotropic
Gaussian will generate jitters due to its temporally uncorrelated nature, in line with Robinson et al.
Robinson et al. (2018) we will employ a Gaussian Process that naturally models correlation across
time to provide smooth functions.

Related work. Our goal is to improve the forecasting ability of the existing time series forecasting
models. Among various time series forecasting models, the ones that utilize transformers have
demonstrated superior performance Li et al. (2019); Fan et al. (2019). But even the state-of-the-art
time series forecasting models make wrong predictions. We will apply our approach to improve two
of the best forecasting models, the Autoformer and the Informer model. The Autoformer model Wu
et al. (2021) improves on the basic attention mechanism by decomposing a time series into sub-series
and incorporating an auto-correlation mechanism to capture the correlation between these sub-series.
This leads to gains in efficiency and accuracy. The Informer model Zhou et al. (2021) employs
ProbSparse attention, which prunes the attention matrix by focusing on samples that are outliers from
a uniform distribution. Both these models are included in our experimental evaluation.

Probabilistic time series forecasting models such as DeepAR Salinas et al. (2020) generate predictions
by drawing samples from a learned Isotropic Gaussian distribution. These models aim to learn the
parameters of the Gaussian distribution via a deep neural network model such as LSTMs Hochreiter
& Schmidhuber (1997).

Denoising models often revert a corruption process applied to the input during training to increase
the robustness and generalization of the model. Therefore, the performance of time series forecasting
models could as well be improved when integrated with a denoising approach. One of such approaches
is the TimeGrad Rasul et al. (2021) forecasting model that uses denoising diffusion models to reverse
the isotropic Gaussian noise added to the input time series. TimeGrad estimates the parameters of
the Gaussian distribution using recurrent neural networks architectures LSTM/GRU. However, prior
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works including Koohfar & Dietz (2022); Khandelwal et al. (2018) show that LSTMs do not perform
competitively compared to transformer-based forecasting methods.

DLinear model proposed by Zeng et al Zeng et al. (2022) proposes a navive time series forecasting
model that only uses simple multi-layer perceptrons projections from previous observations to make
predictions. We compare our proposed model to DLinear model in our experimental section.

Recently, Li et al Li et al. (2022) introduce D3VAE, a novel approach that combines bidirectional
variational auto-encoder techniques with diffusion, denoising, and disentanglement to enhance time
series representation. However, in line with DLinear, this approach does not include sequential
modeling techniques, resulting in limited competitiveness when compared to transformer-based
forecasting methods.

Contributions. In this work, we take a different approach by enhancing the performance of
forecasting models through a corruption-resilient forecasting framework. (1) Rather than corrupting
the input during training, we advocate for an end-to-end forecast-corrupt-denoise framework that
encourages a separation of concerns for the forecasting and denoise models. (2) Our complementary
approach can be readily added to a wide-range of forecasting models. (3) Our novel approach is an
alternative towards approaches that use denoising solely during training or when leveraging boosting.
We experimentally show that our approach predominately outperforms many of those baselines.
(4) We further demonstrate that for smooth time series data, isotropic Gaussians are not a suitable
corruption model.

2 METHODOLOGY

Time series forecasting models using a ground truth series Y , are trained to learn the expected behavior
of the target variable over time. However, complex dependencies and unobserved external factors can
lead to erroneous predictions. Adding more training data can help to improve the forecasting model’s
performance, but it is often a limited resource. In this work we explore how ideas from denoising
models can increase the generalization of the family of forecasting models.

2.1 BACKGROUND: ISOTROPIC DENOISING APPROACHES

Denoising models are trained to reverse a corruption process. For this purpose, true data X is
corrupted with noise to obtain a corrupted version X̃ . The denoising part of the model is trained to,
given X̃ , predict the original data X . Often this is modelled by predicting the noise, which is then
subtracted from X̃ to obtain the original data X . Denoising models can be trained for the iterative
reversal of noise (reasoning on a series of latents with different noise level) or in single step with a
conditional model X|X̃ Deja et al. (2022). The denoising objective can be optimized by itself or in
combination with other objectives such as prompted image generation or time series forecasts Nichol
& Dhariwal (2021).

Most current work uses a simple corruption process that employs an isotropic Gaussian noise model,
where X̃|X ∼ X +N (0, σ2I) that acts independently on different data points, i.e., pixels for image
generation Nichol & Dhariwal (2021) or time steps for time series forecasts Rasul et al. (2021).

2.2 ISSUES WITH UNCORRELATED NOISE MODELS FOR TIME SERIES

Isotropic Gaussian noise is one of the most commonly employed corruption processes, which provides
noise that is identically and independently distributed (i.i.d.) and when used to generate observations
for time series are lacking smooth behavior over time. While isotropic Gaussian noise corruption
can (and are) applied to time series, the result is a corruption in the form of jitters (as depicted in
red in Figure 1a). The effect on the denoising problem is that the denoiser may only learn to remove
jitters. However, time series forecasting models are based on the assumption that data points are
correlated over time—and hence not i.i.d. The effect on the training problem is that the denoiser
may only learn to remove jitters. However, most errors in forecasting models are not due to jitters,
as predicted forecasts are usually smooth functions that merely exhibit incorrect behavior. In this
work we go even one step further and train the corruption model to match typical error modes of the
underlying forecasting model.
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Figure 2: Our proposed model framework for end-to-end training the forecasting and denoising model. The
multi-step neural network forecasting model predicts YF from covariates X1, X2, and previous target variable
γ. The predictions YF are then corrupted by our GP model to obtain YC . The corrupted predictions YC are then
denoised by our denoising model to obtain YD = Ŷ .

2.3 SMOOTH CORRUPTION WITH GAUSSIAN PROCESSES

To obtain a more resilient model, we instead propose to use a corruption model that generates smooth
temporally-correlated functions, to train the denoising model, as depicted in Figure 1b). We employ a
Gaussian Process (GP) which models the correlation between consecutive samples in a sequence of
observations via a kernel function kψ .

We replace the isotropic Gaussian corruption model with a corruptive Gaussian Process (GP) cψ as
follows:

cψ(X̃|X) ∼ N (X̃;X, kψ(X,X) + σ2I) (1)

where ψ denotes the parameters of the GP kernel.

