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Abstract

We propose MatSci ML, a novel benchmark for modeling Materials Science
using Machine Learning methods focused on solid-state materials with
periodic crystal structures. Applying machine learning methods to solid-
state materials is a nascent field with substantial fragmentation largely driven
by the great variety of datasets used to develop machine learning models.
This fragmentation makes comparing the performance and generalizability of
different methods difficult, thereby hindering overall research progress in the
field. Building on top of open-source datasets, including large-scale datasets
like the OpenCatalyst, OQMD, NOMAD, the Carolina Materials Database,
and Materials Project, the MatSci ML benchmark provides a diverse set of
materials systems and properties data for model training and evaluation,
including simulated energies, atomic forces, material bandgaps, as well as
classification data for crystal symmetries via space groups. The diversity
of properties in MatSci ML makes the implementation and evaluation of
multi-task learning algorithms for solid-state materials possible, while the
diversity of datasets facilitates the development of new, more generalized
algorithms and methods across multiple datasets. In the multi-dataset
learning setting, MatSci ML enables researchers to combine observations
from multiple datasets to perform joint prediction of common properties,
such as energy and forces. Using MatSci ML, we evaluate the performance
of different graph neural networks and equivariant point cloud networks on
several benchmark tasks spanning single task, multitask, and multi-data
learning scenarios. Our open-source code is available at https://github.
com/IntelLabs/matsciml.

1 Introduction

Solid-state materials provide the foundation for a diverse set of modern technologies, such as
computer hardware, batteries, biomedical implants, and catalysts. Discovering, modeling,
evaluating, and understanding of solid-state materials will therefore continue to play a
significant role in complex technological challenges of the future, such as clean energy and
transportation, sustainable agriculture, and personalized healthcare. The ability to accurately
and efficiently model materials properties, as well as complex materials behavior under diverse
conditions remains a major challenge in materials design. As such, machine learning (ML)
methods have been increasingly applied to develop property prediction models that exhibit
significantly greater computational efficiency compared to traditional physics-based methods,
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such as density functional theory (DFT) [6, 31]. Given this challenge, a variety of deep
learning models and methods have been proposed to solve concrete challenges involving
DFT data [20, 14, 7]. Generally, the research has focused on datasets targeted for concrete
applications, such as the OpenCatalyst Dataset (OCP)[6, 43] for catalytic materials and
Materials Project (MP) [25] for a broad range of solid-state materials with relevance to clean
energy. Many of the aforementioned methods often focus on a distinct set of properties (e.g.,
energy and force prediction), which often have limited use for practical applications [16].
Given the current state-of-the-art, there is a need for more comprehensive ways to evaluate
the modeling capabilities of machine learning models for solid-state materials. Evaluations
should contain both a broader range of materials systems and their associated properties
with the goal of enabling the design of more generalizable and versatile models. Based on the
success of benchmarks inspiring research advances in computer vision [11], natural language
processing [44, 41], molecular modeling [47, 5, 18, 24] and protein modeling [50] amongst
other fields, we develop a benchmark for Materials Science modeling using Machine Learning
modeling (MatSci ML) 2 targetting periodic crystal structures. MatSci ML brings the
following capabilities and features towards comprehensive solid-state materials benchmarking:

1. Data Diversity: MatSci ML integrates multiple open-source datasets, leading to a
broader diversity of materials structures and properties covered by the benchmark
as described in Section 3.

2. Multi-Task Training: MatSci ML includes support for multi-task training methods
across multiple regression and classification targets for ML models. This enables
researchers to leverage multi-task training methods for solid-state materials modeling
on both graph-based and point cloud based representations as shown in Section 5.

3. Multi-Dataset Integration: MatSci ML enables joint training of machine learning
models on heterogeneous data from different datasets in a unified manner. This
facilitates and encourages research towards generalizable, efficient, and accurate ML
models and methods for solid-state materials as described in Section 5.

To the best of our knowledge, MatSci ML is the first benchmark to enable multi-task and
multi-dataset learning for solid-state materials. We describe related work in Section 2,
introduce benchmark tasks in Section 3, formally define all learning settings in Section 4,
and provide an analysis of their performance in Section 5.

2 Related Work

Research at the intersection of materials science and machine learning has been growing
in recent years [32, 41, 45]. While adjacent research work in molecular modeling has seen
significant increases in recent years, modeling of solid-state materials with periodic crystal
structures has been comparatively underexplored.

