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Abstract. 3D biomedical image segmentation is a critical technology for
clinical diagnostics, surgical planning, and disease analysis. While foun-
dation models such as SAM and its medical derivatives have achieved
remarkable progress, their adaptation to volumetric images remains lim-
ited, particularly in terms of diverse imaging modalities and the need for
efficient user interaction. To advance research in this field, CVPR 2025
Interactive 3D Biomedical Image Segmentation Challenge was estab-
lished. We propose DCM (DualClickMed) as a solution to this challenge,
with a dual-expert architecture featuring both global and local Region-
of-Interest (RoI) strategies. The global-RoI expert provides comprehen-
sive anatomical context by processing the entire organ based on user
prompts, while the local-RoI expert focuses on high-resolution patches
centered on specific user clicks, enabling precise segmentation of fine
structures. We further introduce tailored prompt simulation strategies
for each expert, closely mimicking real-world interactive behaviors dur-
ing training. Extensive experiments on challenge dataset covering five
modalities demonstrate that our approach outperforms baselines, with
final DSC scores of 0.8533 (CT), 0.6880 (MRI), 0.6003 (Microscopy),
0.7864 (PET), and 0.9385 (Ultrasound), achieving significant improve-
ments in both region overlap and boundary accuracy metrics.

Keywords: Interactive 3D segmentation · Region-of-Interest strategy ·
Medical image analysis.

1 Introduction

3D biomedical image segmentation has become a critical technology for clinical
diagnostics, surgical planning, and quantitative disease analysis. While founda-
tion models like SAM (Segment Anything Model) have revolutionized 2D nat-
ural image segmentation through promptable architectures trained on billion-
scale datasets [7], their application to volumetric medical imaging faces three
key challenges: 1) Medical images capture intricate structures across multiple
scales, from tiny blood vessels to entire organs, requiring sophisticated analysis
⋆ Contributed equally.
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[5]. 2) Diverse modalities in medical imaging (CT, MRI, PET, Ultrasound, and
Microscopy) and limited labeled data make learning effective representations
particularly difficult [9,4]. 3) Clinical workflows require interactive refinement
capabilities where human expertise can efficiently correct segmentation errors,
which is underdeveloped in current foundation models [14].

Recent research has attempted to bridge this gap. For instance, MedSAM
[9] and MedSAM2 [11] perform domain-specific fine-tuning and sequence mod-
eling, whereas SegVol [3] and VISTA3D [5] introduce multi-scale and unified 3D
segmentation strategies. Some efforts such as One-Prompt [16] seek to design
universal interactive prompts for diverse medical images.

Despite their promise, existing interactive segmentation methods face two
critical shortcomings: 1) While foundation models have shown success in medical
segmentation, their interactive adaptation suffers from suboptimal RoI handling—
where standard cropping/resizing discards crucial spatial context. 2) Their prompt
simulation strategies do not faithfully replicate real-world user interactions or ef-
fectively utilize anatomical context, resulting in poor performance for ambiguous
boundaries and complex structures [15].

Motivated by these limitations, we propose DCM (DualClickMed), an inter-
active segmentation framework incorporating two RoI strategies, with a global-
RoI expert for holistic anatomical understanding and a local-RoI expert for fine-
grained refinement. Complemented by realistic prompt simulation strategies, we
achieve better training-application alignment and superior accuracy.

Contributions. 1) We propose a dual-expert medical segmentation framework
featuring two complementary RoI modes: global and local, enabling both holis-
tic organ context modeling and fine-grained local refinement in interactive 3D
segmentation. 2) We introduce two tailored interaction simulation strategies for
training the global-RoI and local-RoI experts, making the training process more
aligned with real-world user behaviors and improving model robustness to vari-
ous prompt types. 3) Extensive experiments on multiple challenging modalities
demonstrate that our method significantly advances the state-of-the-art, con-
sistently outperforming strong baselines in both region overlap and boundary
accuracy metrics. The source code will be made publicly available.