In Section 3 we will experimentally support our claim that corruption with GPs leads to more effective
training for time series forecasting than corruption with isotropic Gaussians.

2.4 CORRUPTION-RESILIENT FORECASTING FRAMEWORK

There are many ways to exploit ideas from denoising models for time series forecasting: as separate
negative training data, as a secondary objective on true time series, via auto-encoders, or as an integral
part of an end-to-end model. Based on preliminary experiments, in this work we integrate ideas into
a joint forecast-corrupt-denoise model. The model integrates 1) a forecasting model, 2) a corruption
process, and 3) a denoising model as depicted in Figure 2. All parts are jointly trained for best MSE
performance. We describe these components in detail below.

1) Forecasting model: Any time series forecasting model can be used here that, given the observa-
tions X = {xt;γt}t0t=t0−τ predicts the future target variables YF , as represented by the blue
box in Figure 2. We experimentally demonstrate that our will help train more accurate and
resilient forecasting models. We refer to the set of parameters of the forecasting model as ϕ.

2) Corruption process: The initial predictions YF are corrupted with a noise function c, depicted
as a light red box in Figure 2. As described above, we suggest to use a Gaussian Process
as corruption model to obtain YC ∼ N (YC ;YF , kψ(YF , YF ) + σ2I). GP parameters ψ are
trained jointly with other parameters of our end-to-end forecasting and denoising model.
Alternative corruption processes could be used here, which we explore in Section 3.

3) Denoising Model: Given the corrupted predictions YC , the denoising model aims to revert the
corruption process and improve the initial forecasting. While many architectures could be
chosen for the denoising model, we choose to use the same time series forecasting model
with a new set of parameters ξ as the denoiser to obtain final predictions YD = Ŷ . By
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employing the time series forecasting model as the denoiser, the denoising model is able
to eliminate the corruption from the corrupted forecasts while retaining crucial details and
patterns in the time series data acquired through the set of parameters ξ. The denoising
model is represented by the green box in Figure 2.

The result is a compound model that encourages the initial forecasting model to focus on modelling
coarse-grained behavior, and a denoising model that corrects the fine-grained details. This is
encouraged by a corruption process that will “blur” fine-grained details in the forecast, and a
denoising model that focuses on correcting these fine-grained details. Additionally, the denoising
component acts as a fall-back for when the initial forecasting model fails, reducing the likelihood of
catastrophic errors.

Note that for fixed training data X and Y , a new corruption is sampled in every epoch, deterring the
model from overfitting to any particular corruption.

To optimize the GP model’s parameters, we employ a strategy reminiscent of the scalable variational
Gaussian Process (GP) method introduced by Hensman et al. in Hensman et al. (2015). Their scalable
variational GP technique offers a computationally efficient approximation of the GP model, achieving
nearly linear computational complexity for kψ(X,X) as the forecasting horizon increases.

2.5 END-TO-END FORECASTING AND GP LOSS

With an abundance of training data, the compound model could be trained end-to-end, predicting Ŷ
from given X and minimizing the distance to the ground truth Y via an MSE (or L2) forecasting loss.

We optimize the parameters of our GP model using the ground truth Y . This allows for the efficient
optimization of the parameters of variational Gaussian processes. The compound loss function
employed for end-to-end training is defined as follows, where the variational evidence lower bound
(ELBO) optimizes the corruption model to obtain an ideal noise process:

L = LMSE︸︷︷︸
forecasting loss

(Ŷ = Y |X) + λLELBO︸ ︷︷ ︸
GP loss

(YC = Y |YF ) (2)

In our experiments, following Nichol et al Nichol & Dhariwal (2021) we set λ to a small number
(λ = 0.001) to prevent the loss LELBO from overwhelming the LMSE loss. Figure 2 illustrates our
end-to-end framework.

3 EXPERIMENTS

We experimentally demonstrate the success of our forecast-corrupt-denoise approach across three
datasets and two state-of-the-art forecasting models. We first focus on demonstrating the efficacy of
our treatment and the importance of using correlated noise of GPs, rather than isotropic Gaussians.
Next, we compare our denoising approach to a wide range of canonical denoising and ensemble
baselines.

3.1 EXPERIMENTAL SETUP

We lay out the conditions for our experimental evaluation.

Datasets. We select three widely used datasets that have been used for training and validation by a
significant amount of research papers Salinas et al. (2020); Li et al. (2019); Wu et al. (2021); Zhou
et al. (2021).

Traffic 2: A univariate dataset, containing the occupancy rate (yt ∈ [0, 1]) of 440 SF Bay Area
freeways, aggregated on hourly interval.

2
Traffic https://archive.ics.uci.edu/ml/machine-learning-databases/00204/PEMS-SF.zip

5

https://archive.ics.uci.edu/ml/machine-learning-databases/00204/PEMS-SF.zip


Under review as a conference paper at ICLR 2024

Table 1: Overall results of the quantitative evaluation of corruption-resilient and baseline forecasting models in
terms of MSE. We compare the forecasting models on all three datasets with different number of forecasting
steps. A lower MSE indicates a better model. In all cases our forecast-corrupt-denoise approach with GPs
improves performance of the original forecasting model (Autoformer) and isotropic Gaussian noise model
(AutoDI). (Note that to provide a fair comparison, all the baseline models considered in this study were trained
and evaluated under the same experimental setup as our proposed model. Consequently, the reported results
may differ from those originally reported in the respective baseline papers. We provide the baseline models
implementation in our online repository).