Molecular Modeling: Applying machine learning to predict properties and design
molecules has been an active area of research in recent years. This research has spanned
many different dimensions including the development of benchmarks for property prediction
[33, 35, 1, 15, 23, 47] and molecular design [47, 5, 18, 24, 1]. This, in turn, has facilitated the
development of a diverse set of machine learning methods for molecular property prediction,
many of which are based on graph neural networks and geometric deep learning models that
include various types of useful inductive biases [21, 39, 19, 17, 20]. Additionally, there has also
been a significant amount of research exploring graph-based molecular generation algorithms
whose performance is evaluated on the aforementioned benchmarks [53, 52, 4, 40, 26, 56].
Solid-state materials differ significantly from molecules given their periodic crystal structure,
which greatly affects their properties and behavior. This periodic structure creates the need
for different representations and modeling methods that resolve greater degrees of symmetries
and geometrical features found in solid-state materials [9].

2https://github.com/IntelLabs/matsciml
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Solid-State Materials Modeling: Compared to molecular structures, the study of solid-
state materials has seen significantly less ML research activity. While there has been some
work on graph-based property prediction for solid-state materials [51, 8, 7, 27, 48, 10, 6, 31],
many papers evaluate their proposed methods on different datasets making it difficult to
compare their overall performance. This tendecy also holds in research work on the generation
of solid-state crystal structures [49, 22, 46] where each method is evaluated according to the
setting the authors propose. While there has been some work aiming to standardize the
evaluation of machine learning models for property prediction [13], much of this work has
been limited to small-scale datasets. Additionally, unlike for molecules where graph and
text-based representations have been quite successful, descriptive and scalable representations
for crystal structures remain an active area of research [9]. Overall, this creates a need for
more comprehensive benchmarks for solid-state materials with large and chemically diverse
datasets that enable more thorough studies of learned representations of solid-state materials,
in addition to the development of new machine learning methods.

3 Benchmark Tasks

The MatSci ML benchmark comprises 10 tasks across 3 different task groups. MatSci ML
leverages the Open MatSci ML Toolkit [31] as the backbone platform with basic primitives,
including support for graph and point-cloud based data structures, as well as modeling
capabilities to support the diverse set of tasks. Building on top of the Open MatSci ML
Toolkit enables the addition of new tasks and datasets in a modular manner for desired future
capabilities ranging from generative modeling to ML potentials for dynamical simulations.
We outline the different task definitions, data sources, dataset statistics and evaluation
metrics in Table 1 and will describe them in detail in subsequent sections.

Table 1: Benchmark task descriptions. Each task, along with its category, the source of
dataset, the size of each split and evaluation metric are shown below. Abbr., Reg.: regression;
Class.: classification; ACC: accuracy; MSE: mean-square error; MAE: mean average error

Task Task Category Data Source #Train #Validation #Test Metric
Energy Prediction Tasks

S2EF Property Reg. OpenCatalyst Project [6] 2,000,000 1,000,000 - MSE
IS2RE Property Reg. OpenCatalyst Project [6] 500,000 25,000 - MSE

Formation Energy Property Reg. Materials Project [25] 108,159 30,904 15,456 MSE
LiPS Property Reg. LiPS [2] 17,500 5,000 2,500 MSE

OQMD Property Reg. OQMD [28] 818,076 204,519 - MSE
NOMAD Property Reg. NOMAD [12] 111,056 27,764 - MSE

CMD Property Reg. Carolina Materials Database [55] 171,548 42,887 - MSE
Force Prediction Tasks

S2EF Property Reg. OpenCatalyst Project [6] 2,000,0001 1,000,000 - MAE
LiPS Property Reg. LiPS [2] 17,500 5,000 2,500 MAE

Property Prediction Tasks
Material Bandgap Property Reg. Materials Project [25] 108,159 30,904 15,456 MSE

Fermi Energy Property Reg. Materials Project [25] 108,159 30,904 15,456 MSE
Stability Property Class. Materials Project [25] 108,159 30,904 15,456 ACC

Space Group Property Class. Materials Project [25] 108,159 30,904 15,456 ACC

3.1 Energy Prediction Tasks

Energy prediction is one of the most common property prediction tasks in both molecular
and solid-state crystal structure modeling, and is generally included in most relevant datasets
[6, 25, 2, 33]. Energy is a critical property of a material system that indicates how stable the
materials system is. Moreover, the energy can be used to understand many different aspects
of materials behavior, and has also inspired methods development in machine learning, such
as “energy-based learning” methods. The ubiquity of energy labels in various datasets allows
us to combine multiple datasets in a multi-data setting. The collection of data in energy
prediciton spans ∼1.5 million bulk materials from various sources and relaxation trajectory
data diverse adsorbate + surface + bulk combinations from OpenCatalyst.
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Structure to Energy & Forces (S2EF) from OCP [6] requires prediction of the
adsorption energy of a molecular adsorbate on a catalyst surface. We directly adopt the
dataset splits from OCP containing a training set, an in-distribution validation set, and a
set of out-of-distribution validation sets based on different molecular absorbates or catalysts.
Accurate prediction of adsorbate-surface interactions is necessary for effective materials
design in many applications, including catalysts and semiconductors.

