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ABSTRACT

Deep Reinforcement Learning (DRL) is increasingly applied in cyber-physical systems for automation
tasks. It is important to record the developing trends in DRL's applications to help researchers
overcome common problems using common solutions. This survey investigates trends seen within
two applied settings: motor control tasks, and resource allocation tasks. The common problems include
intractability of the action space, or state space, as well as hurdles associated with the prohibitive cost
of training systems from scratch in the real-world. Real-world training data is sparse and difficult to
derive and training in real-world can damage real-world learning systems. Researchers have provided
a set of common as well as unique solutions. Tackling the problem of intractability, researchers have
succeeded in guiding network training with handcrafted reward functions, auxiliary learning, and by
simplifying the state or action spaces before performing transfer learning to more complex systems.

HVAC Many state-of-the-art algorithms reformulate problems to use multi-agent or hierarchical learning to
reduce the intractability of the state or action spaces for a single agent. Common solutions to the
prohibitive cost of training include using benchmarks and simulations. This requires a shared feature
space common to both simulation and the real world; without that you introduce what is known as
the reality gap problem. This is the first survey, to our knowledge, that studies DRL as it is applied
in the real world at this scope. It is our hope that the common solutions surveyed become common
practice.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

This survey sets out to explore how deep reinforcement learn-
ing is used within cyber-physical systems. We pay attention
particularly to common problems and common solutions that
researchers discover within this field. We will explore solutions
to intractability of the state or action space, the prohibitive cost
of training a learning system from scratch in the real world, and
the reality gap problem that arises when training in a simulation
and evaluating in the real world.

Deep reinforcement learning (DRL) is a type of deep learning
(DL) meant to solve problems formulated as Markov Decision Pro-
cesses (MDP). This is how reinforcement learning (RL) formulates
all of the problems it is meant to solve. The seminal works in
DRL owe much of their success to the advances made within the
traditional reinforcement learning field. This symbiotic relation-
ship goes both ways, too. Reinforcement learning lends concepts
like the MDP problem formulation, concepts like value and pol-
icy iteration, as well as advances in Q-learning such as double
Q-learning. But, going the reverse direction, DRL develops con-
cepts like the experience replay buffer, and auxiliary learning that
are then adopted into the field of traditional non-deep reinforce-
ment learning.

We believe that there exists a similar symbiotic relationship
between the development of theory, and the implementation
of that theory in practice. For example, in DRL it is perhaps
obvious that researchers borrow neural network architectures
and training techniques for their own needs. But what is perhaps
less observed is the understanding DRL researchers give back
to the larger deep learning community: the handcrafted reward
functions, the benchmarks, and the importance of multi-agent
learning (MAL) and hierarchical learning (HL) problem formula-
tion.

In the age of the internet-of-things there are many factors
causing the adoption of automation. Companies like Boston Dy-
namics, Tesla and Uber, alongside the implementation of the
smart-grid, and early adoption of self-driving vehicles are all con-
tributing to an increased use of automation. DRL is fast becoming
a favorite tool in the automation toolbox used by researchers to
perform motor control tasks, and resource allocation tasks.

All of these technologies relying on DRL run into similar prob-
lems but while surveying the field a series of common solutions
becomes apparent. Whether it is the intractability of the state
or action space, or the prohibitive cost of training real-world
autonomous vehicles, solutions abound in this field. It is our hope,
that in reading this survey other researchers develop a sense of
how to formulate problems encountered in their own research.
We believe we are making two contributions to this field of
research with this survey:

1. To our knowledge this is the first review covering DRL in
both motor control, and resource allocation tasks within
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applied settings since 2019 (Liu, Xu, Liao, & Yu, 2019). It is
the first review of its kind to cover DRL algorithms work-
ing with applications in HVAC control, automated surgical
procedures, electric vehicle routing to charging stations,
and simultaneous localization and mapping. In addition to
these applications we discuss optimizations used to speed
up algorithms for on device implementation.

2. We compare the common problems experienced in both
motor control, and resource allocation tasks and curate the
solutions common to both fields. This is the first review
of its kind to curate examples using both architectural
and training methods to overcome the reality gap between
simulation and real-world evaluation.

2. Background
2.1. Technical advances in deep reinforcement learning

2.1.1. Origins of deep reinforcement learning

Deep reinforcement learning, perhaps obviously, is the mar-
riage of the fields of deep learning and reinforcement learning.
Deep learning and reinforcement learning provide springboards
of success to DRL researchers at the architecture and system
design levels of abstraction, respectively. Borrowed from deep
learning are training techniques like batch normalization, and
dropout, many familiar architectures such as progressive net-
works, guided policy search, convolutional layers, auto-encoders,
and lastly recurrent layers such as long short-term memory
(LSTM). Taking a look at the system design level of abstraction,
reinforcement learning problems teach us to formulate problems
as Markov Decision Processes (MDPs) which can be solved with
value or policy iteration. These problems are governed by the
Markov property which states that the future is conditionally
independent of the past given the present state.

MDPs are five-tuple models of a system where determining
the probability of state-traversal from state to state requires only
the observation of the current state. The five model variables are
{S, A, R, T, y}. Each variable corresponds to the state space, the
action space, the reward function, the state transition probabili-
ties, and y a hyper-parameter known as the discount factor used
in the loss function during training. This problem formulation is
shown in equation (4) as one of the many ways reinforcement
learning influences DRL. Broadly speaking there are three types
of MDP systems. Partially observable MDP (POMDP) systems are
when the state space is not fully observed when a decision is
made. There is also such a thing as an episodic MDP, where the
state resets after some period of time. Finally, there also exist
situations in which the action space is not a set of discrete actions
but a continuous action space. These systems are called contin-
uous MDPs. Similarly the state space may exist in continuous
time, but in these circumstances it is still assumed that decisions
are made in discrete intervals and the state is measured and
observed at those intervals. When this assumption is not made
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the system is said to be a semi-MDP. The foundational work on
semi-MDPs (Sutton, Precup, & Singh, 1999) states that “Formally,
a set of options defined over an MDP constitutes a semi-Markov
decision process (SMDP), and the theory of SMDPs provides the
foundation for the theory of options”. Here options are sets of
actions to be used as closed-loop policies for taking action over
a period of time. The usage of options within a traditional MDP
system allows learning, planning, and representing knowledge at
multiple levels of temporal abstraction. For more valuable infor-
mation please see the 1999 work (Sutton et al., 1999) by Sutton,
et al. Taking the observation of the state space, and using a set of
actions, the learning model seeks to maximize a reward function.
Taking this problem formulation and then utilizing Bellmen’s
theory of optimality (Bellman, 1954) we arrive at the definitions
seen in equations (1) through (5) that make up the foundation of
reinforcement learning. These equations provide a grammar that
all of RL and DRL build on. A policy that maximizes the expected
reward given a policy is known as the optimal policy function:

7% = argmax E[R|7] (1)
T

The expected reward given a policy and state is referred to as the

value function:

V(s) =E[R|s, 7] VseS (2)

The expected reward given an optimal policy and state, and
selected action is called the optimal quality function:

(3)

Q*(st, ar) = argmax E[R[s, a, 7]
s

And finally Q*(s;, a;) rewritten as a Bellman equation:

Q*(st, a;) = argmax SE [Rev1 +vQ*(ser1, a)ls, a, ] (4)
T

To learn more about traditional reinforcement learning, please

see the 2009 survey from Gosavi (2009).

As this is a survey focusing on deep reinforcement learning
in markovian environments, research focusing on non-markovian
environments are outside the scope of what we will discuss.
However the reader should still be aware of such environments
as they still appear alongside cyber-physical systems like physio-
logical systems, and environments that use human behavior mod-
eling with long-range dependence in decision making. One such
non-markovian process is the history dependent process (Majeed
& Hutter, 2018). We also see non-Markovian rewards (Agarwal
& Aggarwal, 2019; Gaon & Brafman, 2020). The recent develop-
ment of fractional dynamics is another tool for modeling non-
Markovianity using compact models (Gupta, Yin, Deshmukh, &
Bogdan, 2021).

In DRL neural networks are trained as discriminate functions
to approximate the quality function or policy function. When
the network approximates a quality function this is called Deep
Q-learning and is another example of how the traditional field
of reinforcement learning provides springboards for success to
DRL researchers. Q-learning is a form of value iteration where a
learning model takes features observed from a state and produces
an output that indicates the quality score of the corresponding ac-
tions from the possible action space. The action with the highest
quality score is then selected.

As an alternative to Q-learning, models that use neural net-
works to approximate both a policy gradient as well as approxi-
mate the quality function are known as actor-critic models. The
name actor—critic comes from conceptualizing the policy function
as an actor, and the quality function as the critic. Models that
seek to approximate only one of these functions are called actor
or critic models respectively. Actor—critic models can be referred
to as a hybrid of value and policy iteration methods because
both functions are learned and approximated. In DRL this means
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having two networks, or one for each function. Oftentimes, actor-
critic models seek to maximize the advantage function, which can
be defined below:

As, a) = Q(s, a) — V(s) (5)

where V(s) is an average value for the state given any possi-
ble action. This of course is different from value iteration or
Q-learning which seeks to only approximate and maximize the
value or quality function.

2.1.2. Deep reinforcement learning networks

It is generally accepted that the advent of DRL was the 2013
publication and creation of the first iteration of the Deep Q
Network, or DQN (Mnih et al., 2013). The DQN was a very simple
neural network that achieved deeply exciting results. DQN uses
an RGB pixel state space representation of an Atari video game.
The researchers are said to maintain the Markov property in their
problem formulation by defining the current state space as the
preceding 30 frames of gameplay. When motion within a system
must be extracted or analyzed then using a single frame RGB pixel
state space representations often does not completely capture the
motion or dynamics of a system. The 30 frame window allows
the interpretation of those dynamics. The original DQN used
two convolutional layers, followed by two fully connected linear
layers to regress the quality function scores for each possible
action the Atari game allows as an input to the Atari 2600 game
emulator. Taking the action with the maximum quality score
maximizes performance in the simple Atari games played by the
DQN. The evolution of the DQN over the next several years from
its creation and onward form the basis of a large corner stone
of DRL theory. Over the years, DQN has been updated to use
techniques seen in RL and DL such as, double Q-learning (Hasselt;
van Hasselt, Guez, & Silver, 2015), dueling Q-learning (Wang
et al,, 2016), weighted Q-learning (Cini, D’Eramo, Peters, & Alippi,
2020), and with the swapping of the final fully connected linear
layer with a Long Short-term Memory (LSTM) layer, a recur-
rent DQN for POMDPs (Hausknecht & Stone, 2017). Overestima-
tion of the maximum action-value is an infamous problem in
Q-learning that double Q-learning, and weighted Q-learning seek
to overcome. Meanwhile, dueling Q-learning seeks to approxi-
mate the advantage function seen in equation (5) to better inform
decisions made by the model.

This five year stretch culminated in the creation of Rain-
bow, a DQN that combines several of these improvements into
one model (Hessel et al., 2017a). Rainbow includes, as previ-
ously mentioned, double Q-learning (van Hasselt et al.,, 2015),
prioritized replay buffers (Schaul, Quan, Antonoglou, & Silver,
2016), dueling networks (Wang et al., 2016), multi-step learn-
ing (Asis, Hernandez-Garcia, Holland, & Sutton, 2018), distributed
Q-learning (Bellemare, Dabney, & Munos, 2017), and the intro-
duction of Gaussian noise into the fully connected layers to pro-
mote exploration of the action space (Fortunato et al., 2019). As
stated before, double Q-learning helps overcome the overestima-
tion bias seen in Q-learning, and dueling networks incorporates
the additional information of the approximated advantage func-
tion seen in equation (5) to better inform decisions made by
the model. Distributed Q-learning speeds training up by asyn-
chronously updating the gradient updates from models training
in parallel. Multi-step learning helps to propagate newly observed
rewards faster to earlier visited states and also overcomes the
bias-variance problem seen in reinforcement learning. And fi-
nally using both a prioritized replay buffer and the introduction
of Gaussian noise into the final fully connected layer promote
exploration of the action space. Fig. 1 reproduced with permission
from Hessel et al. (2017a) shows how these different improve-
ments synthesize into one model improving immensely over the
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Fig. 1. This graph demonstrates how all of the proposed improvements to DQN
synthesize into one network — the Rainbow DQN (Hessel et al.,, 2017a) (All rights
reserved Hessel et al., 2017b). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

baseline model. Rainbow DQN not only outperforms the baseline
implementations of both A3C, and DQN, but also out performs
any one contribution to DQN’s implementation. We direct readers
to Obando-Ceron and Castro (2021) from 2021 for the newest
examination of Rainbow developments. The authors of Obando-
Ceron and Castro (2021) also explore how smaller training envi-
ronments can yield significant insights as benchmarks for DQN
experiments.

