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Abstract

Text summarization tasks commonly employ001
Pre-trained Language Models (PLMs) to fit di-002
verse standard datasets. While these PLMs003
excel in automatic evaluations, they frequently004
underperform in human evaluations, indicating005
a deviation between their generated summaries006
and human summarization preferences. This007
discrepancy is likely due to the low quality of008
fine-tuning datasets and the limited availabil-009
ity of high-quality human-annotated data that010
reflect true human preference. To address this011
challenge, we introduce a novel human sum-012
marization preference alignment framework013
ALIGNSUM. This framework consists of three014
parts: Firstly, we construct a Data Pymarid with015
extractive, abstractive, and human-annotated016
summary data. Secondly, we conduct the Gaus-017
sian Resampling to remove summaries with018
extreme lengths. Finally, we implement the019
two-stage hierarchical fine-tuning with Data020
Pymarid after Gaussian Resampling. We apply021
ALIGNSUM to PLMs on the human-annotated022
CNN/DailyMail and BBC XSum datasets. Ex-023
periments show that with ALIGNSUM, PLMs024
like BART-Large surpass 175B GPT-3 in both025
automatic and human evaluations. This demon-026
strates that ALIGNSUM significantly enhances027
the alignment of language models with human028
summarization preferences.029

1 Introduction030

Text summarization is a pivotal component of natu-031

ral language processing, striving to produce coher-032

ent and concise summaries of textual documents033

(Mani and Maybury, 1999; Nenkova and McKe-034

own, 2012; Allahyari et al., 2017). It can be cat-035

egorized into two main styles: Extractive summa-036

rization (Nallapati et al., 2017; Zhou et al., 2020;037

Zhong et al., 2020) involves selecting significant038

portions of the text directly from the source; In con-039

trast, abstractive summarization (See et al., 2017;040

Lewis et al., 2019) involves generating new text041
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Figure 1: Results (scaled to 0-1) of automatic score
ROUGE (Lin, 2004) and human rating GEval1(Liu et al.,
2023) on the standard dataset CNN/DailyMail. It is obvi-
ous that PLMs perform better than LLMs on automatic
scores but worse on human ratings.

that conveys the original content’s essential mean- 042

ing. Studies in this field often train Pre-trained 043

Language Models (PLMs) (Vaswani et al., 2017; 044

Radford et al., 2018; Lewis et al., 2019; Raffel et al., 045

2020) on standard datasets such as CNN/DailyMail 046

(Nallapati et al., 2016) and BBC XSum (Narayan 047

et al., 2018) to fit summary features. They usually 048

report the performance with reference-based auto- 049

matic scores such as ROUGE (Lin, 2004), which 050

directly compare generated summaries with gold 051

summaries, and fine-grained human ratings, which 052

actually reflect underlying human preferences. 053

However, recent investigations (Goyal et al., 054

2022; Wang et al., 2023c) have revealed incon- 055

sistencies between automatic scores and human 056

ratings for both PLMs and large language mod- 057

els (LLMs). As shown in Figure 1, when com- 058

pared to LLMs like GPT-3 (with Chain-of-Thought, 059

CoT) (Wang et al., 2023c), PLMs like BART-Large 060

(Lewis et al., 2019) and BRIO (Liu et al., 2022) 061

1Four aspects: Coherence (score range: 1-5), Consistency
(score range: 1-5), Fluency (score range: 1-3), Relevance
(score range: 1-5). We use GPT-4 rating that closely aligns
with human judgments (Liu et al., 2023; Wang et al., 2023a).

1



Document

Da
ta

 Q
ua

lit
y 

&
 

Ac
qu

ire
m

en
t D

iff
ic

ul
ty

Human-annotated 
Summary

Extractive 
Summary

Abstractive 
Summary

1. Data Pyramid Construction

PLM 𝒑𝒑𝜽𝜽

𝒑𝒑𝜽𝜽′

𝒑𝒑𝜽𝜽′′

2. Gaussian Resampling
3. Two-stage 

Hierarchical Fine-tuning

Summary Length: 
302, 86, 58, …

Summary Length: 
4, 25, 33, …

Length Distribution
(𝝁𝝁𝑻𝑻 ,𝝈𝝈𝑻𝑻)

Filter Condition: 
Length ∈ [𝝁𝝁𝑻𝑻 − 𝟐𝟐𝝈𝝈𝑻𝑻,𝝁𝝁𝑻𝑻 + 𝟐𝟐𝝈𝝈𝑻𝑻]

Generic 
Fine-tuning Stage

Personalized
Fine-tuning Stage

Final Aligned Model

Figure 2: The overall pipeline of our summarization preference alignment framework ALIGNSUM.