Initial Structure to Relaxed Energy (IS2RE) from OCP [6] involves the prediction
of relaxed adsorption energy of a molecular adsorbate on a solid-state catalyst surface. We
directly adopt the dataset splits from OCP containing a training set, an in-distribution
validation set, and a set of out-of-distribution validation sets based on different molecular
adsorbates or catalysts. Predicting the relaxed adsorption energy of joint molecular and
solid-state materials from an initial structure has substantial impact on the design of catalytic
materials which can help accelerate a variety of chemical reactions. This task can help
understand the influence of solid-state material composition and structure, as well as its
interactions with molecules.

Formation Energy from MP [25] involves predicting the energy of the material relative
to its constitutients, as a function of the relative three-dimensional arrangement of atoms
in the unit cell. MP normalizes the formation energy based on the stoichiometry of the
material (e.g. H2O, SiO2) in units of eV/atom. We construct a dataset split of MP where
the representation of different crystal structures is consistent across training, validation, and
test sets. Formation energy, along with entropy, determines the thermodynamic stability of
a material, and thus how feasible it is for the material to be experimentally synthesized and
what applications it may be suitable for. This task could be applicable to materials design
of bulk solid-state materials, as opposed to the exposed surfaces found in OCP.

LiPS Energy from the LiPS dataset [2] involves the prediction of the energy of LiPS
material structures as they evolve dynamically relative to a reference configuration, in units
of meV/atom. We construct a random dataset split based on the original dataset similar to
prior work [16]. Reliably accurate predictions of the energy of a configuration, meaning atoms
in space, are needed for ML potentials used in simulations of materials under physically
relevant conditions, such as room temperature and atmospheric pressure.

OQMD from the OQMD dataset [28] involves the prediction of the formation energy of a
material structure measured in eV/atom based on the DFT calculations. We construct a
random dataset split based of 1,022,595 bulk material structures in the dataset with a 20%
validation split. OQMD represents the largest collection of bulk material formation energy
calculation, including more sample than Materials Project, NOMAD and CMD combined.

NOMAD from the NOMAD dataset [12] involves the prediction of the formation energy of
a material structure measured in eV/atom based on crowdsourced calculations. We construct
a random dataset split based of 138,820 bulk material structures in the dataset with a 20%
validation split.

CMD from the Carolina-MatDB dataset [55] involves the prediction of the formation
energy of a material structure measured in eV/atom based on the DFT calculations of
structures discovered by machine learning methods. We construct a random dataset split
based of 214,435 bulk material structures in the dataset with a 20% validation split.

3.2 Force Prediction Tasks

Many workflows for machine-learned potentials harness automatic differentiation available
in modern ML frameworks to produce a conservative potential energy function U , linked
to the force f⃗ via the gradient: f⃗ = −∇U . While this conservative formulation could
be important for fine-scale thermodynamic stability of simulations, for some applications
learning to predict forces independently from energy—either in a rotation-equivariant or
non-rotation-equivariant way—may also suffice. All models described here derive forces from
the gradient of a conservative potential energy.
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Structure to Energy & Forces (S2EF) from OCP [6] includes both energy and force
labels; the latter represents the force exerted on each atom within the molecular adsorbate
in units of eV/Å. We adopt the same dataset splits found in OCP. Predicting forces on each
atom for a snapshot of particle configurations is needed for structure relaxation and other
optimization methods used to find low-energy states of materials systems. Accurate force
predictors also provide concrete opportunities to incorporate machine learning models into
classical materials modeling workflows such as molecular dynamics simulations [2, 7, 16].

LiPS Forces from the LiPS dataset [2] includes per-atom forces (in meV/Å) based on a
random split. Similar to S2EF, predicting the atomic forces of a system in a generalizable
way would enable applying machine learning to further understand materials behavior.In
contrast to S2EF, this dataset comprises many frames of a single Li-ion system, as opposed
to a diverse set of compositions and structures.

3.3 Property Prediction Tasks

For all Materials Project (MP) [25] property prediction tasks in this section, we apply the
same dataset split as for the formation energy described above. In this case, the representation
of different crystal structures is consistent across training, validation, and test sets.

