
Under review as a conference paper at ICLR 2024

EFFECTIVE GENERATION OF FEASIBLE SOLUTIONS
FOR INTEGER PROGRAMMING VIA GUIDED DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Feasible solutions are crucial for Integer Programming (IP) since they can sub-
stantially speed up the solving process. In many applications, similar IP instances
often exhibit similar structures and shared solution distributions, which can be
potentially modeled by deep learning methods. Unfortunately, existing deep-
learning-based algorithms, such as Neural Diving (Nair et al., 2020), fail to capture
the full underlying distributions and can only generate partial feasible solutions
for a given IP instance. In this paper, we propose a novel framework that gener-
ates complete feasible solutions end-to-end. Our framework leverages contrastive
learning to characterize the relationship between IP instances and solutions, and
learns latent embeddings for both IP instances and their solutions. Further, the
framework employs diffusion models to learn the distribution of solution embed-
dings conditioned on IP representations, with a dedicated guided sampling strat-
egy that accounts for both constraints and objectives. We empirically evaluate
our framework on four typical datasets of IP problems, and show that it effec-
tively generates complete feasible solutions with a higher probability and a better
quality for a given IP instance than the state-of-the-art.

1 INTRODUCTION

Integer Programming (IP) in the field of operation research is a class of optimization problems where
some or all of the decision variables are constrained to be integers (Wolsey, 1998). Despite their im-
portance in a wide range of applications such as production planning (Silver et al., 1998; Pochet &
Wolsey, 2006), resource allocation (Katoh & Ibaraki, 1998), and scheduling (Toth & Vigo, 2002;
Pantelides et al., 1995; Sawik, 2011), IP is known to be NP-hard and in general very difficult to
solve. For decades, a significant effort has been made to develop sophisticated algorithms and effi-
cient solvers, e.g., branch-and-bound (Lawler & Wood, 1966), cutting plane method (Kelley, 1960)
and large neighborhood search algorithms (Pisinger & Ropke, 2019). These methods, however, can
be computationally expensive because the search space for large-scale problems can be exponen-
tially large. Moreover, these algorithms rely heavily on a feasible solution input that will crucially
determine the whole search process. Hence, having a scalable method that produces feasible solu-
tions for any IP instances is desirable for many real-world applications.

To generate feasible solutions, prior works (Nair et al., 2020; Han et al., 2023; Yoon, 2022) have
advocated the employment of deep learning to capture similarity of the IP instances from the same
domain in order to expedite solving. These works follow the method proposed by Gasse et al. (2019):
model an IP instance using a bipartite graph to and then extracting variable representations of this
graph with Graph Convolutional Networks (GCN). However, this approach has limitations in pre-
dicting solutions directly: it does not explicitly integrate objective and constraint information during
the sampling process, leading to infeasible complete solutions. Nair et al. (2020); Yoon (2022); Han
et al. (2023) thus focus on generating partial solutions by GCN, where only a subset of variables
is assigned values using neural networks. Importantly, in many cases, the proportion of variables
predicted by the neural network is set at a relatively low ratio (less than 50%) to ensure feasibil-
ity. Furthermore, such methods tend to be inefficient, primarily due to the introduction of auxiliary
problems. For instance, the Completesol heuristic (Maher et al., 2017), a classical approach, solves
an auxiliary integer programming model which is constructed by adding constraints to fix the vari-
ables from partial solutions. In another approach, Han et al. (2023) propose a predict-and-search
framework which constructs a trust region to search for high-quality feasible solutions after acquir-

1



Under review as a conference paper at ICLR 2024

ing partial solutions. Nevertheless, this approach still necessitates a search within a neighborhood
as an auxiliary problem. This prevailing landscape underscores the need for the development of an
end-to-end deep learning framework to generate complete and feasible solutions for IP problems.

Figure 1: Our method first trains the IP Encoder and Solution Encoder to acquire the IP embeddings
(zi) and Solution embeddings (zx) using CISP. We then jointly train diffusion models and the so-
lution decoder to capture the distribution of solutions given a specific IP instance. In the sampling
stage, we employ an IP guided diffusion sampling to account for both the objective and constraints.

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) have exhibited notable advantages
in various generative tasks, primarily owing to their superior mode-coverage and diversity (Bayat,
2023). Notable applications include high-fidelity image generation (Dhariwal & Nichol, 2021),
image-segmentation (Amit et al., 2021), and text-to-image synthesis (Ramesh et al., 2022). These
successes motivates the launch of an investigation into harnessing the generative capability of diffu-
sion models for acquiring feasible solutions of IP problems.

To this end, we introduce a comprehensive end-to-end generative framework presented in figure 1
to produce high-quality feasible solutions for IP problems. First of all, stemming inspiration from
DALL.E-2 (Ramesh et al., 2022) for text-to-image translation, we employ a multimodal contrastive
learning approach, akin to the CLIP Algorithm (Radford et al., 2021), to obtain embeddings for an
IP instance i, denoted as zi, and solution embeddings zx for solutions x (Section 3). Subsequently,
we employ DDPM (Ho et al., 2020) to model the distribution of zx conditioned on zi (Section 3).
During this phrase, a decoder is concurrently trained with the task of solution reconstruction (Section
3). Finally, to enhance the quality of the feasible solutions during the sampling process, we propose
the IP-guided sampling approaches tailored for both DDPM and DDIM (Song et al., 2021a) which
explicitly consider both constraints and objectives during sampling. Our experimental results shown
in Section 5 substantiate the efficacy of this approach in generating complete and feasible solutions
for a given IP instance with a higher probability and better quality than the state-of-the-art.

2 BACKGROUND

Integer Programming and Its Representations. Integer programming (IP) is a class of NP-hard
problems where the goal is to optimize a linear objective function, subject to linear and integer con-
straints. Without loss of generality, we focus on minimization which can be formulated as follows,

min
x

c⊤x subject to Ax ≤ b, x ∈ Zn (1)

where c ∈ Rn denotes the objective coefficient, A = [a⊤1 ,a
⊤
2 , ...,a

⊤
m] ∈ Rm×n is the coefficient

matrix of constraints and b = [b1, b2, ..., bm]⊤ ∈ Rm represents the right-hand-side vector. For
simplicity, we focus on binary integer variables, where x takes values in {0, 1}n. This is a rea-
sonable simplicity as any integer programming problem can be converted into a 0-1 programming
problem (Dantzig, 1963). Throughout this paper, we adopt the term IP instance to denote a specific
instance within the domain of some Integer Programming (IP) problem.

Bipartite graph representation, proposed by Gasse et al. (2019), is a commonly used and useful
way to extract features of an IP instance for machine learning purposes. This representation, see
the left part of Figure 1 (a) for an example, divides the constraints and variables into two different

2



Under review as a conference paper at ICLR 2024

sets of nodes, and uses a Graph Convolution Network (GCN) to learn the representation of nodes.
Recently, Nair et al. (2020) proposed several changes to the architecture of GCN for performance
improvements. Therefore, in this work, we use the bipartite graph structure combined with GCN to
extract the embeddings of IP instances (see (Gasse et al., 2019; Nair et al., 2020) for more details).

DDPM and DDIM. Diffusion models learn a data distribution by reversing a gradual noising pro-
cess. In the DDPM method (Ho et al., 2020), when presented with a data point sampled from
an actual data distribution, denoted as z

(0)
x ∼ q(zx), a diffusion model, as described in Sohl-

Dickstein et al. (2015); Ho et al. (2020), typically involves two distinct phases. In the forward
process, a sequence of Gaussian noise is incrementally added to the initial sample over a span
of T steps, guided by a variance schedule denoted as β1, β2, . . . , βT . This process yields a se-
quence of noisy samples z

(1)
x , z

(2)
x , ..., z

(T )
x . Subsequently, the transition for the forward process

can be described as: q(z
(t)
x |z(t−1)

x ) = N (z
(t)
x ;
√
1− βtz

(t−1)
x , βtI). In fact, z(t)x can be sampled

at any time step t in a closed form employing the notations αt := 1 − βt and ᾱ :=
∏t

s=1 αs,
z
(t)
x =

√
ᾱtz

(0)
x +

√
1− ᾱtϵ, where ϵ ∼ N (0, I). In the reverse process (denoising process),

we need to model the distribution of z
(t−1)
x given z

(t)
x as a Gaussian distribution, which implies

that pθ(z
(t−1)
x |z(t)x ) = N

(
z
(t−1)
x ;µθ(z

(t)
x , t),Σθ(z

(t)
x , t)

)
, where the variance Σθ(z

(t)
x , t) can be

fixed to a known constant Ho et al. (2020) or learned with a separate neural network (Nichol &
Dhariwal, 2021), while the mean can be approximately computed by adding z

(0)
x as a condition,

µθ(z
(t)
x , t) =

√
αt(1−ᾱt−1)

1−ᾱt
z
(t)
x +

√
ᾱt−1βt

1−ᾱt
z
(0)
x .

