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Abstract

Dataless text classification aims to classify
documents using only class descriptions with-
out any training data. Recent research shows
that pre-trained textual entailment models can
achieve state-of-the-art dataless classification
performance on various tasks. However, such
models are not practical in that their prediction
speed is slow as they need k forward passes
to predict k classes and they are not built for
fine-tuning to further improve the initial (often
mediocre) performance. This work proposes
a simple, effective, and practical dataless clas-
sification approach. We use class descriptions
as queries to retrieve task-specific or external
unlabeled data on which pseudo-labels are as-
signed to train a classifier. Experiments on a
wide range of classification tasks show that the
proposed approach consistently outperforms
entailment-based models in terms of classifi-
cation accuracy, prediction speed, and perfor-
mance gain when fine-tuned on labeled data.

1 Introduction

Text classification is one of the most used tech-
niques in mining large-scale unstructured text.
When sufficient labeled data are available, super-
vised classification techniques can achieve excel-
lent performance. However, manually labeling
example documents can be time-consuming and
labor-intensive, a major burden when applying su-
pervised text classification techniques in practice.
Recently, dataless text classification (Chang
et al., 2008; Druck et al., 2008; Song and Roth,
2014; Chen et al., 2015; Li et al., 2016a,b; Song
et al., 2016) has been proposed to save labeling
efforts. It refers to the ability for a machine learn-
ing model to start classifying documents by using
only class descriptions and no training data. Since
any text classification task necessarily starts with
a description for each class, class descriptions are
naturally available from the very beginning. There-
fore, dataless text classification has practical value

in real-world applications.

Early research showed that dataless classifiers
are able to classify documents on unbounded la-
bel sets if label descriptions are carefully written,
e.g., paraphrasing the same concept using differ-
ent synonyms and from multiple aspects (Chang
et al., 2008; Wang and Domeniconi, 2009; Song
and Roth, 2014). These approaches often leverage
external resources such as Wikipedia to construct
semantic representations for both class descriptions
and text documents. Many different settings have
been considered in previous works, some using
slightly different names, including zero-shot text
classification (Pushp and Srivastava, 2017; Yin
et al., 2019) and weakly supervised text classifi-
cation (Chu et al., 2020a). Recent research found
that Transformer-based textual entailment models
can provide more competitive performance on data-
less classification tasks (Yin et al., 2019; Chu et al.,
2020a). The basic idea is to ask a pre-trained tex-
tual entailment model to judge if a document logi-
cally entails any of the class descriptions, and then
pick the class with the highest probability of en-
tailment. Such an approach is shown to give bet-
ter performance than earlier approaches thanks to
the contextual text representations learned by deep
Transformers such as BERT (Devlin et al., 2018).

However, the textual entailment approach to
dataless classification has several drawbacks which
diminish its practical value. First, one has to run the
entailment model £ times to classify one document
into k categories. The prediction speed slows down
as more categories (larger k) are considered in a
task. Second, the performance of a dataless text
classifier is often far from optimal, and therefore
practitioners often wish to further improve it using
labeled examples afterwards. As we will show in
the experiments, entailment models are not ideal
for fine-tuning on classification tasks. They aim to
solve a much harder problem than classification —
to learn semantic dependencies between all words



in the document and all words in the class defini-
tion — and therefore need more data to learn well.
Third, it is difficult to adapt a well-trained entail-
ment model on a task-specific corpus, since adap-
tive pretraining (such as masked language mod-
eling) has to happen before the entailment model
is trained. Lastly, the performance of entailment-
based classifiers tends to vary significantly across
different tasks (Yin et al., 2019). Recent work
showed that they sometimes even underperform a
raw BERT model that is not fine-tuned on entail-
ment tasks (Ma et al., 2021).

Ideally, a dataless text classifier should not only
provide a decent performance to jump-start the task,
but also be readily adaptable to task-specific unla-
beled data, continuously trainable if labeled data
ever become available, and scalable to a large num-
ber of categories at prediction time. In this paper,
we propose methods that achieve these goals. The
main idea is to create pseudo-labeled documents
for each class using class descriptions as queries
and dense retrieval models as pseudo-labeling func-
tions. These pseudo-labeled data are then used
to train a classifier. This simple idea has its root
in early information retrieval research, such as
pseudo-relevance feedback (Rocchio, 1965) and
naive text classification (Baeza-Yates et al., 2011).
We reinvigorate this old idea with modern tech-
niques in text representation, retrieval, and data
subset selection, giving rise to a practical and ef-
fective method for dataless text classification.

We evaluate the proposed approach through ex-
tensive experiments on a variety of datasets, in-
cluding topical and sentiment classification tasks,
multi-class and multi-label classification settings,
and corpora from different genres. These experi-
ments show that our approach often outperforms
entailment-based methods by a large margin, en-
joys fast prediction speed, and improves quickly if
labeled documents are available for fine-tuning.

