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Abstract

Dataless text classification aims to classify001
documents using only class descriptions with-002
out any training data. Recent research shows003
that pre-trained textual entailment models can004
achieve state-of-the-art dataless classification005
performance on various tasks. However, such006
models are not practical in that their prediction007
speed is slow as they need k forward passes008
to predict k classes and they are not built for009
fine-tuning to further improve the initial (often010
mediocre) performance. This work proposes011
a simple, effective, and practical dataless clas-012
sification approach. We use class descriptions013
as queries to retrieve task-specific or external014
unlabeled data on which pseudo-labels are as-015
signed to train a classifier. Experiments on a016
wide range of classification tasks show that the017
proposed approach consistently outperforms018
entailment-based models in terms of classifi-019
cation accuracy, prediction speed, and perfor-020
mance gain when fine-tuned on labeled data.021

1 Introduction022

Text classification is one of the most used tech-023

niques in mining large-scale unstructured text.024

When sufficient labeled data are available, super-025

vised classification techniques can achieve excel-026

lent performance. However, manually labeling027

example documents can be time-consuming and028

labor-intensive, a major burden when applying su-029

pervised text classification techniques in practice.030

Recently, dataless text classification (Chang031

et al., 2008; Druck et al., 2008; Song and Roth,032

2014; Chen et al., 2015; Li et al., 2016a,b; Song033

et al., 2016) has been proposed to save labeling034

efforts. It refers to the ability for a machine learn-035

ing model to start classifying documents by using036

only class descriptions and no training data. Since037

any text classification task necessarily starts with038

a description for each class, class descriptions are039

naturally available from the very beginning. There-040

fore, dataless text classification has practical value041

in real-world applications. 042

Early research showed that dataless classifiers 043

are able to classify documents on unbounded la- 044

bel sets if label descriptions are carefully written, 045

e.g., paraphrasing the same concept using differ- 046

ent synonyms and from multiple aspects (Chang 047

et al., 2008; Wang and Domeniconi, 2009; Song 048

and Roth, 2014). These approaches often leverage 049

external resources such as Wikipedia to construct 050

semantic representations for both class descriptions 051

and text documents. Many different settings have 052

been considered in previous works, some using 053

slightly different names, including zero-shot text 054

classification (Pushp and Srivastava, 2017; Yin 055

et al., 2019) and weakly supervised text classifi- 056

cation (Chu et al., 2020a). Recent research found 057

that Transformer-based textual entailment models 058

can provide more competitive performance on data- 059

less classification tasks (Yin et al., 2019; Chu et al., 060

2020a). The basic idea is to ask a pre-trained tex- 061

tual entailment model to judge if a document logi- 062

cally entails any of the class descriptions, and then 063

pick the class with the highest probability of en- 064

tailment. Such an approach is shown to give bet- 065

ter performance than earlier approaches thanks to 066

the contextual text representations learned by deep 067

Transformers such as BERT (Devlin et al., 2018). 068

However, the textual entailment approach to 069

dataless classification has several drawbacks which 070

diminish its practical value. First, one has to run the 071

entailment model k times to classify one document 072

into k categories. The prediction speed slows down 073

as more categories (larger k) are considered in a 074

task. Second, the performance of a dataless text 075

classifier is often far from optimal, and therefore 076

practitioners often wish to further improve it using 077

labeled examples afterwards. As we will show in 078

the experiments, entailment models are not ideal 079

for fine-tuning on classification tasks. They aim to 080

solve a much harder problem than classification – 081

to learn semantic dependencies between all words 082

1



in the document and all words in the class defini-083

tion – and therefore need more data to learn well.084

Third, it is difficult to adapt a well-trained entail-085

ment model on a task-specific corpus, since adap-086

tive pretraining (such as masked language mod-087

eling) has to happen before the entailment model088

is trained. Lastly, the performance of entailment-089

based classifiers tends to vary significantly across090

different tasks (Yin et al., 2019). Recent work091

showed that they sometimes even underperform a092