To improve the efficiency of sampling of DDPM, DDIM (Song et al., 2021a) formulates an alter-
native non-Markovian noising process with the same forward marginals as DDPM, but rewrites the
probability pθ(z

(t−1)
x |z(t)x ) in reverse process as a desired standard deviation σt. DDIM them derives

the following distribution in the reverse process,

qσ(z
(t−1)
x |z(t)x , z(0)x ) = N

(
z(t−1)
x ;

√
ᾱtz

(0)
x +

√
1− ᾱt−1 − σ2

t ϵ
(t), σ2

t I

)
, (2)

where ϵ(t) = (z
(t)
x −

√
ᾱz

(0)
x )/(1− ᾱ) shows the direction pointing to z

(t)
x .

3 MODEL ARCHITECTURE

Our training dataset consists of pairs (i,x) of IP instances i and their corresponding feasible solu-
tions x. Given an instance i, let zi ∈ Rn×d and zx ∈ Rn×d be the embeddings of the IP instance
and the solution respectively, where n is the number of variables and d is the embedding dimension.
It is worth noting that the same IP instance can have multiple different feasible solutions, meaning
that we need to model the distribution of feasible solutions, which are discrete, by conditioning on
a given IP instance. However, diffusion models, i.e. DDPMs (Ho et al., 2020; Sohl-Dickstein et al.,
2015), mostly focus on continuous distribution. We thus use an encoder to transform the solutions
x from a discrete space to a continuous embedding space zx, and construct a diffusion model to
learn the distribution of solutions given an IP embedding zi. Finally, a decoder is trained to recover
the predicted solution x̂ from the embedding zx. To effectively build the connection between the IP
instance i and solution x, we first apply Contrastive IP-Solution Pre-training (CISP) module, similar
to CLIP (Radford et al., 2021) which is used for text-to-image generation, to produce IP embedding
zi and solution embedding zx. Overall, our model consists of three key components: a Contrastive
IP-Solution Pre-training (CISP) module that produces IP embeddings zi and solution embeddings
zx; a diffusion module p(zx|zi) that generates solution embedding zx conditioned on IP embedding
zi; and a decoder module p(x|zx, zi) that recovers solution x from embedding zx conditioned on
IP embedding zi. We provide more details on each module in the following sections.

Contrastive IP-Solution Pre-training. Previous works (Nair et al., 2020; Han et al., 2023) show
the crucial importance of establishing the connection between the IP instances and the solutions, and
propose to implicitly learn this connection through the task of predicting feasible solutions. These
approaches may not exhibit strong generalization capabilities on new instances because they only
utilize the collected solutions in dataset without considering feasibility explicitly during training. To

3



Under review as a conference paper at ICLR 2024

more effectively capture this relationship, we propose to employ a contrastive learning task to learn
representations for IP instances and embeddings for solutions by constructing feasible and infeasi-
ble solutions. The intuition behind is to ensure that the IP embeddings stay close to the embeddings
of their feasible solutions, and away from the embeddings of the infeasible ones. To avoid ex-
plicitly constructing infeasible solutions, we proposed Contrastive IP-Solution Pre-training (CISP)
algorithm, as opposed to Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021), to
train IP encoder and solution encoder. Specifically, for IP encoder, we extract the representation of
IP instances via a bipartite graph structure (Gasse et al., 2019), and use the structure of GCNs from
Neural Diving (Nair et al., 2020) to generate all variables’ embeddings as IP embeddings zi. For
solution encoder, we use the encoder of the transformer to obtain the representations of each variable
as solution embeddings zx. Both zx and zi have the same dimension to compute pairwise cosine
similarities later. Since the number of variables in different IP instances may vary, we perform zero-
padding on zi and dummy-padding on x (i.e. padding 2 for 0-1 integer programming) to align the
dimensions. The zero-padding for zi is done to ensure that the cosine similarity remains unaffected.
CISP algorithm then learns to maximize the similarity between embeddings of IP and corresponding
solution pairs, and to minimize the similarity between the embeddings of incorrect pairs, which is
achieved through optimizing a symmetric cross-entropy loss, as detailed in Appendix A.1.

Diffusion Generation. To leverage diffusion models for generating feasible solutions (dis-
crete variables), we use the solution embedding zx ∈ Rn×d from the aforementioned CISP
as the objective of generation. In addition, zi is considered as a condition for generating
high-quality results. According to Ho et al. (2020), we parameterize pθ(z

(t−1)
x |z(t)x , zi) =

N
(
z
(t−1)
x ;µθ(z

(t)
x , zi, t),Σθ(z

(t−1)
x , zi, t)

)
,∀t ∈ [T, T−1, ..., 1] in reverse process, where z(0)x =

zx. Different from predicting the noise of each step in a general diffusion training phase, we predict
zx directly as it empirically performs better. The training loss is defined as follows,

LMSE ≜ E
t,z

(t)
x

[
∥fθ(z(t)x , zi, t)− zx∥2

]
, (3)

where fθ is an encoder-only transformer model and z
(t)
x =

√
ᾱtzx +

√
1− ᾱtϵ

(t), ϵ(t) ∼ N (0, I).
The specific model structure can be found in Appendix A.2.

Solution Decoding. The decoder dϕ plays a crucial role in reconstructing the solution x from
the solution embedding zx. To enhance the robustness of the solution recovery, we jointly
train the decoder dϕ with the diffusion model. Specifically, we concatenate the solution em-
bedding ẑx = fθ(z

(t)
x , zi, t) generated by the diffusion model with the IP embedding zi, and

use the concatenated vector as input to a transformer encoder to obtain the reconstructed solu-
tion x̂ = dϕ(ẑx, zi). This process is associated with the cross-entropy loss defined as: LCE ≜
−Ex[log x̂] = −Ex [logdϕ(ẑx, zi)]. To explicitly account for constraints in the training process,
we introduce a penalty term to measure the degree of constraint violation. More specifically, let
aTk be the kth row of matrix A in equation 1, the constraint violation (CV) loss is defined as
LCV ≜ 1

m

∑m
k=1 max(aTk x̂ − bk, 0), where m is the number of constraints. The total loss for

training diffusion and decoder therefore consists of the three parts:

L = LMSE + LCE + λLCV, (4)

where λ is a hyper-parameter to regulate the penalty. The full training procedure is given in Algo-
rithm 2 in Appendix A.3 and the training details can be found in Appendix A.7.

4 IP GUIDED SAMPLING

Once the models have been trained, we can then sample variable assignments by running the sam-
pling algorithm of DDPM or DDIM from a random Gaussian noise z

(T )
x ∼ N (0, I). Interestingly

we find that, without suitable guidance, diffusion model is prone to generate inaccurate distributions,
e.g. violating constraints for a given IP instance as shown in section 5.1. We thus consider the con-
straints information (A,b) and objective coefficient c during sampling. We present the IP guided
diffusion sampling for both DDPM and DDIM, of which the latter is faster and better in terms of the
quality and feasibility, as shown in Section 5.