fine-tuned on the CNN/DailyMail demonstrate im-062

pressive performances on automatic scores exceed-063

ing LLMs, but poor performances on human rat-064

ings. This contradiction stems from that PLMs065

are fitting low-quality summary data (Wang et al.,066

2023c), indicating that they need more high-quality067

data for aligning with human preferences to per-068

form better in human ratings.069

On the other hand, annotating a large number of070

high-quality summary datasets is impractical: (1)071

Regarding the time cost, the average reading rate072

for a native English speaker is approximately 220073

words per minute (Gleni et al., 2019; Brysbaert,074

2019). Moreover, summarization involves a struc-075

tured cognitive process: reading, comprehending,076

and summarizing, annotators often spend twenty077

minutes or more to write a single summary (Wang078

et al., 2023c), rendering the annotation process079

time-consuming; (2) Regarding the labor cost, en-080

suring the accuracy and consistency of summaries081

requires cross-verification, which demands con-082

siderable human and financial resources (Ahuja083

et al., 2021; Zhang et al., 2023d; Chen et al., 2023).084

These potential obstacles collectively contribute to085

the scarcity of high-quality summary data.086

From this consideration, instead of traditional087

naive fine-tuning on large amounts of training data,088

we would like to fully use the extremely limited089

amount of high-quality data to push the upper090

limit of PLMs’ summarization ability. To address091

this problem, we propose ALIGNSUM, a novel092

summarization preference alignment framework.093

First, we design a bottom-to-up data construction094

method Data Pyramid (DP), which consists of095

three components: extractive data, abstractive data,096

and human-annotated data. Different levels of data097

are collected with different methods. DP is the core098

component of the alignment framework, after ob- 099

taining DP, we design the Gaussian Resampling 100

technique to smooth the length distribution of all 101

summaries, and the two-stage Hierarchical Fine- 102

Tuning (HFT) to maximize the use of low-resource 103

high-entropy human preference summary data. 104

We conduct experiments on human-annotated 105

CNN/DailyMail and BBC XSum datasets proposed 106

by Wang et al. (2023c), which reflects the im- 107

plicit element-aware human writing preference. We 108

find that the pre-trained BART-Large applied with 109

AlignSum surpasses 175B GPT-3 on both auto- 110

matic scores and human ratings, achieving amazing 111

results in outperforming large models with small 112

models and small amounts of preference data. 113

2 ALIGNSUM: Summarization 114

Preference Alignment Framework 115

We first formalize the summarization task: Given a 116

document D = d1d2...dn with length n, the goal is 117

to generate a summary S = s1s2...sm with length 118

m, and usually m ≪ n. Our proposed preference 119

alignment framework consists of three parts: Data 120

Pyramid (DP), Gaussian Resampling, and Two- 121

stage Hierarchical Fine-tuning (HFT). 122

Figure 2 shows the overall framework: Firstly, 123

we construct the Data Pyramid using various meth- 124

ods such as extraction, LLM generation, and hu- 125

man annotation. Secondly, as the source data have 126

different summary lengths, PLMs with this data 127

would lead to inconsistent summary lengths. To 128

address this issue, we utilize Gaussian Resampling 129

to adjust the generated summary lengths to ap- 130

proximate the target length. Finally, we apply 131

a two-stage hierarchical fine-tuning strategy: ini- 132

tially training the PLMs on extractive and abstrac- 133

tive data to fit the general domain, followed by 134
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Style / Type Difficulty Volume
Extractive Easy Large
Abstractive Medium Small

Human-annotated Hard Little

Table 1: Features of summaries in Data Pyramid: sum-
mary style / type, acquisition difficulty, and data volume.

fine-tuning the justly fine-tuned PLMs on human-135

annotated data to align with human preference. De-136

tails will be introduced in the following parts.137

2.1 Data Pyramid Construction138

Data Pyramid comprises three levels: extractive,139

abstractive, and human-annotated data. From bot-140

tom to top, they are arranged in increasing quality141

and access difficulty, while the quantity decreases142

(as shown in Table 1). The first two are the two143

most generic styles in the summarization field, and144

we refer to them collectively as generic data; the145

last is the most critical part used to align human146

preferences, and we refer to it as personalized data.147

Extractive Data. The extractive data constitutes148

the majority of the pre-training corpus and is the149

easiest to acquire. We adopt the GSG technique150

proposed by Zhang et al. (2020) to select the most151

important sentence as the pseudo summary Ŝ:152

ri = Rouge(di, D\di),

Ŝ = argmaxdi{ri}
n
i=1.

(1)153

We use the ROUGE-1 metric (Lin, 2004) to calculate154

the similarity and iterate through the entire docu-155

ment to find the most similar sentence as the pseudo156

summary. Unlike the method described by Zhang157

et al. (2020), we extract only a single sentence due158

to the variability in sentence lengths, as controlling159

by the number of sentences is unreliable. Instead,160

sample selection is based on the number of tokens161

in the Gaussian resampling stage.162

Abstractive Data. The extractive data helps iden-163

tify important sentences within a document but is164

insufficient for summarizing crucial information165

that spans multiple sentences. In contrast, LLMs166

are effective zero-shot summarizers, capable of ex-167

tracting summary information across sentences and168

at the document level (Goyal et al., 2022; Zhang169

et al., 2023c). We use both system and user prompts170

to guide LLMs in summarizing the document D171

and and generating the pseudo summary Ŝ. As172

shown in Table 2, the system prompt specifies gen- 173

eral requirements for accurate summarization. The 174

document is then inserted before the user prompts, 175

ensuring the LLM can read the entire document and 176

adhere to user requirements. The user prompt is 177

dataset-specific, setting the desired summary length 178

and number of words. 179

Document E.g.: Newcastle stand-in skipper
Moussa Sissoko is facing disci-
plinary action after he was sent
off following a reckless challenge
on Liverpool midfielder Lucas ...

System
Prompt

Generate a concise and coherent
summary towards the given article
and don’t generate anything else.
Make sure the summary is clear,
informative, and well-structured.

Dataset-
specific
User Prompt

Summarize the article in [sent
num] sentences around [word
num] words.

Table 2: Zero-shot Summarization prompt to generate
Abstractive Data with LLM.

Human-annotated Data. Human-annotated data 180

is the most critical component of DP for aligning 181

with human preference. Training on data generated 182

by adapted GSG and LLMs has allowed PLMs to 183

acquire domain-specific knowledge. However, to 184

generate summaries that align with human pref- 185

erences, further fine-tuning on annotated data is 186

necessary. This annotated data contains explicit 187

user preferences and is easy to acquire without spe- 188

cific instructions, as PLMs can learn preferences 189

through the data itself. To avoid the variability of 190

random annotations, we use the Element-aware 191

dataset provided by Wang et al. (2023c). This 192

dataset adheres to specific instructions, incorporat- 193

ing both micro and macro demands (Details refer 194

to Appendix B.1), ensuring consistent and high- 195

quality human annotations. 196

2.2 Gaussian Resampling 197

DP draws from three distinct data sources, each 198

with unique token length distributions for their 199

pseudo summaries. As shown in Figure 3, there are 200

noticeable differences in summary token length dis- 201

tributions of extractive and abstraction data. There- 202

fore, training directly with these disparate distribu- 203

tions can result in overly long or short summaries. 204

To address this issue, we introduce the Gaus- 205

sian Resampling technique to align all summary 206
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Figure 3: Summary token length distributions of DP.