D
at

as
et

H
or

iz
on

AutoDG(Ours) Autoformer AutoDI NBeats DLinear DeepAR CMGP ARIMA

Tr
af

fic

24 0.392 0.412 0.405 0.475 0.553 0.888 0.824 1.436
±0.006 ±0.006 ±0.003 ±0.008 ±0.000 ±0.000 ±0.000 ±0.000

48 0.387 0.422 0.416 0.462 0.547 0.944 0.828 1.444
±0.001 ±0.004 ±0.001 ±0.012 ±0.000 ±0.000 ±0.000 ±0.000

72 0.380 0.383 0.394 0.465 0.540 0.877 0.893 1.459
±0.001 ±0.003 ±0.002 ±0.003 ±0.000 ±0.000 ±0.000 ±0.000

96 0.385 0.400 0.411 0.464 0.539 0.860 0.859 1.444
±0.003 ±0.004 ±0.002 ±0.002 ±0.000 ±0.000 ±0.000 ±0.000

E
le

ct
ri

ci
ty

24 0.165 0.187 0.170 0.200 0.222 1.039 1.000 1.707
±0.001 ±0.003 ±0.001 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

48 0.188 0.203 0.207 0.218 0.238 1.014 0.987 1.729
±0.003 ±0.008 ±0.003 ±0.000 ±0.000 ±0.000 ±0.000 ±0.000

72 0.209 0.230 0.253 0.234 0.264 1.023 0.993 1.759
±0.004 ±0.001 ±0.004 ±0.007 ±0.000 ±0.000 ±0.000 ±0.000

96 0.211 0.230 0.316 0.237 0.264 1.013 0.971 1.747
±0.001 ±0.014 ±0.002 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

So
la

r

24 0.446 0.472 0.473 0.612 0.828 0.999 1.001 1.869
±0.002 ±0.003 ±0.001 ±0.006 ±0.000 ±0.000 ±0.000 ±0.000

48 0.546 0.603 0.574 0.717 0.928 0.968 1.007 1.872
±0.003 ±0.004 ±0.001 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

72 0.666 0.667 0.698 0.766 0.978 0.974 1.002 1.855
±0.003 ±0.004 ±0.002 ±0.006 ±0.000 ±0.000 ±0.000 ±0.000

96 0.713 0.739 0.730 0.827 1.004 0.974 0.997 1.874
±0.004 ±0.009 ±0.005 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

Table 2: Comparison of different denoising baselines to our forecast-corrupt-denoise approach with GPs
when treating Autoformer forecasting model. We find that our approach consistently outperforms the other
denoising approaches. Results are reported as average and standard error of MSE. A lower MSE indicates a
better forecasting model.

D
at

as
et

H
or

iz
on

AutoDG(Ours) Autoformer AutoDI AutoDWC AutoRB AutoDT

Tr
af

fic

24 0.392 ±0.006 0.412 ±0.006 0.405 ±0.003 0.400 ±0.005 0.447 ±0.006 0.430 ±0.015
48 0.387 ±0.001 0.422 ±0.007 0.416 ±0.007 0.417 ±0.009 0.450 ±0.005 0.410 ±0.005
72 0.380 ±0.001 0.383 ±0.002 0.394 ±0.002 0.398 ±0.003 0.430 ±0.004 0.404 ±0.006
96 0.385 ±0.003 0.400 ±0.004 0.411 ±0.002 0.405 ±0.001 0.413 ±0.002 0.422 ±0.002

E
le

ct
ri

ci
ty 24 0.165 ±0.001 0.187 ±0.003 0.170 ±0.001 0.174 ±0.00 0.260 ±0.001 0.170 ±0.007

48 0.188 ±0.003 0.203 ±0.008 0.207 ±0.003 0.219 ±0.002 0.222 ±0.002 0.200 ±0.002
72 0.209 ±0.004 0.230 ±0.001 0.253 ±0.004 0.218 ±0.010 0.234 ±0.022 0.212 ±0.002
96 0.211 ±0.001 0.230 ±0.014 0.316 ±0.002 0.226 ±0.008 0.296 ±0.011 0.218 ±0.004

So
la

r

24 0.446 ±0.002 0.472 ±0.003 0.473 ±0.006 0.449 ±0.003 0.527 ±0.006 0.457 ±0.004
48 0.546 ±0.005 0.603 ±0.003 0.574 ±0.001 0.605 ±0.005 0.595 ±0.005 0.598 ±0.003
72 0.666 ±0.003 0.667 ±0.004 0.698 ±0.002 0.690 ±0.010 0.718 ±0.002 0.670 ±0.006
96 0.713 ±0.004 0.739 ±0.009 0.730 ±0.005 0.732 ±0.006 0.753 ±0.007 0.733 ±0.006
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Solar Energy 3: A univariate dataset about solar power that could be obtained across different
locations in America, collected on an hourly interval.

Electricity 4: A univariate dataset listing the electricity consumption of 370 customers, aggregated
on an hourly level.

From each dataset, we roughly use 40,000 samples, where each sample contains given observations
X of κ = 192 time steps, from which (using multiple horizon forecasting) we predict the next
τ ∈ {24, 48, 72, 96} future time steps. After Z-score normalization, we partition 40,000 samples
of each dataset into three parts, 80% for training, 10% for validation, and 10% for performance
evaluation.

Evaluation metrics. We evaluate our model and other alternatives using mean squared error
MSE = 1

n (
∑n
t=1(yt − ŷt)

2), where n denotes the length of the predicted time series. We also study
the mean absolute error MAE = 1

n (
∑n
t=1 |yt − ŷt|), where we obtain the same findings (omitted

from this manuscript, but available in Appendix A).

3.2 TREATED TIME SERIES FORECASTING MODELS AND BASELINES

Since our corruption-resilient approach can be used to treat any forecasting model, we study the
benefit for the following state-of-the-art time series forecasting models. The number of layers is
tuned with Optuna.

Autoformer Wu et al. (2021): A multi-layer Autoformer model with auto-correlation
Informer Zhou et al. (2021): A multi-layer informer with ProbAttention.

We conduct a comparative analysis focusing on the following treatments applied to the Autoformer
and Informer forecasting model:

Auto(Info)DG (our proposed model): Our proposed forecast-corrupt-denoise framework with
Gaussian-Process-based corruption model as described in Section 2.

Auto(Info)DI (denoise scaled Isotropic noise): the same forecast-corrupt-denoise model, albeit
using scaled isotropic Gaussians as a corruption model (instead of the GP).

Auto(In)former (only forecasting): the original untreated forecasting method.