As impressive as early results with DQN were, DQN suffers
from two major setbacks. First, the network cannot work with
continuous action spaces (Mnih et al., 2013) which are ubiquitous
in motor control tasks. And second, it cannot work with action
spaces with a high dimensionality (Lillicrap et al., 2019). As the
authors of Lillicrap et al. (2019) point out in their creation of the
actor—critic network Deep Deterministic Policy Gradients (DDPG),
even if one created discrete values for action states taken from a
continuous action space, say a human arm with seven degrees of
freedom, and limited the motor actions at each joint to [—1, 0, 1],
this still leaves DQN facing an action space with a dimensionality
of 37 = 2187 and the network will likely fail to converge during
training. Neural networks can be used in an actor model to select
a policy from across a continuous action space given a state space
representation. The critic model is similar to a DQN but includes
fusion with the actor network outputs to create a single quality
score for the selected actions. As an example, using a motor
control policy with continuous action space, the actor network of
the actor-critic model regresses a value between [—1, 1] for each
motor under the model’s supervision. These actions are handed
off to the critic network which regresses a single quality func-
tion score reflecting the actions handed to it. The quality scores
regressed by the critic network are what are used to indirectly
tune the optimal policy gradients during back propagation by
minimizing the loss function see in equation (6). The actor-critic
network Deep Deterministic Policy Gradients (DDPG) (Lillicrap
et al.,, 2019), the Asynchronous Advantage Actor Critic Network
(A3C) (Mnih et al., 2016), and IMPALA (Espeholt et al., 2018) are
all actor-critic networks that take advantage of the advantage
function, and actor—critic framework.
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2.1.3. Network training

Both DQNs, and actor-critic models like DDPG use some form
of a target network for the purpose of calculating their loss
functions instead of relying on ground truth. Researchers use a
parallel network called a target network that is updated with
the model weights of the learning network at constant intervals.
DDPG (Lillicrap et al., 2019) and DQN (Mnih et al., 2013) try to
minimize the following loss function:

L(0%) = Eg; a0, [(Q(st, ac10%) — ye)*] (6)

where,

Ve = (¢, @) + yQ(Se41, w(541)10%) (7)
It is this y, value that uses the quality function approximation of
the target network, and not the learning network. The target net-
work is thrown away after training. A lot of the previously men-
tioned research about DQN revolves around trying to improve
the network training convergence. Since the quality function uses
a maximization operator to determine the best action to take,
the network is inherently biased towards overestimation. Double
DQN (van Hasselt et al., 2015) seeks to alleviate this problem
by replacing the target network of DQN with a network that
learns alongside the primary network rather than sharing model
weights with the learning network; this network is also discarded
after training like a target network. The double DQN not only
removes this overestimation bias, but also converges to much
better performance in a variety of experiments.

Researchers also focus on improving reward functions by uti-
lizing techniques such as auxiliary learning introduced in Jader-
berg et al. (2016). When an extra term is added to the loss
function that reflects the nature of the system this is referred
to in traditional DL as multi-task learning. But auxiliary learning
can also be used to create a better reward function that helps
the network infer system properties not explicitly shown to the
network. The original DQN rewards the agent when it makes
progress towards an objective, like increasing the score of a video
game (Mnih et al., 2013). In applied settings, to properly evaluate
performance, reward functions are handcrafted with industry
expertise as we see throughout Section 3 and IV. Additionally,
network architecture can be altered to promote auxiliary learn-
ing. In one HVAC example we survey (Xu, Wang, Wang, O’'Neill,
& Zhu, 2020) the researchers use an architecture similar to an
actor-critic framework, except between their two networks the
researchers create a latent space that corresponds to desired
temperature changes within a thermal zone of a HVAC system
as opposed to regressing raw action values corresponding to the
HVAC controller inputs. A second network uses these desired
temperature changes as an input to create those action values.
This alteration of the actor-critic framework provides lessons
about the thermal dynamics of the thermal zones that regressing
raw action values does not provide directly.

2.1.4. Hierarchical, multi-agent, and imitation learning

It is worth pointing out to the reader the importance of RL
topics like hierarchical learning (HL), multi-agent learning (MAL),
and imitation learning. These fields also have their DRL coun-
terparts like we have seen before. Hierarchical learning is when
problems are structured such that decision making is decen-
tralized into a master policy and subpolicy organization. Multi-
agent learning involves multiple agents choosing actions that
each affect the state space. These agents can work coopera-
tively or competitively like in a game. Imitation learning in-
volves showing agents exactly what to do given a state through
expert demonstration. In the cyber-physical realm, it is rare
one finds themselves working within a closed system in and
around humans. Therefore we express caution in utilizing imi-
tation learning in these environments discussed throughout this
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survey. We will explore the methods of both hierarchical learning,
and multi-agent learning that occur in the applied settings we
choose to survey, but if the reader is interested they should
explore the 2018 multi-agent DRL survey (Hernandez-Leal, Kartal,
& Taylor, 2019) or the 2018 PhD dissertation from Sanjay Kr-
ishnan that explores hierarchical learning in robotics, and data
science (Krishnan, 2018). Similarly, if the reader has outstanding
questions about deep reinforcement learning they should consult
with this (Arulkumaran, Deisenroth, Brundage, & Bharath, 2017)
deep reinforcement learning survey.

2.1.5. Benchmarks

As a final note, it is important to highlight the importance
benchmarks play in the progression of research across all deep
learning fields — including deep reinforcement learning. As many
remember, computer vision based deep learning exploded in
use and popularity after the publishing of the ImageNet image
classification dataset in 2010 (Russakovsky et al., 2015). Networks
were being developed and needed a way of being compared
together. Likewise, the first significant work of DRL by necessity
included the use of a virtual benchmark where networks can now
be compared in performance on a series of Atari video game
experiments (Mnih et al.,, 2013). Similarly, in application tasks,
breakthroughs are stimulated by the production of domain spe-
cific simulators and datasets that allow network benchmarking.
These benchmarks, simulators, and datasets can serve traditional
deep learning networks as well as DRL researchers. We will speak
more about how benchmarks provide an important simulated
playground where network training and performance evaluation
can occur.

2.2. Cyber-physical systems

2.2.1. Common problems

It is important to remember that the usage of neural networks
in cyber-physical systems predates the usage of deep reinforce-
ment learning methods. In introducing different applications of
deep reinforcement learning, some particular attention will be
paid to the seminal works that involve vanilla neural networks.
Generally speaking, these methods predate the 2013 rise of deep
reinforcement learning as discussed in the previous section.

Generally speaking the research surveyed meets three criteria.
They explicitly use deep reinforcement learning; they are cited by
many works that come after them; and the algorithms whether
at time of publishing or in the future are meant to be applied
in the real world as a cyber-physical system. We decided to
focus on two major applications of deep reinforcement learning:
motor control tasks, and resource allocation tasks. These are
umbrella terms to describe a plethora of problems, and they are
umbrella terms because they share characteristics in motivation,
problem formulation, problems encountered, and solutions used
to overcome those problems. Beneath the two umbrella terms
we survey, we will see DRL as applied to autonomous robots
in general, and self-driving cars in particular, navigation tasks
such as path planning and visual odometry, traffic control, vehicle
routing, telecommunication resource allocation, HVAC control of
buildings, and management of the power grid. The common de-
nominator to all of these tasks is that their decisions interact with
and affect the real-world.

Across all of these applications there exists a set of problems
ubiquitous to them all. Researchers when working in the real
world witness intractability of to the state space representations
or action spaces. Seminal works in applied DRL often require
simplifying either the state or action space. It is also a com-
mon problem in the development of cyber-physical systems that
training is prohibitively costly. Real-world training data is sparse
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and difficult to derive and training in real-world can damage
real-world learning systems. What happens if you only have one
multi-million dollar robot that needs to learn how to walk on
mars? Do you build a multi-million dollar facility with lower
gravity to train the robot in a martian environment? And how
many times can the robot be replaced after damage before the
project is bankrupted? As it turns out, researchers have published
a large amount of solutions about both of these matters and it is
time the research community have access to these solutions all
in one place.

2.2.2. Trusting cyber-physical systems

As Al algorithms grow in prominence and are deployed within
cyber—physical systems there is a growing demand to quantify
how much trust should be placed in these Al algorithms. 2020
we see the first attempt to quantify network trustworthiness
from Cheng, Nazarian, and Bogdan (2020) where the authors
propose DeepTrust. DeepTrust looks at pretrained neural network
architectures to make a determination of how much trust to
place in the network’s predictions. DeepTrust can help warn a
neural network user when a prediction is overconfident or under
confident due to architecture constraints. Future work suggests a
desire to explore methodologies for determining when the data
used to train the network may be unreliable itself irrespective of
architecture. If such a methodology could be used in tandem with
DeepTrust researchers will have a robust way of determining just
how much trust one should place in Al systems applied in the real
world.

In an additional work (Cheng et al.,, 2021) from 2021 by the
same researchers we see an effort to quantify the trustworthi-
ness of individual agents within a multi-agent system. These
learning agents were operating within traffic light control, and
cooperative adaptive cruise control systems. These learning mod-
els successfully incorporate the measurement of other agents’
trustworthiness to mitigate the effect of untrustworthy agents. In
the cruise control environment the methodology can detect bad
actors, and in the traffic control scenarios collisions were reduced
compared to vanilla versions of the same algorithms.

2.2.3. Optimizing for hardware

As the demand grows for deep learning and deep reinforce-
ment learning to be implemented within cyber-physical systems,
so too does the demand grow for suitable methods of software
hardware co-design. In general, neural networks are computa-
tionally burdensome and steps need to be taken to modify the
neural networks before they are suitable for targeted hardware
devices. There has been great success in the deep learning field
applying the Alternative Direction Method of Multipliers algo-
rithm to perform weight quantization and structured weight
pruning to reduce the computational overhead of deep learning
algorithms (Ren et al, 2018; Wang et al., 2019). Furthermore,
lightweight frameworks for software compilation co-design have
been implemented to further reduce computational overhead (Ma
et al,, 2019, 2020).

In some cases, deep reinforcement learning has been used in a
design flow to increase network latency for the manycore systems
of the future Xiao, Nazarian, and Bogdan (2021). In this work the
researchers create a reinforcement learning graph convolutional
network to select resources on hardware to assign to tasks. In
a similar work from the same authors we see the usage of dis-
tributed Q-learning to schedule tasks to run on a GPU or a CPU
at runtime (Xiao, Nazarian, & Bogdan, 2019). In both cases the
authors see improvements in run-time compared to state of the
art compilers and frameworks.
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Summary of papers surveyed for motor control tasks. Note that papers that use simulators in their training regimen may be set up for success in the real world,
but unless evaluated in the real-world we hesitate to say the research has overcame the reality gap problem.

Paper Network Application Virtual HL MAL Problem overcame Notes
environment
Rusu et al. (2016a) A3C Robotic control  MujoCo N N Lack of training data Uses Progressive Networks
+ Reality gap
Popov et al. (2017) DDPG Robotic control ~MujoCo N N Lack of training data Uses composite reward
+ Reality gap functions
+ Intractability of
state/action space
Peng, Andrychowicz, Zaremba, = DDPG Robotic control  MujoCo N N Lack of training data Uses recurrent DDPG
and Abbeel (2018)
+ Reality gap and randomized dynamics
+ Intractability of + Binary rewards
state/action space and HER
Gu, Holly, Lillicrap, and Levine  DDPG + NAF Robotic control  MujoCo N N Lack of training data Asynchronous Training
(2016)
and random targets during
training
Kalashnikov et al. (2018) Qt-Opt Robotic control  Bullet physics N N Lack of training data Uses Bellman Updater
Zhao, She, Zhu, Yang, and Xu Unique Robotic control  Real-world N N Intractability of Effective auxiliary
(2021) Actor-Critic
state/action space learning
Honerkamp, Welschehold, and  TD3 + SAC Robotic control ~ Custom N N Intractability of Uses feasible kinematics
Valada (2021)
state/action space as sole reward signal
Liu and Jiang (2018) Temporal CNN  Surgical control JIGSAWS Y N Intractability of Sets up future research
+ Action state/action space to use HL
segmentation
Omisore et al. (2018) DQN Surgical control MatLab robotics N N Lack of training data Develops deeply-learnt
toolbox
+ reality gap damped least-squares method
+ Intractability of
state/action space
Tan, Chng, Su, Lim, and Chui DDPG + GAIL Surgical control V-REP N N Lack of training data Uses Mask-RCNN
(2019)
+ Reality gap on input video
Qureshi, Nakamura, Yoshikawa, Qnet + Pnet Human robot Custom + N N Intractability of Uses intrinsic motivation
and Ishiguro (2018) interaction Real-world
state/action space
Sallab, Abdou, Perot, and DQN + DDAC Autonomous TORCS N N Intractability of Uses Recurrent
Yogamani (2017) driving
state/action space DQN + DDAC
Pan, You, Wang, and Lu (2017) A3C Autonomous TORCS N N Lack of training data Uses Mask-RCNN
driving
+ Reality gap on input video
Duan, Eben Li, Guan, Sun and APRL Autonomous Custom Y N Intractability of Compares/contrasts
Cheng (2020) driving

state/action space

HL and non HL models

(continued on next page)

3. Motor control tasks

We have decided to hone in on three subsets of motor control
tasks — autonomous robots in general, self-driving cars in par-
ticular, and navigation tasks. The autonomous robots in general
include work on motor control for robotic joints, or contact ma-
nipulation problems, and even surgical applications. Navigation
tasks include both path planning, as well as odometry/SLAM
problems. While navigation tasks are not required to directly
control the motors of their system, navigation is paramount in
autonomous robots and vehicles, and will be surveyed alongside
these other motor control tasks. These subsets of problems should
see both similar action spaces, as well as similar state space
representations. Table 1 summarizes the key take aways from the
papers surveyed within this section.