lengths with human-annotated summaries. Specif-207

ically, we model the token length distribution of208

human-annotated data as a Gaussian distribution:209

P (x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 , (2)210

where µ and σ represent the mean and standard211

deviation, respectively. With a 95% probability, the212

confidence interval for the token length distribution213

is [µ−2σ, µ+2σ]. We resample extractive and ab-214

stractive data within this interval to remove samples215

with excessively long or short pseudo summaries.216

2.3 Two-stage Hierarchical Fine-tuning217

Now we have obtained the resampled DP, a naive218

strategy is to fine-tune PLMs with them to enhance219

their summarization ability and align them with hu-220

man preference simultaneously. However, this pro-221

cess can be challenging because the small amount222

of high-entropy data, which is crucial for align-223

ment, can be interfered with by information from224

a large amount of low-entropy data (Wang et al.,225

2023b), leading to the underutilization of DP.226

To avoid this potential issue, we propose a two-227

stage hierarchical fine-tuning strategy. Give a PLM228

pθ, First is the generic fine-tuning stage, where we229

fine-tune pθ with the extractive and abstractive data230

to enhance its ability to generate domain-general231

summaries, obtaining a model pθ′ . Next is the per-232

sonalized fine-tuning stage, where we fine-tune233

pθ′ with the human-annotated data to create the234

final model pθ′′ aligned with human preferences.235

Why Hierarchical Fine-tuning? From a theo-236

retical perspective of uncertainty reduction, we237

can explain the advantages of hierarchical fine-238

tuning using DP over hybrid fine-tuning. We de-239

note X,Y, Z as the pre-trained data (intrinsic data240

of PLMs), generic data (extractive/abstractive data),241

and personalized data (human-annotated data), re-242

spectively. px;θ, px,y;θ, px,y,z;θ are models after pre-243

training, generic fine-tuning, and personalized fine-244

tuning, respectively. Let J(pθ) denote a random245

variable reflecting the summarization preference 246

alignment ability of pθ, it is obviously that 247

J(pθ = px;θ) < J(pθ = px,y;θ) < J(pθ = px,y,z;θ).
(3) 248

In general, generic data enhances the perfor- 249

mance of downstream tasks, whereas task-specific 250

data compromises the generalized capabilities of 251

the model, i.e., the “Alignment Tax” (Ouyang et al., 252

2022; Dong et al., 2023). Therefore, we can in- 253

tuitively make the following assumptions about 254

the relationship between alignment uncertainty and 255

alignment ability J(pθ) of model pθ: 256

Assumption 2.1 For hierarchical data {X,Y, Z}, 257

data at the lower level of DP enhances the model’s 258

ability of the upper-level tasks, but data at the up- 259

per level impairs the model’s ability of the lower- 260

level tasks, i.e., 261

1. H(Z|J(pθ = px;θ)) > H(Z|J(pθ = px,y;θ))

> H(Z|J(pθ = px,y,z;θ)),

2. H(Y |J(pθ = px;θ)) > H(Y |J(pθ = px,y;θ)),

3. H(Y |J(pθ = px,y;θ)) < H(Y |J(pθ = px,y,z;θ))

4. H(X|J(pθ = px;θ)) < H(X|J(pθ = px,y;θ))

< H(X|J(pθ = px,y,z;θ)).
(4) 262

We derive the uncertainty reductions before and 263

after fine-tuning for both fine-tuning strategies: 264

• hybrid fine-tuning: 265

Ghy = |H(Y,Z|J(pθ = px,y,z;θ))

− H(Y, Z|J(pθ = px;θ))|
(5) 266

• hierarchical fine-tuning: 267

Ghi =|H(Y |J(pθ = px,y;θ))−H(Y |J(pθ = px;θ))︸ ︷︷ ︸
generic fine-tuning stage

|

+|H(Z|J(pθ = px,y,z;θ))−H(Z|J(pθ = px,y;θ))︸ ︷︷ ︸
personalized fine-tuning stage

|

(6) 268

We can prove that Ghi > Ghy holds constant for 269

any model pθ and data sets X,Y, Z under the As- 270

sumption 2.1. This means the uncertainty reduction 271

from hierarchical fine-tuning is greater, leading to a 272

better alignment performance. Appendix A shows 273

the complete proof. Table 5 in Section 4.1 also 274

demonstrates the need for hierarchical fine-tuning 275

from an empirical perspective. 276
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Model
Dataset CNN/DailyMail BBC XSum

ROUGE-1 ROUGE-2 ROUGE-L BERTScore ROUGE-1 ROUGE-2 ROUGE-L BERTScore

Direct Generation (w/ LLMs)

175B GPT-3, 0-shot 42.98 19.48 28.33 0.8943 38.50 15.09 29.09 0.8981
w/SumCoT, 0-shot 49.73 26.10 36.29 0.9080 44.36 19.93 34.70 0.9053

GPT-3.5-Turbo, 0-shot 41.82 18.50 27.63 0.8958 31.38 13.37 23.05 0.8865
w/Style, 0-shot 45.62 19.51 31.52 0.8997 41.80 18.31 31.58 0.8984
w/Style, 1-shot 45.71 18.70 29.98 0.8996 41.32 17.19 31.52 0.8985

LLaMA-2-7B 44.78 18.83 29.65 0.8985 37.99 14.20 28.72 0.8952
LLaMA-3-8B 46.27 20.23 31.23 0.9011 40.34 16.12 30.00 0.8959

Naive Fine-tuning (w/ PLMs)

BART-Base 44.67 20.43 29.86 0.8754 30.04 8.95 21.71 0.8787
BART-Large 46.01 21.92 32.08 0.8851 28.73 8.80 20.96 0.8811
T5-Large 43.64 19.23 30.76 0.8842 29.83 9.14 21.99 0.8790
PEGASUS 41.39 15.66 27.26 0.8706 29.26 7.56 21.26 0.8825
BRIO 46.66 22.35 31.01 0.8876 28.45 8.34 21.05 0.8787

ALIGNSUM (w/ PLMs, Ours)

