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Abstract

We propose controlled decoding (CD), a novel off-policy reinforcement learning1

method to control the autoregressive generation from language models towards high2

reward outcomes. CD solves an off-policy reinforcement learning problem through3

a value function for the reward, which we call a prefix scorer. The prefix scorer4

is used at inference time to steer the generation towards higher reward outcomes.5

We show that the prefix scorer may be trained on (possibly) off-policy data to6

predict the expected reward when decoding is continued from a partially decoded7

response. We empirically demonstrate that CD is effective as a control mechanism8

on Reddit conversations corpus. We also show that the modularity of the design of9

CD makes it possible to control for multiple rewards, effectively solving a multi-10

objective reinforcement learning problem with no additional complexity. Finally,11

we show that CD can be applied in a novel blockwise fashion at inference-time,12

again without the need for any training-time changes, essentially bridging the gap13

between the popular best-of-K strategy and token-level reinforcement learning.14

This makes CD a promising approach for alignment of language models.15

1 Introduction16

Generative language models have reached a level where they can effectively solve a variety of17

open-domain tasks with little task specific supervision. Hence, it is crucial to ask: how can we guide18

machine generated content to adhere to responsible AI principles, such as safety and factuality, when19

we have no control over the pre-trained representations in a generative language model?20

Controlling language model responses towards high reward outcomes is an area of active research in21

the literature. We divide the existing alignment methods into two categories that differ significantly22

in real-world deployment: generator improvement and inference-time add-on solutions. Generator23

improvement solutions, such as reinforcement learning (RL) (Christiano et al., 2017; Ouyang et al.,24

2022), direct preference optimization (DPO) (Rafailov et al., 2023), and sequence likelihood calibra-25

tion (SliC) (Zhao et al., 2022) update the weights of the language model to align it with a reward26

model. On the other hand, inference-time add-on solutions, such as FUDGE (Yang & Klein, 2021) or27

COLD (Qin et al., 2022), devise techniques that are used at inference-time to control a frozen based28

model output towards high-reward outcomes. Due to their modularity of design which leaves the base29

model frozen, we are interested in the inference-time add-on solutions for responsible AI alignment.30

Controlling a language model boils down to learning a value function that recognizes the eventual31

reward of a given decoding path (Yang & Klein, 2021; Korbak et al., 2022). In some applications,32

such a value function might be readily available in a rule-based manner, such as lexicographic33

constraints (Qin et al., 2022). On the other hand, responsible AI considerations, such as safety and34

factuality, are generally nuanced and require a data-driven approach to learning the value function,35

with a model that might be comparable to the base language model. Hence, the inference cost36

from such a value model is usually a non-negligible fraction of that of the base model, limiting the37

number of times the value model may be invoked as autoregressive decoding progresses. This renders38
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tree-search algorithms intractable due to latency considerations (Lu et al., 2022). In this paper, we39

focus on methods that resort to at most one call to a controller model per decoding of each token. See40

Appendix A.3 for a more complete discussion around the related control strategies.41

A common inference-time guardrail to control generation from a language model is to sample k42

candidates and posthoc rerank them using a reward model to choose the best-of-K. This procedure43

effectively biases the generation to align it to the reward (Stiennon et al., 2020; Gao et al., 2023).44

While effective at alignment, best-of-K is computationally expensive, and is not applicable to45

situations that need streaming response generation. Additionally, the desired tradeoff point may46

require a prohibitively large k making it impractical to deploy in real world (Gao et al., 2023). On the47

other hand, best-of-K is less prone to reward hacking as the alignment is still happening on responses48

that are highly likely under the base model. Our contributions are summarized below.49

• We propose controlled decoding (CD), an alignment mechanism to increase reward in autoregres-50

sive language models subject to a KL constraint. The main ingredient in CD is a prefix scorer for51

the reward that is used to steer the generation from a partially decoded path.52

• We demonstrate that the prefix scorer can be learnt in an off-policy manner using the Bellman53

update, which is significantly different from the on-policy RL alignment methods (such as PPO)54

that require model rollouts to update the model.55

• We propose blockwise CD where control is exerted at every block of M tokens, with no additional56

training requirements. We decode K blocks of length M , and greedily keep the best according to57

the prefix scorer, and continue decoding from there. Note thatM →∞ is effectively the best-of-K58

strategy. For intermediate M , this bridges the gap between best-of-K and token-wise control.59