raw BERT model that is not fine-tuned on entail-093

ment tasks (Ma et al., 2021).094

Ideally, a dataless text classifier should not only095

provide a decent performance to jump-start the task,096

but also be readily adaptable to task-specific unla-097

beled data, continuously trainable if labeled data098

ever become available, and scalable to a large num-099

ber of categories at prediction time. In this paper,100

we propose methods that achieve these goals. The101

main idea is to create pseudo-labeled documents102

for each class using class descriptions as queries103

and dense retrieval models as pseudo-labeling func-104

tions. These pseudo-labeled data are then used105

to train a classifier. This simple idea has its root106

in early information retrieval research, such as107

pseudo-relevance feedback (Rocchio, 1965) and108

naive text classification (Baeza-Yates et al., 2011).109

We reinvigorate this old idea with modern tech-110

niques in text representation, retrieval, and data111

subset selection, giving rise to a practical and ef-112

fective method for dataless text classification.113

We evaluate the proposed approach through ex-114

tensive experiments on a variety of datasets, in-115

cluding topical and sentiment classification tasks,116

multi-class and multi-label classification settings,117

and corpora from different genres. These experi-118

ments show that our approach often outperforms119

entailment-based methods by a large margin, en-120

joys fast prediction speed, and improves quickly if121

labeled documents are available for fine-tuning.122

Our main contributions are as follows:123

• We propose a simple and effective dataless124

text classification method that selects a docu-125

ment subset returned by dense retrieval mod-126

els as pseudo-labels for classifier training.127

• Extensive empirical experiments show that128

our method is more practically useful than the129

state-of-the-art textual entailment approaches.130

It enjoys higher accuracy, faster prediction131

speed, and can be readily improved even a132

small amount of labeled data are available.133

2 Related Work 134

Dataless text classification (Chang et al., 2008) 135

aims to classify text using a given set of class de- 136

scriptions and no labeled data for training a model. 137

Dataless text classification methods have two broad 138

categories: classification-based (Chang et al., 2008; 139

Druck et al., 2008; Wang and Domeniconi, 2009; 140

Song and Roth, 2014; Yin et al., 2019; Chu et al., 141

2020a) and clustering-based (Barak et al., 2009; 142

Chen et al., 2015; Li et al., 2016a, 2018; Li and 143

Yang, 2018; Chu et al., 2020b). Classification- 144

based methods use automatic algorithms to cre- 145

ate machine-labeled data and construct a classi- 146

fier that assigns a category to an input document. 147

Clustering-based methods group documents (and 148

class descriptions) by their similarity, and assign 149

categories to each cluster. Our work focuses on the 150

classification-based approach. 151

Several classic methods use explicit semantic 152

analysis (ESA) (Gabrilovich et al., 2007) to repre- 153

sent documents and label descriptions in the same 154

vector space of concepts, and then compute the co- 155

sine similarity between documents and labels. The 156

label with the highest cosine similarity is assigned 157

to the document as the classification result (Chang 158

et al., 2008; Wang and Domeniconi, 2009; Song 159

and Roth, 2014). These works emphasize that se- 160

mantic representation of labels is as important as 161

learning good representation of documents. 162

In previous works, dataless text classification 163

also has many slightly different setups. For ex- 164

ample, in zero-shot text classification, Yin et al.; 165

Puri and Catanzaro proposed “label-fully-unseen” 166

setting which directly computes document-label 167

relatedness with a sentence-pair BERT model. 168

The model is trained with large-scale texts natu- 169

rally tagged with category information, such as 170

Wikipedia. NATCAT takes a further step (Chu et al., 171

2020a). It combines various publicly available 172

online corpora that come with natural categories, 173

and trains a BERT or RoBERTa model (Devlin 174

et al., 2018; Liu et al., 2019) to discriminate correct 175

versus incorrect categories for a given document. 176

These methods design automatic algorithms to cre- 177

ate pseudo-labeled data from external resources 178

to train a universal entailment model that can be 179

applied to a wide spectrum of classification tasks. 180

It is easy to confuse “dataless text classification” 181

with “zero-shot text classification” (Wang et al., 182

2019; Ye et al., 2020) and “weakly supervised 183

text classification” (Meng et al., 2020a,b). Zero- 184
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shot text classification may still provide labeled185

