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Abstract

We present a novel application of SHAP (SHapley Additive exPlanations) to
enhance the interpretability of Reinforcement Learning (RL) models used for
Alzheimer’s Disease (AD) progression prediction. Leveraging RL’s predictive
capabilities on a subset of the ADNI dataset, we employ SHAP to explain the
model’s decision-making process. Our approach provides detailed insights into
the key factors influencing AD progression predictions, offering both global and
individual, patient-level interpretability. By bridging the gap between predictive
power and transparency, our work is a step towards empowering clinicians and
researchers to gain a deeper understanding of AD progression and facilitate
more informed decision-making in AD-related research and patient care. To
encourage further exploration, we open-source our codebase 1.

1 Introduction

Alzheimer’s disease (AD) is a progressive, irreversible, neurodegenerative disease that affects
millions of individuals worldwide [1]. AD is characterized by the progressive shrinking of the
brain and the eventual death of neurons. It causes memory and language deterioration, cognitive
deficits, and impairments in judgment as well as communication. Understanding the factors
driving AD progression and developing accurate prediction models are crucial for early diagnosis,
intervention, and improved patient outcomes [2].
While machine learning models have shown promise in predicting AD progression, their lack of
interpretability poses a significant challenge [3]. Explainability not only helps in understanding
the factors that contribute to AD progression but also enables clinicians to make informed
decisions regarding patient care [4]. Interpretability in supervised machine learning, where models
are trained on labeled data, differs from unsupervised machine learning, where models learn
patterns from unlabeled data. In supervised learning, interpretability focuses on understanding
the relationship between input features and the model’s predictions. However, in reinforcement
learning (RL), interpretability becomes more challenging due to the inherent sequential decision-
making nature of the problem, as well as the traditionally large state and action spaces associated
with RL environments [5].
In this work, we apply SHAP (SHapley Additive exPlanations) [6], a post-hoc explanation method,
to enhance the interpretability of an RL model for AD progression prediction. SHAP provides a
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method of assigning feature importance scores, quantifying the contribution of each feature to
the RL model’s output (i.e. actions). By leveraging SHAP, we gain valuable insights into the
relative importance of different features, shedding light on the factors driving AD progression in
a more interpretable manner.

2 Related Work

2.1 Modeling Alzheimer’s Disease Progression

Research into modeling the progression of Alzheimer’s disease can be generally classified into
mechanistic models and data-driven models. Mechanistic models rely on domain knowledge
to encode relationships among variables through algebraic and/or differential equations [7–10].
Data-driven models encompass a spectrum of techniques, including Bayesian models [11], event-
based models [12], mixed-effects models [13, 14], and machine learning models [15–17]. These
models leverage bio-marker data to establish connections between disease pathology, region size,
cognitive function, and demographic factors. See [18, 19] for recent literature reviews on the use
of AI/ML for AD diagnosis. These techniques exhibit a relatively low reliance on domain-specific
knowledge and are effective for short-term forecasting. More recently, [20] combined mechanistic
and reinforcement learning to propose a hybrid model that leverages RL’s ability to model this
task as a sequential decision making problem, and predict AD’s progression over years based on
baseline imaging/cognition data, as well as demographic features.