We also compare against the follwoing baselines:

ARIMA Hyndman & Khandakar (2008): An autoregressive integrated moving average.
CMGP Chakrabarty et al. (2021): Model calibration using Bayesian Optimization and GPs.
DeepAR Salinas et al. (2020): An Autoregressive probabilistic time series forecasting model that

uses LSTMs to estimate the parameters of a Gaussian distribution.
DLinear Zeng et al. (2022): A forecasting model that uses multi-layer perceptron to make predic-

tions.
Nbeats Oreshkin et al. (2020): A neural approach for interpreting trend, seasonality, and residuals.

In an ablation study, we additionally compare against the following canonical denoising and boosting
approaches for the Autoformer model. We obtain very similar results for the Informer model, omitted
here but provided in Appendix A.

AutoDWC (denoise without corruption): a forecast-denoise model, where the denoising acts di-
rectly on the predictions (no corruption).

AutoRB (residual-boosted): two forecasting models, where the second is trained on minimizing
the error residuals between the predictions and the ground-truth.

AutoDT (denoise only during Training): the forecasting model is trained to denoise with GP cor-
ruption, but the corruption is not used at test time.

3
Solar energy https://www.nrel.gov/grid/assets/downloads/al-pv-2006.zip

4
Electricity https://archive.ics.uci.edu/ml/machine-learning-databases/00321/LD2011_2014.txt.zip
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Table 3: Overall results of the quantitative evaluation of corruption-resilient and baseline forecasting models
in terms of average and standard error of MSE. We compare the forecasting models on all three datasets with
different number of forecasting steps. A lower MSE indicates a better model. In all cases our forecast-corrupt-
denoise approach with GPs improves performance of the original forecasting model (Inoformer) and isotropic
Gaussian noise model (InfoDI). (Note that to provide a fair comparison, all the baseline models considered in
this study were trained and evaluated under the same experimental setup as our proposed model. Consequently,
the reported results may differ from those originally reported in the respective baseline papers. We provide the
baseline models implementation in our online repository).

D
at

as
et

H
or

iz
on

InfoDG(Ours) Informer InfoDI NBeats DLinear DeepAR CMGP ARIMA

Tr
af

fic

24 0.398 0.421 0.415 0.475 0.553 0.888 0.824 1.436
±0.006 ±0.006 ±0.003 ±0.008 ±0.000 ±0.000 ±0.000 ±0.000

48 0.399 0.434 0.395 0.462 0.547 0.944 0.828 1.444
±0.001 ±0.004 ±0.001 ±0.012 ±0.000 ±0.000 ±0.000 ±0.000

72 0.380 0.436 0.395 0.465 0.540 0.877 0.893 1.459
±0.001 ±0.001 ±0.002 ±0.002 ±0.000 ±0.000 ±0.000 ±0.000

96 0.397 0.402 0.402 0.464 0.539 0.860 0.859 1.444
±0.003 ±0.003 ±0.004 ±0.004 ±0.000 ±0.000 ±0.000 ±0.000

E
le

ct
ri

ci
ty

24 0.193 0.222 0.212 0.200 0.222 1.039 1.000 1.707
±0.001 ±0.001 ±0.003 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

48 0.222 0.262 0.229 0.218 0.238 1.014 0.987 1.729
±0.003 ±0.007 ±0.003 ±0.003 ±0.000 ±0.000 ±0.000 ±0.000

72 0.238 0.280 0.253 0.234 0.264 1.023 0.993 1.759
±0.001 ±0.004 ±0.004 ±0.007 ±0.000 ±0.000 ±0.000 ±0.000

96 0.242 0.289 0.275 0.237 0.264 1.013 1.130 1.747
±0.001 ±0.002 ±0.014 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

So
la

r

24 0.455 0.524 0.465 0.612 0.828 0.999 0.971 1.869
±0.009 ±0.003 ±0.006 ±0.006 ±0.000 ±0.000 ±0.000 ±0.000

48 0.556 0.629 0.570 0.717 0.928 0.968 1.007 1.872
±0.005 ±0.003 ±0.005 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

72 0.643 0.729 0.707 0.766 0.978 0.974 1.002 1.855
±0.003 ±0.023 ±0.002 ±0.006 ±0.000 ±0.000 ±0.000 ±0.000

96 0.708 0.770 0.766 0.827 1.004 0.974 0.997 1.874
±0.004 ±0.004 ±0.009 ±0.005 ±0.000 ±0.000 ±0.000 ±0.000

3.3 MODEL TRAINING AND HYPER-PARAMETERS

All models are trained and evaluated three times using three different random seeds. We use Optuna
Akiba et al. (2019) for hyper-parameter optimization. We tune the warm up steps of the optimization,
model size (dimensionality of latent space) for all models, chosen from {16, 32}, and the number of
layers of the forecasting model chosen from {1, 2}.

We use 8-head attention for all attention-based models. We model the GP using ApproximateGP
of the GPyTorch package. 5 The batch size is set to 256. We use the Adam Kingma & Ba (2015)
optimizer with β1 = 0.9, β2 = 0.98 and ϵ = 10−9, we change the learning rate following Vaswani
et al. (2017) with warm-up steps chosen from {1000, 8000}. All models are trained on a single
NVIDIA A40 GPU with 45GB of memory. We train our forecasting and denoising model with total
number of 50 epochs. Training one epoch of our end-to-end model roughly takes about 25 seconds.

3.4 RESULTS AND DISCUSSION

Table 1 and 3 summarize the evaluation results of the treatments of the Autoformer and Informer
forecasting models along with other baselines on the three datasets. Results are reported as average
and standard errors in terms of MSE. All forecasting models are evaluated on their ability to predict
for the next 24, 48, 72 and 96 future time steps. When treating the Autoformer and Informer

5https://gpytorch.ai/
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models, our proposed GP-based corruption-resilient forecasting model predominately outperforms
the Auto(Info)DI and the initial forecasting models. This funding is consistent across all data sets.