data for part of the categories (label-partially-seen186

(Yin et al., 2019)), while dataless text classifica-187

tion does not assume labeled data for any category.188

Weakly supervised text classification assumes a189

large amount of unlabeled data are available for190

learning, while dataless text classification does not191

make this assumption – it can operate with few or192

no unlabeled data from the task domain.193

3 Proposed Methods194

In this section, we describe our proposed method195

for dataless text classification. We formulate the196

problem as follows. We are given a set of class197

descriptions D = {d1, · · · , dj , · · · , dk}, each is a198

piece of short text (one or more words) describing a199

semantic class j in the label space Y = {1, · · · , k}.200

We are given a set of unlabeled documents X and201

zero labeled documents in the task domain. As a202

natural scenario in practice, we also have access203

to vast amounts of external unlabeled documents204

U , |U | >> |X|. These external documents may205

come from Wikipedia, news corpora, and online206

social media, which may or may not share the same207

domain as the classification task in question. Our208

goal is to correctly assign label(s) from Y to (a209

subset of) unlabeled documents in either X or U210

as pseudo-labeled training data.211

At a high level, our proposed method uses class212

descriptions in D as queries to retrieve pseudo-213

labeled documents from either task-specific unla-214

beled data X , or external unlabeled data U , or the215

two data sources combined. This gives us several216

variants of the method. We collectively name these217

variants CLARET, as they construct a classification218

model by leveraging a retrieval model. Below we219

describe our method in detail.220

3.1 Dense Text Representation and Indexing221

As a preparation step, we use a sentence represen-222

tation model to convert all texts (class descriptions,223

task-specific unlabeled documents, and external un-224

labeled documents) into dense vectors in a semantic225

space. In principle, any dense text representation226

techniques can be used. We choose to use Sentence-227

BERT (SBERT) (Reimers and Gurevych, 2019) as228

it is proven to deliver good performance in various229

sentence-pair modeling and information retrieval230

tasks (Thakur et al., 2021).231

Once these texts are converted into dense vectors,232

we build approximate nearest neighbor (ANN) in-233

dices for task-specific unlabeled documents and ex- 234

ternal documents to enable fast document retrieval. 235

In principle, any ANN search techniques can be 236

used. We choose to use FAISS (Johnson et al., 237

2017) for efficient similarity search with cosine 238

similarity as the vector similarity metric. We also 239

tested other metrics such as Euclidean distance but 240

found negligible performance difference. 241

As SBERT is trained on a wide range of semantic 242

similarity tasks (including textual entailment), the 243

resulting document vectors inherit the knowledge 244

from these tasks. Cosine similarity cos(x1, x2) be- 245

tween documents x1 and x2 approximates the prob- 246

ability that x1 entails x2 (or vice versa). In this 247

sense, our method implicitly leverages the same 248

type of knowledge of entailment-based models in a 249

more efficiently computable manner. 250

3.2 Class-Relevant Document Retrieval 251

The first step of our method is to retrieve a pool 252

of potentially relevant documents for each class, a 253

subset of which will be pseudo-labeled in the next 254

step. We propose three variants for this step. 255

Retrieving from task-specific unlabeled data. 256

Oftentimes a classification task starts with task- 257

specific data, but none of them are labeled yet. We 258

use each class description as a search query to re- 259

trieve documents from task-specific unlabeled data. 260

For class j ∈ Y , we rank documents in the unla- 261

beled data X by their semantic similarity to the 262

class description dj and take the most similar n1 263

documents Rj = {xi}n1
i=1. Here, semantic simi- 264

larity is computed using the vectors produced in 265

Section 3.1. We call this variant CLARETtask. 266

CLARETtask is most useful if abundant task- 267

specific unlabeled data are available. However, 268

sometimes even such data are few. For example, 269

when mining documents related to an emerging 270

event in a data stream, one may only collect a small 271

number of documents about the new event since 272

it just happened. In that case, task-specific data 273

can be too scarce to retrieve from. To address this 274

scarcity, we can instead retrieve from external data 275

sources that contain vast amounts of unlabeled doc- 276

uments, some of which can also be semantically 277

related to the current task. This is the next variant. 278

Retrieving from external data. We can retrieve 279

class-relevant documents from external data when 280

task-specific data is scarce. External data should 281

come from as rich and diverse sources as possible 282

to increase the chance of returning task-relevant 283
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documents. Thanks to approximate nearest neigh-284