LLaMA-2-7B (w/ HD) 44.37 18.17 28.96 0.8906 37.08 14.07 28.57 0.8937
BART-Large (w/ HD) 46.57 21.97 32.00 0.9040 40.19 14.95 28.74 0.8915
BART-Base (w/ full DP) 45.01 20.51 31.79 0.8998 39.88 16.46 30.45 0.8911
BART-Large (w/ full DP) 48.83 24.11 34.16 0.9058 42.38 17.75 31.64 0.8962

Table 3: Automatic metrics ROUGE-1/2/L and BERTScore Performances of LLMs and PLMs under naive fine-tuning
and our ALIGNSUM settings on human preference Element-Aware dataset (Wang et al., 2023c). Bold represents the
best performances among all fine-tuned models, “w/ style” means style control with prompt in Table 2, “w/ HD”
indicates fine-tuning with HD data, and “w/ full DP” represents our final model. The result of BART (w/ HD) is
sampled 5 times and reports the mean. Details are shown in Appendix C.1.

3 Experiments277

3.1 Setup278

Dataset. We conduct DP construction and ex-279

periments on two extensively used news datasets,280

CNN/DailyMail (Nallapati et al., 2016) and BBC281

XSum (Narayan et al., 2018). For generation of282

extractive data (ED) and abstractive data (AD), we283

divide the standard training set with an 8:2 ratio to284

generate ED and AD for training, respectively. For285

human-annotated data (HD) that implicitly reflect286

human preference2, we adopt the Element-Aware287

CNN/DailyMail and BBC XSum, which is the high-288

quality rewritten version (Wang et al., 2023c) of289

the two datasets (each 200 samples). Refer to Ap-290

pendix B.1 for detailed preference features, and291

Appendix B.2 for data examples of the two datasets.292

For testing, we randomly split HD into a training293

set and a test set, each containing 100 samples.294

Data Statistics. Table 4 shows the total count and295

token length distribution of pseudo summary in DP.296

The training set and test set are randomly sampled297

from the Element-Aware dataset. ED extracts the298

most important sentence from the original docu-299

ment, and the token length varies greatly. After the300

2These preferences reflect professional implicit writing
styles embedded in texts and are difficult to capture explicitly.

Gaussian Resampling, the EDr standard deviation 301

slows down. Although the mean length of EDr 302

is smaller than the HD, it all falls into the HD’s 303

distribution confidence interval. The same for ADr, 304

standard deviation slows down and all data token 305

lengths fall into the desired range. 306

Baselines. We choose two settings for baselines: 307

(i) Zero-Shot Generation with LLMs, we select 308

175B GPT-3 (Brown et al., 2020) and GPT-3.5- 309

Turbo; (ii) Naive Fine-tuning with PLMs, means 310

directly fine-tuning models with standard training 311

sets of corresponding datasets. We select BART- 312

Large, BART-Base (Lewis et al., 2019), T5-Large 313

(Raffel et al., 2020), PEGASUS (Zhang et al., 2020), 314

BRIO (Liu et al., 2022), LLaMA-2-7B (Touvron 315

et al., 2023), and LLaMA-3-8B (MetaAI, 2024). All 316

model weights are downloaded from HuggingFace. 317

Refer to Appendix B.3 for more details. 318

Implementation. We use the pre-trained BART- 319

Large for the backbone of ALIGNSUM and LLaMA- 320

2-7B for generating abstractive data. For PLMs, we 321

truncate documents to 1024 tokens and target sum- 322

maries to 128 tokens following Zhang et al. (2020). 323

Given that LLMs can handle up to 4096 tokens, we 324

truncate the original documents to 2048 tokens for 325

LLM inference. To ensure a fair comparison, we 326
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Data CNN/DailyMail BBC XSum

Sample Number / Length Mean±std

Training Set

ED 229k / 55±17 163k / 51±53

EDr 224k / 54±12 107k / 41±7

AD 57k / 91±13 41k / 46±9

ADr 40k / 85±8 32k / 43±6

HD 0.1k / 64±17 0.1k / 34±10

Test Set

HD 0.1k / 66±15 0.1k / 33±8

Table 4: Sample numbers and pseudo summary token
length statistics. We use BART-Large as the tokenizer.
EDr and ADr mean ED and AD after Gaussian Re-
sampling, respectively. Data colored by gray are not
involved in the actual training process.