2.2 Explainable RL (XRL)

In response to the call for transparency in AI models, the domain of Explainable AI (XAI) has
witnessed significant momentum in recent years. Presently, the majority of XAI research has
been concentrated on tasks such as classification, however there has been a surge in research
dedicated to Explainable Reinforcement Learning (XRL) [21]. XRL research can be categorized
in various ways. The most prominent method of categorization splits XRL methods into (a)
transparent methods and (b) post-hoc explainability methods [22]. Transparent methods include
RL models that can be explained by themselves, whereas Post-Hoc explainability methods provide
explanations of RL algorithms after the models have been trained. Our work uses SHAP, which is
as a post-hoc explainability method with interaction data to explain the RL model’s predictions
[23]. SHAP uses the magnitude of influence from each variable in the environment after training
to quantify the interactions between and contributions of each variable towards the final prediction
of the model.
Another taxonomy of XRL methods categorizes methods as being one of (a) Feature Importance -
FI (b) Learning Process and MDP - LPM and (c) Policy Level - PL [24]. FI explanations describe
the reasoning behind taking an action, LPM explanations describe the most learning-influential
experiences of the model, and PL explanations summarize the long-term behavior of the model.
SHAP falls within the "Directly Generate Explanation" subcategory within FI. SHAP generates
an explanation after training from a non-interpretable policy enabling understanding of the
factors that influence a model towards its final predictions. Similarly, from [25], SHAP falls into
the model-explaining and explanation-generating category. This category describes methods
that generate explanations from the model without being explicitly self-explainable. Finally,
while SHAP is a very popular library used in XAI research, it has seen very limited use in RL
applications [26, 27] because of the traditionally large state and action spaces associated with
RL environments. Thus, we hope our work will increase the usage of such post-hoc explanation
tool in the growing field of XRL.

3 RL Model

In this section, we provide a brief overview of the RL model used to predict AD progression. The
model, presented in [20], leverages domain knowledge and RL to establish causal relationships
between various factors involved in AD progression. We first describe some of the important factors
used for AD diagnosis. Amyloid beta (Aβ), measured using florbetapir-PET scans, propagates
between brain regions, influencing brain structure (measured via MRI), activity (measured via
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Figure 1: The RL Model

fMRI), and cognition (measured through tests like Mini-Mental State Examination (MMSE) and
Alzheimer’s Disease Assessment Scale (ADAS11, ADAS13)). The model defines a hypothetical
variable, Ctask, which represents cognitive demand, and impacts brain activity. Brain activity,
in turn, affects cognition and contributes to neurodegeneration. The model also considers the
energetic cost associated with brain activity, which can further contribute to neurodegeneration.
The model defines these relationships using appropriate sets of differential equations (DEs), the
variables of which are defined below, whereas the DEs are provided at Appendix A. We refer the
interested reader to [20] for a detailed overview of the model.
The brain is represented as a graph GS = (V, E), where a node v ∈ V represents a brain region,
and an edge e ∈ E represents a tract. Let Xv(t) denote the size of a brain region v ∈ V at
time t, and X(t) = [X1(t), X2(t), ..., X|V |(t)]. Dv(t) is the instantaneous amyloid accumulation
in region v ∈ V at time t. The total amount of amyloid in a region is φv(t). Yv(t) denotes
the activity in region v ∈ V in support of cognition C(t) at time t. Although cognition, brain
size (Xv), and activity (Yv) are related, the exact relationship among them is unknown and
cannot be easily learned from limited data. The energetic cost M(t) represents the brain’s energy
consumption, which is proportional to its overall activity Yv(t) and serves as a cost associated with
supporting cognition. The model employed investigates two regions of interest, the hippocampus
(HC) and prefrontal cortex (PFC).
DEs provide relationships between some, but not all, factors relevant to AD. To address missing
relationships, the model formulates an optimization problem, which it solves using reinforcement
learning (RL). Fig 1 explains the working of the RL model. The environment is represented as a
simulator that encompasses the equations governing various factors, including D(t), ϕ(t), X(t),
Y (t), I(t), C(t), and M(t). The state at time t, denoted as S(t), comprises the current sizes of
the brain regions, X(t), the amyloid accumulation D(t) and the information processed by each
region at the previous time step, I(t − 1). The action at time t, denoted as A(t), is an element
of the action space A and specifies the change in information processed by each brain region
from the previous time point, i.e., ∆Iv(t) ∈ R for all v ∈ V .
The RL agent aims to balance the trade-off between two competing criteria: (i) minimizing the
discrepancy between the cognitive demand Ctask and the actual cognition C(t) and (ii) minimizing
the cost M(t) associated with supporting cognition. The reward R(t) at time t is defined as
follows, where λ is a parameter controlling the trade-off between the mismatch and the cost, and
the agent’s goal is to maximize this reward given by:

R(t) = − [λ(Ctask − C(t)) + M(t)] (1)

This model predicts disease progression by considering the interactions between these DEs,
effectively creating a simulator, and the actions taken by the RL agent.
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Figure 2: Using SHAP to explain the RL Model’s predictions

4 XRL: Using SHAP to explain RL model’s predictions

4.1 Shapley Values

Shapley values [28], rooted in cooperative game theory, assign a value to each player based on
their marginal contribution to different coalitions (subsets of players) to fairly allocate the total
payoff of the game to each player. The Shapley value of a player is based on their marginal
contributions to all possible combinations in which they participate. Mathematically, the Shapley
value for a player i in a game with N players is defined as

ϕi(v) =
∑

S⊆N\{i}

|S|! · (|N | − |S| − 1)!
|N |! [v(S ∪ {i}) − v(S)] (2)

where ϕi(v) is the Shapley value of player i, v(S) is the value of the coalition S, |N | is the total
number of players, and |S| is the number of players in coalition S.

4.2 SHAP

Lundberg and Lee [6] build on Shapley values and its extensions to develop a model-agnostic
interpretability framework called SHAP (SHapley Additive exPlanations), offering a robust and
coherent approach to interpreting model predictions. From Eq 2, ϕi(v) is the Shapley value
of a specific feature in the model, v(S) is the prediction made by the RL model for a specific
set of features, |N | is the total number of the input features, and S ranges over all possible
coalitions excluding feature i, which signifies that when calculating the Shapley value for a
specific feature i, all possible combinations of features (excluding feature i) are considered.
The value of S changes as different subsets of features are examined. This way SHAP values
attribute a model’s prediction to distinct features, explaining their influence on the model’s
output. Specifically, the SHAP framework can be used to achieve two types of interpretability.
Global interpretability: by aggregating SHAP values computed for each individual instance across
the entire dataset, the framework provides a comprehensive perspective on the behavior of the
model in predicting AD across a diverse spectrum of cases. This can help to identify consistent
features that significantly influence predictions. Local interpretability: by delving into the process
of individual predictions for AD, considering the unique impact of each input feature, the SHAP
framework can provide microscopic insights into the rationale behind specific predictions. This is
pivotal for understanding the model’s decision-making on a case-by-case basis, shedding light on
the prominent factors guiding predictions for individual patients. Fig 2 presents our complete
experimental setup, where we input the RL model as well as the State space S(t) to the SHAP
library and generate global (for all patient data in test split) and local explanations (predictions
for each patient).

4



(a)

(b) (c)

Figure 3: SHAP Plots for all patient predictions (a) Summary Bar Plot for Information processing
of PFC region IP F C(t) and HC region IHC(t), (b) Beeswarm Plot for Information processing of
PFC region IP F C(t), (c) Beeswarm Plot for Information processing of HC region IHC(t)

4.3 Global Explanations

Global explanations are visualized using bar and beeswarm SHAP plots (Fig 3). The bar plot
ranks features by mean absolute SHAP value for information processing in the Prefrontal Cortex
region (IP F C(t = 0)) and the Hippocampus region (IHC(t = 0)). Features with higher mean
absolute values are placed at the top, indicating their greater influence. The beeswarm plot
assigns distinctive colors to sample values (red high, blue low), illustrating how high and low
feature values impact the model’s outcome.

4.4 Local Explanations

The SHAP plots used for local explanations were decision plots, waterfall plots, and force plots
(Fig 4). These plots display how individual features affect the model behavior for a single sample.
For the decision and waterfall plots, the expected value for all samples is displayed at the bottom.
Each feature is then added to the plot starting with the least important feature. Each feature
has a SHAP value that pushes the expected value positively or negatively. Once all features
are added, the plot reaches the actual predicted value for the particular sample. This value is
displayed at the top of the plot. Features pushing the prediction higher are shown in red, whereas
those pushing the prediction lower are in blue. The force plot serves the same function as the
decision and waterfall plot but the plot is visualized along the x-axis.