bor search index, the retrieval step can be done285

efficiently against arbitrarily large external data.286

For class j, we retrieve n2 most relevant docu-287

ments from external data with respect to the class288

description dj , Rj = {xi}n2
i=1. We call this variant289

CLARETexternal.290

Retrieving from external data with a task-291

specific focus. We consider a third variant that292

combines the previous two. The idea is to enrich293

a class description with task-specific data before294

using it to retrieve external documents. For each295

class j, we first obtain a “seed set” of documents Sj296

using the same approach as CLARETtask by fixing297

n1 = .1× |X|/k. Then we use them to further re-298

trieve external documents by treating each x ∈ Sj299

as a query to retrieve its n3 nearest neighbors Γ(x)300

from external data. However, these documents may301

be close to a seed document because they share302

words unrelated to the theme of the class. To filter303

such noise, we preserve documents that appear in at304

least two seed documents’ nearest neighborhoods.305

This gives class-relevant documents for class j:306

Rj = {e|∃x1, x2 ∈ Sj , e ∈ Γ(x1) ∧ e ∈ Γ(x2)}.307

The hope is that Rj contains external documents308

that are semantically relevant and stylistically sim-309

ilar to task-specific data. We call this variant310

CLARETtask-external.311

3.3 Pseudo-Labeled Subset Selection312

A challenging problem remains: how many docu-313

ments to retrieve and assign pseudo-labels (namely,314

how to set n1, n2, or n3)? More generally, what is315

the optimal subset of retrieved documents that, if316

pseudo-labeled, will train a good classifier? Note317

that we cannot tune subset selection procedures on318

labeled data as such data is unavailable in a dataless319

setting! We propose a novel unsupervised subset320

selection procedure to address this problem.321

Subset diversification. For CLARETtask, we cre-322

ate pseudo-labeled set Lj = {(x, j)|x ∈ Rj} for323

each class j. For the two variants that use external324

data (CLARETexternal and CLARETtask-external), how-325

ever, we further select a subset Lj ⊂ Rj of size m326

to be pseudo-labeled as class j. The motivation is327

that documents retrieved from external data sources328

may contain (near-)duplicates. For example, many329

news outlets may cover the same story. Duplicated330

documents may lead to overfitting as they give too331

much emphasis on a few documents and reduce the332

overall diversity of pseudo-labeled training data.333

Indeed, previous works have shown that diverse 334

training data improves learning performance (Wei 335

et al., 2015). Here we apply facility location func- 336

tion to quantify the diversity of a subset (Krause 337

and Golovin, 2014). The facility location function 338

of any subset Lj ⊂ Rj is defined as 339

g(Lj) =
∑
x∈Rj

max
e∈Lj

s(x, e) . (1) 340

Here s(·, ·) is the cosine similarity between two 341

dense document vectors. Intuitively, g(Lj) com- 342

putes the total cost for every element x ∈ Rj to 343

be “covered” by the most similar element e ∈ Lj . 344

In our context, this translates into how well the 345

subset Lj preserves the content of the larger set Rj . 346

Although finding the optimal subset Lj that maxi- 347

mizes the submodular function g(Lj) is NP-hard, 348

a greedy algorithm gives an approximately optimal 349

solution (Nemhauser et al., 1978). The algorithm 350

sequentially adds the next element x to Lj with 351

the maximum marginal gain g(Lj ∪ {x})− g(Lj), 352

until Lj reaches the desired size m. 353

Entropy maximization. We now determine the 354

subset selection parameters θ. For CLARETtask, 355

θ = {n1}. For CLARETexternal, θ = {n2,m}. For 356

CLARETtask-external, θ = {n3,m}. θ determines the 357

pseudo-labeled set Lj for class j, which determines 358

the full pseudo-labeled set ∪k
j=1Lj , which in turn 359

trains a classifier f : X → Y . Below we use fθ 360

to emphasize that f depends on θ. fθ induces a 361

distribution over the label space Y when applied to 362

the task-specific unlabeled data X: ∀y ∈ Y , 363

p(y|X, fθ) =

∑
x∈X 1{fθ(x) = y}

|X|
. (2) 364

According to the maximum entropy principle 365

(Jaynes, 1957), the distribution with maximum en- 366

tropy shall be preferred since no labeled data are 367

available as evidence to prefer other distributions. 368

Following this principle, we seek for θ that maxi- 369

mizes the classification entropy: 370

H(θ) =
∑
y∈Y

−p(y|X, fθ) log p(y|X, fθ) . (3) 371

Empirically, H(θ) correlates well (but not per- 372

fectly) with true performance of fθ on labeled data 373

even though it is an unsupervised metric (Appendix 374

C.3), a phenomenon first observed in (Baram et al., 375

2004). As H(θ) is non-differentiable with respect 376

to θ, we resort to grid search. It is sufficient to use 377

a coarse grid to find sensible θ values (Section 4.3). 378
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Figure 1: Handling the Other class. (a) CLARETtask: obtaining Other documents from task-specific data; (b)
CLARETexternal: obtaining Other documents between pseudo-label bounary and similarity boundary from external
data; (c) CLARETtask-external: retrieving Other documents from external data using seeds from task-specific data.