Like a lot of the application settings we will discuss, au-
tonomous control policy research predates the usage of DRL (Bra-
ganza, Dawson, Walker, & Nath, 2007; Hafner & Riedmiller, 2011;
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Omidvar & Elliott, 1997; Patre, MacKunis, Kaiser, & Dixon, 2008;
Riedmiller, 2005). Perhaps the most famous example, Martin
Riedmiller in 2005 developed a neural fitted Q Network (or
NFQN) (Riedmiller, 2005). Six years later Martin Riedmiller re-
alized the potential for applying this approximation of a quality
function to the field of reinforcement learning by applying the
NFQN to a motor control problem (Hafner & Riedmiller, 2011).
However, surprisingly enough, one can go back all the way to
1997 to see researchers honing in on the importance of neural
networks in control problems. Neural Systems for Control is an
entire textbook dedicated to the early practices of applying neural
systems to control problems (Omidvar & Elliott, 1997).

Sergey Levine and collaborators discovered Guided Policy
Search in 2013 and they have applied it more recently to their
robotics work (Levine & Koltun, 2013; Levine, Wagener, & Abbeel,
2015; Yahya, Li, Kalakrishnan, Chebotar, & Levine, 2017). Guided
Policy Search (GPS) does not belong to a deep reinforcement
learning algorithm and a deep explanation is outside the scope
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Paper Network Application Virtual HL MAL Problem overcame Notes
environment
Das and Won (2021) DQN Autonomous SUMO N N Lack of training data Effective auxiliary
driving
+ Intractability of learning
state/action space
Li, Sun, Chen, Tomizuka, and Double DQN Autonomous Custom Y N Lack of training data Uses HL to perform
Zhan (2021) driving
+ Intractability of different driving tasks
state/action space with different motor
controllers
Zhu, Gupta, Gupta, and Canova PPO + LSTM Autonomous SUMO N N Lack of training data Uses LSTM to overcome
(2021) driving
+ Intractability of POMDP nature of problem
state/action space
Pfeiffer, Schaeuble, Nieto, CNN Path planning Custom N N Lack of training data Uses random start/goal states
Siegwart, and Cadena (2017)
+ Reality gap
Tai, Paolo, and Liu (2017) DDPG Path planning V-REP N N Lack of training data Confirms findings in Pfeiffer
et al. (2017)
+ Reality gap
Faust et al. (2017) PRM-RL + DDPG Path planning Custom Y N Intractability of Training generalizes to much
+ MARHES state/action space larger real-world settings
Lv, Zhang, Ding, and Wang DQN Path planning Custom N N Intractability of Extends DenseNet to DQN
(2019)
state/action space
Lei, Zhang, and Dong (2018) DQN Path planning Gazebo N N Lack of training data Creates map from
+ Reality gap LiDAR inputs
Placed and Castellanos (2020) DQN Path planning Custom N N Intractability of Uses handcrafted reward
state/action space Function to promote
Exploration for SLAM
Zhang, Zheng, Jia, and Li (2021) PACNet Path planning Custom Y N Intractability of HL Visual Tracking
state/action space algorithm for Path planning
Yan, Xiang, Wang, and Lan PS-CACER Path planning Custom N N Intractability of Distributed algorithm for
(2021)
state/action space flocks of UAVs
Zhang, Tai, Liu, Boedecker, and A3C SLAM Gazebo N N Intractability of First DRL method for SLAM

Burgard (2020)

state/action space and uses external memory

of this discussion, but it does incorporate neural networks and
the reader should know about GPS as an alternative to DRL
approaches so is explained superficially later on. A 2016 work
from Levine and others (Levine, Pastor, Krizhevsky, & Quillen,
2016) saw them and their team work on training a real world
robot to perform contact manipulation tasks using visual cues
alone in two end-to-end trainable convolutional networks; one to
predict grasping success and one to regress motor commands. Ac-
complishing this task required staging 800,000 grasping attempts
using anywhere from six to fourteen robots active at a time,
requiring in upwards of two months time to create this dataset
to use in training. No doubt this represents a significant hurdle
in time and resources for smaller teams of researchers. Further,
by the authors’ own account, while the algorithms proved in-
variant to changes in camera calibration and small variation in
mechanical system hardware, the training does not provide an
opportunity to generalize to new tasks not seen in the dataset nor
to wholly different robots Levine et al. (2016). These constraints
perhaps compound resource problems seen with creating this
dataset as for every new task and robot a new dataset will need to
be created. After this was published, the authors and associated
team members when not using GPS, gravitate towards using
DRL (Gu et al., 2016; Kalashnikov et al., 2018; Rajeswaran et al,,
2018) as opposed to traditional deep learning approaches which
require more ground truth (Nair et al., 2017).

The current state of the art for DRL algorithms use in motor
control tasks all use simulations to train before evaluation in
the real world. Therefore, close attention will be paid throughout
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this section on research meant to overcome the reality gap prob-
lem which can be introduced when simulations do not perfectly
emulate real-world problems.

3.1. Motor control policies in general

Ruso, et al. in 2016 (Rusu et al., 2016, 2016a) proposed “‘us-
ing progressive networks to bridge the reality gap and transfer
learned policies from simulation to the real world”. Progressive
networks are “immune to forgetting” through a process of sharing
features between columns of layers trained to accomplish dif-
ferent tasks. When a column is finished training for a task, the
weights are frozen, and a new column is added with connec-
tions to the first column and training on the new task begins.
They ultimately found their “DRL algorithms are too slow to
achieve performance on a real robot”. Ruso et al. use A3C in
this progressive network framework which may explain the high
computational resources required to train and run the algorithms
presenting a possible drawback for applications where memory
and computational resources are not cheap. Fig. 2 reproduced
with permission from Rusu et al. (2016a), shows this progressive
network architecture.

Researchers at DeepMind, Popov, et al. in 2017 (Popov et al,,
2017) showed that an asynchronous DDPG could be trained in
simulation to stack objects with a robotic arm with 9 degrees
of freedom. These researchers proposed using mini-batch train-
ing for their DDPG, created a composite reward function, and
used apprenticeship start states. The future works suggest a goal
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Fig. 2. Progressive networks in general work by having independently trained columns for separate tasks, that are then stacked in parallel and share features. For
DRL motor control tasks there is one column for the simulated task, and one for the real world task (Rusu et al.,, 2016a, 2016b).

of developing an algorithm that is end-to-end trainable based
on a visual input mirroring the work others have done within
the field. A 2018 team of researchers from UC Berkeley and
OpenAl (Peng et al.,, 2018) used a recurrent DDPG to train in
simulation and evaluate performance in the real world. They
achieved good generalization to the real-world and proved robust
to calibration errors by leveraging randomization in the simula-
tion’s system dynamics, including but not limited to: table height,
joint dampening, the mass of each arm joint, controller gains, and
observation noise. Simulations were performed using the MuJoCo
physics engine. A large contribution from this paper involves the
use of a binary reward function and the Hindsight Experience
Replay (or HER) described in Andrychowicz et al. (2017). As the
authors of Peng et al. (2018) state, “by replaying past experi-
ences with HER, the agent can be trained with more successful
examples than is available in the original recorded trajectories”
recorded in the replay buffer.

In 2015 Levine et al. (2015), showed that using Guided Pol-
icy Search to perform simple tasks with a robotic arm such as
pushing a puck to a target position, screwing a bottle cap into
a bottle, or stacking objects. Guided Policy Search is useful for
creating a distribution of possible actions to draw from given a
state that allows for better exploration in reinforcement learning
problems. The guiding algorithm, such as iterative LQR, is used to
model a distribution across policies and allows better training in
the guided neural network motor controller as it chooses actions
to learn the dynamics of a system through exploration and ex-
ploitation. Levine and their team have continued to apply GPS to
reinforcement learning problems (Levine & Koltun, 2013; Yahya
et al,, 2017). In Gu, et al. from 2016 (Gu et al., 2016) working
with Sergey Levine to build off previous work, these researchers
proposed an asynchronous Normalized Advantage Function (NAF)
that could achieve real-time performance in real-world robots
performing door opening tasks. The team used NAF and DDPG
trained with random task targets to make training more efficient.
The algorithms were validated through training in the MujoCo
physics engine but due to the amount of real-world robots avail-
able to this team they had enough workers to train directly
on real-world robots without simulated pretraining. By training
directly on real-world robots without simulated pretraining, it
cannot be said these researchers overcame the reality gap. DDPG
could keep up with NAF on certain tasks, but where DDPG failed,
NAF greatly outperformed DDPG. One of the most advanced ap-
proaches to use DRL to perform contact manipulation yet again
comes a team associated with Sergey Levine at UC Berkeley.
Kalashnikov, et al. in 2018 (Kalashnikov et al., 2018) proposed
QT-Opt which uses episodic learning on a novel neural network
architecture similar to DQN. The team trains their network in a
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distributed fashion, with parallel workers. They use a Bellman
updater to draw training samples from their experience replay
buffer for efficient training. Like in previous works (like Gu et al.,
2016) the authors validated their work in simulation but were
able to train directly on real-world robots and did not require
simulation pretraining. Additionally, Qt-Opt continuously updates
its grasping strategy up to the final moment of grasping. The
framework proves moderately robust to occlusion and general-
izes well. Qt-Opt is able to grasp objects that are never seen
before at evaluation at a success rate of 96%.

In 2017 Hayes and Shah (2017) working out of MIT proposed
a unique DRL paper that seeks to “intuitively” explain control
policies learned by a DRL learning system. The future works
section is exciting in that they hope that researchers can someday
perform the reverse operation, and be able to explain a policy to a
DRL agent that regresses the described policies. This would save
DRL researchers in the future from the requirement to develop
training procedures to reach the described policy through training
and this work should be closely followed by the community.

A paper from 2021 (Zhao et al,, 2021) attempts to solve a
more difficult version of the bin packing problem with increased
uncertainty in the items to be placed into bins. The algorithm
uses an actor-critic framework with an RGB input sensor. The
researchers add a multi-layer perceptron to create a feasibility
mask of possible actions based on the visual input after it is sent
through a feature extractor. This mask is then combined with
the output the actor network. These architectural decisions act
as a form of auxiliary learning which facilitates the agent to learn
policies very efficiently. This approach when compared to human
performance achieves almost equal performance.

In another paper from 2021 (Honerkamp et al,, 2021), the
researchers have a robotic arm that needs to perform a task. They
use an actor-critic like with an end-effector generation network
and a base agent network (based on soft-actor-critic (SAC) and
a Twin Delayed Deep Deterministic (TD3)). The end-effector gen-
eration network proposes velocities for the end-effector. These
proposals are fed into a base agent that proposes corresponding
kinematics of the trajectory based on the velocities. The kinemat-
ics are then sent to an inverse-kinematics evaluator to generate
the reward signal based on whether or not the proposed kine-
matics are feasible for the robot. When the robot learns in this
way, kinematic feasibility of the trajectories are the sole learning
signal. This prevents infeasible kinematics from being proposed
by the system and makes training more efficient. The researchers
showed in a variety of simulated and real-world experiments
that their approach generalizes well to other environments and
robots.
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DRL based cyber-physical systems have the potential to rev-
olutionize the way surgery is performed and work has already
progressed in this application (Liu & Jiang, 2018; Omisore et al.,
2018; Tan et al., 2019; Yu, Yu, Chen, & Zhang, 2019). One of the
more recent works in 2019 (Tan et al., 2019), authored by a team
from the University of Singapore, showed that DRL can be used to
learn the motor control policies used in the mechanical surgeries.
The authors compared and contrasted DDPG to GAIL by first
training in simulation and performing finetuning on real-world
robots. What is important to note here is the usage of Mask-RCNN
to perform semantic segmentation on the visual video feed of the
area undergoing surgery. This is one way of bridging the reality
gap between medical simulations for training and evaluation in
the real world when using RGB cameras as an input. This method
of bridging the reality gap comes from researchers involved in
autonomous driving cars, and will be discussed more later.

An earlier 2018 paper (Liu & Jiang, 2018) from Peking Univer-
sity is very important in reformulating the surgery setting into
a hierarchical learning system. This research HL specifically, but
researchers interested in DRL and surgery applications need to
be aware of how this work can help formulate DRL surgery ap-
plications as HL problems. The researchers train on the JIGSAWS
surgical dataset and perform action segmentation across these
different surgeries and learn different steps of typical surgeries
(e.g. suturing/stitching wounds, applying gauze, and cleaning the
wound, etc.). After this initial segmentation task, different motor
control policies can be learned by different agents to perform the
specific action required during a surgery. These researchers did
not take this next step to train a network to perform these tasks
as subpolicies, leaving it to future work and other researchers.

Another paper from 2018 (Omisore et al., 2018) develops the
deeply-learnt damped least-squares method to learn the kine-
matics of snake-like robot using DQN within the MatLab Toolbox.
Here DQN is used to predict a dampening factor for the 8-joint
arm of a snake robot meant to interact with a human subject.
This paper is a good example of how the reality gap is smaller in
robots that only use joint positions as an input to the network as
opposed to rely on a RGB camera input. The network is trained
in simulation and implemented directly on a real-world robot
because the inputs are so consistent across both virtual and real
settings.