fine-tune all PLMs with both extractive and abstrac-327

tive data for 3 epochs, using a learning rate of 5e−5328

and a batch size of 128. Due to the limited amount329

(only 100 samples) of human-annotated data, we330

fine-tune them with 20 epochs, keeping the other331

hyperparameters unchanged.332

3.2 Automatic Evaluation333

Automatic evaluation usually contradicts human334

evaluation when referenced gold summaries are335

low-quality (Goyal et al., 2022). However, when336

references are high-quality, automatic evaluation337

results are more consistent with that of human eval-338

uation as verified by Wang et al. (2023c).339

Table 3 presents the overall results:340

Comparisons with Naive Fine-tuned PLMs.341

Compared with SOTA results of PLMs un-342

der the naive fine-tuning setting, BART-Large343

with ALIGNSUM improves ROUGE-1/2/L by over344

+2.17/+1.76/+2.08 points on CNN/DailyMail and345

by +12.37/+8.61/+9.65 points on BBC XSum, even346

though these models are pre-trained with the orig-347

inal low-quality dataset. BERTScore for BART-348

Large (w/ full DP) is also higher than for the other349

PLMs. These results indicate that: (1) Fine-tuning350

on low-quality original datasets does not enhance351

human alignment; (2) Further fine-tuning on HD352

data significantly boosts performance, as seen with353

BART-Large (w/ HD) improving BART-Large (w/354

Naive Fine-tuning) by nearly +0.5 points and +12355

points on CNN/DailyMail and BBC XSum.356

Comparisons with Zero-shot LLMs. Compared357

to LLMs with the zero-shot setting, since sum-358

marization is unsuitable for few-shot due to re- 359

stricted context, we find that even though part of 360

DP is generated from LLaMA-2-7B, its ROUGE 361

and BERTScore are lower than BART-Large (w/ 362

full DP). Additionally, GPT-3 performs worse 363

than LLaMA-2-7B because we control the gener- 364

ation length in Section 2.1, whereas GPT-3 is only 365

prompted with “Summarize the above article” as 366

used in (Goyal et al., 2022; Sanh et al., 2021). 367

BART-Large (w/ full DP) is slightly worse than 368

GPT-3 (w/CoT), which is expected since GPT-3 369

was carefully prompted according to the data an- 370

notation protocol, making it less adaptable to other 371

writing styles. In contrast, our model aligns with 372

specific human preferences using modest HD data. 373

Comparisons with Fine-tuned LLMs. Com- 374

pared to fine-tuning LLMs, we use LoRA (Hu 375

et al., 2021) to fine-tune LLaMA2-7B. Despite 376

LoRA having significantly fewer trainable parame- 377

ters than BART fine-tuning, its memory consump- 378

tion during training exceeds that of BART, even 379

with a batch size of 1. This makes training unfea- 380

sible on consumer-grade hardware. Additionally, 381

fine-tuning with only 100 HD samples fails to im- 382

prove performance and may even decrease it, as 383

shown in Table 3. This is because high-quality 384

fine-tuning typically requires datasets on the or- 385

der of tens of thousands (Deng et al., 2023; Zhao 386

et al., 2024). Furthermore, this fine-tuning process 387

may negatively impact the LLMs’ other capabili- 388

ties, such as mathematical and logical reasoning. 389

3.3 Human Evaluation 390

We conduct human evaluations to compare the per- 391

formances of PLMs with ALIGNSUM and 175B 392

GPT-3 (w/CoT) for it is the strongest LLM in au- 393

tomatic evaluation. Typically, human evaluation is 394

reference-free and involves in informativeness, con- 395

ciseness, readability, and faithfulness (Bao et al., 396

2023; Liu et al., 2023). We instead use a reference- 397

based evaluation for two reasons: (1) The Element- 398

Aware dataset has included expert-written high- 399

quality references; (2) Referenced summaries rep- 400

resent a specific writing style, and evaluating only 401

the four qualities would overlook implicit prefer- 402

ence features captured by HD. 403

Given generated summaries of BART-Large with 404

ALIGNSUM and 175B GPT-3 (w/CoT), and expert- 405

written high-quality reference summaries, human 406

evaluation follows these instructions: 407

• Length Pre-screening: Summaries that are too 408
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Figure 4: Reference-based human evaluation of BART
(w/ full DP) and GPT-3 (w/CoT) compared to the golden
reference on CNN/DailyMail and BBC XSum.

long or short compared to the reference text are409

considered “Fail”. If both generated summaries410

“Fail”, they are considered “Equal”.411

• Overall Evaluation: If generated summaries412

have similar lengths, we compare their infor-413

mativeness. Informativeness is defined by char-414

acteristic elements: entities, dates, events, and415

results (Wang et al., 2023c), each denoted as a416

set (Sen, Sda, Sev, Sre) for a summary S. Let417

generated summaries of ALIGNSUM and 175B418

GPT-3 (w/CoT) as Ŝ1 and Ŝ2 and the gold ref-419

erence as G, we can define informativeness for420

each generated summary:421

Infoi =
∑
j

|Gj ∩ [Ŝi]j |, i = 1, 2

j ∈ {en, da, ev, re},
(7)422

where | · | represents the number of elements423

in the set. If Info1 > Info2, then ALIGN-424

SUM “Win”; if Info1 = Info2, they are “Equal”;425

otherwise, ALIGNSUM “Fail”.426

Figure 4 presents the human evaluation results.427

Although BART-Large with ALIGNSUM slightly428

underperforms in automatic evaluation compared429

to GPT-3 (w/CoT), it achieves “Win” and “Equal”430

ratings of up to 65% and 72% on the BBC XSum431

and CNN/DailyMail datasets, respectively. This432

demonstrates that our ALIGNSUM can effectively433

align PLMs with human evaluation standards434

without requiring billions of model parameters435

or sophisticated prompt designs. Additional case436

studies are provided in the Appendix C.2.437

4 Ablation Study438

4.1 Components of ALIGNSUM439

We conduct ablation for ALIGNSUM’s components440

to verify their effectiveness. Table 5 shows the441

results under different component combinations.442

Gaussian Resampling. When adding the Gaus-443

sian resampling component, the performance on444

Component Metric

DP GR HFT ROUGE-1 ROUGE-2 ROUGE-L

CNN/DailyMail

41.38 18.35 26.05
✓ 39.01 14.59 25.83
✓ ✓ 37.63 13.86 24.75
✓ ✓ 47.53 21.78 32.56
✓ ✓ ✓ 48.39 23.33 34.47

BBC XSum

34.86 12.22 24.19
✓ 38.46 16.79 28.68
✓ ✓ 39.71 16.92 28.51
✓ ✓ 44.58 19.60 32.90
✓ ✓ ✓ 43.68 19.73 32.15

Table 5: Ablation study on the effectiveness enhance-
ment from different components of ALIGNSUM, includ-
ing Data Pyramid (DP), Gaussian Resampling (GR),
and Hierarchical Fine-Tuning (HFT).

CNN/DailyMail improves, where “DP+GR+HFT” 445

improves upon “DP+HFT” by +0.86/+1.55/+1.91 446

points in ROUGE-1/2/L, respectively. However, 447

when on BBC XSum, we observe a slight perfor- 448

mance degradation. This may be attributed to the 449

raw data distribution closely matching the target 450

distribution, while the Gaussian Resampling filters 451

out nearly 20-30% of the raw data. 452

Hierarchical Fine-Tuning. When adding the 453

Hierarchical Fine-Tuning component, we ob- 454

serve substantial improvements in both datasets, 455

with an average of +10 points improvement on 456

CNN/DailyMail and +4 points improvement on 457

BBC XSum. This validates the conclusion proved 458

in Section 2.3 that the two-stage fine-tuning helps 459

to reduce the information loss of high-entropy vari- 460

ables and maximize the use of the limited pref- 461

erence summary data, and also demonstrates that 462

mixed fine-tuning tends to dilute the impact of HD 463

within the larger volumes of ED and AD. 464

4.2 Components of Data Pyramid 465

We fine-tune BART-Large with ED, AD, and HD 466

separately. Figure 5 shows the ROUGE-1/L results 467

on the two datasets. The importance of high-quality 468

data becomes increasingly evident, as fine-tuning 469

with any single data type cannot outperform our 470

proposed framework with DP. 471

4.3 Human-annotated Data (HD) Size 472

Table 6 illustrates the impact of varying amounts 473

of human-annotated data on BART’s ability to learn 474

7
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Figure 5: ROUGE-1/L of fine-tuning BART-Large with
ED, AD, HD on CNN/DailyMail and BBC XSum.