Next we conduct an ablation study by comparing our approach with several canonical denoising
and boosting approaches. Table 2 presents an overview of the additional treatments applied to the
Autoformer model. Compared to using a corruption/denoising approach during training (AutoDT), our
model consistently performs better, supporting our claims. When attempting to denoise predictions
directly without applying corruption, AutoDWC does not consistently yield improvements over
the untreated forecasting model Autoformer. This highlights the significance of our GP corruption
model in enhancing the resilience and accuracy of the forecasts. This inconsistency in improving the
untreated forecasting model is apparent in the AutoDI model as well. This reinforces our hypothesis
that denoising isotropic noise does not provide benefits for time series data. This applies when dealing
with time series forecasting model with inaccurate predictions that do not exhibit jitters.

The success of our predict-corrupt-denoise model in comparison to traditional denoising models lies
in the division of responsibilities arising from the corruption model. As a result the initial forecasting
model focuses on predicting the broader patterns and trends, while a dedicated denoising forecaster
addresses the finer details. This results in an overall more accurate forecasting model.

Please refer to Appendix A for other extensive ablation studies, examples of actual forecasts, and
other supplementary materials.

4 SOCIETAL CONSEQUENCES

Time series forecasting offers societal benefits such as optimizing traffic lights, aligning energy grid
capacities with solar power, and providing quantitative models for scientific understanding. However,
like any foundational technology, it can also be misused for negative impacts, like aiding criminals or
misinformation campaigns. By enhancing machine learning methods for more accurate forecasting,
we aim to improve current practices, with the hope that the positive aspects will prevail.

5 CONCLUSION

In this paper, we study the multi-horizon time series forecasting problem and propose an end-to-end
forecast-corrupt-denoise paradigm. In our proposed framework, we encourage the initial forecasting
model to focus on accurately predicting the coarse-grained behavior, while the denoising model is
responsible for predicting the fine-grained behavior. Both parts of the model communicate via a
corruption model, which will blur the prediction in order to be denoised, and hence encourage a
separation of concerns. This ultimately leads to more resilient forecasting methods. In addition to
end-to-end training of the multi-component model, we utilize methods from variational techniques to
guide the training of the denoising model via distribution matching.

Where most denoising methods leverage isotropic Gaussians, we hypothesize that a corruption pro-
cess that resembles the true error modes of current forecasting models offers the most advantages. In
line with Robinson et al. Robinson et al. (2018), we find that using a corruption model with temporal
correlation, such as the Gaussian Process, is advantageous over uncorrelated noise models. Our
experiments show that our proposed framework with Gaussian Process corruption is significantly out-
performing the forecasting model without any denoising as well as denoising corruption of isotropic
Gaussian noise. Additionally, we show that our forecast-corrupt-denoise framework predominately
outperforms an approach that uses corruption/denoising only during training (AutoDT).

A strength of our approach is that it can be applied to any neural forecasting model. We demonstrate
the effectiveness of our approach across three real-world datasets, different horizons, and several
the-state-of-the-art forecasting models, including Autoformer and Informer (available in Appendix
A). In all experiments, our proposed corruption-resilient forecasting approach with Gaussian Process
corruption leads to significant improvements.
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A APPENDIX

Actual Forecasts: Please refer to Figure 3, 4, and 5 for the predicted forecasts of 72 future time steps
for four treatments of Autoformer model including a) standalone forecasting b) AutoDI, c)
AutoDWC, and d) AutoDG(ours) on Traffic, Electricity, and Solar datasets respectively .

Convergence Plots: Please refer to Figure 6, 7, and 8 for the convergence plots of three treatments
of the Autoformer model inclusing ours respectively.

Main results of MAE metric: Please refer to Table 4 and 6 for main results of MAE metric respec-
tively.

Ablation results of other denoising/boosting baselines: Please refer to Table 5, 9, and 10 for the
ablation results of Autoformer (MAE) and Informer (MSE and MAE) ablation studies on
other denoising/boosting baselines respectively.

Ablation results for higher number of layers (parameters) of the stand-alone forecasting models:
Please refer to Table 7 and 8 for the ablation study of higher number of layers (parameters)
of stand-alone forecasting models respectively.
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Figure 3: Example forecast of four treatments on the Traffic dataset for 72 future time steps using the
Autoformer forecasting model. The values are plotted in Z-score normalized space. Standalone Autoformer
model a) generally tracks the ground-truth, albeit fine-grained features are not accuratelt reproduced. Autoformer
with isotropic corruption and denoising (AutoDI) b) yields a higher MSE with forecasts containing many
jitters leading to inaccura te local behavior. Denoising without corruption (AutoDWC) c) yield a better MSE
but fine-grained features including details and extreme values are not accurately reproduced. Our proposed
Autoformer with Gaussian Process corruption and denoising (AutoDG) d) produces the most accurate forecasts
by accurately predicting coarse-grained behavior of peaks and valleys, as well as fine-grained behavior such as
smooth slopes, details and better extreme values prediction.
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Figure 4: Example forecast of four treatments on the Electricity dataset for 72 future time steps using the
Autoformer forecasting model. The values are plotted in Z-score normalized space. Standalone Autoformer
model a) generally tracks the ground-truth, albeit fine-grained features are only roughly reproduced. Autoformer
with isotropic corruption and denoising (AutoDI) b) yields a lower MSE with fine-grained features being
more accurately predicted. Denoising without corruption (AutoDWC) c) yields a better MSE than Autoformer
a), however fine-grained features are less accurately predicted than AutoDI. Our proposed Autoformer with
Gaussian Process corruption and denoising (AutoDG) d) produces the most accurate forecasts by accurately
predicting coarse-grained behavior of peaks and valleys, as well as fine-grained behavior such as smooth slopes,
details and better extreme values prediction.
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Figure 5: Example forecast of four treatments on the Solar dataset for 72 future time steps using the
Autoformer forecasting model. The values are plotted in Z-score normalized space. Standalone Autoformer
model a) generally tracks the ground-truth, albeit fine-grained features are only roughly reproduced. Autoformer
with isotropic corruption and denoising b) yields a higher MSE with less accurate local behavior (e.g. prediction
of extreme values). Denoising without corruption (AutoDWC) c) yields a higher MSE than Autoforme a)
with fine-grained features being less accurately predicted. Our proposed Autoformer with Gaussian Process
corruption and denoising (AutoDG) d) produces the most accurate forecasts by accurately predicting coarse-
grained behavior of peaks and valleys, as well as fine-grained behavior such as smooth slopes, details and better
extreme values prediction.
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Figure 6: MSE loss illustration of Autformer, AutoDI, and AutoDG (Ours) of train a) and validation
b) sets during training with 50 epochs on Traffic dataset when predicting for 72 future time steps. The
plots demonstrate that our model offers a more favorable optimization space, showcasing superior
convergence and absence of overfitting when compared to Autformer and AutoDI approaches.
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Figure 7: MSE loss illustration of Autformer, AutoDI, and AutoDG (Ours) of train a) and validation
b) sets during training with 50 epochs on Electricity dataset when predicting for 72 future time steps.
The plots demonstrate that our model offers a more favorable optimization space, showcasing superior
convergence and absence of overfitting when compared to Autformer and AutoDI approaches.
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Figure 8: MSE loss illustration of Autformer, AutoDI, and AutoDG (Ours) of train a) and validation
b) sets during training with 50 epochs on Solar dataset when predicting for 72 future time steps. The
plots demonstrate that our model offers a more favorable optimization space, showcasing superior
convergence and absence of overfitting when compared to Autformer and AutoDI approaches.
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Table 4: Overall results of the quantitative evaluation of corruption-resilient forecasting models in terms of
average and standard error of MAE. We compare the forecasting models on all three datasets with different
number of forecasting steps. A lower MAE indicates a better model. In all cases our predict-corrupt-denoise
approach with GPs improves performance of the original forecasting model (Autoformer). It is significantly
better than isotropic Gaussian noise model (AutoDI). (Note that to provide a fair comparison, all the baseline
models considered in this study were trained and evaluated under the same experimental setup as our proposed
model. Consequently, the reported results may differ from those originally reported in the respective baseline
papers. We provide the baseline models in our online repository).