5 Results

In this paper, a set of SHAP plots were generated including a bar plot, a beeswarm plot, a
waterfall plot, a force plot, and a decision plot. The primary aim of this section is to examine
these plots, extracting information about the model’s behavior, and analyzing if the model’s
behavior aligns with the current research within the field of Alzheimer’s disease (AD).
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(a) IP F C(t = 0) (b) IHC(t = 0)

(c) IP F C(t = 0) (d) IHC(t = 0)

(e) IP F C(t = 0) (f) IHC(t = 0)

Figure 4: SHAP Plots for a single prediction (a) and (b) Waterfall Plots for Information processing
Iv(t = 0) of both PFC and HC regions for year 0, (c) and (d) Force Plots for Information processing
Iv(t = 0) of both PFC and HC regions for year 0, (e) and (f) Decision Plots for Information
processing Iv(t = 0) of both PFC and HC regions for year 0

The bar plot in Figure 3a offers a global explanation of the RL model used in this experiment.
The mean absolute value for each feature in each class is calculated and plotted. The order of
importance for features is as follows: IHC(t − 1), IP F C(t − 1),XHC , XP F C , DHC , and DP F C .
In [20] brain cognition is attributed to brain activity, Yv(t), and amyloid accumulation, Dv(t).
[20] also highlights the direct correlation between Yv(t), Xv(t) and Iv(t). Hence, By plotting
Iv(t − 1) and Xv(t) as most important features, Figure 3a illustrates brain activity having greater
significance in the RL model’s prediction of ∆Iv(t) than amyloid accumulation.
Similar to the bar plot, the beeswarm plots depicted in Figures 3b and 3c identify features
Iv(t − 1) and Xv(t) as being most impactful in the model’s prediction of ∆Iv(t) for the two
regions. The beeswarm plot contextualizes model behavior even more. Figure 3b shows that
low feature values of IP F C(t − 1) , IHC(t − 1) and XHC and increase the predicted ∆IP F C(t)
while high feature values decrease the predicted change. Figure 3c visualizes that low feature
values for IP F C(t − 1) and IHC(t − 1) increase the model’s prediction of ∆IHC(t) while high
feature values decreases the model’s prediction.
Figure 4 explains how each feature impacts the model’s prediction of ∆Iv(t) for the Prefrontal
Cortex and the Hippocampus for a single patient, for a particular year. Figure 4a, 4c, and 4e
explain the Prefrontal Cortex while Figure 4b, 4d and 4f explain the Hippocampus region. The
observed patterns in global explanation plots are also visible in the plots for local explanations.
Iv(t) is the most important feature in predicting ∆Iv(t). Xv(t) is also an important feature in
predicting ∆Iv(t). These local and global explanations provide evidence for the assertion that
brain activity plays a more pivotal role in brain degradation than amyloid accumulation. In [29]
and [30], authors discuss the prominent Alzheimer’s disease (AD) theory centered on β-amyloid
(Aβ) protein deposition initiating cognitive decline. [29] explores the connection between lifelong
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brain activity patterns and Aβ deposition and suggests that manipulating neural activity could
impact Aβ levels.

(a) (b)

(c) (d)

(e) (f)

Figure 5: SHAP Plots and Trajectories for Patient RID 2219: (a) RL Prediction vs. Ground
Truth for Total Cognition (MMSE score), (b) Summary Bar Plot for the change in Information
Processing of PFC region ∆IP F C(t) (Class 0) and HC region ∆IHC(t) (IHC(t = 0)), (c) RL
Prediction vs. Ground Truth for PFC size, (d) Stacked Force Plot of PFC size XP F C effect
on Mean Total Cognition C(t) per year, (e) RL Prediction vs. Ground Truth for HC size, (f)
Stacked Force Plot of HC size XHC effect on Mean Total Cognition C(t) per year.