Our main contributions are as follows:

* We propose a simple and effective dataless
text classification method that selects a docu-
ment subset returned by dense retrieval mod-
els as pseudo-labels for classifier training.

» Extensive empirical experiments show that
our method is more practically useful than the
state-of-the-art textual entailment approaches.
It enjoys higher accuracy, faster prediction
speed, and can be readily improved even a
small amount of labeled data are available.

2 Related Work

Dataless text classification (Chang et al., 2008)
aims to classify text using a given set of class de-
scriptions and no labeled data for training a model.
Dataless text classification methods have two broad
categories: classification-based (Chang et al., 2008;
Druck et al., 2008; Wang and Domeniconi, 2009;
Song and Roth, 2014; Yin et al., 2019; Chu et al.,
2020a) and clustering-based (Barak et al., 2009;
Chen et al., 2015; Li et al., 2016a, 2018; Li and
Yang, 2018; Chu et al., 2020b). Classification-
based methods use automatic algorithms to cre-
ate machine-labeled data and construct a classi-
fier that assigns a category to an input document.
Clustering-based methods group documents (and
class descriptions) by their similarity, and assign
categories to each cluster. Our work focuses on the
classification-based approach.

Several classic methods use explicit semantic
analysis (ESA) (Gabrilovich et al., 2007) to repre-
sent documents and label descriptions in the same
vector space of concepts, and then compute the co-
sine similarity between documents and labels. The
label with the highest cosine similarity is assigned
to the document as the classification result (Chang
et al., 2008; Wang and Domeniconi, 2009; Song
and Roth, 2014). These works emphasize that se-
mantic representation of labels is as important as
learning good representation of documents.

In previous works, dataless text classification
also has many slightly different setups. For ex-
ample, in zero-shot text classification, Yin et al.;
Puri and Catanzaro proposed “label-fully-unseen”
setting which directly computes document-label
relatedness with a sentence-pair BERT model.
The model is trained with large-scale texts natu-
rally tagged with category information, such as
Wikipedia. NATCAT takes a further step (Chu et al.,
2020a). It combines various publicly available
online corpora that come with natural categories,
and trains a BERT or RoBERTa model (Devlin
etal., 2018; Liu et al., 2019) to discriminate correct
versus incorrect categories for a given document.
These methods design automatic algorithms to cre-
ate pseudo-labeled data from external resources
to train a universal entailment model that can be
applied to a wide spectrum of classification tasks.

It is easy to confuse “dataless text classification’
with “zero-shot text classification” (Wang et al.,
2019; Ye et al., 2020) and “weakly supervised
text classification” (Meng et al., 2020a,b). Zero-
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shot text classification may still provide labeled
data for part of the categories (label-partially-seen
(Yin et al., 2019)), while dataless text classifica-
tion does not assume labeled data for any category.
Weakly supervised text classification assumes a
large amount of unlabeled data are available for
learning, while dataless text classification does not
make this assumption — it can operate with few or
no unlabeled data from the task domain.

3 Proposed Methods

In this section, we describe our proposed method
for dataless text classification. We formulate the
problem as follows. We are given a set of class
descriptions D = {d;,--- ,d;, -+ ,dy}, eachisa
piece of short text (one or more words) describing a
semantic class j in the label space Y = {1,--- , k}.
We are given a set of unlabeled documents X and
zero labeled documents in the task domain. As a
natural scenario in practice, we also have access
to vast amounts of external unlabeled documents
U, |[U| >> |X]|. These external documents may
come from Wikipedia, news corpora, and online
social media, which may or may not share the same
domain as the classification task in question. Our
goal is to correctly assign label(s) from Y to (a
subset of) unlabeled documents in either X or U
as pseudo-labeled training data.

At a high level, our proposed method uses class
descriptions in D as queries to retrieve pseudo-
labeled documents from either task-specific unla-
beled data X, or external unlabeled data U, or the
two data sources combined. This gives us several
variants of the method. We collectively name these
variants CLARET, as they construct a classification
model by leveraging a retrieval model. Below we
describe our method in detail.

3.1 Dense Text Representation and Indexing

As a preparation step, we use a sentence represen-
tation model to convert all texts (class descriptions,
task-specific unlabeled documents, and external un-
labeled documents) into dense vectors in a semantic
space. In principle, any dense text representation
techniques can be used. We choose to use Sentence-
BERT (SBERT) (Reimers and Gurevych, 2019) as
it is proven to deliver good performance in various
sentence-pair modeling and information retrieval
tasks (Thakur et al., 2021).