2 Method

This section presents our methodological contributions in three parts: First,
we introduce the architecture of our dual-expert segmentation framework (Sec.
2.1). Next, we detail our RoI extraction pipelines that serve our global and
local experts (Sec. 2.2). Finally, we present the distinct interaction simulation
strategies developed for training each expert model (Sec. 2.3).

2.1 Network Architecture

Our proposed framework introduces a dual-expert architecture for medical image
segmentation that combines global and local processing strategies. As illustrated
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Fig. 1. Network architecture. Our method contains two expert models, one for global
RoI and the other for local RoI: 1) Global RoI: The input image is cropped and
resampled based on the enclosing box of all prompts. 2) Local RoI: The input image
is cropped with its center at the last point prompt.

in Figure 1, the system employs two expert models working in tandem: one
handling global RoI for complete anatomical structures, and another focusing
on local RoI patches. This design addresses the varying requirements of different
clinical segmentation scenarios through complementary approaches.

Global RoI. The global-RoI component processes entire organ structures (e.g.
kidneys) based on interactive user prompts. Built upon a modified SAM-Med3D
[15] architecture with Vision Transformer [2] backbone, we reduce the patch
embedding size from 16 × 16 × 16 to 8 × 8 × 8 pixels. This modification also
lowers the input resolution from 128 × 128 × 128 to 64 × 64 × 64, significantly
improving computational efficiency for whole-organ analysis. Meanwhile, as all
interactive points are generally within the global RoI, we input all the points
into the prompt encoder, which is proven better in our ablation study.

The global approach provides comprehensive anatomical context but faces
inherent limitations in certain clinical scenarios: 1) When the input prompts
only contain one point, it is not sufficient to extract global RoI. 2) In some cases
with thin structure and large range (e.g. vessels), the resolution of global RoI is
not enough to do the segmentation.

Local RoI. To address the constraints of global processing, we incorporate a
local-RoI expert based on a streamlined SegResNet [12]. This component focuses
on high-resolution patch centered around user click points. It is adapted from
VISTA3D [5], omitting the auto head to better align with interactive segmen-
tation workflows. The local expert excels in scenarios where global processing
proves inadequate, particularly when handling single-point prompts or segment-
ing fine anatomical details (e.g. vessels) that demand higher resolution. We use
a simple rule to switch strategies. When only point prompts are provided, we
pass the input image to local RoI, otherwise the global one is used.
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Fig. 2. Global RoI extractor. We propose to crop and resize the 3D medical image by
finding the minimal enclosing box of all the interactive positive prompts.

It can be seen that this paper does involve a lot of modifications in terms of
the network details, with both global and local experts based on existing models.
Therefore, SAM-Med3D and VISTA3D are employed as the major counterparts.
By validating against these two foundational models, we demonstrate how our
devised mechanism improve the accuracy.

2.2 Global and Local RoI Extractors

The zoom strategy is a long-standing problem due to the high resolution of 3D
medical image. When it comes to interactive segmentation, existing methods
generally follow two strategies: 1) Updating with siding windows (e.g. nnInter-
active [4]). 2) Updating around the prompt (e.g. VISTA3D [5]).

In this paper, we propose a novel strategy, updating RoI based on the minimal
enclosing box of all the interactive positive prompts, as shown in Figure 2. To
extract the global RoI, we first find the enclosing box of all positive prompts.
Next, we enlarge the enclosing box, with its width and height multiplied by a
factor k. The factor is set to 1.8 based on the observation that it is generally
sufficient to include the whole organ. Finally, this enlarged box is cropped from
original image and resized to 64× 64× 64. The strategy has advantages in two
folds: 1) The global RoI aligns with the spatial extension of the target organ,
making it less susceptible to resolution variation. 2) No matter for small or large
organs, the segmentation can be done in one inference, which is efficient.

On the other hand, the local RoI extractor we use is much simpler. It crops
the 128 × 128 × 128 patch centered around the last user click points, which is
the same as SAM-Med3D [15] and VISTA3D [5].