5.1 Per-Patient Analysis

We also conducted an analysis on each patient to determine the effect these factors have on
individuals as the disease progresses. Figure 5 shows the results for Patient RID 2219, who was
selected for their maximum decrease in MMSE score. Subfigures 5(a), 5(c), and 5(e) show the
accuracy of our model in predicting the total cognition C(t), Prefrontal Cortex Size XP F C , and
Hippocampus Size XHC respectively as Alzheimer’s disease progresses in the patient. Subfigure
5(b) shows how each feature affects the final SHAP value of the model, which corresponds to the
change in cognition ∆C(t). In this patient, the Prefrontal Cortex region has greater effect than
the Hippocampus, and the size of the region X has more effect than the information processing
I(t − 1) of the region. This may be due to the large error in the RL prediction for the Prefrontal
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Cortex size, which the model predicted to decrease far more than it actually did. Subfigures
5(d) and 5(f) show the effect of XP F C and XHC in their respective regions on the change in
cognition. For both regions, they initially contribute positively to the change in cognition, but
as brain region size decreases, their effect also decreases and becomes negative. Guo et al. [31]
observed similar effects, where a larger initial brain size helped slow down Alzheimer’s progression,
but as degradation proceeded it also increased in rate. From these figures, we can conclude that
Alzheimer’s progression is dynamic and dependent upon the individual it affects.

6 Conclusion

We demonstrate the use of RL and SHAP to predict critical factors in Alzheimer’s Disease
progression. Our Reinforcement Learning model forecasts Prefrontal Cortex and Hippocampus
information processing, brain size, and amyloid accumulation for up to a decade post-diagnosis.
SHAP analysis revealed that increased information processing and reduced brain region size
significantly contribute to brain degradation in both areas. Future work should analyze these
factor trajectories over time to identify patients with the sharpest declines and determine the
most impactful factors using SHAP. Our research aims to aid neurologists and researchers in
Alzheimer’s causality determination and treatment planning..
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Supplementary Materials
A The RL Model

Brain Structure: The brain is modeled as a graph Gs = (V, E), where each node v ∈ V
represents a brain region, and each edge e ∈ E represents a tract. Let Xv(t) indicate the size of
brain region v ∈ V at time t, and let X(t) = [X1(t), X2(t), . . . , X|V |(t)].
Pathology Propagation: The propagation of amyloid, the change of amyloid in a region over
time, is modeled below. A network diffusion model is used because it captures the propagation of
Aβ through tracts. Dv(t) is the instantaneous amyloid accumulation in region v ∈ V at time t.

dDv(t)
dt

= −βHDv(t) (3)

where D(t) = [D1(t), D2(t), . . . , D|V |(t)], H is the Laplacian of the adjacency matrix of the
graph Gs, and β is a constant. The total amyloid in a region ϕv(t):

ϕv(t) =
∫ t

0
Dv(s) ds (4)

Brain activity and cognition: To support cognition, multiple brain regions work in synchrony.
The activity Yv(t) in region vinV in support of cognition C(t) at time t. The hypothetical term
information processing, Iv(t) ∈ R≥0, is introduced to relate a region’s size and activity to its
"contribution" to cognition. The resulting model for cognition, C(t), supported by the brain at
time t can be modeled as:

C(t) =
∑
v∈V

Iv(t) (5)

The activity, Yv(t), in a region depends on both its information processing and its size. The
relationship between activity and information processing is proportional, while the relationship
between activity and size is inversely proportional. The relationship between the three features is
modeled as:

Yv(t) = γ
Iv(t)
Xv(t) ∀v ∈ V (6)

Energetic cost: To support cognition the brain consumes energy. The energy consumption for a
region is proportional to the activity in that region. Therefore the total energy cost of the brain
can be modeled as:

M(t) =
∑
v∈V

Yv(t) (7)

Degeneration of brain regions: Neurodegeneration, the change in brain size, is influenced
by two factors: amyloid deposition and brain activity. Previous equations and models inferred
a linear relationship between the rate at which a brain region degenerates and Aβ deposition.
Additionally, brain degeneration can also be accelerated by brain activity. The following equation
is a representation of how brain activity, neurodegeneration, and Aβ are related

dXv(t)
dt

= −αvDv(t) − αvYv(t)∀v ∈ V (8)