Once these texts are converted into dense vectors,
we build approximate nearest neighbor (ANN) in-

dices for task-specific unlabeled documents and ex-
ternal documents to enable fast document retrieval.
In principle, any ANN search techniques can be
used. We choose to use FAISS (Johnson et al.,
2017) for efficient similarity search with cosine
similarity as the vector similarity metric. We also
tested other metrics such as Euclidean distance but
found negligible performance difference.

As SBERT is trained on a wide range of semantic
similarity tasks (including textual entailment), the
resulting document vectors inherit the knowledge
from these tasks. Cosine similarity cos(zy, z2) be-
tween documents x; and x5 approximates the prob-
ability that x; entails xo (or vice versa). In this
sense, our method implicitly leverages the same
type of knowledge of entailment-based models in a
more efficiently computable manner.

3.2 Class-Relevant Document Retrieval

The first step of our method is to retrieve a pool
of potentially relevant documents for each class, a
subset of which will be pseudo-labeled in the next
step. We propose three variants for this step.
Retrieving from task-specific unlabeled data.
Oftentimes a classification task starts with task-
specific data, but none of them are labeled yet. We
use each class description as a search query to re-
trieve documents from task-specific unlabeled data.
For class j € Y, we rank documents in the unla-
beled data X by their semantic similarity to the
class description d; and take the most similar 7
documents R; = {x;}",. Here, semantic simi-
larity is computed using the vectors produced in
Section 3.1. We call this variant CLARE T,k
CLARET is most useful if abundant task-
specific unlabeled data are available. However,
sometimes even such data are few. For example,
when mining documents related to an emerging
event in a data stream, one may only collect a small
number of documents about the new event since
it just happened. In that case, task-specific data
can be too scarce to retrieve from. To address this
scarcity, we can instead retrieve from external data
sources that contain vast amounts of unlabeled doc-
uments, some of which can also be semantically
related to the current task. This is the next variant.
Retrieving from external data. We can retrieve
class-relevant documents from external data when
task-specific data is scarce. External data should
come from as rich and diverse sources as possible
to increase the chance of returning task-relevant



documents. Thanks to approximate nearest neigh-
bor search index, the retrieval step can be done
efficiently against arbitrarily large external data.
For class j, we retrieve ng most relevant docu-
ments from external data with respect to the class
description dj, R; = {x;};2,. We call this variant
CLARETexternal-

Retrieving from external data with a task-
specific focus. We consider a third variant that
combines the previous two. The idea is to enrich
a class description with task-specific data before
using it to retrieve external documents. For each
class j, we first obtain a “seed set” of documents .S
using the same approach as CLARET g by fixing
n1 = .1 x |X|/k. Then we use them to further re-
trieve external documents by treating each x € S;
as a query to retrieve its ng nearest neighbors I'(x)
from external data. However, these documents may
be close to a seed document because they share
words unrelated to the theme of the class. To filter
such noise, we preserve documents that appear in at
least two seed documents’ nearest neighborhoods.
This gives class-relevant documents for class j:
R; = {e|qz1,29 € Sj,e € T'(z1) Ne € T'(x2)}.
The hope is that ; contains external documents
that are semantically relevant and stylistically sim-
ilar to task-specific data. We call this variant
CLARE Ttask-external -

3.3 Pseudo-Labeled Subset Selection

A challenging problem remains: how many docu-
ments to retrieve and assign pseudo-labels (namely,
how to set ny, no, or ng)? More generally, what is
the optimal subset of retrieved documents that, if
pseudo-labeled, will train a good classifier? Note
that we cannot tune subset selection procedures on
labeled data as such data is unavailable in a dataless
setting! We propose a novel unsupervised subset
selection procedure to address this problem.

Subset diversification. For CLARET,, we cre-
ate pseudo-labeled set L; = {(z, j)|z € R;} for
each class j. For the two variants that use external
data (CLARETexternal and CLARETtask-external)a how-
ever, we further select a subset L; C R; of size m
to be pseudo-labeled as class 7. The motivation is
that documents retrieved from external data sources
may contain (near-)duplicates. For example, many
news outlets may cover the same story. Duplicated
documents may lead to overfitting as they give too
much emphasis on a few documents and reduce the
overall diversity of pseudo-labeled training data.

Indeed, previous works have shown that diverse
training data improves learning performance (Wei
et al., 2015). Here we apply facility location func-
tion to quantify the diversity of a subset (Krause
and Golovin, 2014). The facility location function
of any subset L; C R; is defined as

g(Lj) = Z max s(x,e) . (1)

ecL;
IER]' J

Here s(-,-) is the cosine similarity between two
dense document vectors. Intuitively, g(L;) com-
putes the total cost for every element x € R; to
be “covered” by the most similar element e € L;.
In our context, this translates into how well the
subset L; preserves the content of the larger set R;.
Although finding the optimal subset L; that maxi-
mizes the submodular function g(L;) is NP-hard,
a greedy algorithm gives an approximately optimal
solution (Nemhauser et al., 1978). The algorithm
sequentially adds the next element z to L; with
the maximum marginal gain g(L; U {z}) — g(L;),
until L; reaches the desired size m.