2.3 Interaction Simulation in Training

The interaction simulation is also a crucial but underexplored part in interactive
segmentation. Methods like SAM-Med3D and VISTA3D generate point prompts
by randomly choose from the false prediction region. Such strategy is intuitive,
but quite different from human behavior, making the training less efficient.



DCM: DualClickMed for Interactive Medical Segmentation 5

val/test protocol train (baseline)

False prediction

(a) Center of largest 
component

(b) Random within 
false prediction

(c) Random with 
filtered probability

(d) Simulating 
multiple prompts

High-prob region

train (ours) train (ours)

Simulated prompts Our simulated 
prompts

Fig. 3. Point prompt simulation for training global RoI expert. We propose two novel
designs: 1) Probability-based prompt simulation similar to human behavior. 2) Simu-
lating multiple prompts in each interaction for efficient learning.

We seek to interaction simulation strategies that are: 1) Similar to human
behavior. 2) Fast enough for training. Two strategies are thus proposed, one for
training the global-RoI expert, the other for the local one.

Boundary-attenuated simulation for global RoI. Let M ∈ {0, 1}D×H×W

denote the binary false prediction map from the previous segmentation output. A
naive random sampling of interaction points from M would disproportionately
select surface voxels due to their higher spatial frequency. To better emulate
human annotation behavior, we develop a sampling strategy as illustrated in
Figure 3(c). First, we apply 3D Gaussian filter with σ = 1 to obtain a weighted
map G = N ∗ M , where N represents the Gaussian kernel. This operation at-
tenuates values at boundary regions while preserving interior voxel intensities.
Next, we identify high-probability sampling regions by computing H = topk(G)
where k = 64, selecting voxels with the highest activation values. Finally, simu-
lated interaction points are uniformly sampled from this refined region H, effec-
tively shifting the sampling distribution away from superficial areas toward more
anatomically meaningful interior locations. This strategy improves the score by
1.79% according to our ablation study.

Training efficiency optimization for global RoI. While local RoIs require
individual cropping per interaction point, the global RoI’s whole-organ coverage
enables simultaneous processing of multiple prompts within a single crop. As
illustrated in Figure 3(d), we employ a batch processing approach where each
image encoder forward pass is coupled with 30 prompt iterations (6 points × 5
interactions). This design is based on the observation that the prompt encoder
and mask decoder operate significantly faster than the image encoder, making
the additional prompt iterations minimally impact the overall training time.
All 30 predicted masks are evaluated against ground truth annotations, with
the average loss computed across all outputs driving the gradient update. Our
ablation study shows this strategy improve the score by 0.38%.
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Fig. 4. Point prompt simulation for training local RoI expert. We propose to generate
prompts for false positive, false negative, and confused region separately, and balance
the proportion among them.

Balanced prompt sampling for local RoI. The local-RoI expert processes
fixed-size 128×128×128 patches, where foreground-background imbalance typ-
ically skews prompt sampling toward false positives over false negatives. To
address this bias, we introduce a stratified prompt simulation strategy (see
Figure 4) that explicitly balances prompt types during training. After gener-
ating an initial prediction, we categorize voxels into three error regions: 1)
FP (over-segmentation), 2) FN (under-segmentation), and 3) CR (confused
boundary region where prediction probabilities fall near the 0.5 decision thresh-
old). We then sample corrective prompts according to a probability distribution
(PFP = 0.1, PFN = 0.5, PCR = 0.4), up-weighting FN and boundary regions to
counteract their natural under-sampling. Ablation studies demonstrate that this
strategy yields 1.50% improvement in segmentation accuracy by ensuring more
representative prompt simulation during training.

2.4 Loss Functions

We use the summation between Dice loss and focal loss because compound loss
functions have been proven to be robust in various medical image segmentation
tasks [8]. In this work, the loss function design is inherited from existing work
SAM-Med3D [15] and VISTA3D [5] without much modification.