• We empirically show that the inference-time add-on control via CD (and its blockwise variant)60

offer significant improvement over existing controlled generation/decoding solutions on the tasks61

of improving dialog safety and increasing dialog length.62

• We showcase the modularity of CD at inference-time to integrate multiple rewards into a single63

prefix scoring rule. Additionally, we demonstrate that it is possible to change the importance64

weight of different rewards via tuning a simple knob at inference time.65

2 KL-Regularized Reinforcement Learning Setup66

Let x be the prompt (consisting of several tokens) and let y = yT := [y1, . . . , yT ] represent a67

response that is a concatenation of T tokens. Here each token yt ∈ Y , where Y represents the68

alphabet (vocabulary). Let p denote a pre-trained language model (LM) from which we would like to69

draw samples in an autoregressive manner. In particular, we use p(·|[x, yt]) to denote the distribution70

that the LM induces on the next token on alphabet Y given the input that is the concatenation of the71

prompt x and a partially decoded response yt of t tokens. Let r([x,y]) be a reward function bounded72

from above, e.g., the log-likelihood of a scoring function for the event that the response y in context73

x is deemed safe. We define the following token-wise reward:74

R([x, yt]) :=

{
0 yt 6= EOS
r([x, yt]) yt = EOS , (1)

where EOS represents the end of sequence. Here, we only give a reward once decoding has completed75

and otherwise no reward is assigned to a decoding path. We then define:76

V ([x, yt]) := Ez1,z2,...∼p

∑
τ≥0

γτR([x, yt, zτ ])

 , (2)

where γ ≤ 1 is a discount factor. This captures the expected cumulative reward of a fully decoded77

response when decoding continues from yt using the base language model p.78

For any [x, yt] such that yt 6= EOS, we define the advantage function of a decoding policy π as:79

A([x, yt];π) := Ez∼π
{
V ([x, yt, z])− V ([x, yt])

}
= γ

∑
z∈Y

π(z|[x, yt])V ([x, yt, z])− V ([x, yt]).

(3)
Note that for π = p, we have A([x, yt]; p) = 0 (law of total probability), and hence our goal is to80

choose π to deviate from p to achieve a positive advantage over the base policy.81
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Let D([x, yt];π) be the token-wise KL divergence between a decoding policy π and a frozen base82

language model p for decoding the next token after [x, yt]:83

D([x, yt];π) := KL(π(·|[x, yt])‖p(·|[x, yt])) =
∑
z∈Y

π(z|[x, yt]) log
(
π(z|[x, yt])
p(z|[x, yt])

)
, (4)

where KL(·‖·) denotes the KL divergence (also known as relative entropy). Recall that our goal is84

not to deviate too much from the base policy (measured in KL divergence) because that is expected85

to lead to the degeneration of the language model in other top-line performance metrics.86

To satisfy these conflicting goals, we use the KL-regularized RL objective which is defined as:87

J([x, yt];π, β) := (1− β)A([x, yt];π)− βD([x, yt];π), (5)
where β ∈ R+ trades off reward for drift from the base language model. Note that J([x, yt];π, β) is88

concave in π. This is because A([x, yt];π) is linear in π and D([x, yt];π) is convex in π.89

We let π?(z|[x, yt];β) denote the decoding policy function that maximizes Eq. (5). Note that at the90

extreme of β = 1, we have π?(z|[x, yt]; 1) = p(z|[x, yt]) which achieves D([x, yt]; p) = 0 and91

A([x, yt]; p) = 0. We are interested in characterizing the tradeoff curves achieved by β ∈ (0, 1) to92

increase A([x, yt];π) at the cost of an increased KL penalty, D([x, yt];π). Our main result in this93

section is the following characterization of π?, with proof relegated to Appendix A.2.94

Theorem 2.1. The optimal policy for the RL objective is given by95

π?(z|[x, yt];β) ∝ p(z|[x, yt])e
(1−β)γ
β V ([x,yt,z]). (6)

96 This result resembles that of Korbak et al. (2022), with the main difference being the controller is97

token-wise here. Next, we develop our solution to the KL-regularized RL objective.98

3 Proposed Method: Controlled Decoding (CD)99

While Theorem 2.1 gives a recipe to solve the KL-regularized RL, it requires having access to the100

value function V ([x, yt]), which we refer to as a prefix scorer since we use it at inference time to101

score the different decoding paths. Notice the following Bellman identity (Sutton & Barto, 2018):102

V ([x, yt]) =

{
γ
∑
z∈Y p(z|[x, yt])V ([x, yt, z]) yt 6= EOS

r([x, yt]) yt = EOS . (7)