4



Under review as a conference paper at ICLR 2024

4.1 IP GUIDED DIFFUSION SAMPLING

Consider a conditional diffusion model pθ(z
(t)
x |z(t+1)

x , zi), we first introduce constraint guidance
by designing each transition probability as

pθ,ϕ(z
(t)
x |z(t+1)

x , zi,A,b) = Zpθ(z
(t)
x |z(t+1)

x , zi)e
−scϕ(z

(t)
x ,zi,A,b), (5)

where s is the gradient scale, Z is a normalizing constant and cϕ(z
(t)
x , zi,A,b) =∑m

k=1 max(aTk dϕ(z
(t)
x , zi) − bk, 0) measures the violation of constraints. Let µ and Σ be

the mean and variance of the Gaussian distribution representing pθ,ϕ(z
(t)
x |z(t+1)

x , zi). Then,
log pθ(z

(t)
x |z(t+1)

x , zi) = − 1
2 (z

(t)
x − µ)TΣ−1(z

(t)
x − µ) + C, where C is a constant. Consider

the Taylor expansion for cϕ at z(t)x = µ,

cϕ(z
(t)
x , zi,A,b) ≈ cϕ(µ, zi,A,b)+(z(t)x −µ)∇

z
(t)
x
cϕ(z

(t)
x , zi,A,b)|

z
(t)
x =µ

= (z(t)x −µ)g+C1,

where g = ∇
z
(t)
x
cϕ(z

(t)
x , zi,A,b)|

z
(t)
x =µ

and C1 is a constant. Similar to Classifier Guid-

ance (Dhariwal & Nichol, 2021), we assume that cϕ(z
(t)
x , zi,A,b) has low curvature compared

to Σ−1 and thus have the following,

log(pθ,ϕ(z
(t)
x |z(t+1)

x , zi,A,b)) ≈ −1

2
(z(t)x − µ)TΣ−1(z(t)x − µ)− s(z(t)x − µ)g + sC1 + C2

= −1

2
(z(t)x − µ+ sΣg)TΣ−1(z(t)x − µ+ sΣg) + C3, (6)

where C3 is a constant and can be safely ignored. Therefore, pθ,ϕ(z
(t)
x |z(t+1)

x , zi,A,b) can be
approximated by a Gaussian distribution with a mean shifted by −sΣg. We can further inject the
objective guidance to transition probability for acquiring high-quality solutions,

pθ,ϕ(z
(t)
x |z(t+1)

x , zi,A,b, c) = Zpθ(z
(t)
x |z(t+1)

x , zi)e
−s((1−γ)cϕ(z

(t)
x ,zi,A,b)+γoϕ(z

(t)
x ,zi,c)), (7)

where oϕ(z
(t)
x , zi, c) = cTdϕ(z

(t)
x , zi), c is the coefficient of objective from equation 1, and γ ∈

[0, 1] is the leverage factor for balancing constraint and objective. The corresponding sampling
method is called IP Guided Diffusion Sampling, as presented in Algorithm 3 in Appendix A.4.

4.2 NON-MARKOVIAN IP GUIDED SAMPLING

For the non-Markovian sampling scheme as used in DDIM, the method for conditional sampling is
no longer invalid. To guide the sampling process, existing studies (Ho & Salimans, 2022; Dhariwal
& Nichol, 2021) used the score-based conditioning trick from Song et al. (2021b) to construct a new
epsilon prediction. We found that this trick turns out ineffective in our problem setting, possibly due
to unique difficulties of finding feasible solutions in IP instances.

Instead, we find that adding a direction that guides the predicted solution to constraint region in each
step of reverse process helps generate more reasonable solutions. Specifically, we first generate the
predicted noise according to ẑ

(0)
x = fθ(z

(t)
x , zi, t), ϵ

(t)
θ =

z(t)
x −

√
ᾱtẑ

(0)
x√

1−ᾱt
. According to equation 2,

the transition equation of DDIM for z(t−1)
x from a sample z

(t)
x can be written as

z(t−1)
x =

√
ᾱtfθ(z

(t)
x , zi, t) +

√
1− ᾱt−1 − σ2

t ϵ
(t)
θ + σtϵt. (8)

where the first term is the prediction of z(0)x and the second term is the direction pointing to z
(t)
x .

To consider constraints in equation 1, we modify ϵ
(t)
θ by adding the direction of minimizing sum of

constraint violation, that is

ϵ̂
(t)
θ = ϵ

(t)
θ − s∇

z
(t)
x
cϕ(z

(t)
x , zi,A,b), (9)

where s is gradient scale. By replacing ϵ
(t)
θ in equation 8 with ϵ̂

(t)
θ , we obtain Non-Makovian Con-

straint Guided Sampling, which guides the solution generated in each transition to approach con-
straint region. Equivalently, it is to perform a gradient descent step with a step-size shrinking to zero

5



Under review as a conference paper at ICLR 2024

0

1

2

3

4
5

6

7
8

9

10
11

12

13

14

predicted solution

0

1

2

3

4
5

6

7
8

9

10
11

12

13

14

random sampling

0

1

2

3

4
5

6

7
8

9

10
11

12

13

14

partial solution

0

1

2

3

4
5

6

7
8

9

10
11

12

13

14

complete solution

0.0

0.2

0.4

0.6

0.8

1.0

Va
ria

bl
e 

Va
lu

e

0

1

2

3

4
5

6

7
8

9

10
11

12

13

14

step 0

0

1

2

3

4
5

6

7
8

9

10
11

12

13

14

step 10

0

1

2

3

4
5

6

7
8

9

10
11

12

13

14

step 50

0

1

2

3

4
5

6

7
8

9

10
11

12

13

14

step 100

0.0

0.2

0.4

0.6

0.8

1.0

Va
ria

bl
e 

Va
lu

e

0

1

2

3

4
5

6

7
8

9

10
11

12

13

14

step 0

0

1

2

3

4
5

6

7
8

9

10
11

12

13

14

step 10

0

1

2

3

4
5

6

7
8

9

10
11

12

13

14

step 50

0

1

2

3

4
5

6

7
8

9

10
11

12

13

14

step 100

0.0

0.2

0.4

0.6

0.8

1.0

Va
ria

bl
e 

Va
lu

e

Neural Diving

Unguided DDIM

IP Guided DDIM

Neural Diving

Unguided DDIM

IP Guided DDIM

Neural Diving

Unguided DDIM

IP Guided DDIM

Figure 2: The sampling results from different methods. For Neural Diving, we present the predicted
solution from GCN, random sampling according to the predicted solution, the partial solution ob-
tained via SelectiveNet (only node 1, 9, 13 are assigned to 0), and the completing result by calling
Completesol heuristic. For DDIM and IP Guided DDIM, we present the results from different time
steps (transformed to solution space by a decoder) during sampling.

as t → 0 when σt → 0. To further consider the objective function together with the constraint, we
can update ϵ

(t)
θ as follows:

ϵ̂
(t)
θ = ϵ

(t)
θ − s∇

z
(t)
x

(
(1− γ)cϕ(z

(t)
x , zi,A,b) + γoϕ(z

(t)
x , zi, c)

)
, (10)

where γ ∈ [0, 1] is the leverage factor for balancing constraint and objective. This method is called
Non-Markovian IP Guided Diffusion Sampling, as presented in Algorithm 4 in Appendix A.4.

5 EXPERIMENTS

This section empirically investigates the effectiveness of our method in solving IP instances. The
efficacy is evaluated with two metrics: feasible ratio and objective value. The feasible ratio measures
the proportion of feasible solutions among all sampled solutions and the objective value obtained
from the generated feasible solutions measures the solution quality. We provide detailed description
of the four datasets, i.e., Set Cover (SC), Combinatorial Auction (CA), Capacitated Facility Location
(CF), and Independent Set (IS), along with baseline methods, Neural Diving (ND) (Nair et al.,
2020), Predict-and-search algorithm (PS) (Han et al., 2023), SCIP 8.0.1 (Bestuzheva et al., 2023) and
Gurobi 9.5.2 (Gurobi Optimization, 2021) in Appendix A.6. Additionally, we include the optimal
objective values (obtained through running Gurobi for 100 seconds on each instance) as ground-
truth. To ensure clarity, we use IP Guided DDPM to denote the (Markovian) IP Guided Diffusion
sampling in Section 4.1, and IP Guided DDIM to represent the Non-Markovian IP Guided Diffusion
sampling in Section 4.2. In the following, we first illustrate the guided diffusion sampling and
emphasize its distinctions to Neural Diving and vanilla generation process in diffusion models in
Section 5.1. Further, we evaluate the feasibility and quality of solutions generated by IP guided
DDIM across all four datasets in Section 5.2. In Section 5.3, we demonstrate the scalability of
our approach by applying it to larger instances and present the outcomes of qualitative analysis of
solutions. Furthermore, we conduct an ablation study to investigate the impact of different guided
approaches and contrastive learning in Appendix A.9. We use a workstation with two Intel(R)
Xeon(R) Platinum 8163 CPU @ 2.50GHz, 176GB ram and two Nvidia V100 GPUs throughout the
experiments. The detailed hyper-parameters for IP guided sampling can be found in Appendix A.10.
We provide the total training and inference time in Appendix A.8.