Entropy maximization. We now determine the
subset selection parameters 6. For CLARET gk,
0 = {n1}. For CLARETexternal, ¢ = {n2, m}. For
CLARETysk-externals ¢ = {n3, m}. 6 determines the
pseudo-labeled set L; for class j, which determines
the full pseudo-labeled set U§:1Lj, which in turn
trains a classifier f : X — Y. Below we use fy
to emphasize that f depends on . fy induces a
distribution over the label space Y when applied to
the task-specific unlabeled data X: Vy € Y,

Spex Hho(e) =y}

p(y|Xaf9) = ‘X|

2

According to the maximum entropy principle
(Jaynes, 1957), the distribution with maximum en-
tropy shall be preferred since no labeled data are
available as evidence to prefer other distributions.
Following this principle, we seek for § that maxi-
mizes the classification entropy:

H(0) =Y —pylX, fo)logp(y|X, fo) . (3

yey

Empirically, H () correlates well (but not per-
fectly) with true performance of fy on labeled data
even though it is an unsupervised metric (Appendix
C.3), a phenomenon first observed in (Baram et al.,
2004). As H (#) is non-differentiable with respect
to 6, we resort to grid search. It is sufficient to use
a coarse grid to find sensible 6 values (Section 4.3).



Description

® [
® PseudoLabel @ e o
Boundar -
° Y “others @
Other
[ ] ° ]
@

Figure 1: Handling the Other class. (a) CLARET usk:

Task-specific:a?— Class ° Y External Data ___——Similarity Boundary Task-specific Data ° °

External Data

\ “Ot!er”

Y »
“Other” Seed Documents

(b) (©

obtaining Other documents from task-specific data; (b)

CLARETexternal: Obtaining Other documents between pseudo-label bounary and similarity boundary from external
data; (¢) CLARETaskexternal: Tetrieving Other documents from external data using seeds from task-specific data.

3.4 Handling the Other Class

In some classification tasks, we have clearly de-
fined categories and an Other category, such as an
“other topic” category in topic classification or a “no
emotion” category in emotion classification. We
call clearly defined (non-Other) categories named
classes. Using “other topic” or “no emotion” liter-
ally as the search query to retrieve pseudo-labeled
documents is problematic because the Other class
is to be interpreted with respect to named classes.
We propose methods to handle the Other class for
each variant above. The general idea is to pseudo-
label documents that are far from any named class
as the Other class. Without loss of generality, let
the named classes be numbered from 1 to £ — 1 and
the Other class be class k.

For CLARET s, We select Other documents L,
from task-specific unlabeled data O = X'\ Uf;ll
L;. Our goal is to find a subset L C O with
size nj that is farthest from the descriptions of all
named classes D\ {d} }. We seek for the subset that
minimizes the following function:

h(Lk) 2 e s(ze). @)
This function is modular and can be efficiently min-
imized by selecting n; documents that have small-
est maxé?;ll s(d;, z) values from O (Figure la).

For CLARE Texternal, We first retrieve external data
that are far from all named class descriptions but
still relevant to the task: O = Uf;ll{:dx elU,0<
s(xz,d;) < 0.1}. We then select R, C O with
size no by optimizing h(Ry) (Eq. (4)), and then
use the same diversity and entropy maximization
procedure in Section 3.3 to select m documents in
Rj. and pseudo-label as Other (Figure 1b).

For CLARET a5k-external, W€ first use the same
procedure as CLARET,sx (Eq. (4)) to select task-
specific seed documents for the Other category.

This turns Other into another named class. We
then retrieve and select pseudo-labels using the
same procedure described in Sections 3.2 and 3.3
(Figure 1c).

4 Experiments

In this section, we evaluate our proposed meth-
ods and compare them with baseline models for
dataless text classification. The comparison is not
only in terms classification accuracy, but also label
efficiency and inference speed.

4.1 External Document Repository

To cover various task domains, we combine five
large-scale datasets as the external document repos-
itory. These datasets are freely available and fre-
quently used in previous works as external re-
sources. We keep these documents short (e.g. titles)
as SBERT is well-trained on sentence pairs. We
build a single index for all the external documents.