3.4 Handling the Other Class379

In some classification tasks, we have clearly de-380

fined categories and an Other category, such as an381

“other topic” category in topic classification or a “no382

emotion” category in emotion classification. We383

call clearly defined (non-Other) categories named384

classes. Using “other topic” or “no emotion” liter-385

ally as the search query to retrieve pseudo-labeled386

documents is problematic because the Other class387

is to be interpreted with respect to named classes.388

We propose methods to handle the Other class for389

each variant above. The general idea is to pseudo-390

label documents that are far from any named class391

as the Other class. Without loss of generality, let392

the named classes be numbered from 1 to k−1 and393

the Other class be class k.394

For CLARETtask, we select Other documents Lk395

from task-specific unlabeled data O = X\ ∪k−1
j=1396

Lj . Our goal is to find a subset Lk ⊂ O with397

size n1 that is farthest from the descriptions of all398

named classes D\{dk}. We seek for the subset that399

minimizes the following function:400

h(Lk) =
∑
x∈Lk

max
e∈D\{dk}

s(x, e) . (4)401

This function is modular and can be efficiently min-402

imized by selecting n1 documents that have small-403

est maxk−1
j=1 s(dj , x) values from O (Figure 1a).404

For CLARETexternal, we first retrieve external data405

that are far from all named class descriptions but406

still relevant to the task: O = ∪k−1
j=1{x|x ∈ U, 0 <407

s(x, dj) < 0.1}. We then select Rk ⊂ O with408

size n2 by optimizing h(Rk) (Eq. (4)), and then409

use the same diversity and entropy maximization410

procedure in Section 3.3 to select m documents in411

Rk and pseudo-label as Other (Figure 1b).412

For CLARETtask-external, we first use the same413

procedure as CLARETtask (Eq. (4)) to select task-414

specific seed documents for the Other category.415

This turns Other into another named class. We 416

then retrieve and select pseudo-labels using the 417

same procedure described in Sections 3.2 and 3.3 418

(Figure 1c). 419

4 Experiments 420

In this section, we evaluate our proposed meth- 421

ods and compare them with baseline models for 422

dataless text classification. The comparison is not 423

only in terms classification accuracy, but also label 424

efficiency and inference speed. 425

4.1 External Document Repository 426

To cover various task domains, we combine five 427

large-scale datasets as the external document repos- 428

itory. These datasets are freely available and fre- 429

quently used in previous works as external re- 430

sources. We keep these documents short (e.g. titles) 431

as SBERT is well-trained on sentence pairs. We 432

build a single index for all the external documents. 433

Microsoft News Dataset (MIND) (Wu et al., 434

2020) is collected from anonymized behavior logs 435

of Microsoft News website. Multi-Domain Senti- 436

ment Dataset (MDSD) (Blitzer et al., 2007) con- 437

tains product reviews for many product categories 438

in Amazon. Wikipedia-500K (Bhatia et al., 2016) 439

has over a million curator-generated category labels 440

and each article often has more than one relevant 441

labels. We select the first sentence of each article. 442

RealNews (Zellers et al., 2019) is a large news cor- 443

pus from Common Crawl. We randomly sample 444

2M titles from these 32M news. S2ORC (Lo et al., 445

2020) is a general corpus of scientific literature. We 446

randomly select 100k papers from all 20 research 447

fields and extract their titles. 448

4.2 Evaluation Datasets 449

We choose 10 text classification tasks in our ex- 450

periments. Note that we do not use any data or 451

labels from the training set, but only use unlabeled 452
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Dataset #Docs #Sents/doc #Words/doc
MIND 98,336 1 10.7
MDSD 821,250 7.3 137.5
Wikipedia 1,779,881 1 22.9
RealNews 2,000,000 1 9.6
S2ORC 2,000,000 1 10.9

Table 1: Statistics of external document datasets.

documents in the test set and the original class de-453

scriptions (see Appendix A).454

Single label topic classification datasets. Ya-455

hoo (Zhang et al., 2015) consists of 10 categories of456

questions in online forums. 20Newsgroup (Lang,457

1995) is a collection of 20 topic newsgroup docu-458

ments. AGnews (Zhang et al., 2015) contains 4 top-459

ical categories of news tities. DBPedia (Lehmann460

et al., 2015) contains titles, descriptions, and asso-461

ciated categories from DBpedia.462

Single label sentiment classification datasets.463

Yelp (Zhang et al., 2015) is for sentiment analysis464

in Yelp reviews. Emotion (Oberländer and Klinger,465

2018) was constructed by combining multiple pub-466

lic datasets where documents have emotion labels.467

Amazon (Zhang et al., 2015) is a binary sentiment468

classification dataset. SST (Socher et al., 2013) is469

a corpus extracted from movie reviews.470

Multi label topical classification datasets. Situ-471

ation (Zhang et al., 2015) is a event-type classifi-472

cation dataset originally designed for low-resource473

situation detection. Comment is created by Chu474

et al. and contains 28 classes.475

Dataset #Docs #Classes #Docs/class #Words/doc

Single-label topic classification
Yahoo 100k 10 10K 115.8
AGnews 7,600 4 1,900 48.8
20News 7,532 20 376 375.4
DBPedia 70k 14 5,000 58.7

Single-label sentiment classification
Yelp 38k 2 19K 155.1
Emotion 16k 10 1,600 19.5
Amazon 400k 2 200K 95.7
SST-B 1,821 2 910.5 19.2

Multi-label topic classification
Situation 3,525 12 380.2 44.0
Comment 1,287 28 90.7 13.8

Table 2: Statistics of evaluation datasets.