6



Under review as a conference paper at ICLR 2024

0 20 40 60 80 100
Instance

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Fe
as

ib
le

 R
at

io

SC

0 20 40 60 80 100
Instance

CA

0 20 40 60 80 100
Instance

CF

0 20 40 60 80 100
Instance

IS

ND (low coverage) ND (high coverage) IP Guided DDIM IP Guided DDPM

Figure 3: The feasible ratio in 100 instances, with each instance sampled 30 (partial) solutions.

Instance
IP Guided

DDIM
IP Guided

DDPM
IP Guided DDIM

+ Completesol
ND (low coverage)

+ Completesol
PS + Gurobi SCIP Gurobi Optimal

obj. fea. obj. fea. obj. fea. obj. fea. obj. obj. obj. obj.

SC (min) 533.5 99.8% 577.9 95.7% 255.5 100% 849.0 100% 593.7 1967.0 522.4 168.28
CA (max) 26916.9 97.1% 800.3 87.3% 32491.1 99.7% 30143.6 87.0% 31159.5 28007.4 30052.0 36102.6
CF (min) 25119.2 89.7% 58488.1 44.0% 14224.1 100% 14259.8 81.3% 32119.8 84748.4 50397.3 11405.5
IS (max) 455.6 99.7% 129.9 100% 639.4 100% 484.1 90.4% 587.9 447.8 415.5 685.3

Table 1: The average objective value (obj.) and feasible ratio (fea.) for 100 instances.

5.1 ILLUSTRATIVE EXPERIMENTS

The maximal independent set problem involves finding the largest subset of nodes in an undirected
graph where no two nodes are connected. We focus on an illustrative example: a graph consisting
of 15 nodes and 22 edges. This graph can be transformed into an integer programming (IP) instance
with 15 variables and 22 constraints. The graph is depicted in Figure 2, and we present the results
from Neural Diving, and from the different time steps of unguided DDIM and IP Guided DDIM.
Among the three algorithms, Neural Diving fixes only three node values and uses the Completesol
heuristic to find an independent set containing seven nodes. However, the random sampling result
from Neural Diving is infeasible. Unguided DDIM is unable to find a feasible solution. In contrast,
IP Guided DDIM is able to fetch the optimal solution by finding an independent set containing eight
nodes during the sampling process. Notably, the quality of the solution improves as the sampling
process progresses. The independent set contains 5 nodes at step 10, 7 nodes at step 50, and finally
8 nodes (the optimal solution) at step 100. These indicate that IP Guided DDIM outperforms Neural
Diving and Unguided DDIM in finding the optimal solution for this illustrative example.

5.2 PERFORMANCE EVALUATION

In this section, we evaluate the performance of different methods by comparing their average feasible
ratios and average objective values across four datasets mentioned earlier. The average feasible
ratios and objective values are computed for each method in 100 instances from the test set. For
each instance, we sample 30 solutions and calculate the corresponding metrics, which allows us
to assess the performance of each method in terms of both solution feasibility and objective value
across the different datasets.

We first report the feasible ratio from different methods in all 4 datasets. We compare the feasibility
ratio of the solutions generated by IP Guided Diffusion with those generated by ND. A prescribed
coverage threshold C is crucial in ND to ensure the feasibility of partial solutions, because a higher
C decreases the probability of generating feasible partial solutions in ND. Thus, we trained two vari-
ants of ND with different coverage thresholds in this experiment. For the SC, CA, and IS datasets,
the coverage is set to 0.2 (low coverage) and 0.3 (high coverage) respectively. However, for the CF
dataset, the coverage is set to 0.1 and 0.2 due to the difficulty in finding feasible partial solutions
when C > 0.2. Figure 3 presents the average feasible ratio for 100 instances, where a higher ratio
indicates better feasibility. In this comparison, IP guided DDIM outperforms other methods in terms
of generating feasible solutions for all datasets.

To more comprehensively evaluate the performance of the diffusion model, we compare it against
different baselines. In the case of ND, we use the low coverage model to prioritize the feasibility
of partial solutions. We then apply the Completesol heuristic from SCIP to complete these partial

7



Under review as a conference paper at ICLR 2024

Size
IP Guided

DDIM
IP Guided

DDPM
IP Guided DDIM

+ Completesol
ND (low coverage)

+ Completesol
PS + Gurobi SCIP Gurobi Optimal

obj. fea. obj. fea. obj. fea. obj. fea. obj. obj. obj. obj.

small 533.5 99.8% 594.7 96.5% 255.5 100% 849.0 100% 593.7 1967.0 522.4 168.3
medium 486.8 99.9% 451.8 83.7% 217.4 100% 1145.8 100% 737.0 2236.2 718.8 140.4
large 464.9 100% 440.7 77.9% 195.9 100% 1465.6 100% 994.9 2386.0 1454.5 126.9

Table 2: The average objective value (obj.) and the feasible ratio (fea.) for 100 instances in 3
different size SC datasets.

200 300 400 500 600 700 800
Objectives

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Fr
eq

ue
nc

y

Gurobi Heuristic
Optimal
IP Guided DDIM
IP Guided DDIM + CompleteSol

(a) SC instance (minimization).

400 450 500 550 600 650 700
Objectives

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
eq

ue
nc

y

Gurobi Heuristic
Optimal
IP Guided DDIM
IP Guided DDIM + CompleteSol

(b) IS instance (maximization).

Figure 4: The objective distribution of 1000 solutions sampled from a single instance.

solutions and measure their objective values. In the case of the PS algorithm, we construct a trust
region using partial solutions with the same proportion of assigned variables as ND and use Gurobi
as the Solver for its modified instances, with the best heuristic solutions found as a benchmark.
For SCIP, we adopt the first solution obtained through non-trivial heuristic algorithms during the
solving phase. For Gurobi, we use the best heuristic solution for each instance as a benchmark.
These approaches guarantee reasonable initial solutions to compare against. Our methods are able
to generate complete feasible solutions, and can produce partial solutions by randomly sampling
a certain proportion of variables from the complete solutions. For a fair comparison, we report
the quality of complete solutions generated by our methods (IP Guided DDIM/DDPM) and the
quality of partial solutions sampled from the complete solutions. We then use CompleteSol to fill
in the remaining variables (IP Guided DDIM + CompleteSol). The partial solutions have the same
expected proportion of assigned variables (coverage) as ND. The results are presented in Table 1.
Clearly, the combination of partial solutions from IP guided DDIM and the Complete heuristic
outperforms all other methods in terms of both feasible ratio and objective values. Furthermore,
solutions generated through IP guided diffusion sampling show a 10% improvement in feasible
ratios for the CA, CF, and IS datasets. For the SC dataset, all methods exhibit comparable feasible
ratios. In contrast, in the CF and IS datasets, IP guided diffusion also generates solutions of better
quality than both the heuristic solutions of SCIP and Gurobi.

5.3 SCALABILITY TEST AND QUALITATIVE ANALYSIS

Practitioners often aim to apply the models learned to solve problems of larger scales than the
ones used for data collection and training. To estimate how well a model can generalize to big-
ger instances, we evaluate its performance on datasets of varying sizes from the Set Cover problem
(minimization problem). We utilize three size categories: small (2000 variables, 1000 constraints),
medium (3000 variables, 1500 constraints), and large (4000 variables, 2000 constraints). It is worth
noting that all models were trained using the small-size dataset. The results in table 2 demonstrate
that IP guided DDPM consistently performs well across all three different-sized datasets, indicating
that our framework possesses strong generalization capabilities.

Diffusion models are generative models that capture the distribution of a dataset. In this experiment,
we focus on the distribution of solutions generated by our methods. We take a single instance from

8



Under review as a conference paper at ICLR 2024

the SC dataset and IS dataset and use the IP Guided DDIM algorithm to generate 1000 complete
feasible solutions. We also randomly sample 20% of variable values from each solution and use the
CompleteSol heuristic to fill in the remaining variables. We analyze the distribution of objective
values for these complete solutions and compare them with the optimal objective values and the best
heuristic solutions found by the Gurobi heuristic. The results are shown in Figure 4. Clearly, the
complete solutions directly generated by the IP Guided DDIM algorithm are superior to the best
solutions from the Gurobi heuristic. Furthermore, the objective values from the partial solutions
completed by the CompleteSol heuristic are closer to the optimal value.