We would like to draw the reader’s attention to an interesting
paper from 2018 on human robot interaction. As humans and
robots interact more and more, researchers will seek to maximize
“the human-like behavior” of their robots. This paper (Qureshi
et al.,, 2018) uses two networks an action-conditional prediction
network (Pnet) and a policy network (Qnet) or essentially a novel
actor—critic algorithm. This algorithm uses intrinsic motivation
while interacting with humans to learn a “more human” greeting
pattern relying on the set of actions: wait, look towards human,
wave hand, and handshake. The models trained with their pro-
posed intrinsic motivation techniques learned qualitatively “more
human” interaction skills than the baseline robots.

We would like to conclude our remarks on autonomous robots
by briefly highlighting four of the emerging popular benchmarks
for control tasks. Not all of the benchmarks used in the surveyed
papers will be discussed here and not all of these benchmarks
have been used in the surveyed papers. Four of these emerg-
ing benchmarks and simulation tools are the 2018 DeepMind
Control Suite (Tassa et al., 2018), the 2012 MuJoCo Physics Simu-
lator (Todorov, Erez, & Tassa, 2012), the 2018 Surreal open source
RL and Robotics Manipulation benchmark (Fan et al., 2018), and
the opensource multi-robot simulator known as Gazebo (Koenig
& Howard, 2004) which was published the earliest in 2004. Fig. 3
shows snapshots of these simulators in action using snap shots
of each reproduced with the permission from Fan et al. (2018)
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(a) DM Control Suite (b) SURREAL

Fig. 3. Two popular physics engines and simulators for control tasks (Fan et al.,
2018; Tassa et al.,, 2018).

and Tassa et al. (2018). Traditionally, MuJoCo and Gazebo are
most used in applications concerning navigation and walking.
Surreal and the DeepMind Control Suite are both more oriented
towards contact manipulation and tasks requiring the modeling
physics. There is a lot of overlap in capabilities and researchers
should investigate each of these more closely to determine what
emulator is the best for their needs.

3.2, Self-driving cars in particular

Autonomous driving systems have a lot of overlap with classic
motor control systems. For example, steering can be interpreted
as a continuous action space, and the same goes for braking and
accelerating. Additionally, the autonomous vehicles are controlled
in the real-world through motors that perform the steering and
the pressing of pedals. Therefore it is fair to say Autonomous
driving is a subclass of motor control problems with slight vari-
ations in action space, and state space representation. One big
difference between the two is in how problem solvers need to
model the environment of the DRL agent. In driving tasks, there
is more uncertainty in the state space representation than in
classic motor control problems. Is that a motorcycle in the blind
spot? Is that car stopped to let a pedestrian pass in front of it?
Humans as well as agents need to adapt to the uncertainty in the
driving environment. DRL agents generally do this by adopting
RNN architectures, and model their MDP as a POMDP.

One of the first major works in DRL (Sallab et al., 2017) that
saw an application in autonomous driving was the seminal work
from the European Valeo Automotive company by researchers
Sallab et al. in 2017. They performed a benchmark on DQN, and
a Deep Deterministic Actor-Critic network known as DDAC, and
in both cases, the networks were updated to include recurrent
LSTM layers to better handle the POMDP nature of the problem.
Further, convolutional layers are used to promote an attention
mechanism to better encode a state space representation of the
simulation. The researchers used the Open-source Racing Car
Simulator known as Torcs with the Simulated Car Racing add-
on to allow precise control of the agent. The researchers used
the simulator frames as an input, which includes an overhead
shot of the car, and in the upper-left hand corner, there is a
small square with the driver’s point of view. These features are
fused with details about the car’s current orientation, velocity,
and relative distance to the race track border. This work is a little
different from the rest of the works we will survey as the input
to the DRL networks are a little different, and only available to
virtual problems, and additionally, the work was not intended
to be translated into the real-world. Nevertheless, they have laid
out a viable framework for researchers who wish to bring this
technology to the open road.
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Fig. 4. This figure shows the common state space representation between virtual
and real-world environments when Mask-RCNN is used on the opposing RGB
inputs (Pan et al, 2017). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

The same year, a team of researchers Pan et al. (2017) de-
veloped the first attempt to train an autonomous vehicle in
simulation and then evaluate in the real-world. The researchers
used A3C. They were motivated by the prohibitive cost of training
an autonomous vehicle in the real-world. One of the largest
contributions the paper makes is in the way the researchers
bridge the reality gap from virtual simulation to real-world. The
authors of this paper have a driver’s point-of-view provided by a
camera in both the real-world and virtual environments. Instead
of passing the raw RGB pixel data to the neural network, the
researchers perform image segmentation using Mask-RCNN. As
shown in Fig. 4 reproduced with permission from Pan et al.
(2017), although the RGB state space representations look dif-
ferent, the addition of Mask-RCNN into the pipeline provides
a similar state space representation within both domains. The
authors showed that their model could train in simulation and
then adapt to real-world data successfully bridging the reality
gap.

Following this logic we see one of the first domain specific
emulators created for autonomous driving tasks. The CARLA driv-
ing simulator (Dosovitskiy, Ros, Codevilla, Lopez, & Koltun, 2017)
was created in late 2017, and provides three state space rep-
resentations for a driver POV in simulation. The three sensing
modalities are the RGB camera, a depth map, and finally, image
segmentation of the RGB camera frames. Already cited more than
a thousand times, the CARLA autonomous driving simulator has
provided a springboard of success to researchers everywhere.

A 2020 paper (Duan, Eben Li et al, 2020) shows the im-
portance of framing a reinforcement learning task as a hierar-
chical reinforcement learning task. They learn sub-policies for
motor control tasks to perform a left lane change, a right lane
change, and holding in a lane. There is a master policy that
learns when to utilize these sub-policies. Each sub-policy is im-
plemented by a different neural network trained with unique
state space representations and reward functions. The authors
noted that compared to a model that does not use a hierarchical
learning framework, the HL method provides higher rewards,
and requires less training. The preliminary work is promising
and future work is supposed to evolve to more complex driving
environments like city driving where pedestrians become a factor.

As the world gets ready for more and more autonomous cars
to be on the road, the research community has turned their
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attention to issues like designing an autonomous cruise control
to minimize the effects on traffic (Das & Won, 2021), algorithms
to control autonomous cars operating in complex driving sce-
narios (Li et al.,, 2021), and controlling a hybrid electric car to
minimize the effects on the environment (Zhu et al., 2021). In Das
and Won (2021) the researchers seek to control the inter-vehicle
gap and other safety parameters based on micro and macro traffic
conditions. By using a deep Q network to select a safe “time-to-
collision” or TTC value and a second network takes this selected
TTC as an input and outputs a speed for the adaptive cruise
control. Using the architecture this way to create a latent space
that refers to a real-world value is reminiscent of the work we
will see in Xu et al. (2020). These architectural changes promote
auxiliary learning and makes training more efficient for complex
and intractable state and action spaces. The proposed algorithm
SAINT-ACC performs in simulation as effectively as other state-
of-the-art approaches, but appears better than state-of-the-art
algorithms in more complex driving scenarios (e.g. increased car
density).

We also see researchers trying to control for complex driv-
ing situations in Li et al. (2021) from 2021. This team uses a
hierarchical framework where a double DQN acts as a high level
coordinator of lower motor controllers. The lower level con-
trollers are governed by a series of Constrained Iterative Linear
Quadratic Regulators. Each regulator corresponds to a task that
is determined by the higher level double DQN. While navigating
through roundabouts or larger intersections these tasks are inter-
mediate steps to driving, such as: entering a busy intersection,
exiting to an off ramp or merging from an on ramp, waiting
until it is clear to turn, or following a vehicle. The proposed
algorithm achieved high completion rates and low collision rates
despite needing to brake hard in some cases to avoid collision.
The usage of the hierarchical framework alleviates the action
and state space intractability caused by having different motor
behaviors depending on the specific task similar to Duan, Eben Li
et al. (2020).

In our final paper on autonomous driving we see in Zhu et al.
(2021) an attempt to control a hybrid electrical autonomous car
with a DRL algorithm to preserve fuel and maintain optimal
speed. The DRL in question is a Proximal Policy Optimization
(PPO) trained with LSTM to better handle the POMDP nature
of the problem. There is also significant work presented on a
custom reward function. In simulations the proposed DRL al-
gorithm decreases fuel consumption by 17% compared to more
computationally demanding algorithms.

3.3. Navigation tasks

Navigation problems present themselves in both the arena of
general motor control policies, and the arena self driving vehicles.
We will discuss two different types of navigation here, path plan-
ning in general, and then path planning for odometry and SLAM
problems in particular. Path planning is an important aspect of
autonomous robots. Unlike a SLAM or odometry problem which
requires creating and storing a map of the environment from sen-
sor data, path planning algorithms can be as simple as avoiding
obstacles while completely forgetting previously seen environ-
ments as agents navigate to a target. There are several important
works that incorporate DRL into path planning tasks (Faust et al.,
2017; Lei et al., 2018; Lv et al., 2019; Pfeiffer et al., 2017; Tai et al.,
2017; Yan et al,, 2021; Zhang et al,, 2021). And a handful that
(directly or indirectly) involve SLAM (Placed & Castellanos, 2020;
Wang, Clark, Wen and Trigoni, 2017; Wen et al., 2020; Zhang
et al.,, 2020).

The seminal work of Pfeiffer et al. (2017) in 2016 claims to
be the first end-to-end framework for an autonomous robot to
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perform mapless obstacle avoidance on the way to a known
target destination. Using a Kobuki based turtlebot the researchers
train ResNet to act as their DQN. One year later in 2017, a
research team published (Tai et al., 2017) which develops a sim-
ilar framework that built around an asynchronous DDPG. Both
teams train their model in simulation and successfully evaluate
their model in the real-world. Perhaps the most impressive feat
of all was a transfer to real-world environments that had not
been seen in simulation, suggesting great generalizability. Depth
maps can be used in simulation and real-world providing a state
space representation common to both the simulation and real-
world. This shared feature space helps eliminate the reality gap.
Both papers successfully and maplessly navigate their turtlebots
through real-world environments.

In 2017 we also see the first attempt from Faust et al. (2017) to
reframe the path planning task as a hierarchical learning problem
and provide enormous generalization benefits. The framework
presented is known as PRM-RL. Probabilistic Road Maps are used
for choosing a route to a destination. A subagent then controls
the motors to reach the chosen target. The ground experiments
use DDPG, while the aerial drone experiments use Continuous
Action Fitted Value Iteration. Having a non-DRL agent create the
path, and subsequently giving the DDPG agent in the ground ex-
periment a known target destination, the problem becomes very
similar to the path planning algorithms discussed in the previous
paragraph. Both ground experiments and aerial experiments saw
great generalization when transferred to the real-world.

Path planning researchers have made some unique contribu-
tions to the architectures of traditional DRL agents. As seen in this
2019 paper (Lv et al., 2019), researchers have actually extended
dense residual connections to the DQN architecture on almost
4 years after residual connections were suggested in the creation
of ResNet. Overall, their dense model is more stable, faster, and
accurate than traditional DQN.

The final path planning papers we will explore before moving
onto SLAM, are all newer and may be of interest to path plan-
ning engineers (Yan et al,, 2021; Zhang et al., 2021). In Zhang
et al. (2021) the researchers do not design a path planning al-
gorithm; they use hierarchical learning to create a tracking al-
gorithm. Many path planning applications involve following a
moving target, and this algorithm provides a state-of-the-art
real-time approach to doing so. They call this algorithm PAC-
Net because it constituted by a policy network for switching
modes and an actor—critic network with an LSTM layer to per-
form searching and bounding box regression within the frames.
Both hierarchical decision networks share a ResNet18 feature
extractor for observation. In the paper (Yan et al, 2021) the
researchers handle the unique problem of path planning for flocks
of autonomous drones. The researchers propose a distributed DRL
actor critic network to overcome the flocking control and collision
avoidance problem for a squad of autonomous aerial vehicles.
A leader robot controlled by a human is followed by the flock
who are trained with parameter sharing to avoid collisions and
follow the leader within a desired threshold. The researchers
showed they could transfer the model to new experiments with-
out the need of fine-tuning showing great promise for real-world
implementation.

As robotics researchers will tell you, odometry is perhaps
one of the more important aspects of any autonomous vehicle
framework. It is great that autonomous vehicles can learn these
control policies discussed here in this survey, but what use are
these policies if the autonomous robot looses track of where it
is within the environment? Odometry is the science (some say
art Poddar, Kottath, & Karar, 2018) of using sensor data to verify
the current position of a vehicle. In autonomous vehicles this
is often extended to a simultaneous localization and mapping
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problem — or a SLAM problem. The vehicles need to confirm its
location within the environment but also need to map and store
the sensor data for navigation tasks. Deep reinforcement learning
has already shown to provide some answers to this complex
problem. As we have seen before, traditional deep learning was
used to develop DeepVO to perform visual odometry (Wang,
Clark et al., 2017). In a 2018 paper from Nanjing University (Lei
et al,, 2018), we see the researchers use episodic learning with
a Double-DQN to learn to navigate a robot and create a world
map as it progresses to a target while avoiding obstacles. The
only draw back to the map created is that obstacles occlude
parts of the environment and the learning agent does not adopt a
route to fully explore the environment. By relying on depth maps
for input, the model overcomes the reality gap when trained in
simulation and evaluated in real-world environments.