D
at

as
et

H
or

iz
on

AutoDG(Ours) Autoformer AutoDI NBeats DLinear DeepAR CMGP ARIMA

Tr
af

fic

24 0.333 0.334 0.340 0.384 0.447 0.652 0.645 0.770
±0.010 ±0.007 ±0.007 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

48 0.328 0.368 0.343 0.408 0.462 0.650 0.642 0.776
±0.001 ±0.006 ±0.006 ±0.003 ±0.000 ±0.000 ±0.000 ±0.000

72 0.358 0.356 0.356 0.413 0.466 0.636 0.648 0.782
±0.013 ±0.003 ±0.005 ±0.004 ±0.000 ±0.000 ±0.000 ±0.000

96 0.333 0.359 0.366 0.414 0.471 0.632 0.647 0.773
±0.000 ±0.004 ±0.004 ±0.002 ±0.000 ±0.000 ±0.000 ±0.000

E
le

ct
ri

ci
ty

24 0.249 0.265 0.258 0.294 0.299 0.862 0.840 0.959
±0.001 ±0.003 ±0.001 ±0.004 ±0.000 ±0.000 ±0.000 ±0.000

48 0.275 0.292 0.301 0.310 0.308 0.853 0.839 0.971
±0.003 ±0.007 ±0.003 ±0.007 ±0.000 ±0.000 ±0.000 ±0.000

72 0.303 0.297 0.303 0.322 0.323 0.856 0.836 0.987
±0.004 ±0.006 ±0.004 ±0.007 ±0.000 ±0.000 ±0.000 ±0.000

96 0.304 0.372 0.325 0.324 0.329 0.850 0.832 0.983
±0.001 ±0.010 ±0.002 ±0.002 ±0.000 ±0.000 ±0.000 ±0.000

So
la

r

24 0.548 0.603 0.574 0.632 0.801 0.885 0.885 1.100
±0.009 ±0.002 ±0.008 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

48 0.612 0.656 0.638 0.710 0.864 0.865 0.888 1.102
±0.003 ±0.003 ±0.003 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

72 0.702 0.729 0.702 0.744 0.894 0.873 0.885 1.106
±0.0001 ±0.017 ±0.001 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

96 0.725 0.754 0.747 0.781 0.911 0.866 0.882 1.097
±0.000 ±0.009 ±0.005 ±0.002 ±0.000 ±0.000 ±0.000 ±0.000

Table 5: Comparison of different denoising baselines to our forecast-corrupt-denoise approach with
GPs when treating Autoformer forecasting model. We find that our approach consistently outperforms
the other denoising approaches. Results are reported as average and standard error of MAE. A lower
MAE indicates a better forecasting model.

D
at

as
et

H
or

iz
on

AutoDG(Ours) Autoformer AutoDI AutoDWC AutoRB AutoDT

Tr
af

fic

24 0.333±0.010 0.334±0.007 0.340±0.007 0.345±0.009 0.391±0.005 0.349±0.005
48 0.328±0.001 0.368±0.006 0.343±0.006 0.351±0.005 0.359±0.002 0.361±0.016
72 0.358±0.013 0.356±0.003 0.356±0.005 0.361±0.002 0.383±0.005 0.379±0.001
96 0.304±0.000 0.325±0.004 0.372±0.004 0.362±0.004 0.368±0.005 0.379±0.005

E
le

ct
ri

ci
ty 24 0.249±0.001 0.265±0.003 0.258±0.001 0.272±0.001 0.380±0.001 0.263±0.007

48 0.275±0.003 0.292±0.007 0.301±0.003 0.306±0.002 0.311±0.002 0.288±0.003
72 0.303±0.004 0.297±0.006 0.303±0.004 0.295±0.009 0.330±0.021 0.305±0.003
96 0.304±0.001 0.372±0.010 0.325±0.002 0.324±0.005 0.386±0.005 0.318±0.005

So
la

r

24 0.548±0.009 0.603±0.002 0.574±0.008 0.549±0.008 0.601±0.005 0.598±0.006
48 0.612±0.003 0.656±0.003 0.638±0.003 0.656±0.002 0.645±0.003 0.655±0.003
72 0.702±0.001 0.729±0.017 0.702±0.001 0.724±0.008 0.720±0.010 0.709±0.004
96 0.725±0.000 0.754±0.009 0.747±0.005 0.746±0.006 0.738±0.007 0.745±0.006
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Table 6: Overall results of the quantitative evaluation of corruption-resilient forecasting models in
terms of average and standard error of MAE. We compare the forecasting models on all three datasets
with different number of forecasting steps. A lower MAE indicates a better model. In all cases
our predict-corrupt-denoise approach with GPs improves performance of the original forecasting
model (Informer). It is significantly better than isotropic Gaussian noise model (InfoDI). (Note
that to provide a fair comparison, all the baseline models considered in this study were trained and
evaluated under the same experimental setup as our proposed model. Consequently, the reported
results may differ from those originally reported in the respective baseline papers. We provide the
baseline models in our online repository).