6 RELATED WORK

We start the related work section with a summary of deep learning techniques used in the construc-
tion of feasible solutions for Integer Programming (IP) problems. Gasse et al. (2019) propose a
method that combines a bipartite graph with a Graph Convolutional Network (GCN) to extract rep-
resentations of Integer Programming (IP) instances. Although this approach is primarily employed
to learn the branching policy in the branch and bound algorithm, it is worth noting that this modeling
method can also be utilized for the prediction of solutions for IP instances. However, the solutions
produced by GCN directly are often infeasible or sub-optimal. To address this, Neural Diving (Nair
et al., 2020) leverages the SelectiveNet (Geifman & El-Yaniv, 2019) to assign values to only a subset
of the variables based on a coverage threshold, with the rest of the variables being completed via
an IP Solver. To further improve the feasibility of generated solutions, Han et al. (2023) proposes a
predict-search framework that combines the predictions from GNN model with trust region method.
However, this method still relies on IP solver to solve a modified instance (adding neighborhood
constraints to origin instance) in order to get complete solutions. Similar to Nair et al. (2020), Khalil
et al. (2022) integrate GNN into integer programming solvers and apply it to construct a partial so-
lutions through a prescribed rounding threshold, which is then completed using SCIP. In contrast,
our method aims to learn the latent structure of IP instances by diffusion models, and obtains com-
plete feasible solutions through guided diffusion sampling, without any reliance on the IP solver. In
Appendix A.12, we discuss other relevant studies in the field of neural networks for solving integer
programming problems.

Another set of related works to our paper is diffusion models (Sohn et al., 2015; Ho et al., 2020).
As the latest state-of-the-art family of deep generative models, diffusion models have demonstrated
their ability to enhance performance across various generative tasks (Yang et al., 2022). In this
paper, we focus our discussion specifically on conditional diffusion models. Unlike unconditional
generation, conditional generation emphasizes application-level contents as a condition to control
the generated results based on predefined intentions. To enable this conditioning, Dhariwal & Nichol
(2021) introduce the concept of classifier guidance, which enhances sample quality by condition-
ing the generative process on an additional trained classifier. In the same vein, Ho & Salimans
(2022) propose a joint training strategy for both conditional and unconditional diffusion models,
i.e., classifier-free guidance. This approach combines the resulting conditional and unconditional
scores to achieve a balance between sample quality and diversity. This idea has also found its effec-
tiveness in Topology Optimization (Mazé & Ahmed, 2023). We thus take a similar derivation from
the classifier guidance and devise IP-guided diffusion sampling by incorporating the objectives and
constraints into the transition probability.

7 CONCLUSION

In this paper, we presented a comprehensive framework for generating feasible solutions for Integer
Programming (IP) problems. We utilized the CISP approach to establish a link between IP instances
and their corresponding solutions, allowing to obtain IP embeddings and solution embeddings. To
effectively capture the distribution of feasible solutions, we leveraged diffusion models, which are
known for their powerful learning capabilities, to learn the distribution of solution embeddings. We
further employed a solution decoder to reconstruct the solutions from their embeddings. Impor-
tantly, we proposed an IP guided sampling algorithm that explicitly incorporates the objective and
constraint information to generate high-quality solutions. The experimental results on four distinct
datasets demonstrate the superiority of our approach to the state-of-the-art.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Tomer Amit, Eliya Nachmani, Tal Shaharabany, and Lior Wolf. Segdiff: Image segmentation with
diffusion probabilistic models. CoRR, abs/2112.00390, 2021. URL https://arxiv.org/
abs/2112.00390.

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch. In
International conference on machine learning, pp. 344–353. PMLR, 2018.

Reza Bayat. A study on sample diversity in generative models: GANs vs. diffusion models, 2023.
URL https://openreview.net/forum?id=BQpCuJoMykZ.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, et al. The scip
optimization suite 8.0. ACM Trans. Math. Softw., 49(2):22:1–22:21, 2023. doi: 10.1145/3585516.
URL https://doi.org/10.1145/3585516.

George Dantzig. Linear programming and extensions. Princeton university press, 1963.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Ac-
celerating primal solution findings for mixed integer programs based on solution prediction. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 1452–1459, 2020a.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Ac-
celerating primal solution findings for mixed integer programs based on solution prediction. In
Proceedings of the aaai conference on artificial intelligence, volume 34, pp. 1452–1459, 2020b.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an integrated reject
option. In International conference on machine learning, pp. 2151–2159. PMLR, 2019.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087–18097, 2020.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and
Xiaodong Luo. A GNN-guided predict-and-search framework for mixed-integer linear pro-
gramming. In International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=pHMpgT5xWaE.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. CoRR, abs/2207.12598, 2022.
doi: 10.48550/arXiv.2207.12598. URL https://doi.org/10.48550/arXiv.2207.
12598.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

10

https://arxiv.org/abs/2112.00390
https://arxiv.org/abs/2112.00390
https://openreview.net/forum?id=BQpCuJoMykZ
https://doi.org/10.1145/3585516
https://openreview.net/forum?id=pHMpgT5xWaE
https://openreview.net/forum?id=pHMpgT5xWaE
https://doi.org/10.48550/arXiv.2207.12598
https://doi.org/10.48550/arXiv.2207.12598


Under review as a conference paper at ICLR 2024

André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle
routing problem. In Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilkina, Michela Milano,
Senén Barro, Alberto Bugarı́n, and Jérôme Lang (eds.), ECAI 2020 - 24th European Conference
on Artificial Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain, August
29 - September 8, 2020 - Including 10th Conference on Prestigious Applications of Artificial
Intelligence (PAIS 2020), volume 325 of Frontiers in Artificial Intelligence and Applications, pp.
443–450. IOS Press, 2020. doi: 10.3233/FAIA200124. URL https://doi.org/10.3233/
FAIA200124.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Automated configuration of mixed integer
programming solvers. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems: 7th International Conference, CPAIOR 2010, Bologna,
Italy, June 14-18, 2010. Proceedings 7, pp. 186–202. Springer, 2010.

Naoki Katoh and Toshihide Ibaraki. Resource allocation problems. Handbook of Combinatorial
Optimization: Volume1–3, pp. 905–1006, 1998.

James E Kelley, Jr. The cutting-plane method for solving convex programs. Journal of the society
for Industrial and Applied Mathematics, 8(4):703–712, 1960.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch
in mixed integer programming. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016.

Elias B Khalil, Christopher Morris, and Andrea Lodi. Mip-gnn: A data-driven framework for guid-
ing combinatorial solvers. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 10219–10227, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey. Operations research,
14(4):699–719, 1966.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Stephen J Maher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner, Robert Lion
Gottwald, Gregor Hendel, Thorsten Koch, Marco Lübbecke, Matthias Miltenberger, et al. The
scip optimization suite 4.0. 2017.

François Mazé and Faez Ahmed. Diffusion models beat gans on topology optimization. In Proceed-
ings of the AAAI Conference on Artificial Intelligence (AAAI), Washington, DC, 2023.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

CC Pantelides, MJ Realff, and N Shah. Short-term scheduling of pipeless batch plants. Chemical
engineering research & design, 73(4):431–444, 1995.

David Pisinger and Stefan Ropke. Large neighborhood search. Handbook of metaheuristics, pp.
99–127, 2019.

Yves Pochet and Laurence A Wolsey. Production planning by mixed integer programming, volume
149. Springer, 2006.

11

https://doi.org/10.3233/FAIA200124
https://doi.org/10.3233/FAIA200124
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=Bkg6RiCqY7


Under review as a conference paper at ICLR 2024

Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and Andrea
Lodi. Ecole: A gym-like library for machine learning in combinatorial optimization solvers. arXiv
preprint arXiv:2011.06069, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Tadeusz Sawik. Scheduling in supply chains using mixed integer programming. John Wiley & Sons,
2011.

Edward Allen Silver, David F Pyke, Rein Peterson, et al. Inventory management and production
planning and scheduling, volume 3. Wiley New York, 1998.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28, 2015.