A paper published in 2020 in Applied Sciences (Placed &
Castellanos, 2020) makes use of a Dueling Double DQN to suc-
cessfully explore an environment gathering enough features to
perform SLAM using gmapping in ROS. The researchers get these
results primarily by developing a handcrafted reward function
that promotes full exploration. The reward function is below:

—100 if collision
Rug =11+ tanh(ﬁ) ifo=0 (8)
.05 + tanh(f(i):)) ifwo#0

where, f(X') is the D-optimality criterion, dependent on the
eigenvalues of the covariance matrix of the observed features.
This equation is given below.

1

1
f(2) = D-opt = exp(; ) _ log(i)
k=1

(9)

The variable 5 is a scaling factor that for these researcher’s ex-
periments is set to .01. And [ is the dimension of the observed
features. In essence, this means when the observed data has
higher variance, or uneven variance, the reward is lower. When
the observed features have a lower variance then the reward is
higher. The researchers also experiment with using Shannon’s
entropy in place of the D-optimality criterion. This reward func-
tion successfully promoted enough exploration to gather enough
features so that gmapping could perform SLAM and detect loop
closure. This work is preceded by another 2020 paper (Wen et al.,
2020) from researchers who used FastSLAM instead of gmapping
to perform SLAM using the LiDAR range findings from their robot
that successfully navigates through a dynamic environment while
avoiding obstacles.

A research team assembled from the University of Freiburg
and the Hong Kong University of Science and Technology pub-
lished a paper (Zhang et al., 2020) in late 2020. This paper, unlike
the previous mentioned papers, seeks to use DRL to perform
SLAM directly. They utilize A3C and train in simple gridworld like
environments successfully evaluating their work in more realistic
Gazebo environments. The researchers take advantage of external
memory access mechanism to account for the increased memory
and computational demands associated with creating a map of
the environment.

3.4. Lessons learned

Across a lot of these tasks we see continuous action spaces
and similar state space representations. When the action space
is continuous we see the usage of actor—critic algorithms like
DDPG. In the case the autonomous driving, the unique feature
is that the MDP is redefined as a POMDP system and therefore
we are more likely to see usage of recurrent neural network
architectures like LSTM (Sallab et al., 2017; Zhu et al, 2021).
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Researchers utilize many of the famous DRL algorithms in these
applied settings; DQN (Das & Won, 2021; Lei et al.,, 2018; Li
et al,, 2021; Lv et al,, 2019; Omisore et al., 2018; Sallab et al.,
2017), and actor-critic models like DDPG (Faust et al.,, 2017; Gu
et al,, 2016; Peng et al., 2018; Popov et al., 2017; Tai et al., 2017;
Tan et al,, 2019), and A3C (Pan et al., 2017; Rusu et al., 2016a)
are the most popular algorithms used by Researchers for motor
control tasks. State space representations generally rely on visual
features (Pan et al., 2017; Rusu et al., 2016a; Sallab et al., 2017) or
depth maps from systems like LiDAR (Dosovitskiy et al., 2017; Lei
et al., 2018; Pfeiffer et al., 2017; Tai et al., 2017). In at least one
case we explored they use both RGB and Depth as an input (Zhao
et al,, 2021). In general, techniques from traditional deep learning
are slow to be introduced into the field of DRL. As referenced
before, the 2019 paper (Lv et al., 2019) is one of the first papers
in the DRL field that use a residual feedforward connection in
their network architecture. Please note that residual connections
were introduced in 2015 (He, Zhang, Ren, & Sun, 2015) as the
most critical part in the ResNet feature extractor and classifier,
but remain not widely adopted by the DRL community.

The field of robotics and autonomous vehicles is the first
place we see the development of simulation methods that bridge
the “reality gap”. In motor control tasks, we saw the usage of
progressive networks as an early attempt to bridge the reality
gap, although this led to an increased demand in computational
resources (Rusu et al., 2016a). Autonomous vehicle research in-
volves using visual features as an input, so the usage of Mask-
RCNN and semantic or instance segmentation is a very clever
way of overcoming the reality gap in the autonomous driving
papers we have surveyed (Dosovitskiy et al., 2017; Pan et al,,
2017). In autonomous vehicle tasks we also saw the use of an
emulator where depth maps can be extracted, or where an im-
age segmentation algorithm like Mask-RCNN can be applied to
create a similar state space from virtual and real-world camera
inputs (Dosovitskiy et al., 2017).

The development of reward functions to serve as a method
of auxiliary learning is more prevalent in the resource allocation
task section. However, there are still a few prominent examples
of reward function manipulation guiding networks to better so-
lutions. Of course this is alluding to Honerkamp et al. (2021),
Placed and Castellanos (2020), Popov et al. (2017) and Yan et al.
(2021). The usage of intrinsic motivation alongside reward func-
tion manipulation has also lead to promising results (Qureshi
et al,, 2018).

Throughout this section we also see the emergence of the
use of hierarchical learning to reform complex problems with
intractable state and/or action spaces into simpler systems (Duan,
Eben Li et al., 2020; Faust et al., 2017; Li et al., 2021; Liu & Jiang,
2018; Zhang et al., 2021). Where HL is used we see a reduction in
the time of training (Duan, Eben Li et al., 2020), and in some cases
algorithms created with a HL framework generalize better to
environments that are never seen before in the real-world (Faust
et al,, 2017).

4. Resource allocation

Resource Allocation can refer to a lot of different tasks. In
this section we will discuss traffic control, vehicle routing, and
the control of telecommunication resources, before finishing our
discussion with automating HVAC control, and management of
the power grid. Traffic engineering is not traditionally classified as
aresource allocation task, but it shares similarities. At the heart of
the problem is the flow of resources or “traffic”. Researchers seek
to maximize the flow of traffic in order to decrease traffic con-
gestion. Vehicle routing is more obviously a resource allocation
task, where the fleet of taxis need to be distributed according to
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customer demand. The rise of companies like Lyft and Uber have
caused increased focus on this problem domain in recent years.
Generally speaking, telecommunication resource tasks revolve
around decreasing power consumption or increasing bandwidth
utilization. Table 2 summarizes the key take aways from the
papers surveyed within this section.

Similar to the other application settings for cyber-physical
systems, the usage of neural networks in human aided decision
making for resource management predates the usage of deep
reinforcement learning. Researchers have been shown to be able
to predict demand within a power grid (Luh, Michel, Friedland,
Guan, & Yuting Wang, 2010; Marinescu, Harris, Dusparic, Clarke,
& Cahill, 2013) and predict energy consumption in a specific
building with a HVAC system (Mocanu et al., 2016). Traditional
reinforcement learning has also been used alongside neural net-
works to try better respond to market conditions (Lu & Hong,
2019). Similarly, there is important work (Ke, Zheng, Yang, &
Chen, 2017a) using traditional deep learning in the study of
vehicle routing tasks.

These tasks are very similar in general, and rely on hand-
crafted reward functions and auxiliary learning for some of the
major breakthroughs. HVAC control, while similar to power grid
management, differs from other resource allocation tasks in the
sense that the credit assignment problem appears due to the
long lengths of time between an agent’s action and the result.
Generally when the credit assignment problem appears in other
resource allocation task it is due to the rapidly changing nature
of the state space. A warehouse may require hours of heating or
cooling before reaching a desired temperature. HVAC control is
further complicated by a need for enormous amounts of data.
A paper we will talk about later (Xu et al., 2020) mentions two
additional works (Wei, Ren, & Zhu, 2019; Wei, Yanzhi Wang, &
Zhu, 2017) that require in upwards of 50 to 100 months of data
in order to have their models trained properly. More complex
systems require in upwards of more than 4000 months of data.

4.1. Traffic control

Traffic control got a lot of attention starting in 2016 with
the publication of two seminal works (Genders & Razavi, 2016;
Li et al, 2016). The first of these papers (Li et al., 2016) was
published in July by a research team assembled from the Chinese
Academy of Sciences and Tsinghua University. Using a modified
DQN with four auto-encoding layers, the team compared the
performance of DRL and RL and observed that DRL outperforms
traditional RL algorithms. As one of the first works in this domain,
the team limited the state and action spaces by not allowing
turns at four-way intersections, nor did they allow yellow lights
to present, and red lights occur for a fixed amount of time. The
action space was limited to picking which streams have the green
light. In the following work (Genders & Razavi, 2016) published
in the same year, we see the proposal of a state space represen-
tation referred to as the DTSE — discrete traffic state encoding.
This state space is shown in Fig. 5 reproduced with permission
from Genders and Razavi (2016). The two channels represent one
of the four streams of traffic in the intersection that act as the
input to the convolution based DQN. This work advances over
the previous, by allowing cars to make left and right turns at the
intersection. However, similar to the previous work, this agent
can only decide which light would be green at a given moment,
with fixed intervals of yellow and red lights to follow.

Both Casas (2017) and Van der Pol and Oliehoek (2016) im-
prove on the above results. However, there are still outstanding
questions and problems that need to be solved. Elise van der Pol
and Frans A. Oliehoek from the University of Amsterdam made
some success with a multi-agent DQN implementation with three
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Summary of papers surveyed for resource allocation tasks. Note that papers that use simulators in their training regimen may be set up for success in the real world,
but unless evaluated in the real-world we hesitate to say the research has overcame the reality gap problem.

Paper Network Application Virtual HL MAL Problem overcame Notes
environment
Genders and Razavi (2016) DQN Traffic control SUMO N N Intractability of Proposes DTSE
state/action space
Van der Pol and Oliehoek (2016) DQN Traffic control SUMO N Y Intractability of First to use
state/action space multi-agent learning
Li, Lv, and Wang (2016) DQN Traffic control PARAMICS N N Intractability of Uses autoencoders
state/action space instead of conv. layers
Casas (2017) DDPG Traffic control Aimsun N N Intractability of Limits state space
state/action space the least
Xu, Wang, Wang, Jia, and Lu HiLight Traffic control CityFlow Y N Lack of training data Distributed HL system using
(2021)
+ Intractability of neighborhood statistics
state/action space
Lin, Zhao, Xu, and Zhou (2018) DQN + A2C Vehicle routing  Custom N Y Intractability of First to use
state/action space multi-agent learning
Liu et al. (2020) DDPG Vehicle routing  Custom N Y Intractability of Confirms usefulness
state/action space of multi-agent learning
Al-Abbasi, Ghosh, and Aggarwal DeepPool + DQN Vehicle routing Custom N N Intractability of One of the first
(2019)
state/action space to tackle ride pooling
Xu, Wang, Tang, Wang, and DQN Telecommunica- Custom N N Intractability of Handcrafted reward function
Gursoy (2017) tion
state/action space to minimize power usage
Liu et al. (2017) DQN + DDPG Telecommunica- Custom N N Intractability of Applied work from Li, Xu,
tion Tang, and Wang (2018)
state/action space
Sun, Peng, and Mao (2019) DQN Telecommunica- Custom N N Intractability of Handcrafted reward function
tion
state/action space to minimize power usage
Chen, Lingys, Chen, and Liu DDPG Telecommunica- Custom Y N Intractability of Distributes agents to hosts
(2018) tion
state/action space
Ruffy, Przystupa, and Benchmarks Telecommunica- Iroko N N Lack of training data Proposes Iroko
Beschastnikh (2018) tion
multiple agents data center emulator
Chinchali et al. (2018) DDPG Telecommunica- Custom N N Intractability of Handcrafted reward function
tion
state/action space to maximize traffic flow
Xu, Tang, Yin, Wang, and Xue DQN Telecommunica- Real-world N N Intractability of Handcrafted reward function
(2019) tion
state/action space to maximize traffic flow
Kaviani et al. (2021) DeepCQ+ Telecommunica- Custom N Y Intractability of Used MARL in Vehicle
tion
state/action space Platooning communication
Cao and Yin (2021) DQN Telecommunica- MATLAB N N Lack of training data Decreased packet collisions
tion
compared to baseline
Wang, Velswamy and Huang Recurrent HVAC EnergyPlus N N Lack of training data Uses LSTM to overcome
(2017)
actor—critic + Intractability of POMDP nature of problem
network
state/action space
Yu et al. (2020) MAAC HVAC Custom N Y Lack of training data Multi-agent learning

+ Intractability of
state/action space

reduces intractability

sequential traffic lights (Van der Pol & Oliehoek, 2016). Taking
lessons from van der Pol’s master’s thesis (van der Pol, 2016), they
limited the state space by disallowing turns or by experimenting
in environments where a turn is not possible, like the three
sequential traffic light scenario in the paper. A later paper in 2017
from Noe Casas (Casas, 2017) showed that DDPG could outper-
form a traditional non-DRL multi-agent Q-learning algorithm in
realistic scenarios, allowing turns, and allowing control of yellow
and red light sequences. Casas shows that DDPG scales very well,
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up to a three by two grid of four-way intersections. However,
DDPG falls short in providing stable traffic in the most realistic
scenario involving a section of a model city. In this sense, DDPG
better handles the problem’s innate intractability compared to
traditional RL but has a little ways to go before we can call this
problem solved.