3 Experiments

3.1 Dataset and Evaluation Metrics

The development set is an extension of the CVPR 2024 MedSAM on Laptop
Challenge [10], including more 3D cases from public datasets3 and covering
commonly used 3D modalities, such as Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), Positron Emission Tomography (PET), Ultrasound,
and Microscopy images. The hidden testing set is created by a community effort
3 A complete list is available at https://medsam-datasetlist.github.io/

https://medsam-datasetlist.github.io/
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Table 1. Development and experimental environments.

System Red Hat Enterprise Linux 9
CPU AMD EPYC 7H12 CPU
RAM 8 × 60GB
GPU 8 × NVIDIA A100 40GB
CUDA version 12.6
Programming language Python 3.10
Deep learning framework PyTorch 2.6.0, Torchvision 0.21.0

where all the cases are unpublished. The annotations are either provided by the
data contributors or annotated by the challenge organizer with 3D Slicer [6] and
MedSAM2 [11]. In addition to using all training cases, the challenge contains a
coreset track, where participants can select 10% of the total training cases for
model development.

For each iterative segmentation, the evaluation metrics include Dice Simi-
larity Coefficient (DSC) and Normalized Surface Distance (NSD) to evaluate
the segmentation region overlap and boundary distance, respectively. The final
metrics used for the ranking are:

– DSC_AUC and NSD_AUC Scores: AUC (Area Under the Curve) for DSC
and NSD is used to measure cumulative improvement with interactions. The
AUC quantifies the cumulative performance improvement over the five click
predictions, providing a holistic view of the segmentation refinement process.
It is computed only over the click predictions without considering the initial
bounding box prediction as it is optional.

– Final DSC and NSD Scores after all refinements, indicating the model’s final
segmentation performance.

In addition, the algorithm runtime will be limited to 90 seconds per class. Ex-
ceeding this limit will lead to all DSC and NSD metrics being set to 0 for that
test case.

3.2 Implementation Details

Preprocessing. Following the practice in MedSAM [9], all images were pro-
cessed to npz format with an intensity range of [0, 255]. Specifically, for CT
images, we initially normalized the Hounsfield units using typical window width
and level values: soft tissues (W:400, L:40), lung (W:1500, L:-160), brain (W:80,
L:40), and bone (W:1800, L:400). Subsequently, the intensity values were rescaled
to the range of [0, 255]. For other images, we clipped the intensity values to the
range between the 0.5th and 99.5th percentiles before rescaling them to the range
of [0, 255]. If the original intensity range is already in [0, 255], no preprocessing
was applied.
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Table 2. Training protocols for Global ROI and Local ROI.

Global ROI Local ROI
Pre-trained Model SAM-Med3D VISTA3D
Batch size 4 1
Patch size 64×64×64 128×128×128
Total epochs 144 20
Optimizer AdamW AdamW
Initial learning rate (lr) 8× 10−4 2× 10−6

Lr decay schedule MultiStepLR WarmupCosine
Training time 20 hours 30 hours
Number of model parameters 100.51 M 217 M
Number of flops 150 G 2026.66 G

Environment settings. The environments used for development and experi-
ments are summarized in Table 1. While our experiments were conducted using
a distributed training setup with 8 GPUs (each with 18 CPU cores and 60GB
memory), we emphasize that the proposed method maintains full functionality
and can be effectively trained on a single GPU configuration.

Training protocols. The detail of training protocals for Global and Local ROI
are summarized in Table 2. To improve the generalization ability of our model,
we adopted comprehensive data augmentation strategies for both global and
local RoI branches. For global-RoI, we employed the RandomAffine transforma-
tion from the TorchIO library [13], with scale factors of [0.9, 1.1] along the z-axis
and [0.5, 1.5] along the x and y axes, as well as translation factor of 4 for all
spatial axes. For local-RoI, the augmentation strategy is based on the MONAI
framework [1], including random cropping guided by label classes, random inten-
sity scaling and shifting, random additive Gaussian noise, random flipping along
all spatial axes, and random 90-degree rotations. These augmentations are de-
signed to simulate a wide range of imaging conditions and anatomical variations,
effectively reducing overfitting and enhancing the robustness of our model.