Jialin Song, ravi lanka, Yisong Yue, and Bistra Dilkina. A general large neighborhood search
framework for solving integer linear programs. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
20012–20023. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/e769e03a9d329b2e864b4bf4ff54ff39-Paper.pdf.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021a. URL https://openreview.net/forum?id=
St1giarCHLP.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021b. URL https://openreview.net/forum?id=
PxTIG12RRHS.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201,
2021.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming:
Learning to cut. In International conference on machine learning, pp. 9367–9376. PMLR, 2020.

Paolo Toth and Daniele Vigo. The vehicle routing problem. SIAM, 2002.

L.A. Wolsey. Integer Programming. Wiley Series in Discrete Mathematics and Optimization. Wi-
ley, 1998. ISBN 9780471283669. URL https://books.google.co.uk/books?id=
x7RvQgAACAAJ.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy
for integer programming. Advances in Neural Information Processing Systems, 34:30075–30087,
2021.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao,
Wentao Zhang, Ming-Hsuan Yang, and Bin Cui. Diffusion models: A comprehensive survey of
methods and applications. CoRR, abs/2209.00796, 2022. doi: 10.48550/arXiv.2209.00796. URL
https://doi.org/10.48550/arXiv.2209.00796.

Taehyun Yoon. Confidence threshold neural diving. CoRR, abs/2202.07506, 2022. URL https:
//arxiv.org/abs/2202.07506.

12

https://proceedings.neurips.cc/paper/2020/file/e769e03a9d329b2e864b4bf4ff54ff39-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e769e03a9d329b2e864b4bf4ff54ff39-Paper.pdf
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://books.google.co.uk/books?id=x7RvQgAACAAJ
https://books.google.co.uk/books?id=x7RvQgAACAAJ
https://doi.org/10.48550/arXiv.2209.00796
https://arxiv.org/abs/2202.07506
https://arxiv.org/abs/2202.07506


Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 CISP ALGORITHM

The study conducted by Radford et al. (2021) underscores the substantial efficacy of contrasting
pre-training in capturing multi-modal data, with particular emphasis on its application in the text-
to-image transfer domain. Drawing inspiration from this seminal work, we introduce the CISP
algorithm. The primary objective of CISP is to facilitate the learning of the IP Encoder EI and
the Solution Encoder EX, as illustrated in Algorithm 1. Within the scope of our investigation, we
work with a mini-batch of data comprising instances denoted as I and their corresponding solutions
denoted as X. The batch’s bipartite graph representing instances I is denoted as G. We use zI
and zX to denote the embeddings of instances and solutions, respectively. Notably, both zI and zX
possess identical dimensions, enabling us to compute their cosine similarity. Furthermore, within
the mini-batch, we use zI,j and zX,k to reference the jth sample in zI and the kth sample in zX,
respectively. Within this conceptual framework, we leverage the matrix s ∈ RN×N to represent
the similarity between N instances and N solutions. Each element sj,k, where j, k ∈ {1, ..., N},
corresponds to the logit employed in computation of the symmetric cross-entropy loss.

Algorithm 1 Contrastive IP-Solutioin Pre-Training (CISP)
Input: The mini-batch size N , the mini-batch bipartite graph representations of IP instance set I ,
denoted by G, and corresponding mini-batch solutions X
Require: IP Encoder EI , Solution Encoder EX, temperature parameter τ

1: Get IP and solution embeddings zI , zX = EI(G),EX(X) // N × n × d, where n is the padding
length of variables and d is the embedding size.

2: for j ∈ {1, 2, ..., N} and k ∈ {1, 2, ..., N} do
3: Flatten zI,j and zX,k into vectors z̄I,j and z̄X,k

4: sj,k = eτ · z̄TI,j z̄X,k/(∥z̄I,j∥∥z̄X,k∥) // compute similarity for IP and solution embeddings
5: end for
6: Set labels y = (1, 2, ..., N)
7: Compute cross-entropy loss LI by utilizing sj,∗ and y.
8: Compute cross-entropy loss LX by utilizing s∗,k and y.
9: Compute the symmetric loss L = (LI + LX)/2

10: return L

A.2 DIFFUSION MODEL STRUCTURE

The diffusion model is a transformer encoder-based model, as illustrated in Figure 5. At step t, we
concatenate the IP embedding zi with the noised solution embedding z

(t)
x and sinusoidal timestep

embeddings generated from timestep t. Subsequently, we utilize the Transformer Encoder to obtain
the predicted solution ẑx. Moreover, we use masks in transformers to skip the computation of the
padded variable components.

Transformer
Encoder

+
Q

K

Sinusoidal
Embedding

+

V

Figure 5: Diffusion model fθ(z
(t)
x , zi, t)

13



Under review as a conference paper at ICLR 2024

A.3 TRAINING DIFFUSION AND SOLUTION DECODER

In this section, we present the procedure to train diffusion and decoder models simultaneously.

Algorithm 2 Training diffusion and solution decoder
Require: IP instance embedding zi from CISP, solution embedding zx from CISP, diffusion model
fθ, and solution decoder dϕ.

1: repeat
2: t ∼ Uniform({1, ..., T})
3: ϵ ∼ N (0, I)
4: ẑx ← fθ

(√
ᾱtzx +

√
1− ᾱtϵ, zi, t

)
// predicted ẑx

5: x̂← dϕ(ẑx, zi) // reconstructed solution x̂
6: Take gradient descent step to minimize total loss in equation 4
7: until Reaches a fixed number epochs or satisfies an early stopping criteria

A.4 IP GUIDED SAMPLING ALGORITHMS

The IP guided diffusion sampling algorithms for both DDPM and DDIM are presented in Algo-
rithm 3 and Algorithm 4, respectively.

Algorithm 3 IP Guided Diffusion Sampling
Input: gradient scale s, leverage factor γ, constraint information (A,b) and objective coefficient c
Require: diffusion model fθ, solution decoder dθ

1: z
(T )
x ∼ N (0, I)

2: for t from T to 1 do
3: µ←

√
αt(1−ᾱt−1)

1−ᾱt
z
(t)
x +

√
ᾱt−1βt

1−ᾱt
fθ(z

(t)
x , zi, t)

4: Σ← Σθ(z
(t−1)
x |z(t)x , zi)

5: µ← µ− sΣ∇
z
(t−1)
x

(
(1− γ)cϕ(z

(t)
x , zi,A,b) + γoϕ(z

(t)
x , zi, c)

) ∣∣∣
z
(t)
x =µ

6: z
(t)
x ∼ N (µ,Σ)

7: end for
8: return dϕ(z

(0)
x , zi).

Algorithm 4 Non-Markovian IP Guided Diffusion Sampling
Input: gradient scale s, leverage factor γ, constraint information (A,b) and objective coefficient c
Require: diffusion model fθ, solution decoder dθ

1: z
(T )
x ∼ N (0, I)

2: for t from T to 1 do
3: ϵ

(t)
θ ← (z

(t)
x −

√
ᾱtfθ(z

(t)
x , zi, t))/

√
1− ᾱt.

4: ϵ̂
(t)
θ ← ϵ

(t)
θ − s∇

z
(t)
x

(
(1− γ)cϕ(z

(t)
x , zi,A,b) + γoϕ(z

(t)
x , zi, c)

)
5: z

(t−1)
x ←

√
ᾱtfθ(z

(t)
x , zi, t) +

√
1− ᾱt−1 − σ2

t ϵ̂
(t)
θ + σtϵt

6: end for
7: return dϕ(z

(0)
x , zi).

A.5 FEATURE DESCRIPTIONS FOR VARIABLES NODES, CONSTRAINT NODES AND EDGES

In Table 3, we provide a description of the features that are extracted using the Ecole library (Prou-
vost et al., 2020) and used as IP bipartite graph representations for training the GCN model.

14



Under review as a conference paper at ICLR 2024

Feature Description

Variable

type Type(binary, integer, impl. integer, continuous) as a one-hot encoding.
coef Objective coefficient, normalized.
has lb Lower bound indicator.
has ub Upper bound indicator.
sol is at lb Solution value equals lower bound.
sol is at ub Solution value equals upper bound.
sol frac Solution value fractionality.
basis status Simplex basis status(lower, basic, upper, zero) as a one-hot encoding.
reduced cost Reduced cost, normalized.
age LP age, normalized.
sol val Solution value.