4.3 Compared Methods476

We include two state-of-the-art methods for data-477

less text classification: label-fully-unseen 0SHOT-478

TC (Yin et al., 2019) and NATCAT (Chu et al.,479

2020a). These two methods both use readily avail- 480

able resources to train textual entailment models 481

that can robustly handle a wide range of text classi- 482

fication tasks. To study the contribution of a dense 483

retrieval model in our approach, we construct a 484

baseline by replacing SBERT+FAISS with sparse 485

text retrieval model (BM25). 486

Label-fully-unseen 0SHOT-TC was first ex- 487

plored in (Yin et al., 2019). This setting pushes 488

“zero-shot learning” to the extreme – no annotated 489

data for any labels. It aims to classify documents 490

without seeing any task-specific training data. They 491

trained an entailment-based classifier on MNLI, 492

FEVER and RTE datasets to predict a binary out- 493

come. In the testing phase, they converted category 494

descriptions into hypothesis in two ways, one is 495

to prefix the label description with “it is related 496

to”, the other is to use WordNet definition of the 497

category label words in a hypothesis. 498

NATCAT (Chu et al., 2020a) proposed to use 499

large-scale, naturally annotated data to train ro- 500

bust entailment-based text classification models. 501

The authors induced document-category pairs from 502

Wikipedia, Stack Exchange, and Reddit posts. Un- 503

like label-fully-unseen 0SHOT-TC, NATCAT did 504

not convert each category into a hypothesis, but 505

directly connected the category and the document 506

as a sentence-pair input. 507

BM25 retrieval. This baseline uses BM25 in- 508

stead of SBERT+FAISS for document retrieval 509

in CLARETtask-external. We build two inverted in- 510

dices, one for task-specific data, the other for ex- 511

ternal data. Using class descriptions as queries, 512

we use BM25 to retrieve n1 task-specific docu- 513

ments and select 20 class-specific keywords us- 514

ing TF-IDF scores of words in retrieved docu- 515

ments. Then we use these class-specific keywords 516

as queries to retrieve n3 documents from the ex- 517

ternal data. Finally, we still use the facility func- 518

tion to filter m documents from the external data. 519

The parameter settings (n1, n3,m) are the same 520

as CLARETtask-external. Document indexing and 521

BM25 document retrieval are implemented using 522

the Python Whoosh library. 523

The three variants of CLARET we proposed. 524

To select pseudo-labeled subsets that have max- 525

imum classification entropy, we searched parame- 526

ters θ on the grids n1 = {.1, .3, .5} × |X|/k, m = 527

{100, 300, 500}, n2 = {2m, 5m, 10m} and n3 = 528

{100, 200, 300}. The subset-induced RoBERTa 529

classifier that achieved the maximum entropy was 530
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Method Single-label Multi-label
Yahoo AGnews 20News DBPedia Yelp Emotion Amazon SST Situation Comment

Baseline Models
BM25 39.6 69.7 31.1 68.6 49.5 13.2 52.0 52.2 14.0 15.1
0SHOT-TC (best) 43.8 - - - - 24.7 - - 37.2 -
0SHOT-TC (our) 24.9 67.8 19.0 58.0 71.0 21.1 78.3 68.6 20.1 22.3
NATCAT (best) 57.8 75.6 39.3 82.8 70.4 - 66.8 65.0 - 22.6
NATCAT (our) 48.6 74.9 44.8 85.3 50.1 10.7 50.8 50.5 27.4 22.0

CLARET
Task 56.1 77.4 57.2 83.0 83.4 28.4 78.4 85.5 11.5 21.8
External 57.3 72.7 51.7 84.9 87.9 27.6 89.5 80.1 30.5 23.3
Task-External 61.6 84.5 58.3 92.7 86.5 27.1 86.2 84.1 37.2 25.9

Table 3: Dataless text classification performance on ten datasets (%). Each metric of CLARET is the average
of 5 runs with different random seeds. The metrics are label ranking average precision (LRAP) for Comment,
label-weighted F1 for Emotion and Situation and accuracy for other single-label classification tasks. The best
reported results of label-fully-unseen 0SHOT-TC results from (Yin et al., 2019) and weakly supervised model
NATCAT (Chu et al., 2020a) are included. We also report results of our re-implementation of 0SHOT-TC pre-trained
on MNLI and NATCAT model pre-trained on Wikipedia. Both used RoBERTa as the entailment model. The best
average performance in each column is highlighted in bold.

used. The optimizer is AdamW (Loshchilov and531

Hutter, 2017), learning rate is 2e−5, training batch532

size is 32 and the number of training epochs is 4.533

We did not compare with the LOTClass model534

(Label-Name-Only Text Classification) (Meng535

et al., 2020a). LOTClass assumes that label words536

are mentioned somewhere in unlabeled documents,537

which is not guaranteed. For example, in Emotion538

and Yahoo datasets, some label words are not men-539

tioned in any documents. Also, LOTClass does540

not deal with the Other class, which is present in541

Emotion and Situation datasets.542

4.4 Performance Across Datasets543

Table 3 summarizes classification performance of544

baseline methods and our three pseudo-labeling545

methods combined with RoBERTa classifier. Be-546

sides, we have stored our implementation as open547

source code in an anonymous Github repository1.548

These results show that variants of CLARET are549

able to achieve the highest performance on each550

task compared with baseline methods. Although551

the best pseudo-labeling strategy depends on spe-552

cific tasks, it is clear that CLARET is overall a553

promising approach to dataless text classification.554

It performs the same as or sometimes much better555

than entailment models. Comparison of BM25 and556

CLARET variants shows that dense retrieval mod-557

ule (e.g., SBERT+FAISS) is essential in obtaining558

pseudo-labeled documents. (See Appendix C for559

supplementary performance analysis.)560

1https://anonymous.4open.science/r/
CLARET-6FD2

4.5 Prediction Speed Comparison 561

A big advantage of classification models over en- 562

tailment models is the prediction speed. Classi- 563

fication models only need one forward pass to 564

make a prediction for k categories, whereas en- 565

tailment models need k forward passes. Table 4 566

compares prediction time of entailment models and 567

CLARETtask-external on the Yahoo dataset (100,000 568

documents). Our method is not only more accurate 569

(Table 3) but also 5-7 times faster. 570

Method Total Time Per Document

0SHOT-TC 2162.4s 22ms
NATCAT 1485.8s 15ms

CLARETtask-external 306.7s 3ms

Table 4: Total testing time on Yahoo using label-fully-
unseen 0SHOT-TC, NATCAT and CLARETtask-external.
All methods used RoBERTa-base model.