For model selection, we adopt a straightforward strategy by using the final
checkpoint obtained at the end of training. This "last checkpoint" policy allows
us to fully utilize all training iterations and simplifies the model selection process
without relying on additional validation-based early stopping.

4 Results and Discussion

4.1 Quantitative Results on Validation Set

Coreset track. Table 3 summarizes the quantitative performance of our method
and three SOTA baselines (SAM-Med3D [15], VISTA3D [5], and SegVol [3]) on
five imaging modalities: CT, MRI, Microscopy, PET, and Ultrasound. Our ap-
proach consistently outperforms all baselines in both DSC and NSD metrics. The
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Table 3. Quantitative evaluation results of the validation set on the coreset track.

Modality Methods DSC AUC NSD AUC DSC Final NSD Final

CT

SAM-Med3D 2.2408 2.2213 0.5590 0.5558
VISTA3D 2.7975 2.8155 0.7147 0.7243
SegVol 2.8987 3.0373 0.7247 0.7593
DCM (ours) 3.3826 3.4891 0.8533 0.8818

MRI

SAM-Med3D 1.5191 1.5195 0.3895 0.3956
VISTA3D 2.2901 2.5783 0.5777 0.6479
SegVol 1.1131 1.3137 0.2783 0.3284
DCM (ours) 2.7423 3.0951 0.6880 0.7738

Microscopy

SAM-Med3D 0.3042 0.0169 0.0768 0.0042
VISTA3D 1.7183 2.7084 0.4455 0.6931
SegVol 2.0355 3.4730 0.5089 0.8682
DCM (ours) 2.3437 3.0661 0.6003 0.7750

PET

SAM-Med3D 2.1304 1.8150 0.5344 0.4560
VISTA3D 2.3878 2.0984 0.6123 0.5430
SegVol 2.9683 2.8563 0.7421 0.7141
DCM (ours) 3.0990 2.9493 0.7864 0.7539

Ultrasound

SAM-Med3D 1.4347 1.7956 0.3841 0.5090
VISTA3D 2.5803 2.5886 0.7074 0.7174
SegVol 1.2325 1.7881 0.3081 0.4470
DCM (ours) 3.7269 3.7637 0.9385 0.9519

improvements are particularly significant in the CT and Ultrasound modalities.
Our method achieves a DSC of 0.8533 for CT and 0.9385 for Ultrasound, outper-
forming VISTA3D (0.7147 for CT, 0.7074 for Ultrasound) and SegVol (0.7247
for CT, 0.3081 for Ultrasound). For Ultrasound, the gain over the best baseline
(VISTA3D) exceeds 23% in DSC, highlighting our model’s superiority in han-
dling low-quality images. On MRI and Microscopy, which are challenging due
to noise and complex textures, our method also achieves clear improvements.
For example, in Microscopy, our model attains a DSC of 0.6003, outperforming
the best baseline (SegVol, 0.5089) by approximately 9%. Across all modalities,
our consistent gains in both DSC and NSD metrics demonstrate the robustness
and generalizability of our approach, as well as its effectiveness in accurately
segmenting both high-contrast and low-quality medical images.

All-data track. Table 4 summarizes the quantitative evaluation results on the
all-data track across five imaging modalities. Consistent with the results observed
in the coreset track, our method achieves competitive or superior performance
compared with the baselines (VISTA3D [15], SegVol [3], and nnInteractive [4])
in most modalities. Notably, in the Ultrasound modality, our approach attains
the highest NSD (0.9440) and DSC (0.9299), outperforming all baselines by
a clear margin (the best baseline, nnInteractive, achieves NSD of 0.8494 and
DSC of 0.8547). For CT, our model also delivers strong results, with a NSD of
0.8797 and DSC of 0.8462, which is competitive with nnInteractive (NSD 0.9165,
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Table 4. Quantitative evaluation results of the validation set on the all-data track.