HD size ROUGE-1 ROUGE-2 ROUGE-L BERTScore

10 44.72 18.96 29.48 0.8855
50 47.38 21.67 31.73 0.8897
100 48.04 22.67 33.38 0.9050

Table 6: ROUGE-1/2/L and BERTScore results on
CNN/DailyMail under various HD sizes.

user summary patterns. With 50 training samples,475

BART’s performance already surpasses that of all476

pre-trained models and LLMs. Furthermore, as477

the amount of human-annotated data increases, the478

model’s performance improves correspondingly.479

4.4 Abstractive Data (AD) Scaling480

High-quality HD is difficult to acquire, but AD is481

also useful and relatively easier to generate. Fig-482

ure 6 shows the ROUGE-1 scores of pθ′ and pθ′′ on483

BBC XSum with varying proportions of AD and ED.484

Although the ROUGE-1 score grows with higher485

proportions of AD after generic fine-tuning, differ-486

ent models fluctuate slightly with personalized fine-487

tuning. We adopt the DP rather than training with488

more AD or total AD for two reasons: 1) Generat-489

ing AD is slightly more complex than extracting490

ED. 2) More importantly, DP introduces greater491

diversity. While ED helps identify key sentences,492

AD struggles to handle this effectively.493

5 Related Work494

Extractive Summarization. Extractive summa-495

rization aims to extract sentences from given docu-496

ments (Zhong et al., 2020). Current approaches for-497

mulate this task as a classification or matching prob-498

lem using recurrent neural networks (Cheng and499

Lapata, 2016; Nallapati et al., 2016), pre-trained500

language models (Liu and Lapata, 2019; Wang501

et al., 2022), large language models (Zhang et al.,502

2023b), and even diffusion models (Zhang et al.,503

2023a). Although extractive summarization cannot504

effectively synthesize summary information across505

sentences at the document level, they are always506

Figure 6: ROUGE-1 scores for fine-tuning BART with
AD and ED generated by different proportions of origi-
nal BBC XSum. The horizontal axis represents the AD
ratio, "100%" means all data are used to generate AD.

grammatically correct and faithful to the original 507

text. Therefore, we utilize extractive summariza- 508

tion as the basis to help identify key sentences in 509

the original document and generate extractive data. 510

Abstractive Summarization. Abstractive sum- 511

marization generates summaries using novel phras- 512

ing and sentence fusion or paraphrasing techniques 513

(Shen et al., 2023; Xiao et al., 2022). The seq2seq 514

framework (Sutskever et al., 2014) with encoder- 515

decoder architectures based on RNNs (Chung et al., 516

2014; Hochreiter and Schmidhuber, 1997) and 517

Transformers (Vaswani et al., 2017) are dominant 518

in this field. Recently, there has been a surge in 519

prompting LLMs such as GPT (Brown et al., 2020). 520

Studies like Goyal et al. (2022) have investigated 521

the performance of GPT-3 and fine-tuned models, 522

finding that the former is more preferred by hu- 523

mans despite having lower ROUGE scores. Zhang 524

et al. (2023c) iteratively refine summaries through 525

self-evaluation and feedback, exploring the use of 526

knowledge and topic extractors to enhance sum- 527

mary faithfulness and controllability. In this paper, 528

we utilize the zero-shot summarization capability 529

of LLMs to comprehensively understand entire doc- 530

uments and generate abstractive data. 531

6 Conclusion 532

We propose a novel human summarization pref- 533

erence alignment framework ALIGNSUM includ- 534

ing Data Pymarid, Gaussian Resampling, and Two- 535

stage Hierarchical Fine-Tuning to align PLMs with 536

human preference. Experiments demonstrate the 537

effectiveness of our framework and narrow the gaps 538

between automatic and human evaluation of PLMs. 539
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Limitations540

Dataset Diversity. High-quality preference data541

acquisition is challenging due to the need for spe-542

cialized and uniform annotation protocols, along543

with significant labor and time costs. These pref-544

erences are typically implicit and often reflect dif-545

ferences in writing styles, which complicates the546

annotation process.547

Due to the scarcity of preference data, our ex-548

periments are limited to CNN/DailyMail and BBC549

XSum datasets, as they are the only twos with550

rewritten versions that reflect human preferences.551

However, this does not imply that our method is552

restricted to these datasets. If more high-quality553

preference datasets become available in the future,554

we are eager to extend our method to a broader555

range of datasets.556

Language Model Usage. The zero-shot summa-557

rization capabilities of LLMs have shown impres-558

sive results, making them a seemingly ideal choice559

for generating summaries that align with human560

preferences. However, human summarization pref-561

erences are inherently implicit, requiring the de-562

sign of extremely sophisticated prompts to elicit563

the desired responses from LLMs. This process is564

challenging and often uncontrollable in real-world565

scenarios. At the same time, in-context learning566

is also unrealistic because the text length of the567

summarization task is much longer than other natu-568

ral language tasks, and the upper limit of length is569

unpredictable.570

In contrast, directly fitting implicit preferences571

using PLMs is a more efficient approach. This572

method offers irreplaceable advantages in terms of573

cost and resource consumption, making it a more574

practical solution for the summarization preference575

alignment.576

Ethics Statement577

We utilize publicly available datasets and weight578

parameters for model training and data generation,579

all of which are accompanied by bibliographic ci-580

tations, ensuring no ethical issues are involved.581
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A Detailed Theoretical Derivation: Why806