Microsoft News Dataset (MIND) (Wu et al.,
2020) is collected from anonymized behavior logs
of Microsoft News website. Multi-Domain Senti-
ment Dataset (MDSD) (Blitzer et al., 2007) con-
tains product reviews for many product categories
in Amazon. Wikipedia-500K (Bhatia et al., 2016)
has over a million curator-generated category labels
and each article often has more than one relevant
labels. We select the first sentence of each article.
RealNews (Zellers et al., 2019) is a large news cor-
pus from Common Crawl. We randomly sample
2M titles from these 32M news. S20RC (Lo et al.,
2020) is a general corpus of scientific literature. We
randomly select 100k papers from all 20 research
fields and extract their titles.

4.2 Evaluation Datasets

We choose 10 text classification tasks in our ex-
periments. Note that we do not use any data or
labels from the training set, but only use unlabeled



Dataset #Docs  #Sents/doc  #Words/doc
MIND 98,336 1 10.7
MDSD 821,250 7.3 137.5
Wikipedia 1,779,881 1 22.9
RealNews 2,000,000 1 9.6
S20RC 2,000,000 1 10.9

Table 1: Statistics of external document datasets.

documents in the test set and the original class de-
scriptions (see Appendix A).

Single label topic classification datasets. Ya-
hoo (Zhang et al., 2015) consists of 10 categories of
questions in online forums. 20Newsgroup (Lang,
1995) is a collection of 20 topic newsgroup docu-
ments. AGnews (Zhang et al., 2015) contains 4 top-
ical categories of news tities. DBPedia (Lehmann
et al., 2015) contains titles, descriptions, and asso-
ciated categories from DBpedia.

Single label sentiment classification datasets.
Yelp (Zhang et al., 2015) is for sentiment analysis
in Yelp reviews. Emotion (Oberldnder and Klinger,
2018) was constructed by combining multiple pub-
lic datasets where documents have emotion labels.
Amazon (Zhang et al., 2015) is a binary sentiment
classification dataset. SST (Socher et al., 2013) is
a corpus extracted from movie reviews.

Multi label topical classification datasets. Situ-
ation (Zhang et al., 2015) is a event-type classifi-
cation dataset originally designed for low-resource
situation detection. Comment is created by Chu
et al. and contains 28 classes.

Dataset  #Docs #Classes #Docs/class #Words/doc
Single-label topic classification

Yahoo 100k 10 10K 115.8
AGnews 7,600 4 1,900 48.8
20News 7,532 20 376 375.4
DBPedia 70k 14 5,000 58.7
Single-label sentiment classification

Yelp 38k 2 19K 155.1
Emotion 16k 10 1,600 19.5
Amazon 400k 2 200K 95.7
SST-B 1,821 2 910.5 19.2
Multi-label topic classification

Situation 3,525 12 380.2 44.0
Comment 1,287 28 90.7 13.8

Table 2: Statistics of evaluation datasets.

4.3 Compared Methods

We include two state-of-the-art methods for data-
less text classification: label-fully-unseen OSHOT-
TC (Yin et al., 2019) and NATCAT (Chu et al.,

2020a). These two methods both use readily avail-
able resources to train textual entailment models
that can robustly handle a wide range of text classi-
fication tasks. To study the contribution of a dense
retrieval model in our approach, we construct a
baseline by replacing SBERT+FAISS with sparse
text retrieval model (BM25).

Label-fully-unseen 0SHOT-TC was first ex-
plored in (Yin et al., 2019). This setting pushes
“zero-shot learning” to the extreme — no annotated
data for any labels. It aims to classify documents
without seeing any task-specific training data. They
trained an entailment-based classifier on MNLI,
FEVER and RTE datasets to predict a binary out-
come. In the testing phase, they converted category
descriptions into hypothesis in two ways, one is
to prefix the label description with “it is related
to”, the other is to use WordNet definition of the
category label words in a hypothesis.

NATCAT (Chu et al., 2020a) proposed to use
large-scale, naturally annotated data to train ro-
bust entailment-based text classification models.
The authors induced document-category pairs from
Wikipedia, Stack Exchange, and Reddit posts. Un-
like label-fully-unseen 0OSHOT-TC, NATCAT did
not convert each category into a hypothesis, but
directly connected the category and the document
as a sentence-pair input.

BM2S retrieval. This baseline uses BM25 in-
stead of SBERT+FAISS for document retrieval
in CLARET gk-external- W€ build two inverted in-
dices, one for task-specific data, the other for ex-
ternal data. Using class descriptions as queries,
we use BM25 to retrieve n; task-specific docu-
ments and select 20 class-specific keywords us-
ing TF-IDF scores of words in retrieved docu-
ments. Then we use these class-specific keywords
as queries to retrieve n3 documents from the ex-
ternal data. Finally, we still use the facility func-
tion to filter m documents from the external data.
The parameter settings (n1,n3, m) are the same
as CLARETaskexternalr- Document indexing and
BM25 document retrieval are implemented using
the Python Whoosh library.