The most recent state-of-the-art traffic light control research
is Xu et al. (2021), a 2021 paper from Peng Cheng Labs and
Peking University. The researchers note their predecessor’s work



T. Rupprecht and Y. Wang

Table 2 (continued).

Neural Networks 153 (2022) 13-36

Paper Network Application Virtual HL MAL Problem overcame Notes
environment
Xu et al. (2020) 2 Novel DNNs HVAC EnergyPlus N N Lack of training data Transfer learning reduces
+ Intractability of amount of data needed
state/action space
Diao et al. (2019) DQN Power grid GridPACK N N Lack of training data Develops grid mind
management + IEEE 14-bus framework
System
Duan et al. (2020) DQN + DDPG Power grid Custom N N Lack of training data Refines grid mind and
management experiments with DDPG
Chen et al. (2020) PowerNet Power grid Custom N Y Lack of training data Proposes using MAL
(from IA2C) management + Intractability of to manage power grid
state/action space
Yang et al. (2018) DQN Power grid Custom N Y Lack of training data Proposes using MAL
management + Intractability of to establish pricing
state/action space
Wei, Wan, and He (2020) DDPG + DQN Power grid Custom N N Lack of training data Proposes cyber attack
management recovery algorithm
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Fig. 5. This figure shows the Discrete Traffic State Encoding or DTSE. (a) refers
to a lane within the simulation. (b) refers to a channel holding boolean values
indicating the presence of a car in the corresponding cell within the simulation.
And (c) refers to the normalized velocities of the cars (Genders & Razavi, 2016).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

of identifying suitable short term rewards such as minimizing
queue lengths, waiting times, and delays. It would be preferable
to minimize a long term goal of total time in car for every
individual driver however due to the time frames involved this
becomes difficult for local traffic light operators to measure. To
achieve something like this the authors make use of hierarchical
learning to great effect in an algorithm they call HiLight. The
researchers use an actor critic method to select a sub-policy
that is implemented in an intersection for training. Each sub-
policy tries to optimize for one of the short term goals iterated
before. However, what is unique here is their usage of a multi
critic algorithm, one critic looks solely at the local intersections
short-term goals, and the second one criticizes the proposed
policy according to overall neighborhood traffic statistics. The
sub-policies are updated with their short term rewards at every
timestep at every intersection, where the higher level controller
is rewarded at the time interval of T timesteps. The system
adaptively weighs these two critics in order to balance achieving
short term traffic goals along with longer term neighborhood
goals when selecting sub-policies for local agents. In simulations,
HiLight outperforms other cooperative traffic lighting algorithms.
The other traffic controllers we have explored are states-of-the-
art in their domain of non-cooperative local agents. However
HiLight and its usage of hierarchical learning that incorporates
neighborhood traffic statistics to learn longer term rewards is
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much closer to solving the real-world traffic controller problem
than any local non-cooperative agent.

We will end our discussion of the traffic control problem, by
referring the reader to valuable benchmarks and similar research
that may be interesting to the traffic control engineer. Li et al.
(2016) uses the PARAMICS traffic simulator (Smith, Duncan, &
Druitt, 1995) while Genders and Razavi (2016) and Van der Pol
and Oliehoek (2016) use the SUMO traffic simulator (Krajzewicz,
Hertkorn, Feld, & Wagner, 2002). Meanwhile, Noe Casas, author
of Casas (2017), used AIMSUN (Barcelo, Codina, Casas, Ferrer, &
Garcia, 2005). In Xu et al. (2021) they use CityFlow (Zhang et al.,
2019). In Noe Casas’s work they explain that there are micro-
scopic and macroscopic traffic simulators. SUMO and PARAMICS
are microscopic, and AIMSUN can work as either microscopic,
or macroscopic, or even as hybrid of the other two known as
mesoscopic (Casas, 2017). SUMO has wider applications than
solely traffic, and allows users to simulate CO2 emissions, and
contains datasets corresponding to traffic conditions at real-world
events (Krajzewicz et al., 2002). Lastly, we would like to point out
to the reader the research from the University of Tokyo. In 2016,
DeepTransport was created (Song, Kanasugi, & Shibasaki, 2016),
and while this work does not incorporate DRL, we think this could
potentially prove useful to engineers working on traffic control
problems. DeepTransport is a deep learning model that can pre-
dict and generate realistic routes individuals within Tokyo may
travel along. Using a recurrent network, and data gathered from
GPS data in Tokyo, this network could prove useful in creating
realistic datasets for simulations that use Tokyo as a testing or
training environment. Similarly, this work can be replicated for
any city that offers samples of GPS route data to researchers.

4.2. Vehicle routing

A very important paper in the discussion of vehicle routing
is the 2017 work (Ke et al,, 2017a) from Zhejiang University
and Hong Kong University of Science and Technology. These
researchers created a novel deep learning network that does
not incorporate deep reinforcement learning, in order to predict
customer demand for vehicle routing services. The work is in-
teresting on its own despite not involving DRL, but it remains
important to DRL researchers because the authors of this paper
scrutinized the state space for a vehicle routing platform. These
researchers used a spatial aggregated random forest algorithm to
determine which state space variables have the greatest impact
on predicting user demand. Fig. 6 reproduced with permission
from Ke et al. (2017a) describes this state space.
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Fig. 6. This graph presents which state space variables have the greatest effect on predicting future user demand in vehicle routing platforms. Intuitively the rate of
the ride is the largest factor in determining user demand, but that is closely followed by current demand intensity (or the amount of current ride requests). Time
of day and temperature are also important (Ke et al., 2017a). Copyright ownership is maintained by Elsevier (Ke, Zheng, Yang, & Chen, 2017b). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Turning our attention back to deep reinforcement learning, we
must now look at work presented in 2018 (Lin et al., 2018) by
a research team from Michigan State University in conjunction
with Didi Chuxing — a Chinese Vehicle Routing platform. These
researchers presented two multi-agent DRL algorithms that they
refer to as contextualized DQN, and contextualized A2C — a
non-asynchronous version of the Asynchronous Advantage Actor—
Critic (or A3C) algorithm. The state space included a geographic
map of the city, and a contextualized map showing the locations
of other agents/vehicles. The map of the city was overlaid with
a grid, and the action space directs agents to these grids. They
performed their experiments in a handcrafted simulator using
actual passenger data provided by Didi Chuxing. The researchers
declared their work a success.

A large ensemble of researchers from various Chinese Univer-
sities in 2020 updated their 2019 research on using DRL to route
an electric vehicles to charging stations (Liu et al., 2020). Using
a SDN-enhanced vehicular edge computing network to monitor
the battery of the electric vehicle locally. The DRL agent seeks
to minimize overhead in both travel time to charging stations
when the electric vehicle battery is low, and the charging cost at
a particular charging station. The researchers use a deep neural
network to approximate the quality function similar to DQN, and
have a state space including vehicle position and the state of the
battery. Selecting from a grid overlaid a city, the agent directs cars
to available fast charging stations. Interested readers should ex-
plore these researcher’s hand crafted reward function that takes
advantage of domain knowledge to model vehicle overhead in
this problem. Comparing themselves to an algorithm using game
theory to make reservations at the fast charging stations avail-
able, the DRL agent both minimizes overhead more effectively
and also requires less computational resources to compute.

A subset of problems within the vehicle routing domain re-
volve around a newer idea referred to as ride-pooling. Uber and
Lyft for cheaper rates allow multiple passengers to be picked up
at a time, and like a bus, the vehicle delivers passengers to their
respective locations. In 2018, researchers in Purdue University
developed DeepPool (Al-Abbasi et al., 2019). Using a distributed
DQN to route vehicles to passengers, these researchers claim to be
the first DRL solution to vehicle dispatch problem to incorporate
user demand statistics into their state space. By distributing a
DQN for each agent in the ride sharing program, the individual
DQN’s handle the problem’s intractability compared to having a
single DQN making decisions for the entire fleet. This echos the
research of Ke et al. (2017a). And while the researchers showed
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success using real-world taxi data from NYC in simulations, they
did feel required to limit the state space to disallow separate
exits from the vehicle. The vehicles will travel around picking up
multiple passengers, but the simulation forces these passengers
to be dropped off at the same area and at the same time. Despite
this minor set back, these researchers developed a framework
that adapts well to new dynamic environments, and successfully
avoids dispatching vehicles to low-demand areas.

4.3. Telecommunication resources

Radio Access Networks (RANs) have become increasingly
prevalent especially as we get closer to ubiquitous 5G wireless
communication. RANs provide access to some core network using
radio technology. There are a variety of RANs including Cloud
based RANSs, or Fog RANs. While relying on different technology
for their implementation, they all serve the same purpose, and
DRL can be used to help mitigate power consumption. However,
this reduction in power usage cannot come at the expense of user
experience, or bandwidth utilization. As such, reward functions
will be of a high importance when investigating this technology
domain.

An important contribution to the domain came in 2017 (Xu
et al, 2017) when a team of researchers at Syracuse University
made an effort to decrease the power consumption without
sacrificing user demand satisfaction. Users and groups of Remote
Radio Heads (RRHs) are divided into cells based of proximity.
Performance and power consumption are measured at each node,
and a centralized agent makes decisions to place RRHs into a sleep
mode, or to turn them on, and when turned on applying a weight
to the RRH’s beamforming to reflect current demand. Using a self-
implemented simulation designed in Tensorflow, the researchers
compare their work to two other state-of-the-art algorithms and
show improvement on power consumption without sacrificing
user experience; in one case they use 18% less power than one of
their state-of-the-art alternatives. The agent also adapts to highly
dynamic environments. The researchers used industry knowledge
to handcraft a reward function that evaluates how the agent
minimizes power consumption, and balances user demand by
finding an optimal beamforming weights. The reward is given by:

Rt:Pmax_P(SaAvc) (10)
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where P, is the maximum possible power consumption, and
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Here, P(S, A, G) is the total power consumption for all active RRHs
in set A, for all sleeping RRHs in set S, and for all transition RRHs
in set G. Py qctive Pr sieep, aNd Pr transition are the respective power for
each RRH r in each of three sets. Finally, w; , are the beamforming
weights for each user connected to a RRH. While the agent tries
to minimize this P(S, A, G), the agent simultaneously attempts
to solve this optimization problem meant to find the optimal
beamforming weights for each user connected to the active set
of radio heads:

argminZZ |wr,u|2 (12)
Yri eq yeu
Subject to:
SINR, > yy, u e U;
Z'wr.u|2 <P, reA; (13)
uel
where,
Yu = Tm(2%/8 = 1) (14)

Here SINR, is the signal to noise ratio for each user’s connection
to a RRH.

This previous work was built upon in both Li et al. (2018)
and Liu et al. (2017) by members of the same team as Xu et al.
(2017). In Li et al. (2018), the team focused on the general-
purpose Distributed Stream Data Processing System (DSDPS),
which processes unbounded streams of continuous data at scale
distributed in real-time. They focused on the adaptive and sys-
tematic solution to the fundamental scheduling problem (i.e., as-
signing workload to workers/machines) with the objective of
minimizing the average end-to-end tuple processing time. They
developed a novel model-free approach using DRL that can learn
to well control a DSDPS from its experience rather than accurate
and mathematically solvable system models, just as a human
learns a skill. Compared to Storm’s default scheduler and the
state-of-the-art model-based method, the proposed framework
reduces average tuple processing by 33.5% and 14.0%, respec-
tively. Moreover, in another work (Liu et al,, 2017), this team
applied the DRL technique from Li et al. (2018) to solve the cloud
computing request dispatching and processing problem with high
state and action dimensions, consistently outperforming prior
work thanks in part to the system’s distributed nature. These
preliminary works lay a solid foundation on state-dependent,
model-free ML/AI with high-dimensional state and action spaces,
as a perfect fit to the domains of this project.

A more recent paper from 2019 (Sun et al., 2019) tries to de-
crease the latency seen in Fog-based Radio Access Networks. Tak-
ing advantage of the “edge computing” paradigm, which states
that latency in a networking tasks can be decreased by moving
the physical location of the processing and data storage closer
to where the data ends up. By distributing individual decision
making agents to each node the researchers are better positioned
to handle the problem’s intractability. Using an actor—critic model
they employ a network similar to A3C to lower the latency for
users. The learning agent chooses which user requests to process,
where the request will be processed, and how many resources
to dedicate to the task. These decisions are decided by the state
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space: the number of data delivery requests, the number of data
processing requests, the number of Fog RAN nodes, the size of the
input data for the task, the computational requirements for the
task, the popularity of the data being requested, a flag indicating
the presence of the data within storage, and a vector of SINR
values indicating signal strength between the user an each Fog
Radio Head. Ultimately these researchers were able to compare to
state-of-the-art algorithms and alternative frameworks using nu-
merical simulations and showed that the DRL method decreased
latency the most.