D
at

as
et

H
or

iz
on

InfoDG(Ours) Informer InfoDI NBeats DLinear DeepAR CMGP ARIMA

Tr
af

fic

24 0.355 0.329 0.342 0.384 0.447 0.652 0.645 0.770
±0.007 ±0.006 ±0.004 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

48 0.350 0.354 0.362 0.408 0.462 0.650 0.642 0.776
±0.001 ±0.012 ±0.005 ±0.003 ±0.000 ±0.000 ±0.000 ±0.000

72 0.345 0.377 0.353 0.413 0.466 0.636 0.648 0.782
±0.003 ±0.002 ±0.008 ±0.004 ±0.000 ±0.000 ±0.000 ±0.000

96 0.397 0.402 0.402 0.414 0.471 0.632 0.647 0.773
±0.004 ±0.011 ±0.005 ±0.002 ±0.000 ±0.000 ±0.000 ±0.000

E
le

ct
ri

ci
ty

24 0.290 0.300 0.298 0.294 0.299 0.862 0.840 0.959
±0.008 ±0.005 ±0.003 ±0.004 ±0.000 ±0.000 ±0.000 ±0.000

48 0.311 0.349 0.325 0.310 0.308 0.853 0.839 0.971
±0.002 ±0.009 ±0.002 ±0.007 ±0.000 ±0.000 ±0.000 ±0.000

72 0.345 0.377 0.353 0.322 0.323 0.856 0.836 0.987
±0.003 ±0.002 ±0.008 ±0.002 ±0.000 ±0.000 ±0.000 ±0.000

96 0.342 0.378 0.379 0.324 0.329 0.850 0.832 0.983
±0.004 ±0.011 ±0.005 ±0.002 ±0.000 ±0.000 ±0.000 ±0.000

So
la

r

24 0.533 0.597 0.563 0.632 0.801 0.885 0.885 1.100
±0.005 ±0.002 ±0.003 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

48 0.624 0.681 0.635 0.710 0.864 0.865 0.888 1.102
±0.007 ±0.013 ±0.005 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

72 0.690 0.752 0.735 0.744 0.894 0.873 0.885 1.106
±0.013 ±0.017 ±0.019 ±0.001 ±0.000 ±0.000 ±0.000 ±0.000

96 0.727 0.772 0.764 0.781 0.911 0.866 0.882 1.097
±0.006 ±0.012 ±0.004 ±0.002 ±0.000 ±0.000 ±0.000 ±0.000
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Table 7: Comparison of our forecast-corrupt-denoise approach with GPs with standalone forecasting models
with higher number of layers (parameters) denoted by † sign. Initially, the number of layers for our proposed
model and other baselines are chosen from {1, 2}, however to show that the performance of our model is indeed
stems from its mechanism, we included the results of stand-alone forecasting models with number of layers
chosen from {3, 4}. Results are reported as average and standard error of MSE. A lower MSE indicates a better
forecasting model.

D
at

as
et

H
or

iz
on

AutoDG(Ours) Autoformer Autoformer† InfoDG(Ours) Informer Informer†

Tr
af

fic

24 0.392 ±0.006 0.412 ±0.006 0.359 ±0.007 0.398 ±0.006 0.421 ±0.006 0.422 ±0.009
48 0.387 ±0.001 0.422 ±0.007 0.383 ±0.001 0.399 ±0.001 0.434 ±0.001 0.486 ±0.010
72 0.380 ±0.001 0.383 ±0.002 0.442 ±0.006 0.380 ±0.001 0.436 ±0.001 0.412 ±0.003
96 0.385 ±0.003 0.400 ±0.004 0.416 ±0.001 0.397 ±0.003 0.402 ±0.003 0.408 ±0.005

E
le

ct
ri

ci
ty 24 0.165 ±0.001 0.187 ±0.003 0.242 ±0.007 0.193 ±0.001 0.222 ±0.001 0.266 ±0.001

48 0.188 ±0.003 0.203 ±0.008 0.232 ±0.005 0.222 ±0.002 0.262 ±0.002 0.293 ±0.002
72 0.209 ±0.004 0.230 ±0.001 0.263 ±0.004 0.238 ±0.001 0.280 ±0.003 0.310 ±0.002
96 0.211 ±0.001 0.230 ±0.014 0.224 ±0.004 0.242 ±0.001 0.289 ±0.002 0.327 ±0.003

So
la

r

24 0.446 ±0.002 0.472 ±0.003 0.524 ±0.001 0.455 ±0.009 0.524 ±0.003 0.498 ±0.001
48 0.546 ±0.005 0.603 ±0.003 0.622 ±0.001 0.556 ±0.005 0.629 ±0.003 0.690 ±0.031
72 0.666 ±0.003 0.667 ±0.004 0.701 ±0.004 0.643 ±0.003 0.729 ±0.023 0.716 ±0.024
96 0.713 ±0.004 0.739 ±0.009 0.744 ±0.002 0.708 ±0.004 0.770 ±0.004 0.738 ±0.002

Table 8: Comparison of our forecast-corrupt-denoise approach with GPs with standalone forecasting models
with higher number of layers (parameters) denoted by † sign. Initially, the number of layers for our proposed
model and other baselines are chosen from {1, 2}, however to show that the performance of our model is indeed
stems from its mechanism, we included the results of stand-alone forecasting models with number of layers
chosen from {3, 4}. Results are reported as average and standard error of MAE. A lower MAE indicates a better
forecasting model.