The three variants of CLARET we proposed.
To select pseudo-labeled subsets that have max-
imum classification entropy, we searched parame-
ters 6 on the grids n; = {.1,.3,.5} x |X|/k,m =
{100, 300, 500}, no = {2m, 5m, 10m} and n3 =
{100,200,300}. The subset-induced RoOBERTa
classifier that achieved the maximum entropy was



Single-label

Multi-label

Method Yahoo AGnews 20News DBPedia Yelp Emotion Amazon SST | Situation Comment
Baseline Models
BM25 39.6 69.7 31.1 68.6 49.5 13.2 52.0 522 14.0 15.1
OSHOT-TC (best) | 43.8 - - - - 24.7 - - 37.2 -
OSHOT-TC (our) 249 67.8 19.0 58.0 71.0 21.1 78.3 68.6 20.1 22.3
NATCAT (best) 57.8 75.6 39.3 82.8 70.4 - 66.8 65.0 - 22.6
NATCAT (our) 48.6 74.9 44.8 85.3 50.1 10.7 50.8 50.5 27.4 22.0
CLARET
Task 56.1 77.4 57.2 83.0 83.4 284 78.4 85.5 11.5 21.8
External 57.3 72.7 51.7 84.9 87.9 27.6 89.5 80.1 30.5 233
Task-External 61.6 84.5 58.3 92.7 86.5 27.1 86.2 84.1 37.2 259

Table 3: Dataless text classification performance on ten datasets (%). Each metric of CLARET is the average
of 5 runs with different random seeds. The metrics are label ranking average precision (LRAP) for Comment,
label-weighted F1 for Emotion and Situation and accuracy for other single-label classification tasks. The best
reported results of label-fully-unseen OSHOT-TC results from (Yin et al., 2019) and weakly supervised model
NATCAT (Chu et al., 2020a) are included. We also report results of our re-implementation of 0OSHOT-TC pre-trained
on MNLI and NATCAT model pre-trained on Wikipedia. Both used RoOBERTa as the entailment model. The best
average performance in each column is highlighted in bold.

used. The optimizer is AdamW (Loshchilov and
Hutter, 2017), learning rate is 2e, training batch
size is 32 and the number of training epochs is 4.

We did not compare with the LOTClass model
(Label-Name-Only Text Classification) (Meng
et al., 2020a). LOTClass assumes that label words
are mentioned somewhere in unlabeled documents,
which is not guaranteed. For example, in Emotion
and Yahoo datasets, some label words are not men-
tioned in any documents. Also, LOTClass does
not deal with the Other class, which is present in
Emotion and Situation datasets.

4.4 Performance Across Datasets

Table 3 summarizes classification performance of
baseline methods and our three pseudo-labeling
methods combined with RoBERTa classifier. Be-
sides, we have stored our implementation as open
source code in an anonymous Github repository!.
These results show that variants of CLARET are
able to achieve the highest performance on each
task compared with baseline methods. Although
the best pseudo-labeling strategy depends on spe-
cific tasks, it is clear that CLARET is overall a
promising approach to dataless text classification.
It performs the same as or sometimes much better
than entailment models. Comparison of BM25 and
CLARET variants shows that dense retrieval mod-
ule (e.g., SBERT+FAISS) is essential in obtaining
pseudo-labeled documents. (See Appendix C for
supplementary performance analysis.)

"https://anonymous.4open.science/r/
CLARET-6FD2

4.5 Prediction Speed Comparison

A big advantage of classification models over en-
tailment models is the prediction speed. Classi-
fication models only need one forward pass to
make a prediction for k categories, whereas en-
tailment models need k forward passes. Table 4
compares prediction time of entailment models and
CLARETask-external ON the Yahoo dataset (100,000
documents). Our method is not only more accurate
(Table 3) but also 5-7 times faster.

Method Total Time Per Document
OSHOT-TC 2162.4s 22ms
NATCAT 1485.8s 15ms
CLARETtask-extemal 306.7s m

Table 4: Total testing time on Yahoo using label-fully-
unseen OSHOT-TC, NATCAT and CLARET ask-external -
All methods used RoBERTa-base model.

Although entailment models are universal which
only need to be trained once to be applied to
any task, in order to obtain excellent results, a
large amount of entailment data are required for
pre-training. NATCAT uses three different data
sources, a total of 10M training documents for pre-
training. We measured the pre-training time using
only Wikipedia data, which already took more than
50 hours. For 0SHOT-TC, since there is no author-
released code for pre-training, we used MNLI data,
batch size = 64, and 3 training epochs. It took
about 2 hours. In our method, indexing external
data repository took about 45 minutes. Taking the
Yahoo dataset as an example, we measured the time
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to index the dataset, retrieve pseudo-labeled docu-
ments, select pseudo-label subsets and train a clas-
sifier using CLARET a5k external- 1N€E €ntire process
took about 2 hours. Other datasets typically took
less time as the Yahoo dataset has many categories
and each retrieves many class-relevant documents.
Therefore, although our methods take time to train
classifiers for new tasks, the cost of training time
can be amortized by the saving of prediction time in
the long run compared to entailment-based models.