Let Vw([x, yt]) be called a prefix scorer, which is a transformer network parameterized by weights w103

to approximate V ([x, yt]). Inspired by the policy evaluation updates in DQN (Mnih et al., 2013), we104

optimize the following loss function:105

`(x, yt;w)=
(
Vw([x, y

t])− v̇
)2
, where v =

{
γ
∑
z∈Y p(z|[x, yt])Vw([x, yt, z]) yt 6= EOS

r([x, yt]) yt = EOS (8)

where v̇ implies a stop gradient over v (even though it inherently depends on w).106

The abovementioned learning procedure for the prefix scorer could be performed over an off-policy107

dataset, scored using the reward for all [x,y] (Sutton & Barto, 2018). Training the prefix scorer108

requires (on-demand) access to the base language model p to compute the targets in Eq. (8).109

Token-wise sampling. We use the prefix scorer for token-wise sampling per Theorem 2.1. In this110

case, given context x and a partially decoded sequence yt, we obtain the logits of p([x, yt, z]) and111

Vw([x, y
t, z]) for all z from the base policy and the prefix scorer. Then, we linearly combine the112

logits to sample from the following distribution:113

z ∼ πw(z|[x, yt]) where πw(z|[x, yt]) ∝ p(z|[x, yt])e
1−β
β Vw([x,yt,z]). (9)

Block-wise sample and rerank. We also can use the prefix scorer as a reward for blockwise114

scoring. We sample K independent continuation blocks of length M from the base policy:115 {
zM(k)

}
k∈[K]

i.i.d.∼ p(zM |[x, yt]). (10)

Then we accept the continuation with the highest prefix score and reject the rest:116

zM := arg max{
zM
(k)

}
k∈[K]

Vw([x, y
t, zM(k)]), (11)

and continue until a candidate with EOS has been accepted.117
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4 Experimental Results118

Dataset & model. Our experiments are performed on the DSTC8 Reddit conversations corpus (Mi-119

crosoft, 2019), where we use PaLM 2 Gecko (Google, 2023) as the base model.120

Baselines. We consider FUDGE (Yang & Klein, 2021), KL-regularized PPO (Ouyang et al., 2022),121

and best-of-K as baselines. Additionally, we also consider the blockwise decoding variant of FUDGE,122

that is inspired by the proposed blockwise CD method in this paper.123

Evaluation. Following Gao et al. (2023), we report tradeoff curves for expected reward or win-rate124

over base policy vs. KL divergence between the aligned policy and the base, KL(π‖p). A method that125

dominates (i.e., increases the expected reward with smallest sacrifice in KL divergence) is desirable.126

Figure 1: Length vs. KL divergence for
different length alignment methods.

Experiment 1: Increasing dialog response length. To127

decouple the effect of reward overoptimization, in our first128

task, we consider the response length as the reward. In par-129

ticular, rlength([x, y
T ]) = log(T/Tmax), where Tmax =130

1024. As can be seen in Figure 1, best-of-K achieves a131

better reward-KL tradeoff compared to KL-regularized132

PPO (Ouyang et al., 2022). This might be surprising at133

first, but it is consistent with other findings reported by Gao134

et al. (2023); Rafailov et al. (2023), where it is shown that135

best-of-K consistently achieves better reward-KL trade-136

offs compared to KL-regularized PPO. We also observe137

that the token-wise control using both FUDGE (Yang &138

Klein, 2021) and CD leads to a more favorable reward-KL139

tradeoff compared to KL-regularized RL. When we con-140

sider blockwise control, we see a stark difference between141

the behavior of blockwise FUDGE and blockwise CD,142

where blockwise CD in on par with best-of-K, leading to143

best reward-KL tradeoffs. To investigate this further, we used the CD and FUDGE prefix scorers as144

reward (i.e., length) predictors for fully decoded responses on the test set, where the result is reported145

in Figure 4 (Appendix A.3). The main finding is that the predictions of FUDGE are noisier than that146

of CD and we suspect that is the reason FUDGE does not perform well in the blockwise setup, where147

blockwise CD achieves the best performance on par with best-of-K.148

Figure 2: Win rate vs. KL divergence for
different safety alignment methods.

Experiment 2: Improving dialog safety. In this experi-149

ment, we consider improving the safety of the responses in150

conversations. We train two independent reward models on151

the side-by-side safety signal following the Anthropic HH152

dataset (Bai et al., 2022) using PaLM 2 Gecko (Reward-153

XXS) and PaLM 2 Otter (Reward-XS). The goal here154

is to generate safe responses in a dialog setting, where155

rsafety([x, y
T ]) could be roughly interpreted as the log-156

probability of a safety classifier. For all methods, we used157

Reward-XXS for training/control and kept Reward-XS158

solely for evaluations. The results are reported in Fig-159

ure 2, where the y-axis is the win rate against the base160

model as measured by Reward-XS. As can be seen, token-161

wise controllers don’t offer much safety improvement over162

baselines, whereas blockwise CD and FUDGE offer a163

substantial improvement as expected. However, neither164

method was able to match best-of-K.165

Method Accuracy (train) Accuracy (test)

Reward-XXS 0.710 0.696
FUDGE 0.616 0.626
CD 0.598 0.588

Table 1: Safety accuracy on 500 ground
truth side-by-side Anthropic HH test set.