Material Bandgap involves the prediction of the bandgap of a solid-state material in
units of eV, corresponding to the amount of energy required to promote a valence electron
into the conduction band. Larger bandgaps imply low electronic conducitivty of the material
(e.g. insulators), while small bandgap imply large electronic conductivity (e.g. metals)
with many materials being somewhat conductive (e.g. semiconductors). Predicting the
bandgap of a material is critical for many electronic materials and their applications, such as
semiconductors for computer hardware and photovoltaics. This task aims to understand how
the design (e.g. composition and configuration) of crystal structures affects the bandgap.

Fermi Energy is the highest occupied energy level of a material at absolute zero
temperature measured in eV, which correlates with the conductivity of a material. The
Fermi energy generally represents the halfway point between the valence and conduction
band and is thereby closely related to the material bandgap. Predicting the Fermi energy
can help understand the electric properties of a given material, which can in turn be used to
engineer the conductivity characteristics of materials for new applications.

Stability is a binary classification task to predict whether a given material configuration is
thermodynamically stable at absolute zero. Understanding material stability is particularly
relevant for evaluating and conditioning generative models, e.g., preferentially sampling from
stable configurations of chemical space should result in experimentally viable materials.

Space Group is a multiclass classification task to predict which, of the 230 possible
crystallographic space groups, a given material belongs to. Predicting the space group
requires embedding the effect of symmetry operations (e.g. rotation and exchange) of a
solid-state structure, which ultimately influences its physical properties and stability.

4 Training Methods

We apply a set of deep learning models and training methods to showcase the capabilities of
the benchmark and derive some interesting insights. While we believe these baselines are
representative of the general capabilities of deep learning methods for materials modeling,
our experiments are unlikely to achieve the best possible modeling performance. As such,
we encourage future work to leverage the benchmark to improve upon currently available
methods, as well as further research into the development of new methods. First, we describe
the different deep learning architectures we studied.

Graph Neural Networks (GNNs) encode the material structure as a graph where the
atoms generally represent the nodes and the edges are the connections between the atoms.
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Unlike molecular structures, solid-state materials do not have a canonical way to encode
bonds between different atoms. As such, distance based radius graphs are used to construct
the graph of the corresponding material. We apply MegNet [8] across all tasks in MatSci
ML to understand the performance of domain-specific graph neural networks.

Equivariant Graph Neural Networks encode rotational equivariance into their
architecture, which is a useful inductive bias for materials property prediction. Regular
GNNs do not have rotational equivariance or scalar invariance by default in their architecture
and have to be intentionally encoded. We apply E(n)-GNN [38] across all tasks in MatSci
ML to understand the performance of equivariant graph neural networks.

Short-Range Equivariant Models operate on a point cloud data structure where local
neighborhoods in the point cloud receive the greatest importance in parameter updates of
the neural network. The additional flexibility of the point cloud data structure also helps
promote localized representations of relevant elements in the materials structure through
targeted mathematical formulations, such as Clifford algebras [42, 37, 36], which facilitate
efficient model training. We apply GALA [42] across all tasks in MatSci ML to understand
the performance of short-range equivariant networks.

4.1 Single Task vs Multi-Task Learning

Throughout this paper, we refer to a “task” a mapping from a given set of inputs (which
may come from a specific dataset) to a desired single outcome (e.g., classification, regression)
encapsulated by a single loss function. Multi-task training refers to training a model on more
than one type of loss function, such as regression and classification jointly performed on the
MP dataset. Multi-data training refers to training a model on a similar type of label across
multiple data sources, such as energy prediction on diverse materials drawn jointly from the
OCP dataset and MP dataset. Next, we outline formal definitions of the three methods.
Single Task Learning is a common way to approach solid-state materials modeling by
training a model exclusively on one task at a time. In this case, the model learns a mapping
function (f) between input (x) and output (y) where x ∈ tn ∈ T is drawn from a pool of
tasks T . The learning objective is summarized by a single loss Lt that is minimized for may
include multiple regression or classification targets from the same dataset.
Multi-Task Learning aims to learn a mapping function (f) between input (x) and output
(y) from different tasks tn, i.e. x = [xt1 , xt2 , ...xtn ] and y = [yt1 , yt2 , ...ytn ]. In this paper, we
study multi-task learning using a joint encoder with a predetermined model architecture
followed by task-specific output heads. To remain within reasonable compute budgets, we
perform experiments on two tasks at a given time with a balanced loss between the two tasks:
Lθ = Lt1 + Lt2 . In this setting, both losses backpropagate gradients to the joint encoder
in addition to their respective output heads. Additionally, we perform multi-task learning
using PCGrad [54] which aims to minimize gradient conflicts between different tasks.
Multi-Data Learning aims to learn a mapping function (f) between input (x) and output
(y) from different datasets dn, i.e. x = [xd1 , xd2 , ...xdn

] and y = [yd1 , yd2 , ...ydn
]. In this case,

the output (y) is a single property found among each of the datasets, such as a measurement
of energy or atomic forces. Similar to multi-task learning, we study multi-data learning using
a joint encoder with a predetermined model architecture followed by task-specific output
heads. We perform experiments on two datasets at a time with a balanced loss between the
two tasks: Lθ = Ld1 + Ld2 .