Modality Methods DSC AUC NSD AUC DSC Final NSD Final

CT

SAM-Med3D 2.2615 2.1533 0.5676 0.5421
VISTA3D 3.1689 3.2652 0.8041 0.8344
SegVol 2.9860 3.1191 0.7465 0.7798
nnInteractive 3.4337 3.5743 0.8764 0.9165
DCM (ours) 3.3461 3.4719 0.8462 0.8797

MRI

SAM-Med3D 1.6351 1.6106 0.4208 0.4193
VISTA3D 2.5895 2.9683 0.6545 0.7493
SegVol 1.2720 1.4629 0.3180 0.3657
nnInteractive 2.6975 3.0292 0.7302 0.8227
DCM (ours) 2.7133 3.0852 0.6809 0.7714

Microscopy

SAM-Med3D 0.3041 0.0168 0.0768 0.0042
VISTA3D 2.0229 3.0150 0.5286 0.7701
SegVol 2.2851 3.5661 0.5713 0.8915
nnInteractive 3.0801 3.9027 0.7836 0.9813
DCM (ours) 2.2917 3.0618 0.5871 0.7743

PET

SAM-Med3D 1.2879 0.7779 0.3219 0.1945
VISTA3D 2.6398 2.3998 0.6779 0.6227
SegVol 3.0225 2.9132 0.7556 0.7283
nnInteractive 3.1877 3.0722 0.8156 0.7915
DCM (ours) 3.0188 2.8778 0.7691 0.7440

Ultrasound

SAM-Med3D 1.7246 2.1188 0.4613 0.5597
VISTA3D 2.8655 2.8441 0.8105 0.8079
SegVol 3.4116 3.4167 0.8529 0.8542
nnInteractive 3.3481 3.3236 0.8547 0.8494
DCM (ours) 3.6741 3.7096 0.9299 0.9440

DSC 0.8764) and clearly surpasses VISTA3D and SegVol. For MRI and PET,
our method achieves results comparable to the strongest baselines, demonstrat-
ing robust and generalizable performance across different imaging scenarios. In
Microscopy, while nnInteractive achieves the best DSC (0.7836), our approach
yields a DSC of 0.5871, outperforming VISTA3D and SAM-Med3D, and remain-
ing competitive with SegVol. Overall, these results—together with the consistent
gains observed in the coreset track—highlight the effectiveness and versatility of
our dual-expert framework for large-scale 3D medical image segmentation.

4.2 Qualitative Results on Validation Set

Figure 5 illustrates representative successful segmentation cases across the five
imaging modalities. For each modality, we present the input image, ground truth
annotation, segmentation results from VISTA3D, and results from our method.
Visually, our approach yields segmentations that are much closer to the ground
truth compared to the baseline, particularly in accurately capturing fine anatom-
ical structures and clear object boundaries. The improvements are especially
noticeable in challenging modalities such as Ultrasound and Microscopy, where
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Fig. 5. Successful cases on five modalities. Top-to-bottom: Input images, Ground
truths, Results of VISTA3D, and Results of ours. Left-to-right: CT, MRI, PET, Ultra-
sound, and Microscopy.

boundary definition is often difficult due to noise or low contrast. These qualita-
tive results demonstrate the robustness and effectiveness of our method across
diverse imaging scenarios.

Figure 6 depicts representative failure cases for each modality, highlighting
typical challenges encountered by both our method and the baseline. Among
these, the most common failure type is the segmentation of tubular structures
such as blood vessels, which are difficult to delineate due to their thin, elongated
shapes and often ambiguous boundaries. Notably, in the Ultrasound example, our
model achieves a Dice score of 0.88, demonstrating that even in failure cases, the
segmentation remains clinically meaningful and outperforms the baseline. These
qualitative results reveal the limitations of current approaches in dealing with
complex anatomical structures, pointing towards the need for further method-
ological advances—such as enhanced attention mechanisms or topology-aware
losses—to better address these challenging cases.