In Table 1, we compare the training and test accuracy166

of Reward-XXS with that of CD and FUDGE used as167

classifiers, where we apply CD and FUDGE on [x,y] pairs168

in the training and test set of Anthropic HH dataset (Bai169

et al., 2022). The results show that the predictive power170

of CD and FUDGE are much weaker than that of Reward-171

XXS, which is likely due to the noisy nature of the training172

data. This is an area for future investigation.173
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We also compare the average safety score of different variants token-wise FUDGE and CD (with174

varying β) to that of the base model for both Reward-XXS and Reward-XS. The results for this175

experiment are reported in Tables 2 and 3 ( Appendix A.3). The main finding here is that the poor176

performance of token-wise CD and FUDGE may be partly attributed to overoptimization as well177

given that we observed more reasonable safety improvement when we used Reward-XXS as the178

judge; however, these gains didn’t translate uniformly when we used the independent Reward-XS as179

the judge. A more clear understanding of these phenomena is left open for future work.180

Figure 3: Length/Win rate vs. KL diver-
gence for multi-objective alignment.

Experiment 3: Simultaneously improving dialog safety181

& increasing dialog length. Next, we combine the safety182

and length prefix scorers (rewards) to simultaneously im-183

prove safety and increase dialog length. To this end, we184

only consider blockwise CD and best-of-K, where the185

decoding either performs reranking based on safety alone;186

or a linear combination of the safety and length rewards187

(prefix scores). Note that this experiment does not need188

new models and only combine the scores from the two ex-189

isting prefix scorers suffices to achieve this goal. Further,190

notice that this would be impossible using KL-regularized191

PPO as it needs to be retrained from scratch with this new192

combined reward.193

The results of this experiment are presented in Figure 3. As194

can be seen, with a neutral length reward, the dialog length195

of blockwise CD remains mostly constant. On the other196

hand, it is interesting to note that best-of-K with no dialog197

length reward increases the dialog length around 3x. This198

might be attributable to potential spurious correlations199

between safety reward and length but it is left for further200

investigation. As expected, introducing a positive length201

reward (or prefix score) results in increasing dialog length202

both for blockwise CD and best-of-K. Not surprisingly,203

this comes at the expense of a decline in dialog safety204

win rate. Finally, similarly to the previous experiment, we205

observe a gap between best-of-K and blockwise CD in206

terms of the tradeoffs between performance metrics and207

KL divergence, which we hope future work can tackle to208

address.209

5 Conclusion210

In this paper, we formulated a KL-regularized reinforcement learning objective for aligning language211

models to achieve higher reward outcomes. We showed that the problem could be solved using an212

inference-time add-on solution in an off-policy manner by learning a prefix scorer akin to DQNs.213

We also showed that the resulting framework, called controlled decoding (CD), could be used to214

exert control in language models to steer the generation in a token-wise or blockwise manner. Our215

experiments confirmed the effectiveness of our proposal in improving different rewards, that included216

dialog length and dialog safety, with a small deviation from the base language model policy. We also217

showed that the framework could be readily extended to solve a novel multi-objective reinforcement218

learning problem for free.219

Social Impact Statement220

We proposed new methods for language model alignment, where control was exerted at inference221

time. As opposed to the commonly used KL-regularized PPO, which is a training time intervention,222

the inference-time solutions give more fine-grained and flexible control, potentially paving the way223

for achieving personalized alignment, which is important when the reward functions encode socially224

consequential values. On the other hand, we also observed through experiments that alignment225

techniques may even lead to degradation of safety in responses whereas the goal of the experiment226

was to improve safety. This demonstrates that applying alignment techniques in nuanced issues, such227

as safety, needs to be done with extreme caution.228
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A Appendix298

A.1 Related Work299

Controlled decoding. FUDGE (Yang & Klein, 2021) noticed that decoding subject to a constraint300

could be achieved by a prefix scorer given by the Bayes rule, and augmented the discriminative data301

to train the partial scorer. DIRECTOR (Arora et al., 2022) further showed that the partial scorer could302

be jointly learned with the language model itself, which would lead to a reduced latency at inference303

time. GeDi (Krause et al., 2021) proposed to train separate positive and negative scorer networks304

that could be combined to obtain a prefix score. In contrast to this line of work, we rigorously show305

that the prefix scorer should be trained as the value function for the language model decoding policy,306

which allows us to achieve significant improvements over this existing line of work.307