5 Experiments

We perform various experiments across the different models and methods described in
Section 4, including training all models for single-task and multi-task learning shown in
Table 2 and Table 3, respectively, as well as multi-data learning for E(n)-GNN and MegNet
shown in Table 4. We did not perform multi-data learning for GALA given the increased
computational cost of training the model on the large combined dataset, especially S2EF
and IS2RE, compared to the other methods. Our general results also indicate that GALA
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underperforms compared to other models, suggesting that it would be more productive to
focus multi-data experiments on E(n)-GNN and MegNet.

5.1 Single-Task Learning

We perform single task learning for all tasks in MatSci ML with the results summarized in
Table 2. For additional reference, we add state-of-the-art results for OpenCatalyst OC-20
data based on the public OC20 leaderboard. The results on the leaderboard represent test
data splits that are only available through the leaderboard interface, while our results are
based on the publicly available validation data splits. For both Materials Project (MP) and
LiPS, we create new dataset splits which make it difficult to compare to existing results
reported in the literature. The results from Table 2 indicate that:

Table 2: Benchmark results on single-task learning. We report the validation set performance
for each experiment and highlight the best performance among all models; SOTA model
performance from literature is added where applicable; “-” indicates a non-applicable setting.
Graph-based models perform better than point cloud based models on single task learning.

Task Metric Equivariant Neural Network Graph Neural Network Point Cloud Network Literature SOTA
E(n)-GNN MegNet GALA

Energy Prediction

S2EF MSE 0.826 1.252 6.611 0.227 (Equiformer [30])
IS2RE MSE 0.186 0.229 5.133 0.300 (Equiformer [30])
MP MSE 0.045 0.100 0.32 -
LiPS MSE 0.579 0.989 0.985 -
OQMD MSE 0.244 0.276 - -
NOMAD MSE 0.209 0.215 - -
CMD MSE 0.029 0.141 - -

Force Prediction

S2EF MAE 0.957 0.186 567.4 0.0138 (Equiformer [30])
LiPS MAE 0.443 0.443 1.078 -

Property Prediction

Band MSE 0.504 0.497 1.234 -
Fermi MSE 0.859 0.849 3.506 -

Stable ACC 79.9 83 77.2 -
Space ACC 29.8 31.3 20.1 -

Graph neural networks perform well across all tasks. E(n)-GNN outperforms all other
models across the energy prediction tasks, while MegNet performs best for force prediction
and MP-based tasks. Both E(n)-GNN and MegNet outperform GALA across all tasks in
MatSci ML . This suggests that graph-based data structures provide a useful inductive bias
for modeling solid-state materials although a more thorough study is required to further
confirm this observation. The reported results from the OC20 leaderboard indicate that the
evaluated models are far from SOTA performance in S2EF, both for energy and forces, but
may be competitive for IS2RE.
Space group classification is a difficult task for all models. All evaluated models
perform poorly on space group classification with MegNet reaching an accuracy of 31.3%.
The difficulty associated with this task is twofold: the natural imbalance of class labels owing
to the fact that materials of certain space groups are more prevalent than others, and that
symmetry operations are hierarchical, thus requiring models to differentiate between groups
with similar bases. The latter reinforces prior findings that models and representations which
specifically include higher-order symmetry could be useful for solid-state materials [27].

5.2 Multi-Task Learning

We then probe the multi-task learning scenario based on property prediction tasks from
Materials Project data splits spanning both regression and classification. MP provides the
greatest diversity of labels for evaluating different property prediction targets suitable for
the multi-task setting. We study the multi-task performance under the settings described in
Section 4.1 with additive task losses for joint backpropagation, as well as for PCGrad [54].
Based on the results in Table 3, we observe:
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Table 3: Benchmark results on materials project multi-task learning. We show the best
performing along with single-task baseline with each multi-task run outperforming the
single-task baseline also highlighted. Multi-task learning generally outperforms single task on
regression tasks with only small performance difference between additive losses and PCGrad.