4.3 Ablation Studies

During the development of our method, we carry our some ablation studies to
verify whether the proposed strategies improve the scores. Due to the excessive
time required by training and evaluation, we only train the model by 12 epochs
and evaluate the model with DSC final score on 5% validation set for ablation
studies. In each ablation group, we keep all the other situation the same and
switch between two strategies for comparison. The results are as follows: 1) Our
simulation strategy for global RoI improves the score from 0.7182 to 0.7361, by
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Fig. 6. Failed cases on five modalities. Top-to-bottom: Input images, Ground truths,
Results of VISTA3D, and Results of ours. Left-to-right: CT, MRI, PET, Ultrasound,
and Microscopy.

1.79%. 2) Our simulation strategy for local RoI improves the score from 0.7124
to 0.7274, by 1.50%. 3) Using all available prompts in global RoI instead of using
the last prompt improves the score by 3.09%. 4) Generating six points for each
interaction in global RoI improves the score by 0.38%.

4.4 Results on Final Testing Set

Tables 5 and 6 summarize the quantitative performance of our method compared
to four state-of-the-art (SOTA) baselines, including SAM-Med3D [15], VISTA3D
[5], SegVol [3], and nnInteractive [4], across five imaging modalities: CT, MRI,
Microscopy, PET, and Ultrasound. The testing set images and corresponding
labels were provided by the competition organizers, ensuring that no fine-tuning
on the test data was possible. This setup guarantees the fairness and reliability
of the results.

Consistent with the conclusions drawn from the validation set, our method
outperforms the baseline approaches across all imaging modalities. On the core-
set, our method achieves DSC_final of 0.8533, 0.6880, 0.6003, 0.7864, and 0.9385
for CT, MRI, Microscopy, PET, and Ultrasound, respectively. Similarly, on the
entire dataset, our method achieves DSC_final of 0.8462, 0.6809, 0.5871, 0.7691,
and 0.9299 for the respective modalities.

4.5 Limitation and Future Work

In this work, we propose a dual-expert mechanism that leverages both global ROI
and local ROI branches to handle different segmentation scenarios. However, the
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Table 5. Quantitative evaluation results of the test set on the coreset track.

Modality Methods DSC AUC NSD AUC DSC Final NSD Final

CT

SAM-Med3D 2.1225 1.7479 0.5424 0.4478
VISTA3D 2.2211 1.9899 0.5840 0.5294
SegVol 2.2736 2.1592 0.5684 0.5398
DCM (ours) 2.7027 2.4484 0.6963 0.6346

MRI

SAM-Med3D 2.1169 2.1185 0.5355 0.5371
VISTA3D 2.4102 2.5065 0.6327 0.6690
SegVol 2.7383 3.0322 0.6846 0.7581
DCM (ours) 3.0569 3.3125 0.7819 0.8487

Microscopy

SAM-Med3D 0.3123 0.0311 0.0781 0.0078
VISTA3D 1.8416 2.5043 0.4701 0.6285
SegVol 2.7359 3.8765 0.6840 0.9691
DCM (ours) 3.1926 3.9722 0.8092 0.9943

PET

SAM-Med3D 2.3133 1.7599 0.5826 0.4465
VISTA3D 1.7576 1.2811 0.4539 0.3332
SegVol 2.7847 2.2974 0.6962 0.5744
DCM (ours) 3.0282 2.6575 0.7730 0.6907

Ultrasound

SAM-Med3D 0.6009 0.4005 0.1502 0.1001
VISTA3D 0.7571 0.8212 0.2378 0.3116
SegVol 0.7931 1.2851 0.1983 0.3213
DCM (ours) 1.5276 1.9049 0.4500 0.5894

current design of the local ROI branch is not yet optimal. First, although our
balanced prompt sampling strategy for local ROI is an improvement over the
purely random approach used in VISTA3D, it still does not fully reflect real
interactive behaviors. Second, the local ROI branch is intended for use cases
with only point-based prompts, and thus, training should ideally be restricted
to samples with point-only guidance. In practice, however, we train this branch
on the entire dataset regardless of the prompt type, which is suboptimal.

