
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NANO3D: A TRAINING-FREE APPROACH FOR EFFI-
CIENT 3D EDITING WITHOUT MASKS

Anonymous authors
Paper under double-blind review

User:
Removing the chair

User:
Holding a sword

User:
Replacing the eagle 
head with lion head

Task-1:Removing Task-2:Adding Task-3: ReplacingNano3D

FlowEdit

Voxel Merge

SLat Merge

Input

User:
replace the chicken 

with a dog

Editing Prompt

3D assets w/o mask

Output

…
Figure 1: Highly-consistent 3D objects edited by Nano3D. Our framework supports a range of
training-free and part-level tasks especially on shape, including removal, addition, and replacement,
while only requiring users to provide source 3D objects and instructions, without any mask.

ABSTRACT

3D object editing is essential for interactive content creation in gaming, animation,
and robotics, yet current approaches remain inefficient, inconsistent, and often fail
to preserve unedited regions. Most methods rely on editing multi-view render-
ings followed by reconstruction, which introduces artifacts and limits practical-
ity. To address these challenges, we propose Nano3D, a training-free framework
for precise and coherent 3D object editing without masks. Nano3D integrates
FlowEdit into TRELLIS to perform localized edits guided by front-view render-
ings, and further introduces region-aware merging strategies, Voxel/Slat-Merge,
which adaptively preserve structural fidelity by ensuring consistency between
edited and unedited areas. Experiments demonstrate that Nano3D achieves su-
perior 3D consistency and visual quality compared with existing methods. Based
on this framework, we construct the first large-scale 3D editing datasets Nano3D-
Edit-100k, which contains over 100,000 high-quality 3D editing pairs. This work
addresses long-standing challenges in both algorithm design and data availability,
significantly improving the generality and reliability of 3D editing, and laying the
groundwork for the development of feed-forward 3D editing models.

1 INTRODUCTION

Generative models for 3D asset creation have made tremendous progress Lai et al. (2025); Chen
et al. (2025b; 2024d); Wang et al. (2023), leading to widespread applications across entertainment,
robotics, and healthcare. In particular, recent rectified flows (reflows) Liu et al. (2022), such as
TRELLIS Xiang et al. (2025), achieve high-quality 3D object generation by embedding heteroge-
neous representations into a unified latent space while explicitly disentangling geometry and ap-
pearance. Beyond generation, editing (i.e., revising the intended region while keeping other regions
unchanged) is also valuable as users usually need to refine existing assets rather than regenerate en-
tirely new ones, which requires multiple unpredictable iterations to obtain a satisfactory result. For
example, TRELLIS can generates diverse plausible appearances easily with style-modified text or
image prompts, such as texture and material, but fail to reliably repeat identical geometries.

In image editing, an increasing number of powerful models have recently emerged, including GPT-
4o Hurst et al. (2024), Flux.1 Kontext Labs et al. (2025), and Nano Banana Fortin et al. (2025).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A closer look at the evolution of these models reveals a clear three-stage development paradigm.
Stage 1 introduced training-free image editing algorithms Hertz et al. (2022), which demonstrated
the feasibility of editing without model finetuning. Stage 2 focused on the automatic construction
of large-scale, high-quality paired editing datasets, providing the foundation for supervised learn-
ing Brooks et al. (2023). Stage 3 leveraged these datasets to train feedforward image editing models
capable of real-time inference and high fidelity generation.

In contrast, 3D object editing still remains bottlenecked in the initial stage (i.e., algorithm). Specifi-
cally, existing methods, such as those based on Score Distillation Sampling (SDS) Sella et al. (2023)
or the “multi-view editing then reconstruction” paradigm Qi et al. (2024), struggle to maintain con-
sistency across views or attributes and usually demand time-consuming optimization. This leaves us
wondering: can 3D objects be edited versatilely, efficiently and consistently in a training-free man-
ner using only pretrained generative models, as achieved in 2D images? Resolving this problem
will allow 3D object editing to enter a virtuous cycle of data expansion and training models capable
of flexible asset customization, thereby accelerating the whole field toward maturity like 2D images.

We propose Nano3D, a training-free 3D editing algorithm designed for constructing paired 3D edit-
ing datasets. Drawing inspiration from the training-free 2D editing method FlowEdit Kulikov et al.
(2024), Nano3D leverages the first stage of TRELLIS to generate an iterative trajectory from input
to edited voxel representations, thereby enabling efficient training-free 3D editing.

To further enhance source consistency between the original and edited objects, we introduce a
region-aware merging strategy, Voxel/Slat-Merge, applied after TRELLIS’s two-stage geometry and
appearance editing. Based on simple connectivity analysis, this strategy adaptively identifies mod-
ified voxel regions in the edited 3D object and integrates them back into the original object. This
effectively merges the edited content while preserving the structure of unedited regions.

Building on the Nano3D algorithm, we design an efficient pipeline for large-scale construction of
3D editing datasets and generate a high-quality dataset of 100,000 samples——Nano3D-Edit-100k.
Our work addresses two long-standing gaps in the 3D editing domain—the lack of training-free
editing algorithms and the absence of large-scale datasets—thereby laying a solid foundation for the
third stage of 3D editing: training feedforward models under 3D editing supervision.