Task Metric E(n)-GNN MegNet GALA

+Band +Fermi +Stable +SG +Band +Fermi +Stable +SG +Band +Fermi +Stable +SG

Multitask Training (Additive Losses)

Band MSE 0.504 0.389 0.314 0.43 0.497 0.454 0.368 0.585 1.23 0.622 0.51 0.54
Fermi MSE 0.211 0.859 0.25 0.499 0.284 0.849 0.263 0.648 0.606 3.51 0.508 0.676

Stable ACC 81.6 77.4 79.9 78.1 80.6 76.9 83.0 76.9 78.0 77.0 77.2 76.9
Space ACC 30.6 27.5 30.9 29.8 30.8 31.1 21.6 31.3 18.2 18.4 19.9 20.1

PCGrad Training [54]

Band MSE 0.504 0.389 0.312 0.406 0.497 0.454 0.343 0.537 1.23 0.622 0.511 0.563
Fermi MSE 0.211 0.859 0.259 0.43 0.284 0.849 0.268 0.452 0.606 3.506 0.461 0.622

Stable ACC 81.9 77.7 79.9 77.7 81.3 76.9 83.0 77.4 77.0 77.1 77.2 77.7
Space ACC 30.3 27.5 30.1 29.8 23.8 25.4 26.6 31.3 19.1 22.2 23.2 20.1

Multi-task learning generally improves task performance on individual tasks.
Task performance in the multi-task setting generally improves across all of the tasks studied.
This is particularly true for the regression tasks (bandgap and fermi energy) and less so
for the classification tasks where performance remains similar to single-task learning. This
suggests that many of the tasks in MP have a high degree of correlation leading to overall
better learning.
PCGrad offers small improvements in multi-task learning. The results across
all three models studied indicate that PCGrad provides little performance improvement
compared to multi-task learning with additive losses. This further reinforces the idea that
the tasks in MP have a high degree of correlation given that one of the primary goals of
PCGrad is to resolve gradient conflicts between different tasks. Hence, a low degree of
gradient conflicts in highly correlated tasks leads to only small performance gains.

5.3 Multi-Data Learning

We perform multi-data learning for energy and force prediction across all different datasets.
Based on the results shown in Table 4, we observe:
IS2RE energy performance worsens with multi-data learning. IS2RE energy worsens
in the multi-data setting for both E(n)-GNN and MegNet. We hypothesize that is due to
the fact that IS2RE aims to predict relaxed energy of a given structure, which is different
from the single frame prediction present in all other datasets.
S2EF energy performance improves with multi-data learning. S2EF energy
prediction generally improves in the multi-data setting for both E(n)-GNN and MegNet with
the exception of E(n)-GNN S2EF + IS2RE. This reinforces the notion that S2EF energy
prediction is naturally more correlated with the energy labels in MP and LiPS given that all
datasets evaluate energy at the given frame, as opposed to IS2RE which evaluates energy for
a final relaxed state—methods akin to ∆-ML [34] may be required to bridge this gap.
MP and LiPS see varied results in multi-data learning. LiPS energy performance
remains relatively stable for MegNet compared to the single-task performance and worsens
for E(n)-GNN. MP energy prediction generally shows improvement when combined with
S2EF and deterioration when combined with LiPS. This generally indicates that MP and
LiPS are not very well correlated. MP improvements for MegNet in combination with S2EF
and IS2RE may indicate that model is able to acquire more generalized knowledge on the
larger datasets, which would have to be confirmed with more thorough studies.
Force prediction improves in multi-data learning. The improvements in force
prediction between S2EF and LiPS further indicate a strong correlation between the tasks,
which is also observed in energy prediction.
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Table 4: Benchmark results on energy+forces multi-dataset learning. We show the best
performing along with single-task baseline with each multi-task run outperforming the
single-task baseline also highlighted. Multi-data outperforms the single-task baseline in some
cases for both models. “-” indicates not applicable for this setting.

Task Metric E(n)-GNN MegNet

+S2EF +IS2RE +MP +LiPS +S2EF +IS2RE +MP +LiPS

Energy Prediction

S2EF MSE 0.826 0.282 0.744 0.193 1.252 0.455 0.376 0.445
IS2RE MSE 0.252 0.186 0.32 0.287 0.34 0.229 0.374 0.276
MP MSE 0.044 0.064 0.045 0.385 0.077 0.086 0.100 1.038
LiPS MSE 0.966 0.992 0.988 0.579 0.966 0.997 0.988 0.989