Constraint

obj cos sim Cosine similarity with objective.
bias Bias value, normalized with constraint coefficients.
is tight Tightness indicator in LP solution.
dualsol val Dual solution value, normalized.
age LP age, normalized with total number of LPs.

Edge coef Constraint coefficient, normalized per constraint.

Table 3: Description of the variable, constraint and edge features in our bipartite graph representa-
tions.

A.6 DATASETS AND BASELINES

A.6.1 DATASETS.

We use four self-generated IP datasets from the Ecole library (Prouvost et al., 2020):

• Set Cover (SC) is to find the least number of subsets that cover a given universal set.
• Combinatorial Auction (CA) is to help bidders place unrestricted bids for bundles of goods and

the aim is to maximize the revenue.
• Capacitated Facility Location (CF) is to locate a number of facilities to serve the sites with a given

demand and the aim is minimize the total cost.
• Independent Set (IS) is to find the maximum subset of nodes of an undirected graph such that no

pair of nodes are connected.

For all datasets, we randomly generate 1000 instances (800 for training, 100 for validation and 100
for testing). Table 4 summarizes the numbers of constraints, variables and problem type of each
dataset. We then collect feasible solutions and their objective values for each instance by running
the Gurobi (Gurobi Optimization, 2021) or SCIP Bestuzheva et al. (2023), where the time limit is
set to 1000s for each instance. For those instances with a large number of feasible solutions, we only
keep 500 best solutions. We adopt the same features exacted via the Ecole library as in (Gasse et al.,
2019) and exclude those related to feasible solutions. The specific features are shown in Appendix
A.5.

A.6.2 BASELINES.

We compared our method with the following baselines:

• SCIP (Bestuzheva et al., 2023) (an open source solver): SCIP is currently one of the fastest
non-commercial solvers for mixed integer programming (MIP) and mixed integer nonlinear
programming (MINLP). Here, we focus on comparing the quality of initial solutions with
SCIP. Instead of relying on the first feasible solution generated by SCIP, which are often
of low quality due to the use of trivial heuristics, we employ the first solution produced
via non-trivial heuristic algorithms during the solving process of SCIP (Bestuzheva et al.,
2023) (i.e. the first feasible solution after the pre-solving stage of SCIP).

• Gurobi (Gurobi Optimization, 2021) (the powerful commercial solver): Gurobi is a highly
efficient commercial mathematical optimization solver. As our focus is on comparing fea-

15



Under review as a conference paper at ICLR 2024

Dataset Constraints Variables Problem Type

SC 1000 2000 minimize
CA 786 1500 maximize
CF 5051 5050 minimize
IS 6396 1500 maximize

Table 4: Instance size of each dataset

sible solutions, we consider the best solutions obtained through Gurobi’s default heuristic
algorithms as a benchmark.

• Neural Diving (ND) (Nair et al., 2020): Neural Diving adopts a solution prediction ap-
proach, training a GCN to predict the value of each variable. It then incorporates Selec-
tiveNet (Geifman & El-Yaniv, 2019) to generate partial solutions with a predefined cov-
erage threshold C (e.g., a coverage threshold C = 0.2 means that the expectation of the
number of assigned variables by the neural network is 20%). This threshold is typically
set to be low (<0.5) to ensure the feasibility of partial solutions. In our experiments, to
evaluate the feasibility of solutions, we set two different coverage levels, namely low cover-
age (which usually indicates higher feasibility) and high coverage (which usually indicates
lower feasibility), for each dataset. We then compare the feasibility of the partial solutions
with the complete solutions generated by our methods. To assess the quality of solutions,
we employ the Completesol heuristic in SCIP (Algorithm 4 in Maher et al. (2017)) to en-
hance the partial solutions. This heuristic involves solving auxiliary IP instances by fixing
the variables from the partial solutions. By utilizing this heuristic, we can obtain more
complete solutions and evaluate their quality.

• Predict-and-search algorithm (PS) (Han et al., 2023): The PS algorithm, similar to Neural
Diving, utilizes graph neural networks to predict the value of each variable. It then searches
for the best feasible solution within a trust region constructed by the predicted partial so-
lutions. This method requires setting parameters (k0, k1) to represent the numbers of 0’s
and 1’s in a partial solution, and ∆ to define the range of the neighborhood region of the
partial solution. To search a high-quality feasible solution, this method adds neighborhood
constraints to origin instance, which produces modified IP instance. Therefore, an IP solver
such as SCIP or Gurobi is required to solve the modified instance and obtain feasible so-
lutions. In our experiments, we use Gurobi as the solver and control the parameters ∆
to ensure that the modified instance is 100% feasible. We considered the best heuristic
solutions from the modified instance found by Gurobi as our baseline.

A.7 TRAINING DETAILS

We trained the CISP and diffusion model on four IP datasets. Each dataset contained 800 training
instances, with 500 solutions collected for each instance. In each batch, we sampled 64 instances,
and for each instance, We sample one solution from 500 solutions in proportion to the probability of
the objective value. This implies that solutions with better objective values had a higher probability
of being sampled. We iterated through all instances (with one solution per instance) in each epoch.

For the Solution Encoder, we utilized a single transformer encode layer with a width of 128. The IP
encoder adopted the architecture described in Nair et al. (2020), using GCN to obtain embeddings
for all variables as IP embeddings. Both models transformed the features of the solution and IP
into latent variables with a dimension of 128, enabling convenient computation of cosine similarity
in CISP. The CISP was trained using the AdamW Optimizer (Loshchilov & Hutter, 2019). We
employed a decreasing learning rate strategy, starting with a learning rate of 0.001 and linearly
decaying it by a factor of 0.9 every 100 epochs until reaching 800 epochs. The model training was
performed with a batch size of 64.

For the diffusion model, we utilized a single-layer Transformer encoder with a width of 128 to
predict zx and adjusted the number of time steps to 1000. The forward process variances were set
as constants, increasing linearly from β1 = 10−4 to βT = 0.02, following the default setting of
DDPM (Ho et al., 2020). The solution decoder model was jointly trained with the diffusion model

16



Under review as a conference paper at ICLR 2024

and consisted of two Transformer encode layers with a width of 128. The loss function was defined
as the sum of the diffusion loss, decoder loss, and the penalty for violating constraints, as shown
in equation 4. Here, λ is set to be the number of variables in the instances from the training set,
excluding the IS dataset, where λ = 0. We trained diffusion and decoder model for 100 epochs with
batch size of 32 via Adam Optimizer (Kingma & Ba, 2015).

A.8 TRAINING AND INFERENCE TIME

In this section, we report the training time (including CISP pretraining and Diffusion model) for
each dataset, which takes 100 epochs for both CISP and Diffusion model to converge. Additionally,
we provide the total inference time for sampling 3000 solutions by using IP Guided DDIM and
DDPM. From Table 5, we observe that our method requires a reasonable amount of time for model
training. During the inference phase, IP Guided DDIM demonstrates faster performance compared
to IP Guided DDPM with average time of 0.46s-1.68s for sampling each solution. Moreover, as
shown in the experiment results from Section 5, IP Guided DDIM also achieves better performance
than DDPM, making it suitable for practical applications.

Dataset Training (CISP + Diffusion) IP Guided DDIM IP Guided DDPM

SC 24.4m 37.5m 374m
CA 9.3m 23m 233.5m
CF 71.7m 84m 805m
IS 11.1m 23m 234m

Table 5: Total training time and inference time for sampling 3000 solutions for each dataset

A.9 ABLATION STUDY

We ablate on unguided DDIM (with s = 0), constraint guided DDIM (with γ = 1), objective
guided DDIM (with γ = 0) models and IP guided DDIM on four datasets. We also include an
experiment where we train IP and solution embeddings directly via algorithm 2 without CISP, in
order to assess the advantages of contrastive learning, i.e. IP Guided DDIP w/o CISP in Table 6.
The results are presented in Table 6. Evidently, the constraint guidance is crucial in generating
feasible solutions, and the objective guidance further enhances the quality of solutions. Moreover,
the experiments demonstrate that CISP plays a crucial role in ensuring that the solutions produced
by our methods are more feasible. Therefore, combining both constraint and objective guidance
achieves good quality solutions with high probability.