4.6 Learning Curve Comparison

Practioners may wish to further improve a dataless
classification model as its initial performance can
be far from optimal. We therefore ask the ques-
tion: if a small amount of training data becomes
available, how fast can a dataless model improve?

To verify our hypothesis that with continuous
increase of training data, a classification model
will improve faster than an entailment model, we
present a learning curve analysis using Yahoo
dataset. We compare entailment models label-fully-
unseen OSHOT-TC (Yin et al., 2019) pre-trained on
MNLI, NATCAT (Chu et al., 2020a) pretrained on
Wikipedia, and our classification model trained on
CLARETask-external ps€udo-labels. We use the same
set of labeled documents with increasing sizes, the
learning rate is 5e~° and training epochs is 4 to
fine-tune each of the three models.

0.7 — S _
067 v
1€ //
£0.5{ / '
g CLARET task-external 3 —— CLARET task-external
<04 20.4
< |/ —— NATCAT < —— NATCAT

0.3{ —— OSHOT-TC 03 | — 0SHOTTC

0O 20 40 60 80 100 0O 20 40 60 80 100
# of labels/category # of labels/category

(a) BERT (b) RoBERTa

Figure 2: Learning curves of CLARET sk external and twO
entailment approaches when fine-tuned on increasing
amount of training data from the Yahoo dataset.

The learning curves in Figure 2 show that com-
pared with entailment models, the advantage of the
classification model is not only in the initial high
performance. We see from the learning curves that
when each category has a certain amount of train-
ing data, the classification model shows the fastest
performance gain. In contrast, the performance of
entailment models flattens and even drops. This
demonstrates that applying entailment models on
dataless classification tasks has certain limitations.

In fact, textual entailment is a much harder prob-
lem than text classification, as the former aims to
learn pairwise dependencies between all words in
the premise (document) and all words in the hy-
pothesis (class description), while the latter aims
to associate a document to a categorical variable.
Therefore, an entailment approach to classification
is indirect and label-inefficient.

4.7 Discussion

In Table 3, we not only report the results of our
baseline models reported in previous works, but
also the results implemented by ourselves. Here
we make a special remark on the Situation and
Emotion datasets: they both contain the Other class.
For Situation this category is “out-of-domain” and
for Emotion it is “no emotion”. We handled the
Other classes using the approach in Section 3.4.
The three proposed strategies all have their own
advantages. The CLARET ysk-external Strategy is suit-
able for topic classification tasks, whether it is
single-label or multi-label. It chooses a small set
of test documents as seeds and expand the doc-
ument search on vast external data sources. For
sentiment classification tasks, CLARETsk-external
does not obtain the best results but still outper-
forms the entailment model. CLARETqg and
CLARETexternal are suitable for sentiment classifica-
tion tasks. CLARET sk performs better on smaller
datasets (Emotion, SST), while CLARE Texternal Per-
forms better on Amazon and Yelp datasets. The
crucial reason is that the Multi-Domain Sentiment
Dataset in our external data consists of Amazon
reviews data. Though Emotion is a sentiment clas-
sification task, its documents come from Twitter.
Even though documents from the two data sets may
express similar emotions, the transferable knowl-
edge from Amazon reviews to tweets is limited due
to different text styles. Therefore, CLARET,g can
achieve good results on Emotion and SST datasets.

5 Conclusion

We proposed a dataless text classification method
CLARET which constructs a classification model
by leveraging a dense retrieval model. Extensive
experiments show that the proposed method is not
only able to achieve excellent dataless classifica-
tion performance, but also enjoys fast prediction
speed and can be effectively improved when la-
beled training data become available, making it
readily applicable in practical classification tasks.
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A Class Descriptions in Evaluation
Datasets

We list the class descriptions of the datasets we
used for evaluation as follows. These texts are used
as to compute SBERT vector representations. Note
that some class descriptions are very abstract: “pos-
itive” and “negative” for sentiment classification
datasets (Yelp, Amazon, SST-B).

Yahoo: Society&Culture; Sci-
ence&Mathematics; Health, Educa-
tion&Reference; Computers&lnternet; Sports;
Business&Finance; Entertainment&Music;

Family&Relationships; Politics&Government.
AGnews: politics; sports; business; technology.
20Newsgroup: atheist atheism; computer graph-

ics; computer OS microsoft windows miscella-
neous; computer system IBM PC hardware; com-
puter system Mac hardware; computer windows
xp; miscellaneous for sale; recreational automo-
bile; recreational motorcycles; recreational sport
baseball; recreational sport hockey; science cryp-
tography; science electronics; science medicine;
science space; society religion christian; talk pol-
itics guns; talk politics middle East; talk politics
miscellaneous; talk religion miscellaneous.