Similar to controlling resources for a RAN, DRL has been ap-
plied to automating the resource allocation of more typical dat-
acenters. Datacenters currently rely on TCP congestion control
algorithms to fully utilize bandwidth and satisfy user demand
with minimal latency. Researchers have tried applying DRL to this
problem domain. In 2018, a team of researchers benchmarked
current DRL approaches to this problem while also offering their
own approach (Chen et al, 2018). They found that previous
efforts have fallen short, as most DRL frameworks struggle to
make decisions on the millisecond time scale. Proposing a novel
DRL algorithm called AuTO (Automatic Traffic Optimization) they
mimic the nervous system in animals which have both a central
and peripheral nervous system. Similarly to this construct, the
researchers have part of the algorithm deployed on peripheral lo-
cal host systems which make choices to optimize traffic involving
shorter data requests, while a central system at the datacenter or
server aggregates global information to better inform peripheral
systems what traffic to prioritize. The success of this work hinges
on the observation that most datacenter traffic can be modeled as
a long-tail distribution; which means the majority of datacenter
traffic is from long-flow requests, while the majority of requests
are in fact for short-flow requests of data. The peripheral sys-
tem on the local hosts makes decisions about when to process
the shorter requests when the central system makes scheduling
decisions (for under 1 s) concerning longer-flow requests for
data. Another important development is the hand-crafted reward
function the researchers developed seen below:

theFtD Tputf

t—1

= (15)
X:fffleF[Df1 Tputf

Tt

Here FP is the set of completed flows at time step ¢ and, Tputf‘
is the average throughput of each completed flow at time step
t. This reward function is a ratio of the completed flows average
throughput for the current time step over the previous time step.
This ratio signifies an increase or decrease in throughput based
on the agent’s actions. The authors choose not to use simulation
for training or evaluation, they use their own thirty-two server
testbed to train and develop the end-to-end algorithm. The re-
searchers concluded that AuTO works better than previous traffic
optimization approaches and they credit the decoupling of their
central and peripheral systems for this success.

As always, benchmarks developed within an application set-
ting can prove to be important springboards for future research
and success. Iroko in 2018 (Ruffy et al, 2018) is an emulator
developed by a team of researchers from the University of British
Columbia. Iroko aims to provide a benchmark for DRL algorithms
meant to automate congestion control in data center settings. The
paper benchmarks two TCP congestion control algorithms along-
side DDPG, as well as other RL algorithms such as RIENFORCE, and
Proximal Policy Gradients. DDPG alongside PPO outperform TCP
New Vegas which is ubiquitous in networking solutions.

A research team at Stanford University has studied a similar
problem in 2018 (Chinchali et al., 2018), but applied to cellular
telephone networks instead of datacenters. They too wish to
increase traffic throughput over modern alternatives. Using actual
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network data recorded in Melbourne Australia, these researchers
show that pairing human operators with hand-crafted reward
functions, their agent can increase throughput up to 14.7%. This
team built their own simulator to perform training and evalu-
ation. They determined that features relevant to their task in-
cluded: average user throughput, cell congestion, average cell
efficiency, number of connections, and traffic volume. The team
uses a recurrent DDPG with LSTM layers to train in their sim-
ulation end-to-end, where the agent learns to regress a control
policy between [0, 1] for each user’s traffic flow. This number
corresponds to a rate which the user’s traffic can be served on
top of conventional traffic rates which generally split the user’s
bandwidth equally. The researchers come up with this tunable
reward function seen below:

(e, ar) = otVtIOT + '3‘/[1055 + kv[bdowlimit (16)

Here VT is a weighted sum of 10T traffic served at time t. V5
is the bytes lost due to congestion caused by the IoT traffic flow.
ypelowlimit s the amount of traffic served under a desired thresh-
old. The hyper-parameters «, 8, and k are tunable parameters that
are controlled by human operators wishing to prioritize one of
the parameters as they respond to real-world observations about
traffic flow and congestion.

A special case of TCP congestion control algorithms handle the
multi-path TCP scenario where traffic can be directed to its target
along different paths to increase redundancy, and better handle
congestion. Xu et al. (2019) seek to employ DRL to work in this
multi-path TCP setting. The experiments show that their model
DRL-CC outperforms traditional MPTCP-CC algorithms, can adapt
to many dynamic environments, and can be used in traditional
TCP environments where multi-path routing is not an option. The
DRL-CC algorithm involves a single recurrent DDPG operating on
a real-world server communicating with two hosts. The frame-
work presented in this paper allows for easy swapping out of
different reward functions to allow end users to prioritize their
own network statistics. The researchers used a utility function
as the reward function that helps the network learn to increase
goodput within a network. Goodput is just the utilized bandwidth,
because technically speaking throughput refers to a theoretical
upperbound on utilization. When people talk about increasing
throughput they often mean “goodput”. Below is the reward
function used by researchers to increase goodput:

N
= Zlog g
i

In this specific implementation, g{ is the average goodput for
flow i at timestep t. A unique aspect of the DRL-CC algorithm is
the LSTM based feature extractor which can be trained end-to-
end with the recurrent actor-critic algorithm DDPG. The feature
extractor takes in state variables for each data flow being moni-
tored: the current rate of transmission, current goodput, round
trip time, the mean deviation of round trip time, and current
congestion window size (a TCP hyperparameter). The LSTM net-
work extracts features from these state variables and passes it to
the recurrent DDPG that regresses a proposed change to the TCP
parameter congestion window for each flow and subflow (when
multi-path TCP routing is an option).

We turn our attention now to mobile ad-hoc networks. In
2021, scientists published Kaviani et al. (2021) which demon-
strates the importance of multi-agent DRL in CQ-routing for mo-
bile networks. They have created an algorithm called DeepCQ+
which looks at a mobile network node and determines where
to route incoming packets and what mode to send them in
(broadcast v. unicast). DeepCQ+ out performs peers in mini-
mizing the amount of transmissions per successfully delivered

(17)
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packets. They do this by taking advantage of the decentralized
nature of the problem and having different cooperative agents
work at each node. As we have seen in other experiments the
usage of one learning agent across all these different nodes can
lead to intractability caused by both the state space and action
space. Despite the decentralized implementation MARL training
can be centralized in simulations through policy parameter shar-
ing. DeepCQ+ outperforms the original CQ+ routing algorithm.

In another paper from 2021, Cao and Yin (2021) deal with
automated vehicle platooning for networked vehicles. With the
arrival of 5G networks it will become possible for networked
cars to communicate over different network types while driving
to try and mitigate traffic and accidents. One way of decreasing
traffic is by platooning vehicles, which means letting cars stay
close together despite maintaining high speeds. The cars then act
in concert regarding braking and accelerating by communicating
with a platoon leader. In current implementations of this concept
experiments suffer from high rates of packet collision because the
communication networks used by the cars are selected at ran-
dom. This team proposes a DRL algorithm that allows the platoon
leader to learn the environment’s available ad-hoc communica-
tion networks to communicate with the platoon cars in order to
decrease packet collision probability. The proposed DRL algorithm
outperforms current implementations of platoon communication
which rely on random selection of communication options. In
simulation, they decrease packet collisions by 73% and 45% in low
and high density vehicle experiments respectively.

4.4. HVAC control

One of the seminal works in DRL as applied to HVAC control
of a building, was a 2017 paper (Wang, Velswamy et al., 2017)
published by a research team at the University of Alberta. They
used a novel Monte-Carlo recurrent actor-critic network using
a REINFORCE policy gradient where the critic network models
the value function (differing from other actor-critic networks
that model the advantage function, or the quality function). Their
largest contribution involves overcoming a lack of real-world
data. As mentioned before in HVAC control there is a large credit
assignment problem, due to the slow change in state resulting
from agent actions. This compounds into a very difficult problem,
because this also implies needing large amounts of simulated or
real data to train the networks. This 2017 paper is one of the
first to use DRL and attains results using only 2 days of training
data for an evaluation period of 5 days. The reason for using less
data is threefold. (1) The system being controlled is much smaller
than the systems referenced before that require months worth of
data. (2) The researchers employ different weather schemes in
training that give training a sense of a “random initial condition”
that we have seen in other works improve generalization. (3) It is
not explicit, but the usage of LSTM in their actor-critic network
probably helps the agent inform on the new weather patterns
as well overcome the POMDP nature of the problem itself. The
networks were trained and evaluated in the open source building
modeling platform OpenStudio and a Building Control Virtual
Test Bed (with EnergyPlus) to allow the agent to control the
thermostat. Ultimately this system attains 15% more thermal
comfort compared to the alternatives tested against, and utilizes
power more efficiently by about 2.5%. The one downside to this
framework is that their work is only regulating the HVAC for a
single thermal zone, an office suite within a larger building; and
additionally, the agent after training cannot easily adapt to new
unseen building dynamics. To apply this work in a new building
or thermal zone requires retraining the networks.

A very impressive work in 2020 (Yu et al,, 2020) from Nan-
jing, Xi'an Jiaotong, and Huazhong Universities created a novel
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multi-agent actor-critic model to control the thermal zones of
a building. This work sees a separate cooperative agent respon-
sible for each of the zones. Interestingly enough the system is
trained without any explicit indication of the building’s thermal
dynamics. One key contribution to this paper has got to be the
researcher’s hand-crafted reward function. The paper dedicates
several paragraphs deriving several functions that factor into a
single reward function. Their reward function accounts for four
separate optimization tasks: (1) a penalty for the energy con-
sumption caused by the air supply fan within the vents. (2) the
energy consumption caused by the system’s cooling coil. (3) a
penalty for the zone’s temperature. And finally (4) a penalty for
when the concentration of CO, exceeds limits. Similar to the
previous work, these researchers use the EnergyPlus simulator to
model the dynamics of the thermal zones. These researchers uti-
lized real-world weather data and pricing data alongside months
worth of training data. These researchers successfully minimize
power utilization, while maintaining thermal comfortability, and
maintaining CO, concentration levels.

The last paper that should be discussed is another recent 2020
paper from researchers at Northwestern, Northeastern, and Texas
A&M Universities (Xu et al., 2020). Together they have provided
to the research community a novel training regimen that takes
advantage of transfer learning to provide high generalization
benefits. Training on a simpler version of a problem, with simpler
actions, and simpler state spaces, they transfer learn into more
complicated systems without requiring larger quantities of addi-
tional data. These researchers create a DQN-like architecture with
two subnetworks. The front-end network Q is referred to as the
building agnostic network that takes the input state I and maps
to a latent space AT which corresponds to a desired change in
temperature in each zone, essentially a form of auxiliary learning.
This latent space is then fed forward with the input state I into
the back-end network referred to as F~! or the inverse building
network which captures the building specific behavior. Fig. 7
reproduced with permission from Xu et al. (2020) details this pro-
cess more closely. The authors start with a simple building, and
initially simplify the actions of the thermostat to be simple on-off
controllers and begin training their two networks for as little as
two weeks time. After the initial training has occurred, the first
subnetwork Q can be brought into a new system with more com-
plicated building dynamics or construction materials, weather
conditions, and more complicated thermostat commands. With
finetuning the target building is ready in as little as three weeks
time. These authors successfully transfer the DRL HVAC controller
from a simpler source building to a target building that can have
a different number of thermal zones, different building materials
and layouts, different HVAC equipment, and even under different
weather conditions in certain cases (from more varying weather
to less varying weather cases).

4.5. Power-grid management

New technologies are creating demand for new methodologies
of power management. Two early examples from 2014 and 2015
in the field of electric vehicles saw efforts to use non-deep re-
inforcement learning to moderate the power consumption and
battery usage of a hybrid electric vehicle (Lin, Bogdan, Chang,
& Pedram, 2015; Lin, Wang, Bogdan, Chang, & Pedram, 2014).
Both efforts saw a decrease in operational costs of at least 40%.
The rise of renewable energy is taking its toll on modern power
grids created long ago. For example, houses connected to the
power grid that give back solar energy raised on that property
cause traditional assumptions about the power grid model to fail,
i.e. modern power grids now need to account for a house being
a source of power and not solely a power drain. Further, this
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reversal in demand and supply also leads to non-constant loads
on the grid as in the case of solar they are only giving power
back to the power grid during sunny days. In 2019, researchers
from China and the United States have teamed up to use DRL to
try and regulate voltage controls across a smart power grid (Diao
et al,, 2019). Their proposed DRL agent is called Grid Mind and
uses DQN to take measurements of active and reactive power
flows on transmission lines. Humans today decide whether to
adjust the generator terminal voltage set point, switching shunt
elements, or changing the transformer tap ratios to help moderate
the voltage across a power grid. The action space for Grid Mind
is limited to just altering voltage set points, but future work
plans on expanding the scope of actions. The reward function
rewards the agent for keeping voltages within operational levels,
and penalizes the agent for divergences from operational ideals,
and heavily penalizes the agent for violations. Grid Mind can work
both online and offline, to continue to learn in real-time. These
authors build on their work in the 2020 paper (Duan, Shi et al,,
2020) that expands the scope of their experiments to work with
DDPG. From these experiments it seems that DDPG handles the
problem’s intractability better than DQN. DDPG also trains more
efficiently. Additionally, the size of their evaluation scenario is
increased offering a promising framework for real world systems.