Hierarchical Fine-tuning?807

According to the Assumption 2.1 in main text, we808

have809

Ghy −Ghi =

|H(Y,Z|J(px,y,z;θ))−H(Y,Z|J(px;θ))|
− |H(Y |J(px,y;θ))−H(Y |J(px;θ))|
− |H(Z|J(px,y,z;θ))−H(Z|J(px,y;θ))|

= H(Y,Z|J(px;θ))−H(Y,Z|J(px,y,z;θ))
+H(Y |J(px,y;θ))−H(Y |J(px;θ))
+H(Z|J(px,y,z;θ))−H(Z|J(px,y;θ))

= [H(Y,Z|J(px;θ))−H(Y |J(px;θ))]
+ [H(Y |J(px;θ))−H(Z|J(px,y;θ))]
− [H(Y,Z|J(px,y,z;θ))−H(Z|J(px,y,z;θ))]

= [H(Z|Y, J(px;θ))−H(Z|J(px,y;θ))]
+ [H(Y |J(px,y;θ))−H(Y |Z, J(px,y,z;θ))]

= H(Y |J(px,y;θ))−H(Y |Z, J(px,y,z;θ))
< 0

(8)810

B Detailed Experimental Setup811

B.1 Human Preference Features of812

Element-Aware Dataset813

The annotators are required to adhere to two types814

of preferences (Wang et al., 2023c) when writing.815

Macro Preference. All news summaries must816

focus on the four dimensions: Fluency, Coherence,817

Consistency, and Relevance.818

Micro Preference. All news summaries should819

have four essential core elements — Entity, Date,820

Event, and Result — following the “Lasswell821

Communication Model” (Lasswell, 1948). These822

elements must be faithful to the source document.823

These preferences reflect professional implicit824

writing styles that are embedded within the text and825

are difficult to capture explicitly.826

B.2 Dataset Examples827

We present examples of ED, AD, and HD in828

CNN/DailyMail (Table 13) and BBC XSum (Table829

14) datasets.830

B.3 Main Experiment Packages831

Table 7 shows the links of pre-trained model832

weights and evaluation metrics used in this paper.833

Model URL

BART-Large
https://huggingface.co/facebook/bart-large-cnn

https://huggingface.co/facebook/bart-large-xsum

BART-base
https://huggingface.co/ainize/bart-base-cnn

https://huggingface.co/Vexemous/bart-base-finetuned-xsum

T5-Large
https://huggingface.co/kssteven/T5-large-cnndm
https://huggingface.co/kssteven/T5-large-xsum

PEGASUS
https://huggingface.co/google/pegasus-cnn_dailymail

https://huggingface.co/google/pegasus-xsum

LLaMA2 https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

LLaMA3 https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Rouge-1/2/L https://huggingface.co/docs/evaluate/index

BERTScore https://github.com/Tiiiger/bert_score

Table 7: Links of pre-trained model weights and evalu-
ation metrics used in the paper.

C Supplementary Experimental Results 834

C.1 BART(w/ full DP) Results on Random 835

Samples 836

We randomly split the Element-Aware Dataset five 837

times, Table 8 and Table 9 show the automatic 838

evaluation on CNN/DailyMail and BBC XSum, re- 839

spectively. 840

Exp R1 R2 RL BERTScore
random1 47.82 22.34 33.02 0.9050
random2 51.82 29.44 38.04 0.9124
random3 48.08 23.24 33.81 0.9045
random4 48.28 22.98 32.88 0.9036
random5 48.17 22.58 33.06 0.9033

Mean 48.83 24.12 34.16 0.9058

Table 8: Experiments on CNN/DailyMail

Exp R1 R2 RL BERTScore
random1 45.69 20.71 34.42 0.8992
random2 43.25 18.64 32.22 0.8972
random3 41.34 16.88 32.12 0.8959
random4 41.25 16.26 29.58 0.8943
random5 40.35 16.26 29.84 0.8944

Mean 42.38 17.75 31.64 0.8962

Table 9: Experiments on BBC XSum

C.2 Case Study 841

We show the "Win", "Equal" and "Fail" case on 842

CNN/DailyMail in Table 10, Table 11 and Table 12 843

respectively. 844
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BART(w/ full DP) An elderly woman’s body was found mummified in a house in San Francisco’s
Richmond area, believed to be owned by a hoarder. The body was discovered
on Saturday, and police are investigating how it got to this point.

Golden Reference In one of the worst hoarding cases in recent years, San Francisco police found
the body of an elderly woman in a hoarder’s home on Saturday, with trash
debris piled up in the room. Police are working to investigate the cause of the
case.

GPT-3 w/CoT Police in San Francisco have discovered the mummified body of an elderly
woman in a house said to be owned by a hoarder. The property in the Richmond
area is said to have been crawling with rats, black widow spiders, dog feces
and 300 bottles of urine. The remains, which were removed from the house on
Saturday, are believed to be that of Anna Ragin who lived with her 65-year-old
daughter Carolyn. Neighbors told the San Francisco Chronicle the mother had
not been seen for years. According to records another man, Archibald Ragin,
lived at the property but died 15 years ago at the age of 101. Carolyn, said to
be a retired Pacific Bell worker, was taken to hospital after her mother’s body
was removed from the house. Supervisor Eric Mar, a representative in charge
of the area, told the Chronicle: T̈he police captains I’ve spoken with tell me
this is the worst case of hoarding they have ever seen. Ḧe was concerned for
the health and safety of the residents but questioned how the situation in the
property could have gotten to such a point. When city workers arrived to clean
up the body on Wednesday, they reportedly struggled to get in the door because
the house was filled with so much debris. The mess was said to have included
mold and piles of trash that reached the ceiling. They were forced to call in
professional workers. The Chronicle quotes a firefighter saying the body was
lightweight and wrapped in a blanket. It is not clear where it was discovered.

Table 10: The “Win” Case. BART(w/ full DP) generates a summary of similar length compared to the golden
reference, whereas GPT-3 w/CoT produces an excessively long summary.