D
at

as
et

H
or

iz
on

AutoDG(Ours) Autoformer Autoformer† InfoDG(Ours) Informer Informer†

Tr
af

fic

24 0.333 ±0.010 0.334 ±0.007 0.332 ±0.002 0.355 ±0.007 0.329 ±0.006 0.382 ±0.003
48 0.328 ±0.001 0.368 ±0.002 0.336 ±0.001 0.345 ±0.001 0.377 ±0.013 0.402 ±0.005
72 0.358 ±0.013 0.356 ±0.003 0.357 ±0.001 0.345 ±0.003 0.377 ±0.010 0.382 ±0.011
96 0.385 ±0.003 0.400 ±0.004 0.370 ±0.001 0.397 ±0.003 0.402 ±0.002 0.413 ±0.003

E
le

ct
ri

ci
ty 24 0.249 ±0.001 0.265 ±0.003 0.303 ±0.003 0.290 ±0.003 0.300 ±0.006 0.332 ±0.002

48 0.275 ±0.001 0.292 ±0.007 0.317 ±0.002 0.311 ±0.002 0.349 ±0.009 0.377 ±0.002
72 0.303 ±0.004 0.297 ±0.007 0.351 ±0.002 0.336 ±0.003 0.371 ±0.002 0.384 ±0.002
96 0.304 ±0.001 0.372 ±0.010 0.317 ±0.001 0.342 ±0.004 0.378±0.001 0.411 ±0.003

So
la

r

24 0.548 ±0.009 0.603 ±0.002 0.608 ±0.001 0.533 ±0.005 0.597 ±0.002 0.575 ±0.000
48 0.612 ±0.003 0.656 ±0.003 0.672 ±0.004 0.624 ±0.007 0.681 ±0.013 0.745 ±0.020
72 0.702 ±0.001 0.729 ±0.017 0.707 ±0.001 0.690 ±0.013 0.752 ±0.017 0.762 ±0.016
96 0.725 ±0.000 0.754 ±0.009 0.737 ±0.002 0.727 ±0.006 0.772 ±0.012 0.785 ±0.010
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Table 9: Comparison of different denoising baselines to our forecast-corrupt-denoise approach with GPs when
treating Informer forecasting model. We find that our approach consistently outperforms the other denoising
approaches. Results are reported as average and standard error of MSE. A lower MSE indicates a better
forecasting model.

D
at

as
et

H
or

iz
on

InfoDG(Ours) Informer InfoDI InfoDWC InfoRB InfoDT

Tr
af

fic

24 0.398±0.005 0.421±0.005 0.415±0.002 0.406±0.002 0.435±0.005 0.473±0.003
48 0.399±0.004 0.434±0.014 0.395±0.007 0.392±0.003 0.395 ±0.011 0.421±0.014
72 0.380±0.001 0.436±0.015 0.395±0.001 0.392±0.001 0.407±0.009 0.421±0.011
96 0.397±0.003 0.402±0.002 0.402±0.006 0.394±0.003 0.412±0.007 0.414±0.015

E
le

ct
ri

ci
ty 24 0.193±0.003 0.222±0.006 0.212±0.001 0.204±0.005 0.225±0.009 0.230±0.007

48 0.222±0.003 0.262±0.013 0.229±0.003 0.241±0.007 0.261±0.014 0.256±0.004
72 0.238±0.001 0.280±0.006 0.253±0.006 0.263±0.013 0.262±0.008 0.268±0.008
96 0.242±0.004 0.289±0.011 0.275±0.005 0.279±0.006 0.283±0.001 0.275±0.007

So
la

r

24 0.455±0.007 0.524±0.002 0.465±0.006 0.457±0.006 0.498±0.010 0.512±0.012
48 0.556±0.011 0.629±0.021 0.570±0.007 0.590±0.016 0.623±0.016 0.629±0.023
72 0.643±0.022 0.729±0.024 0.707±0.026 0.708±0.014 0.748±0.010 0.726±0.006
96 0.708±0.010 0.770±0.017 0.766±0.006 0.739±0.010 0.781±0.017 0.777±0.000

Table 10: Comparison of different denoising baselines to our forecast-corrupt-denoise approach with GPs when
treating Informer forecasting model. We find that our approach consistently outperforms the other denoising
approaches. Results are reported as average and standard error of MAE. A lower MAE indicates a better
forecasting model.

D
at

as
et

H
or

iz
on

InfoDG(Ours) Informer InfoDI InfoDWC InfoRB InfoDT

Tr
af

fic

24 0.355±0.007 0.329±0.006 0.342±0.004 0.337±0.003 0.331±0.003 0.379±0.003
48 0.345±0.001 0.377±0.013 0.353±0.005 0.348±0.003 0.353±0.009 0.375±0.006
72 0.345±0.003 0.377±0.010 0.353±0.004 0.348±0.001 0.379±0.005 0.361±0.006
96 0.350±0.004 0.354±0.006 0.362±0.007 0.348±0.008 0.379±0.005 0.361±0.011

E
le

ct
ri

ci
ty 24 0.290±0.008 0.300±0.005 0.298±0.003 0.295±0.004 0.302±0.009 0.318±0.003

48 0.311±0.002 0.349±0.009 0.325±0.002 0.333±0.004 0.343±0.009 0.343±0.005
72 0.336±0.003 0.371±0.002 0.359±0.008 0.362±0.008 0.359±0.006 0.367±0.008
96 0.342±0.004 0.378±0.0011 0.379±0.005 0.384±0.006 0.375±0.001 0.370±0.007

So
la

r

24 0.533±0.005 0.597±0.002 0.563±0.003 0.551±0.001 0.573±0.008 0.596±0.007
48 0.624±0.007 0.681±0.013 0.635±0.005 0.649±0.011 0.675±0.012 0.681±0.012
72 0.690±0.013 0.752±0.017 0.735±0.019 0.736±0.011 0.763±0.020 0.735±0.004
96 0.727±0.006 0.772±0.012 0.764±0.004 0.753±0.005 0.777±0.014 0.766±0.002
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