Although entailment models are universal which 571

only need to be trained once to be applied to 572

any task, in order to obtain excellent results, a 573

large amount of entailment data are required for 574

pre-training. NATCAT uses three different data 575

sources, a total of 10M training documents for pre- 576

training. We measured the pre-training time using 577

only Wikipedia data, which already took more than 578

50 hours. For 0SHOT-TC, since there is no author- 579

released code for pre-training, we used MNLI data, 580

batch size = 64, and 3 training epochs. It took 581

about 2 hours. In our method, indexing external 582

data repository took about 45 minutes. Taking the 583

Yahoo dataset as an example, we measured the time 584

7

https://anonymous.4open.science/r/CLARET-6FD2
https://anonymous.4open.science/r/CLARET-6FD2


to index the dataset, retrieve pseudo-labeled docu-585

ments, select pseudo-label subsets and train a clas-586

sifier using CLARETtask-external. The entire process587

took about 2 hours. Other datasets typically took588

less time as the Yahoo dataset has many categories589

and each retrieves many class-relevant documents.590

Therefore, although our methods take time to train591

classifiers for new tasks, the cost of training time592

can be amortized by the saving of prediction time in593

the long run compared to entailment-based models.594

4.6 Learning Curve Comparison595

Practioners may wish to further improve a dataless596

classification model as its initial performance can597

be far from optimal. We therefore ask the ques-598

tion: if a small amount of training data becomes599

available, how fast can a dataless model improve?600

To verify our hypothesis that with continuous601

increase of training data, a classification model602

will improve faster than an entailment model, we603

present a learning curve analysis using Yahoo604

dataset. We compare entailment models label-fully-605

unseen 0SHOT-TC (Yin et al., 2019) pre-trained on606

MNLI, NATCAT (Chu et al., 2020a) pretrained on607

Wikipedia, and our classification model trained on608

CLARETtask-external pseudo-labels. We use the same609

set of labeled documents with increasing sizes, the610

learning rate is 5e−5 and training epochs is 4 to611

fine-tune each of the three models.612
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Figure 2: Learning curves of CLARETtask-external and two
entailment approaches when fine-tuned on increasing
amount of training data from the Yahoo dataset.

The learning curves in Figure 2 show that com-613

pared with entailment models, the advantage of the614

classification model is not only in the initial high615

performance. We see from the learning curves that616

when each category has a certain amount of train-617

ing data, the classification model shows the fastest618

performance gain. In contrast, the performance of619

entailment models flattens and even drops. This620

demonstrates that applying entailment models on621

dataless classification tasks has certain limitations.622

In fact, textual entailment is a much harder prob- 623

lem than text classification, as the former aims to 624

learn pairwise dependencies between all words in 625

the premise (document) and all words in the hy- 626

pothesis (class description), while the latter aims 627

to associate a document to a categorical variable. 628

Therefore, an entailment approach to classification 629

is indirect and label-inefficient. 630

4.7 Discussion 631

In Table 3, we not only report the results of our 632

baseline models reported in previous works, but 633

also the results implemented by ourselves. Here 634

we make a special remark on the Situation and 635

Emotion datasets: they both contain the Other class. 636

For Situation this category is “out-of-domain” and 637

for Emotion it is “no emotion”. We handled the 638

Other classes using the approach in Section 3.4. 639

The three proposed strategies all have their own 640

advantages. The CLARETtask-external strategy is suit- 641

able for topic classification tasks, whether it is 642

single-label or multi-label. It chooses a small set 643

of test documents as seeds and expand the doc- 644

ument search on vast external data sources. For 645

sentiment classification tasks, CLARETtask-external 646

does not obtain the best results but still outper- 647

forms the entailment model. CLARETtask and 648

CLARETexternal are suitable for sentiment classifica- 649

tion tasks. CLARETtask performs better on smaller 650

datasets (Emotion, SST), while CLARETexternal per- 651

forms better on Amazon and Yelp datasets. The 652

crucial reason is that the Multi-Domain Sentiment 653

Dataset in our external data consists of Amazon 654

reviews data. Though Emotion is a sentiment clas- 655

sification task, its documents come from Twitter. 656

Even though documents from the two data sets may 657

express similar emotions, the transferable knowl- 658

edge from Amazon reviews to tweets is limited due 659

to different text styles. Therefore, CLARETtask can 660

achieve good results on Emotion and SST datasets. 661

5 Conclusion 662

We proposed a dataless text classification method 663

CLARET which constructs a classification model 664

by leveraging a dense retrieval model. Extensive 665

experiments show that the proposed method is not 666

only able to achieve excellent dataless classifica- 667

tion performance, but also enjoys fast prediction 668

speed and can be effectively improved when la- 669

beled training data become available, making it 670

readily applicable in practical classification tasks. 671
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A Class Descriptions in Evaluation887