Additionally, comparative analysis of Table 3 and Table 4 reveals another
limitation of our current approach. When moving from the coreset track to the
all-data track, baseline methods such as SAM-Med3D, VISTA3D, and SegVol
exhibit clear performance improvements across most metrics. In contrast, our
method does not show a similarly significant improvement. This suggests that the
local ROI branch, in its current form, may not be fully leveraging the advantages
of larger datasets, possibly due to its design or training strategy.

Future work will focus on several directions: 1) Developing more realistic
and user-centric prompt sampling strategies for interactive point generation in
the local ROI branch. 2) Restricting local ROI branch training to point-prompt
samples, potentially through a tailored data loader or curriculum learning to
better match the intended deployment scenario. 3) Exploring advanced fusion
mechanisms between global and local branches to further enhance segmentation
accuracy, especially in challenging cases. These improvements are expected to
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Table 6. Quantitative evaluation results of the test set on the all-data track.

Modality Methods DSC AUC NSD AUC DSC Final NSD Final

CT

SAM-Med3D 2.1937 1.7846 0.5711 0.4672
VISTA3D 2.3482 2.1062 0.6198 0.5616
SegVol 2.4358 2.3213 0.6089 0.5803
nnInteractive 3.1831 3.1286 0.8342 0.8355
DCM (ours) 2.8017 2.5760 0.7231 0.6734

MRI

SAM-Med3D 2.1064 2.0427 0.5317 0.5169
VISTA3D 2.4891 2.5825 0.6516 0.6859
SegVol 2.8377 3.1261 0.7094 0.7815
nnInteractive 3.3866 3.6611 0.8680 0.9416
DCM (ours) 3.1327 3.4052 0.8022 0.8730

Microscopy

SAM-Med3D 0.3115 0.1726 0.0778 0.0431
VISTA3D 2.4526 3.4035 0.6231 0.8528
SegVol 2.9603 3.9472 0.7401 0.9868
nnInteractive 3.4580 3.9895 0.8743 0.9980
DCM (ours) 3.3095 3.9834 0.8358 0.9963

PET

SAM-Med3D 1.3004 0.7297 0.3285 0.1844
VISTA3D 1.8687 1.3919 0.4688 0.3523
SegVol 2.9844 2.5108 0.7461 0.6277
nnInteractive 3.2230 3.0753 0.8170 0.7854
DCM (ours) 3.1477 2.8841 0.7989 0.7459

Ultrasound

SAM-Med3D 0.8313 0.7004 0.2078 0.1751
VISTA3D 0.9072 1.2257 0.2953 0.4789
SegVol 0.9429 1.4435 0.2357 0.3609
nnInteractive 2.4088 3.0407 0.7073 0.8886
DCM (ours) 1.7710 2.2812 0.5144 0.6767

further bridge the gap between automated training and real-world interactive
segmentation.

5 Conclusion

In this paper, we presented DCM, a novel interactive segmentation framework
that integrates both global and local RoI strategies within a dual-expert architec-
ture. By combining a global-RoI expert for capturing overall anatomical context
and a local-RoI expert for handling fine structures and limited prompts, our
method addresses key challenges in 3D medical image segmentation. The pro-
posed interaction simulation strategies further improve the training efficiency
and alignment with real-world user behaviors. Extensive quantitative experi-
ments on five imaging modalities demonstrate clear performance improvements
over leading baselines. Specifically, on the coreset track, our DCM improves the
final DSC by 29.43% on CT, 29.85% on MRI, 52.35% on Microscopy, 25.20%
on PET, and 55.44% on Ultrasound relative to SAM-Med3D. Compared to
VISTA3D, the Dice improvements are 13.86% (CT), 11.03% (MRI), 15.48% (Mi-
croscopy), 17.41% (PET), and 23.11% (Ultrasound), respectively. These substan-
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tial gains are also reflected in boundary accuracy and are consistently observed
on the all-data track. While there remain challenges in accurately segmenting
thin or irregular structures, our results highlight the potential of dual-expert de-
signs for advancing interactive medical image analysis. Future work will explore
more realistic prompt simulation, tailored training for local RoI, and advanced
fusion between expert branches to further enhance segmentation performance
and applicability in clinical workflows.
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