Perhaps unsurprisingly, the state-of-the-art work done on au-
tomating the control of a power grid incorporates a multi-agent
learning problem formulation. Researchers in late 2020 from
Michigan State University, Stanford University, and the Argonne
National Laboratory propose a network PowerNet (Chen et al.,
2020). PowerNet uses LSTM to overcome the partially observed
nature of the state space since agents only have measurements
about their local area. Communication between the agents is used
so they can share their understanding of their local state space
with direct neighbors. The researchers trained their network in
a custom simulation called PGSim and their future works section
states their desire to add real-world data into the PGSim emulator
as opposed to simulated data. The power grid in this paper is
decentralized which better mirrors the realities of the modern
smart grid. Like the previous work explored, PowerNet uses a
state space representation for the active and reactive power, and
the currents and voltages at their distributed generators. Using
this state as an input, PowerNet decides the voltage setpoint
to use at a distributed generator. To handle the credit assign-
ment problem, a spatial discount factor is utilized in the reward
function to prevent bad decisions from benefiting from the good
decisions of neighbors.

So far we have seen papers solely with regulating that power
grid. However, a team of researchers in 2018 from Tianjin Univer-
sity, Imperial College London, and NetEase, Inc. use DRL to model
pricing and act as a broker for energy in a smart power grid (Yang
et al., 2018). Researchers cluster costumers into groups based on
electricity consumption patterns using a K-Means algorithm with
Dynamic Time Warping distance criterion. Rather than having
a single agent negotiate pricing for each cluster of customers,
a recurrent multi-agent cooperative game is created where an
agent handles the brokering for one specific cluster. Prices are set
based on looking at the past history of customer power usage,
and previous electric contracts. The researchers also propose
a reward shaping mechanism to prevent bad pricing decisions
made by a single agent from being rewarded solely due to good
decisions from neighboring agent’s decisions. This would poten-
tially confuse the bad actor like in credit assignment problems.
The researchers performed an ablation study on their model to
determine the importance of the reward shaping mechanism they
proposed, and found that without it, the agents and broker failed
to make a profit. The researchers also experiment with using
a single recurrent DQN instead of their proposed multi-agent
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Fig. 7. A front-end network Q captures the building-agnostic control scheme, while a back-end network (inverse building network) F~! captures the building-specific
control scheme. The weights are shared directly from the first Q network with the target building’s Q network, allowing the target building’s F~! network to learn
the more complicated building thermal dynamics or more complicated HVAC controller (Xu et al., 2020).

recurrent DQN to show that the multi-agent problem formulation
is necessary. Without the multi-agent problem formulation the
agent does not converge to a policy that generates profit for the
broker.

Another paper that deserves attention is Wei et al. (2020) from
2020. With the rise of smart grids, and automated control within
the power industry, researchers have directed their attention to
automating the security of these systems, too. A cyber attack on
a power grid often takes the form of tripping the transmissions
lines to prevent the transfer of power in or out of a region.
This team from the University of Rhode Island compares two
DRL agents, DQN and DDPG, to determine in the event of an
attack which agent better handles the automated reopening of
these transmission lines while preventing current inrushes, and
power swings. In at least one scenario experimented with DDPG
performs better than DQN, but both converge to policies that can
mitigate the harms of reclosing transmission lines during a cyber
attack on a smart power grid.

4.6. Lessons learned

In the previous Lessons Learned subsection on motor control
tasks we were dealing with three different applications that all
had a lot of overlap in terms in problem formulation. So it made
sense to analyze the similar trends seen across all of the appli-
cations together. We believe the tasks revolving around resource
allocation are more diverse and actually the different applications
seem to teach us different things about DRL. This is why we will
go application by application in this section.

As referenced before, traffic control is almost a solved prob-
lem, although the initial research is very encouraging (Casas,
2017; Xu et al., 2021). We suggest combining the best aspects of
the discussed work. Casas (2017) shows the importance of using
DDPG which is better suited for intractable state spaces, Genders
and Razavi (2016) shows the importance of using the DTSE state
space representation, Van der Pol and Oliehoek (2016) and Xu
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et al. (2021) show how the usage of multi-agent learning or dis-
tributed learning can in some situations improve the results when
dealing with such an intractable system such as city wide traffic
control, and finally Xu et al. (2021) show the importance of using
hierarchical learning to capture neighborhood level statistics for
all of their distributed agents.

Vehicle routing, where the resources being allocated are the
drivers/vehicles of the taxi fleet, has had a similar evolution as
traffic control. Pioneers in the field were not afraid to limit the
action or state space, especially in more complicated problems
like vehicle routing with ride pooling (Al-Abbasi et al., 2019; Lin
etal, 2018; Liu et al., 2020). The complexity of the action space in
these cases can be controlled by increasing or decreasing the size
of the grids that cars are directed to and user demand is predicted
for. Also similar to traffic control, reframing the problem as a
multi-agent learning problem amplified the success of previous
researchers (Lin et al., 2018).

For resource allocation tasks centered in the telecommuni-
cation arena, success is rooted not in how problems are sim-
plified and then built upon in subsequent works, but in how
reward functions are crafted with industry expertise. These hand-
crafted reward functions provide an insight into how the systems
work. Equations (8) through (17) and their respective papers
all shed light on how state-of-the-art algorithms use industry
insights to guide DRL networks through training. Also prevalent
in the telecommunication domain is the usage of distributed
algorithms (Chen et al.,, 2018; Li et al., 2018; Liu et al., 2017; Sun
et al,, 2019) which helps keep the state and action spaces less
intractable. We also see the deployment of multi-agent learning
in Kaviani et al. (2021), a communication system that successfully
decreases packet collision.

Let us recall these lessons from the telecommunication do-
main and consider the success seen in traffic control and vehicle
routing. While traffic in some scenarios can be optimized, there
remains a question of fairness. Some researchers (Casas, 2017;
Genders & Razavi, 2016) admit that to achieve the results they
did required sacrificing fairness. Some lanes of traffic would stay
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Summary of papers surveyed organized by problems encountered and method of solution.

Problem encountered

Solution

Relevant papers

Lack of training data

Architectural

Training regimen

Das and Won (2021), Rusu et al. (2016a) and Xu et al. (2020)

Diao et al. (2019), Duan, Shi et al. (2020), Gu et al. (2016), Kalashnikov et al. (2018),
Lei et al. (2018), Li et al. (2021), Omisore et al. (2018), Pan et al. (2017), Peng et al.
(2018), Pfeiffer et al. (2017), Popov et al. (2017), Ruffy et al. (2018), Rusu et al. (2016a),
Tai et al. (2017), Tan et al. (2019), Wang, Velswamy et al. (2017), Wei et al. (2020), Xu

et al. (2021, 2020) and Yu et al. (2020)

Reality gap Architectural

Training regimen

Pan et al. (2017), Rusu et al. (2016a) and Tan et al. (2019)

Lei et al. (2018), Omisore et al. (2018), Pfeiffer et al. (2017), Rusu et al. (2016a) and Tai

et al. (2017)

Intractability of Architectural

Casas (2017), Das and Won (2021), Duan, Shi et al. (2020, 2020), Honerkamp et al.

(2021), Kalashnikov et al. (2018), Li et al. (2016), Lv et al. (2019), Wang, Velswamy
et al. (2017), Xu et al. (2021, 2020) and Zhao et al. (2021)

State or action space Custom loss function

Al-Abbasi et al. (2019), Chinchali et al. (2018), Diao et al. (2019), Peng et al. (2018),

Pfeiffer et al. (2017), Placed and Castellanos (2020), Popov et al. (2017), Qureshi et al.
(2018), Sun et al. (2019), Xu et al. (2019, 2017), Xu et al. (2021), Yan et al.
(2021) and Zhu et al. (2021)

Training regimen

Al-Abbasi et al. (2019), Cao and Yin (2021), Genders and Razavi (2016), Liu et al.

(2017), Omisore et al. (2018), Sallab et al. (2017), Sun et al. (2019), Xu et al. (2020),
Zhang et al. (2020) and Zhao et al. (2021)

Problem simplification

Multi-Agent RL

Al-Abbasi et al. (2019), Li et al. (2016) and Sallab et al. (2017)

Chen et al. (2020), Kaviani et al. (2021), Lin et al. (2018), Liu et al. (2020), Van der Pol

and Oliehoek (2016), Yang et al. (2018) and Yu et al. (2020)

Hierarchical RL

Chen et al. (2018), Duan, Eben Li et al. (2020), Faust et al. (2017), Li et al. (2021), Liu

and Jiang (2018), Xu et al. (2021) and Zhang et al. (2021)

at a red light far longer than would be tolerated by actual human
drivers. We urge the readers and DRL researchers working in
traffic control and vehicle routing to explore how to balance
traditional reward functions with fairness, or customer satisfac-
tion as seen in Xu et al. (2021) which balances these different
rewards by using hierarchical learning. This is exemplified by
the multi-agent learning vehicle routing paper, that does in fact
utilize a custom reward function based on the averaged revenues
of drivers directed into a cell to satisfy customer demand (Lin
et al, 2018). No ablation study was performed to determine
whether the multi-agent learning problem formulation, or the
custom reward function proved to be most important, but it is
probable that both factor into the successes witnessed in that
paper. DeepPool also has a custom reward function (Al-Abbasi
et al,, 2019).

Power grid management and HVAC control, perhaps non-
surprisingly, have been the most successful in applying DRL
algorithms within their application domain. It is not surprising
because simulations are more effective during training because
the reality gap is less prevalent in systems when voltage mea-
surements or temperature sensors are the predominant input to
the learning system. As noted before, the typical amount of data
required to train RL algorithms has decreased substantially from
at least to 50 months in optimal cases, down to a staggering 5
weeks of data (Xu et al,, 2020). The novel network architecture
proposed in Xu et al. (2020) that uses two networks connected
by a latent space is a form of auxiliary learning that should
be explored in additional settings. Additionally, the proposed
transfer learning of the “target agnostic” network directly into a
more complex scenario from a simpler scenario is going to prove
paramount in the years to come in alleviating the problems in
other domains where data is scarce (Xu et al., 2020). Multi-agent
learning has also shown to be successful when applied in these
settings (Chen et al., 2020; Yang et al., 2018; Yu et al,, 2020). In
the future, we hope to see a comparison of these multi-agent and
single-agent approaches.
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5. Overcoming common problems
5.1. Intractability in state and action space

It is a little ambiguous whether or not a system’s intractability
stems from interpreting the state space, or stems from choosing
an action. Sometimes it is obvious, like when dealing with con-
tinuous action spaces (action space intractability) or interpreting
road conditions in front of an autonomous vehicle (state space
intractability). It is usually not that obvious and in most cases
there is cause to say the intractability stems from both the action
and state spaces. Regardless of where this intractability stems
from we have witnessed that the solutions required to overcome
action and state space intractability have a lot in common.

Seminal works in most of these applications start by reducing
the state or action space so the problems become less intractable.
Once a common framework is found, these constraints are lifted.
Both auxiliary learning and handcrafted reward functions, as seen
in equations(8) through equations(17), can help guide networks
training within more complex systems. In some instances edge
computing and distributed algorithms can help shrink the state
and action space for learning models. Formulating complex prob-
lems into multi-agent learning problems or hierarchical learning
problems has lead to success in otherwise intractable problems,
and has also lead to increased performance during training and
evaluation.

5.2. Lack of real-world training data and the reality gap

Especially in regard to robotics, real-world training and experi-
ments can be costly to create and prohibitively destructive when
failures arise. Real-world training data is sparse and difficult to
derive. That is why simulators are often used to simplify the
training process. Using transfer learning to go from a simpler
simulated environment to a more complex environment is one
promising technique when data is scarce.
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Once researchers make the jump from simulation to real-
world they encounter the reality gap problem. Using simulations
that share a common feature space with the real-world is a
promising technique for overcoming the reality gap problem. We
have also discussed architectural design decisions, and training
regimens that overcome instances of the reality gap problem.

5.3. Discussion

We have sorted the papers we surveyed based on the prob-
lems encountered and solutions used; the results are seen in
Table 3. This way researchers who already have an idea of how
they want to overcome a problem they are encountering can
easily look at a large selection of papers across a variety of do-
mains that all employ similar approaches to solving the common
problem encountered. Some papers may appear twice (or even
three times) if they are encountering different problems or if they
are using multiple solutions.

The future of these applications hinge on real-world adoption
and overcoming the reality gap. Real-world adoption will lead
to new constraints that do not necessarily come up in simulated
experiments. Adoption on any edge device in the field will force
algorithms to be more efficient, both in terms of needing faster
run-times and needing to be implemented on lower quality hard-
ware compared to dedicated research computers. Some of the
works we highlighted in the related reading section deal with
optimizations in deep learning for edge device implementation.
A decent amount of papers we surveyed have already made the
jump to real-world implementation with great success. Many
more of the papers surveyed have not made the jump but are
well positioned to.

6. Conclusion

This survey explores the work researchers have done in apply-
ing deep reinforcement learning algorithms to applied settings,
like in motor control tasks, and resource allocation tasks. To
our knowledge this is the first survey that seeks to explore
these advances in the field at this scope. The state-of-the-art
algorithms overwhelmingly rely on hierarchical learning or multi-
agent learning for more complicated tasks. Valuable insight can
be learned by exploring the auxiliary learning techniques and
hand crafted reward functions that come from intimate knowl-
edge of the application domains explored herein. It is our hope
that researchers use this survey to become aware of common
problems and learn to overcome them with the common so-
lutions found within this survey. It is then and only then can
researchers team up together to take on more complex real-world
problems.
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