Force Prediction

S2EF MAE 0.957 - - 0.185 0.186 - - 0.177
LiPS MAE 0.361 - - 0.443 0.441 - - 0.443

6 Material Generation Pipeline

In addition to efficiently evaluating diverse sets of materials properties as described in
Section 3, generative methods provide the opportunity to significnatly expand the space
of known solid-state materials. Currently, there are only ∼ 200k experimentally known
inorganic materials in the ICSD database [3], which is significantly smaller than the space of
possible materials designs creating an vast opportunity for materials discovery.
To faciliate generative modeling in MatSciml, we applied our Materials Project dataset
(described in Appendix B.2) on the generative modeling task using CDVAE [49], a latent
diffusion model that trains a VAE on the reconstruction objective with DimeNet++ [19] as
an encoder and GemNet-dT [20] as a decoder on the denoising objective. For the sake of
numerical stability, we trained and generated samples with 25 or less atoms in the structure
that resulted in 64,251 training data points, 18,142 for validation, and 9,098 for testing
(denoting this subset as mp25). Following the standard hyperparameters reported in Xie et al.
[49] (with the only change being a larger decoder cutoff radius of 12Å to account for larger
structures than those in the original datasets), we trained a 5M parameter CDVAE model
and sampled 10,000 structures using Langevin dynamics. The results are shown in Table 5.

Table 5: Generation quality metrics of CDVAE matching the quality of the original
implementation in Xie et al. [49] with a new subsample of Materials Project (mp25).

Dataset Validity (%) Coverage (%)
Structure Composition Recall Precision

mp25 99.74 89.01 97.74 99.58

The results presented in Table 5 expand upon the results in Xie et al. [49] given that original
implementation only trained on a subset of 20k datapoints from Materials Project.

7 Conclusion

To the best of our knowledge, MatSci ML is the first benchmark to enable multi-task
and multi-dataset learning for solid-state materials, thereby facilitating machine learning
researchers to build more generalizable models to accelerate the deployment of machine
learning tools in the design, discovery, and evaluation of new materials systems. The focus
on multi-task models can enable future work on generalist models that can be applied to
various downstream applications in the materials science domain. These models could follow
pre-training procedure on auxillary tasks, such as symmetry classification [29], for general
knowledge acquisition followed by specialized fine-tuning for a given task on limited data.
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A Experiment Descriptions

A.1 Compute Details

We used GPU nodes on an internal cluster where a single node generally consists 8 GPU’s of
either: Nvidia Titan V, Titan X, or Titan Xp. Single task experiments are trained on one
node for a minimum of 20 epochs, and a maximum of 50 epochs. In the case of single task
training, we also apply early stopping with a patience of 15 epochs. We train multi-data
experiments on one node for a maximum of 25 epochs and multi-task experiments on a single
GPU for a maximum of 50 epochs.
For experiments involving OpenCatalyst tasks, we we rely on the original training and
validation dataset splits and construct our own dataset splits for Materials Project and LiPS.
We discuss all relevant details for dataset license and split construction in Appendix B. All
experiments are conducted with the dataset split described in Table 1 with the exception
of S2EF where we perform single task training on S2EF with 2M training samples and
multi-data with 200k training samples to better manage the compute cost and dataset
balance.

A.2 Hyperparameters

We outline the hyperparameters for all three models described in Section 5. We maintained
consistent architecture parameters for all training settings across all tasks. Full set of training
and evaluation parameters will be published with code release upon publication.

Table 6: Hyperparameters for E(n)-GNN
Hyperparameter Value
MLP hidden dim 32
MLP output dim 128
# of EGNN layers 5
Node MLP dim [128, 128, 128]
Edge MLP dim [128, 128, 128]
Atom position MLP dim [64, 64]
MLP activation ReLU
Graph read out Sum
Node projection block depth 3
Node projection hidden dim 128
Node projection activation ReLU
Output block depth 3
Output hiddem dim 128
Output activation ReLU

Optimizer Parameters
Learning Rate 0.0001
Gamma 0
Batch Size 32
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Table 7: Hyperparameters for MegNet
Hyperparameter Value
Edge MLP dim 2
Node MLP dim 5
Graph variable MLP dim 9
MegNet blocks 4
MLP hidden dims [128, 64]
MegNet convolution dims [128, 128, 64]
# of S2S layers 5
# of S2S iterations 4
Output projection dims [64, 16]
Dropout 0.1

Optimizer Parameters
Learning Rate 0.0001
Batch Size 32

Table 8: Hyperparameters for GALA
Hyperparameter Value
Input dimension 200
Hidden dimension 128
Merge function concat
Join function concat
Rotation-invariant mode full
Rotation-covariant mode full
Rotation-invariant value norm momentum
Rotation-equivariant value norm momentum layer
Value function normalization layer
Score function normalization layer
Block-level normalization layer

Optimizer Parameters
Learning Rate 0.0001
Gamma 0
Batch Size 16

B Dataset Descriptions

B.1 OpenCatalyst

The OpenCatalyst dataset [6] was originally published with a Creative Commons Attribution
4.0 (CC BY 4.0) license. Our work leverages the implementation of the Open MatSci ML
Toolkit [31] with the same license and preprocesses the S2EF and IS2RE datasets according
to the instructions documented on the Open MatSci ML Github site for S2EF 3 and Zenodo
release for IS2RE 4.