Datasets888

We list the class descriptions of the datasets we889

used for evaluation as follows. These texts are used890

as to compute SBERT vector representations. Note891

that some class descriptions are very abstract: “pos-892

itive” and “negative” for sentiment classification893

datasets (Yelp, Amazon, SST-B).894

Yahoo: Society&Culture; Sci-895

ence&Mathematics; Health, Educa-896

tion&Reference; Computers&Internet; Sports;897

Business&Finance; Entertainment&Music;898

Family&Relationships; Politics&Government.899

AGnews: politics; sports; business; technology.900

20Newsgroup: atheist atheism; computer graph-901

ics; computer OS microsoft windows miscella-902

neous; computer system IBM PC hardware; com-903

puter system Mac hardware; computer windows904

xp; miscellaneous for sale; recreational automo-905

bile; recreational motorcycles; recreational sport906

baseball; recreational sport hockey; science cryp-907

tography; science electronics; science medicine;908

science space; society religion christian; talk pol-909

itics guns; talk politics middle East; talk politics910

miscellaneous; talk religion miscellaneous.911

DBPedia: Company; Educational Institution;912

Artist; Athlete; Office Holder; Mean Of Transporta-913

tion; Building; Natural Place; Village; Animal;914

Plant; Album; Film; Written Work.915

Yelp: positive; negative.916

Amazon: positive; negative.917

SST-B: positive; negative.918

Emotion: anger; sadness; surprise; love; fear;919

disgust; guilt; shame; joy; no emotion.920

Situation: utilities energy or sanitation; water921

supply; search/rescue; medical assistance; infras-922

tructure; shelter; evacuation; regime change; food923

supply; crime violence; terrorism; out-of-domain.924

Comment: team war; injury; sentiment; player925

humor; player praise; statistic; sentiment positive;926

communication; game praise; feeling; teasing;927

referee; audience; coach negative; sentiment928

negative; player; team caveat; game expertise;929

player criticize; commercial; coach positive;930

play; coach; commentary; referee positive; game931

observation; referee negative; team.932

933

B Implementation Details934

We implement the models with the same PyTorch935

framework and run the model on NVIDIA GeForce936

RTX 3090. Below, we summarize the implementa- 937

tion details that are key for reproducing results. 938

We use “paraphrase-MiniLM-L6-v2” as the base 939

model for SBERT to obtain the sentence embed- 940

dings and the dimension of embedding vectors is 941

384. And we use FAISS to retrieve external docu- 942

ments which works with inner product to compute 943

cosine similarity. The number of clusters is set 944

to 512 and 3 clusters are explored at search time. 945

We implemented facility location subset selection 946

using the Apricot library (Schreiber et al., 2020), 947

which provides cosine as a similarity measure and 948

a lazy greedy optimizer as a solver. We train BERT 949

and RoBERTa on the task datasets for dataless text 950

classification. In our experiments, we use BERT- 951

base-uncased (110M parameters) and RoBERTa- 952

base (110M parameters). 953

C Additional Performance Analysis 954

C.1 BERT-based Classifier Performance 955

We have reported the results based on RoBERTa 956

as our main result. Here we show the classifica- 957

tion performance of baseline methods and our three 958

pseudo-labeling methods all based on BERT classi- 959

fier in Table 5. In most cases, we found that the per- 960

formance of RoBERTa model is better than BERT. 961

This may be because compared with BERT’s use of 962

Wikipedia and books the training data of RoBERTa 963

comes from web text which is more diverse. 964

C.2 Supervised Classification Performance 965

We present the performance training with all the la- 966

beled data based on BERT and RoBERTa in Table 6. 967

Here, we want to note that the Comment dataset 968

is a provided by NATCAT(Chu et al., 2020a) for 969

dataless classification, and it has test set only. So 970

we randomly split 80% data from the official test 971

set as training data and the other 20% data for test. 972

C.3 Relation Between Entropy and Accuracy 973

In order to verify the relationship between entropy 974

and classification accuracy, we compared the trends 975

of entropy and predicate accuracy under different 976

parameter settings. Figure 3 shows the relation be- 977

tween the entropy and accuracy in Yahoo, SST, and 978

Situation datasets. From Figure 3 we can see that 979

with different parameters, the trends of entropy and 980

accuracy are often (but not perfectly) correlated. It 981

shows that the empirical classification entropy on 982

unlabeled data is an effective unsupervised metric 983

to guide the selection of pseudo-labeled subset. 984
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Method Single-label Multi-label
Yahoo AGnews 20News DBPedia Yelp Emotion Amazon SST Situation Comment

Baseline Models
BM25 41.6 69.8 27.8 59.2 54.9 11.1 49.8 51.8 13.5 14.0
0SHOT-TC (our) 34.8 53.8 22.2 53.8 73.4 21.7 76.0 71.7 16.2 22.6
NATCAT (our) 47.5 77.9 40 88.2 73.9 22.2 72.9 65.8 26.5 23.5

CLARET
Task 55.9 77.5 57.2 82.2 82.9 28.1 78 82.4 11.1 17.2
External 56.7 74.6 49.9 86.1 83.3 26.6 83.9 79.5 28.1 21.1
Task-External 60.7 82.5 57.5 93.0 83.9 26.8 80.3 83.1 35.2 23.9

Table 5: Dataless text classification performance in ten datasets (%) based on BERT classifier. The best average
performance in each column is in bold.

Method Single-label Multi-label
Yahoo AGnews 20News DBPedia Yelp Emotion Amazon SST Situation Comment

BERT 74.2 94.7 72.8 99.3 97.4 36.9 94.7 93.5 50.9 32.6
RoBERTa 75.1 95.4 73.5 99.3 97.5 37.8 97.4 95.8 58.4 33.8

Table 6: Dataless text classification performance in ten datasets (%) based on BERT and RoBERTa classifier training
with full label-data.
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Figure 3: Relation between entropy and accuracy.
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