Parameter constants of equations: The demographics of individual patients can affect the
progression of AD. To account for the influence of demographics in the model, parameters α1,
α2, β, γ were used in previous equations. For demographics at baseline Z0 we define a function
f such that

(α1, α2, β, γ) = f(Z0) (9)
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B Experimental Setup

In order to use the SHAP method to explain model predictions, we first train an RL model
on longitudinal data (10-years) using k-fold cross validation. The data input to the model
comprises information such as patient ID, diagnosis at baseline year, demographic features (age,
gender, education, presence of APOE gene), as well as baseline measurements of brain region
size X(t), amyloid accumulation D(t), and information processing of each brain region I(t). The
network consists of a stochastic two-hidden-layer Gaussian MLP with 32 neurons per-layer. We
experimented with RL algorithms (TRPO and PPO) provided by the Garage library [32]. The
training process involves running the model on the train split of each fold (5-fold cross validation)
for 1M timesteps (1000 epochs, with a batch size of 1000). Subsequent evaluation involves
loading the trained model, running a simulation for each patient (10 year prediction based on
baseline year information) and recording observations and actions. The recorded observations are
then fed into the SHAP library, where we utilize the model-agnostic Kernel Explainer object to
generate global and local (patient-level) explanations of the model’s predictions.

C Hyperparameters

We provide the hyperparameters for our experiments in Table 1. These values are used in all our
experiments unless specified otherwise.

Hyperparameters Values
Batch size 1000

Epochs 1000
GAE λ 0.97

Cognition Score MMSE
Max Cognition (Ctask) 10.0

Scale Observations True
Action limit ± 2.0

Max timesteps 11 (years)
Number of seeds (per fold) 5

Table 1: Hyperparameters for our experiments with PPO and TRPO

D RL Methods

D.1 TRPO

Trust Region Policy Optimization (TRPO) is an on-policy algorithm with a monotonic improvement
guarantee. TRPO is designed to address some of the challenges associated with policy optimization.
The key idea to TRPO is to constrain the local variation of the parameters to a "trust region" in
the policy-space to ensure the update steps of the policy remains predictive. The constrain on
the variation of parameter is determined by KL Divergence. The problem can be described as:

max E(st,at)∼π[πθ(at|st)
π(at|st)

Âπ(st, at)] (10)

s.t. DKL(πθ(.|s)||π(.|s)) ≤ δ, ∀s

TRPO is known for its stability and ability to handle complex, high-dimensional action spaces,
however it can be computationally expensive and requires careful tuning of hyperparameters.
Further research on policy optimization methods yielded improvements to TRPO such as Proximal
Policy Optimization (PPO).

D.2 PPO

Proximal Policy Optimization (PPO) is a model-free policy gradient algorithm designed to
address the limitations of previous policy optimization methods like TRPO. PPO utilizes deep
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neural networks to learn a policy πθ and a value function Vϕ. To train the policy, PPO collects
trajectories τ from the old policy network, πθold

, prior to updating the network. The policy
network is then trained with the trajectories τ to maximize a clipped surrogate policy Jπ.

Jπ(θ) = Est,at∼τ

[
min

(
πθ(at|st)

πθold(at|st)
Ât, clip

(
πθ(at|st)

πθold(at|st)
, 1 − ϵ, 1 + ϵ

)
Ât

)]
(11)

Along with the policy network, the value network is also trained with the collected trajectories to
minimize the objective JV .

JV (ϕ) = Est∼τ

[
(Vϕ(st) − R̂t)2

]
(12)

where R̂t = Ât + Vϕ(st) is the value function target. Using the generalized advantage estimator
(GAE), the value function target computes the advantage estimates. In practice, the two networks
are jointly optimized with shared parameters (i.e., θ = ϕ). PPO performs well in both single-
agent and multi-agent scenarios and is known to achieve state-of-the-art results in various RL
benchmarks.
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