B.2 Materials Project

The Materials Project (MP) [25] is also released under a CC BY 4.0 license. Setting up
MP datasets first requires access to the Materials Project API by creating an account

3https://github.com/IntelLabs/matsciml
4https://zenodo.org/record/7411133
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on the orginal website 5. The API key may then be set to an environment variable:
$ export MP_API_KEY=your-api-key to interact with the command-line interface to query
for specific data, or rely on pre-configured YAML configurations to process pre-defined splits
we refer to in this paper.

Figure 1: Dataset split of Materials Project [25] that ensures crystal structure representation
across training, validation and testing splits for randomly sampled materials from the full
dataset. Left panel shows data counts, while the right shows fractional composition—each
split comprises the same balance in symmetry. Abbr., mono: monoclinic; tri: triclinic; ortho:
orthorhombic; hex: hexagonal; tetra: tetragonal

Train, validation, and test splits are defined by material id based on
the split described in Figure 1, and may be found in our code in
ocpmodels/datasets/materials_project/{train, val, test}.yml. We aimed to
create a chemically balanced partitioning of the available data. We note that effective
dataset splitting remains an open question without clear consensus in the broader materials
community, and that past literature have generally performed custom dataset splits based
on different properties of interest. As seen in the right panel of Figure 1, we partitioned
the splits to preserve uniformity in the crystal family labels. Our dataset splits were
informed by the fact that crystal symmetry is a universal property for all of solid-state
materials that significantly affects physical properties, including structure, stability, and
functional properties (e.g. band gap, magnetism). In terms of implementation, a simple
command line script is used to load material id numbers and download the relevant data to
lmdb files, consistent with other datasets used in Open MatSci ML Toolkit. The primary
labels used for experiments includes the fields: band_gap, structure, formula_pretty,
efermi, symmetry, is_metal, is_magnetic, is_stable, formation_energy_per_atom,
uncorrected_energy_per_atom, and energy_per_atom.
To download and extract the train, validation and test datasets using our code, the following
command can be used:

python -m ocpmodels.datasets.materials_project.cli \
-d mp_data \
-t base \
-s ocpmodels/datasets/materials_project/train.yml \
ocpmodels/datasets/materials_project/val.yml \
ocpmodels/datasets/materials_project/test.yml

The -d flag is used to specify a directory to store the data, and defaults to mp_data. After
running the script, the data directory will include train, validation and test folders containing

5https://materialsproject.org
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lmdb files with 108159, 30904, and 15,456 samples respectively. Specifying the -t flag will
ensure all of the main data fields listed above are included in the download.
A devset (development dataset) is also included which has 200 material
samples containing the band_gap, and structure fields, which is accessible in
ocpmodels/datasets/materials_project/devset.
Other property fields, material id’s, and Materials Project’s API arguments may be used
with the download script to create custom datasets. Additional details on how to use the
script may be found in ocpmodels/datasets/materials_project/cli.py.

B.3 LiPS

The LiPS dataset is also released under a CC BY 4.0 license, which can be accessed via the
original release in Materials Cloud6.
The LiPS data splits used in the experiments are included in the codebase folders
ocpmodels/datastes/lips/base/{train, val, test}. To create the splits, we download
the dataset from it’s original release and split randomly into 70%, 20% and
10% chunks for training, validation and testing. A dev set is also included in
ocpmodels/datasets/lips/devset which holds 200 samples.

C Limitations

The currently published datasets focus primarily on ground-state energy calculations at zero-
temperature and pressure that include minimal information about how the material system
behaves under different conditions. While OpenCatalyst includes relaxation trajectories for
S2EF, they are still calculated under ideal conditions, creating the risk that behavior of
the materials will be different under real-world conditions, such as room temperature and
pressure. LiPS is the only dataset that includes more realistic information about material
dynamics, but is limited in dataset size. Additionally, the benchmark covers only a sample
relevant combinations of material properties and dataset splits available across all of the
different tasks available. We hope that future work can provide more insight into how to
conduct effective, potentially physics-informed dataset creation and splitting, as well as
how different models can generalize across different prediction tasks. Future work is also
needed to assess how to combine different types of datasets into multitask multi-data learning
scenarios, which may include material types and simulation conditions.
The application of machine learning to materials science could have unintentional
consequences for data privacy, where sensitive materials data is inadvertently included
in a model’s implicit knowledge. Similar to adjacent machine learning fields where privacy is
important, future work is needed to effectively manage these situations.

6https://archive.materialscloud.org/record/2022.45
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