DBPedia: Company; Educational Institution;
Artist; Athlete; Office Holder; Mean Of Transporta-
tion; Building; Natural Place; Village; Animal;
Plant; Album; Film; Written Work.

Yelp: positive; negative.

Amazon: positive; negative.

SST-B: positive; negative.

Emotion: anger; sadness; surprise; love; fear;
disgust; guilt; shame; joy; no emotion.

Situation: utilities energy or sanitation; water
supply; search/rescue; medical assistance; infras-
tructure; shelter; evacuation; regime change; food
supply; crime violence; terrorism; out-of-domain.

Comment: team war; injury; sentiment; player
humor; player praise; statistic; sentiment positive;
communication; game praise; feeling; teasing;
referee; audience; coach negative; sentiment
negative; player; team caveat; game expertise;
player criticize; commercial; coach positive;
play; coach; commentary; referee positive; game
observation; referee negative; team.

B Implementation Details

We implement the models with the same PyTorch
framework and run the model on NVIDIA GeForce
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RTX 3090. Below, we summarize the implementa-
tion details that are key for reproducing results.

We use “paraphrase-MiniLM-L6-v2” as the base
model for SBERT to obtain the sentence embed-
dings and the dimension of embedding vectors is
384. And we use FAISS to retrieve external docu-
ments which works with inner product to compute
cosine similarity. The number of clusters is set
to 512 and 3 clusters are explored at search time.
We implemented facility location subset selection
using the Apricot library (Schreiber et al., 2020),
which provides cosine as a similarity measure and
a lazy greedy optimizer as a solver. We train BERT
and RoBERTa on the task datasets for dataless text
classification. In our experiments, we use BERT-
base-uncased (110M parameters) and RoBERTa-
base (110M parameters).

C Additional Performance Analysis

C.1 BERT-based Classifier Performance

We have reported the results based on RoBERTa
as our main result. Here we show the classifica-
tion performance of baseline methods and our three
pseudo-labeling methods all based on BERT classi-
fier in Table 5. In most cases, we found that the per-
formance of RoOBERTa model is better than BERT.
This may be because compared with BERT’s use of
Wikipedia and books the training data of ROBERTa
comes from web text which is more diverse.

C.2 Supervised Classification Performance

We present the performance training with all the la-
beled data based on BERT and RoBERTa in Table 6.
Here, we want to note that the Comment dataset
is a provided by NATCAT(Chu et al., 2020a) for
dataless classification, and it has test set only. So
we randomly split 80% data from the official test
set as training data and the other 20% data for test.

C.3 Relation Between Entropy and Accuracy

In order to verify the relationship between entropy
and classification accuracy, we compared the trends
of entropy and predicate accuracy under different
parameter settings. Figure 3 shows the relation be-
tween the entropy and accuracy in Yahoo, SST, and
Situation datasets. From Figure 3 we can see that
with different parameters, the trends of entropy and
accuracy are often (but not perfectly) correlated. It
shows that the empirical classification entropy on
unlabeled data is an effective unsupervised metric
to guide the selection of pseudo-labeled subset.



Method Single-label Multi-label
Yahoo AGnews 20News DBPedia Yelp Emotion Amazon SST | Situation Comment

Baseline Models

BM25 41.6 69.8 27.8 59.2 54.9 11.1 49.8 51.8 13.5 14.0
OSHOT-TC (our) | 34.8 53.8 222 53.8 73.4 21.7 76.0 71.7 16.2 22.6
NATCAT (our) 47.5 77.9 40 88.2 73.9 222 72.9 65.8 26.5 23.5
CLARET

Task 559 77.5 57.2 82.2 82.9 28.1 78 824 11.1 17.2
External 56.7 74.6 49.9 86.1 833 26.6 83.9 79.5 28.1 21.1
Task-External 60.7 82.5 57.5 93.0 83.9 26.8 80.3 83.1 35.2 239

Table 5: Dataless text classification performance in ten datasets (%) based on BERT classifier. The best average
performance in each column is in bold.

Single-label Multi-label

Method ‘ Yahoo AGnews 20News DBPedia Yelp Emotion Amazon SST ‘ Situation Comment
BERT 74.2 94.7 72.8 99.3 97.4 36.9 94.7 93.5 50.9 32.6
RoBERTa | 75.1 95.4 73.5 99.3 97.5 37.8 97.4 95.8 584 33.8

Table 6: Dataless text classification performance in ten datasets (%) based on BERT and RoBERTa classifier training
with full label-data.
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Figure 3: Relation between entropy and accuracy.
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