Unguided
DDIM

Constraint Guided
DDIM

Objective Guided
DDIM

IP Guided DDIM
w/o CISP

IP Guided
DDIM

dataset
obj. fea. obj. fea. obj. fea. obj. fea. obj. fea.

SC (min) - 0.0% 63046.9 99.8% - 0.0% 763.4 99.8% 533.5 99.8%
CA (max) - 0.0% 5157.2 99.7% - 0.0% 23383.3 57.7% 26916.9 97.1 %
CF (min) - 0.0% 53311.2 74.1 % - 0.0% 31319.8 41.7% 25119.2 89.7%
IS (max) - 0.0% 386.5 100 % - 0.0% 479.1 68.9% 455.6 99.7%

Table 6: Ablation study for 100 instances in 4 datasets with different guidances.

A.10 HYPERPARAMETER FOR IP GUIDED SAMPLING

During the sampling process, we configured the number of steps to be 1000 for IP Guided Diffusion
sampling (IP Guided DDPM) and 100 for Non-Markovian IP Guided Diffusion sampling (IP Guided
DDIM). We provide the specific values for the gradient scale s and leverage factor γ in Table 7.

17



Under review as a conference paper at ICLR 2024

dataset
IP Guided DDIM IP Guided DDPM

s γ s γ

SC (small) 100,000 0.9 15,000 0.1
SC (medium) 150,000 0.9 22,500 0.1
SC (large) 200,000 0.9 30,000 0.1
CA 20,000 0.7 10,000 0.3
CF 1,000 0.7 500,000 0.1
IS 20,000 0.5 10,000 0.1

Table 7: s and γ settings in different dataset

A.11 HYPERPARAMETER TUNING EXPERIMENTS

In this experiment, we aim to investigate the effect of the gradient scale s and leverage factor γ,
as depicted in equation 7, on both IP guided sampling (IP Guided DDPM) and Non-Markovian IP
guided sampling (IP Guided DDIM). We utilize the SC and CA datasets to calculate the average
feasibility ratio (fea.) and average objective value (obj.) for each parameter group. The specific
results for SC can be seen in Table 8 and 9, while the results for CA are presented in Table 10
and 11. In general, a larger γ tends to lead to a better objective value but a lower feasibility ratio.
However, this relationship does not hold true in all cases. As for the gradient scale s, its choices
depend on the dataset and sampling algorithms employed.

s γ obj. fea.

60,000 0.1 5611.9 100%
60,000 0.3 2534.4 100%
60,000 0.5 1097.2 100%
60,000 0.7 1328.9 100%
60,000 0.9 693.5 100%
80,000 0.1 3108.1 100%
80,000 0.3 2216.6 100%
80,000 0.5 936.9 100%
80,000 0.7 1167.1 100%
80,000 0.9 605.3 99.5%

100,000 0.1 39421.2 100%
100,000 0.3 1462.5 100%
100,000 0.5 834.7 100%
100,000 0.7 1005.6 100%
100,000 0.9 539.1 100%

Table 8: IP Guided DDIM on the SC dataset.

s γ obj. fea.

15,000 0.1 594.7 96.5%
15,000 0.3 14663.8 100%
15,000 0.5 3285.6 100%
15,000 0.7 1285.6 97.0%
15,000 0.9 784.3 86%
20,000 0.1 915.1 100%
20,000 0.3 10245.4 100%
20,000 0.5 3385.9 100%
20,000 0.7 2007.8 100%
20,000 0.9 1418.6 100%
25,000 0.1 29553.3 100%
25,000 0.3 8560.6 100%
25,000 0.5 4162.8 100%
25,000 0.7 3288.83 100%
25,000 0.9 2415.2 100%

Table 9: IP Guided DDPM on the SC dataset.

A.12 OTHER RELATED WORK

Numerous studies have explored the application of deep learning methods in solving Integer Pro-
gramming (IP) problems, but these studies have different underlying approaches. In particular,
Bengio et al. (2021) categorize existing methods into three main groups:

• Group 1: End-to-end learning involves training a machine learning model to directly gen-
erate solutions based on input instances. In the context of solving IP problems, this entails
learning to construct solutions or improve existing solutions. Examples of construction
methods in this group include Nair et al. (2020); Yoon (2022); Han et al. (2023), which
have been discussed in Section 6. Another line in end-to-end learning focuses on learn-
ing to improve solutions, i.e., neighborhood search techniques (Hottung & Tierney, 2020;
Song et al., 2020; Wu et al., 2021; Sonnerat et al., 2021). These methods learn to search

18



Under review as a conference paper at ICLR 2024

s γ obj. fea.
10,000 0.1 5504.4 93.5%
10,000 0.3 18856.2 97.5%
10,000 0.5 23651.5 99.5%
10,000 0.7 26039.0 98.0%
10,000 0.9 28255.3 35.0%
20,000 0.1 8280.9 97.5%
20,000 0.3 21489.3 95.0%
20,000 0.5 24618.1 95.5%
20,000 0.7 26759.6 95.5%
20,000 0.9 28105.7 24.0%
30,000 0.1 10579.2 97.0%
30,000 0.3 22771.0 93.0%
30,000 0.5 26011.3 93.5%
30,000 0.7 26622.5 90.5%
30,000 0.9 28490.1 27.0%

Table 10: IP Guided DDIM on the CA dataset.

s γ obj. fea.
5,000 0.1 1310.1 73.5%
5,000 0.3 1518.5 58.0%
5,000 0.5 1844.5 22.0%
5,000 0.7 532.5 3.5%
5,000 0.9 - 0.0%
10,000 0.1 575.2 92.5%
10,000 0.3 782.5 86.5%
10,000 0.5 1270.3 66.0%
10,000 0.7 2126.5 17.5%
10,000 0.9 923.3 0.5%
20,000 0.1 285.1 99.5%
20,000 0.3 407.1 98.0%
20,000 0.5 744.1 91.5%
20,000 0.7 1430.5 57.5%
20,000 0.9 1885.9 2.0%

Table 11: IP Guided DDPM on the CA dataset.

for high-quality feasible solutions in the neighborhood of given initial solutions in order
to improve performance. It should be noted that these methods usually require a solver to
obtain an initial solution.

• Group 2: Learning to configure algorithms involves using machine learning to select the
values of hyperparameters in complex optimization algorithms. This can improve the effi-
ciency of solving problems (Hutter et al., 2010).

• Group 3: Learning alongside optimization focuses on developing existing CO algorithms,
particularly the branch-and-bound framework, that continuously utilize a machine learning
model throughout their execution. For example, learning to branch (He et al., 2014; Khalil
et al., 2016; Ding et al., 2020a; Balcan et al., 2018; Gupta et al., 2020) involves developing
machine learning algorithms to generate policies for variable selection when expanding the
branch and bound tree. Another works focus on learning to node selection (Khalil et al.,
2022; He et al., 2014), where the machine learning model learns a score policy for ”open”
nodes in the branch-and-bound tree and selects suitable nodes to obtain better performance.
Additionally, some approaches focus on generating cut planes to reduce the search space
during the solving process, such as those proposed by Ding et al. (2020b) and Tang et al.
(2020).

Our approach belongs to Group 1, specifically learning to construct solutions. The solutions gen-
erated by our method can be used as input for algorithms from other groups to further improve
performance. Importantly, to the best of our knowledge, our approach is the first to generate com-
plete and feasible solutions using pure neural techniques, without relying on any solvers. We refer
readers to Bengio et al. (2021) for a more thorough review.

19


	Introduction
	Background
	Model Architecture
	IP Guided Sampling
	IP Guided Diffusion Sampling
	Non-Markovian IP Guided Sampling

	Experiments
	Illustrative experiments
	Performance Evaluation
	Scalability test and qualitative analysis

	Related Work
	Conclusion
	Appendix
	CISP Algorithm
	Diffusion Model Structure
	Training Diffusion and Solution Decoder
	IP Guided Sampling Algorithms
	Feature Descriptions For Variables Nodes, Constraint Nodes And Edges
	Datasets and Baselines
	Datasets.
	Baselines.

	Training Details
	Training and Inference Time
	Ablation Study
	Hyperparameter for IP Guided Sampling
	Hyperparameter Tuning Experiments
	Other Related Work