BART(w/ full DP) Jason Rezaian, a Washington Post bureau chief in Tehran, has been held in
jail in Iran for nearly nine months on unspecified charges of economic spying.
His wife, Yeganeh Salehi, was released on bail in October, but he has been
denied access to proper legal representation and has been subjected to long
interrogations.

Golden Reference Police arrested Jason Rezaian, the Washington Post’s Tehran bureau chief, on
July 22 on unknown charges, and did not make the charges public until last
week, more than four months after the arrest.

GPT-3 w/CoT Jason Rezaian, the Washington Post’s bureau chief in Tehran, has been in jail in
Iran for nearly nine months on unspecified charges. Last week, it was revealed
that he will be tried soon on espionage charges. The Washington Post has
condemned the charges as äbsurdänd called for Rezaian’s release. Rezaian has
been denied bail and has been subjected to long interrogations. His wife was
released on bail in October.

Table 11: The “Equal” case. We represent the entities, dates, events, and results in red, blue, green and yellow. It is
clear that Info1 = Info2 = 3.

13



BART(w/ full DP) On Wednesday, Andrea Atzeni will ride terror in the 1,000 Guineas at Newmar-
ket, who finished fourth in the group one Cheveley park stakes over six furlongs
at the Rowley mile last September. David Simcock, trainer of terror, believes
she has been solid in training and is not a bad filly, but it’s difficult to know
where she stands fitness-wise until she gets into a race scenario.

Golden Reference Jockey Andrea Atzeni will ride Terror in Wednesday’s Landwades Nell Gwyn
Stakes at Newmarket. Terror, trained by David Simcock, is one of the contenders
for the 1,000 Guineas. This race will be a great opportunity for Atzeni to
publicize the horse’s chances in the Classic.

GPT-3 w/CoT Jockey Andrea Atzeni will ride the horse Terror in the Landwades Nell Gwyn
Stakes at Newmarket on Wednesday. Terror is trained by David Simcock
and is one of the contenders for the 1,000 Guineas. This race will be a good
opportunity for Atzeni to promote the horse’s chances in the classic.

Table 12: The “Fail” case. We represent the entities, dates, events, and results in red, blue, green and yellow. It is
clear that Info1 = 4 < Info2 = 7.
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Article A married software executive who drugged a female employee in order to
take naked pictures of her on a business trip has been jailed. Sexual predator
Henri Morris was told he would serve 10 years behind bars for his ’calculated
and choreographed’ crime. The 67-year-old was caught in an FBI sting after
investigators were approached by one of his victims in 2012. Henri Morris,
67, was jailed for 10 years after admitting drugging a female employee during
a business trip in order to take naked photos of her She told them that her
drink was spiked by the married businessman after they traveled together from
Houston, Texas, to New Jersey for work. The woman said when she woke
up she was naked and her boss was standing over her and taking pictures on
his mobile phone. The FBI arrested Morris at Bush County Airport after the
woman, who has not been named, covertly worked with them. When his bags
were search they found his ’kit,’ which included strong sedatives and Viagra.
A task force was set up to probe Morris and in total they found eight female
employees who claimed to have been abused by him. His defense team initially
tried to argue that the women all willingly drank to excess with clients and
that no abuse had ever occurred. Ahead of his trial Morris pleaded guilty to
a single charge of drugging and abusing a female employee, in exchange for
prosecutors dropping other abuse charges. MarriedMorris of Houston, Texas,
was the president of Edible Software Solutions ’There is no way to adequately
express my remorse and my abject humiliation,’ Morris said during a 10 minute
address at his sentencing hearing, according to the Houston Chronicle. ’I
apologize to anyone who I have hurt and beg for their forgiveness.’ US District
Judge Melinda Harmon sentenced him to 10 years in federal prison without
the possibility of parole. She also reportedly ordered that he spend the rest of
his life under the supervision of the US Bureau of Prisons, according to the
newspaper.

ED Henri Morris, 67, was jailed for 10 years after admitting drugging a female
employee during a business trip in order to take naked photos of her She told
them that her drink was spiked by the married businessman after they traveled
together from Houston, Texas, to New Jersey for work.

AD A married software executive, Henri Morris, has been sentenced to 10 years in
federal prison for drugging and sexually assaulting a female employee during a
business trip. Morris spiked the woman’s drink with sedatives and took naked
pictures of her while she was unconscious. The FBI arrested Morris after one of
his victims came forward and the task force found eight other female employees
who had been abused by him.

HD Henri Morris, 67, was a married software executive, he was jailed for 10 years
for drugging a female employee during a business trip in order to take naked
photos of her, without the possibility of parole.

Table 13: Case of ED, AD and HD in CNN/DailyMail
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Document conrad clitheroe and gary cooper , both from stockport , and expat neil munro
were reportedly taking notes near fujairah airport , 80 miles from dubai , when
they were arrested in february . relatives were told they were held for “ national
security ” reasons . the men insisted they did not take photographs . the
abu dhabi hearing is due on monday . mr clitheroe , 54 , and mr cooper 45 ,
were visiting their friend mr munro , who was born in manchester , when they
were arrested on 22 february by an off-duty police officer who had seen them
monitoring planes from a car . they were near fujairah airport , where older and
rarer aircraft can be seen . a local police official said the men had been taking
photographs near an airport and were using a telescope . the men are expected
to argue their actions were misinterpreted and are understood to be hoping to
be granted bail .

ED mr clitheroe , 54 , and mr cooper 45 , were visiting their friend mr munro , who
was born in manchester , when they were arrested on 22 february by an off-duty
police officer who had seen them monitoring planes from a car .

AD Three British men, Conrad Clitheroe and Gary Cooper from Stockport and Neil
Munro from Manchester, were arrested near Fujairah Airport in February for
taking notes and using a telescope, with their lawyer expected to argue that their
actions were misinterpreted and they are hoping to be granted bail.

HD Three men were arrested for taking notes and taking photographs near fujairah
airport in February, they hope to be granted bail for being misinterpreted.

Table 14: Case of ED, AD and HD in BBC XSum
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