Our work is also conceptually related to rule-based control. Lu et al. (2022) use tree-search with308

a heuristic to determine the quality of a given decoding path to steer decoding towards favorable309

outcomes. Qin et al. (2022) explore gradient-based sampling using Langevin dynamics which310

significantly outperforms gradient-free sampling.311

Reinforcement learning (RL). Another line of very relevant work is reinforcement learning subject312

to a KL penalty with the language model. Korbak et al. (2022) observed that reinforcement learning313

with a KL penalty could be viewed in a Bayesian manner with a corresponding reward function.314

However, their work fell short of making the full connection in an autoregressive decoding setting,315

which is our contribution in this work through CD via a variant of the Bellman update akin to deep316

Q-learning (DQN) (Mnih et al., 2013). Another closely related work to ours is that of Snell et al.317

(2023) that designs a value-based offline algorithm, albeit with a different learning objective than318

ours (and that of the KL-regularized PPO).319

Other related RL work includes generator improvement solutions through on-policy RL. Spar-320

row (Glaese et al., 2022) showed that a variant of proximal policy optimization (PPO) (Schulman321

et al., 2017) with an additional LM regularizer is effective at a variety of safety objectives and322

alignment with human preference (Ouyang et al., 2022).323

Supervised learning from negative examples. Another line of related work is supervised generator324

improvement interventions. These include unlikelihood training (Welleck et al., 2020; Zhang &325

Song, 2022), contrastive losses (Adolphs et al., 2022), and direct preference optimization (Rafailov326

et al., 2023). In contrast to our work, these methods are all training-time interventions but they327

could similarly be used to improve the likelihood of drawing positive examples by suppressing the328

likelihood of negative ones.329

A.2 Proof of Theorem 2.1330

Proof of Theorem 2.1. First notice that331

J([x, yt];π, β) =
∑
z∈Y

π(z|[x, yt])
(
(1− β)(γV ([x, yt, z])− V ([x, yt])) + β log

(
p(z|[x, yt])
π(z|[x, yt])

))
(12)

= β
∑
z∈Y

π(z|[x, yt]) log

(
p(z|[x, yt])e

1−β
β (γV ([x,yt,z])−V ([x,yt]))

π(z|[x, yt])

)
. (13)

Now, let332

q(z|[x, yt];β) := p(z|[x, yt])e
(1−β)γ
β V ([x,yt,z])

Z([x, yt];β)
, (14)

where333

Z(x, yt;β) =
∑
z∈Y

p(z|x, yt)e
(1−β)γ
β V (x,yt,z). (15)

Thus,334

J([x, yt];π, β) = −βD
(
π(·|[x, yt])‖q(·|[x, yt];β)

)
+ β logZ([x, yt];β), (16)

which is maximized by335

π(·|[x, yt]) = q(·|[x, yt];β), (17)
completing the proof.336
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A.3 Additional experimental results337

In this section, we provide some additional experimental results to better understand the prefix scorer338

learnt via CD and FUDGE.339

Figure 4: CD and FUDGE used to predict the length of a fully decoded response on Reddit corpus test
set (Microsoft, 2019). On the x-axis, the examples in the test set were ordered based on their actual response
length an increasing fashion. CD and FUDGE are applied to (x,y) pairs for all test set to predict the length. CD
predictions are much better aligned with actual length, especially for pairwise comparison, whereas FUDGE
predictions are noisy.

FUDGE CD
β = 0 (base) 1.0 1.0

β = 0.10 0.981 0.948
β = 0.15 0.959 0.961
β = 0.20 0.964 1.023
β = 0.23 0.926 0.990
β = 2.00 0.836 0.731

Table 2: Normalized average safety scores where the Reward-XS model (not used for alignment) is the judge,
with 1000 generations from each model. The results are normalized to the average safety score of the base model.
As can be seen, both prefix scorers generalize poorly which might be partly attributed to overoptimization.

FUDGE CD
β = −0.50 0.683 0.661
β = −0.30 0.792 0.745
β = −0.20 0.848 0.881

β = 0 (base) 1.0 1.0

β = 0.100 1.034 1.066
β = 0.125 1.009 1.007
β = 0.150 0.965 1.002
β = 0.175 0.984 1.021
β = 0.200 1.034 0.997
β = 0.250 1.011 1.04

Table 3: Normalized average safety scores where the Reward-XXS model (used for alignment) is the judge,
with 1000 generations from each model. The results are normalized to the average safety score of the base
model.
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