Overall, our contributions can be summarized as follows:

• We make the first attempt to introduce FlowEdit to 3D object editing, demonstrating that the
powerful priors of 3D object generative models can also support effective training-free editing
(like 2D images)

• We propose Voxel/Slat-Merge, a region-aware merging strategy that automatically preserves
source consistency in the non-edited regions of 3D objects.

• We develop a user-friendly 3D editing framework, Nano3D, which achieves state-of-the-art edit-
ing performance without requiring any manual masks.

• Building upon Nano3D, we curate the first large-scale 3D editing dataset Nano3D-Edit-100k,
comprising over 100,000 high-quality samples to support further research and development.

2 RELATED WORK

2.1 2D IMAGE EDITING

With the advent of large-scale 2D generative models, image editing has shifted from manual pixel-
level operations to controllable semantic-level manipulation. Early approaches modify noisy latents
via inversion to balance new details with original structures Meng et al. (2021); Mokady et al. (2023);
Abdal et al. (2019), while others finetune generative models on curated editing pairs to enable in-
struction following Brooks et al. (2023); Wei et al. (2024); Sheynin et al. (2024). Localized editing
has also been explored through attention map manipulation Hertz et al. (2022); Tumanyan et al.
(2023); Couairon et al. (2022), and adapters have been introduced to inject additional conditions for
enhanced controllability Ye et al. (2023); Ju et al. (2024); Mou et al. (2024). More recently, rec-
tified flows (reflow) Liu et al. (2022); Esser et al. (2024) have enabled high-fidelity synthesis with
few sampling steps. To support reflow-based editing, RFSolver Wang et al. (2024) approximates

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ODEs via higher-order Taylor expansion while preserving structures through attention replacement,
whereas FlowEdit Kulikov et al. (2024) introduces an inversion-free strategy by interpolating be-
tween sampled noise and the source image.

2.2 3D OBJECT EDITING

Compared to 2D image editing, maintaining spatial consistency is substantially more challenging
in 3D. Many approaches adopt score distillation sampling (SDS) Poole et al. (2022) to optimize 3D
representations using gradients from pretrained 2D diffusion models Sella et al. (2023); Li et al.
(2024); Chen et al. (2024c); Palandra et al. (2024); Chen et al. (2023). Others edit multi-view im-
ages and reconstruct them with large reconstruction models (LRMs) Qi et al. (2024); Chen et al.
(2024a); Barda et al. (2025); Huang et al. (2025); Erkoç et al. (2025); Bar-On et al. (2025); Zheng
et al. (2025); Li et al. (2025a); Gao et al. (2024), or directly manipulate triplanes as a bridge between
2D and 3D Kathare et al. (2025); Bilecen et al. (2025). Inspired by InstructPix2Pix Brooks et al.
(2023), several works construct paired 3D editing datasets for supervised training Ye et al. (2025b);
Xu et al. (2023). To enable finer control, diverse conditions such as sketches Mikaeili et al. (2023);
Liu et al. (2024); Guillard et al. (2021), part-level masks Chen et al. (2025a); Yang et al. (2025a;b),
and point-based dragging Chen et al. (2024b); Xie et al. (2023); Lu et al. (2025) have been ex-
plored. More recently, rectified flows (reflow) Zhao et al. (2025); Li et al. (2025b); Ye et al. (2025a)
achieved large-scale 3D generation and zero-shot appearance editing, yet still face bottlenecks in
shape modification. In this work, we unlock their potential for versatile and consistent 3D editing in
a training-free and user-friendly manner.

3 PRELIMINARY

3.1 FLOWEDIT

FlowEdit Kulikov et al. (2024) is a text-guided image editing method tailored for text-to-image
flow models. It is characterized by being inversion-free, optimization-free, and model-agnostic.
Rather than relying on traditional inversion-reconstruction processes that often introduce distortion,
FlowEdit constructs an ordinary differential equation (ODE) trajectory in the latent space from the
source prompt to the target prompt. This trajectory enables direct evolution of image representations
over the velocity field. By leveraging a weighted combination of the source and target velocity fields,
FlowEdit ensures a shorter editing path and stronger structural preservation throughout the editing
process. Therefore, given a source image, along with the two conditions before and after editing
(e.g., the text describing the image or a single view rendered from the 3D asset), the pretrained
generative models can adopt FlowEdit to output the target image. We provide a more detailed
descriptions of FlowEdit’s editing process in Sec. A.13

3.2 TRELLIS

TRELLIS generates 3D objects through a two-stage geometry-appearance decoupling pipline. In
stage 1, it predicts a sparse structure from noise, which represents geometry by a voxel occupancy
grid s = {si}Li=1, where si ∈ {0, 1, . . . , N − 1}3, L is the grid spatial length and N is the number
of active voxels. In stage 2, TRELLIS predicts a structured latent (SLat) based on s, which
further incorporates appearance information, represented by z = {(zi, si)}Li=1, where zi ∈ RC is
the aggregated multi-view DINOv2 feature for the i-th voxel, with C as the feature dimensionality.

4 METHOD

4.1 OVERVIEW

A common approach is to edit rendered images of a 3D object and reconstruct it with a generative
model, but this often breaks geometric consistency. To address this, we introduce FlowEdit into
the first-stage generation of TRELLIS (Sec. 4.2). To further ensure geometric and appearance con-
sistency, we propose Voxel/Slat-Merge (Sec. 4.3), which detects edited regions and integrates them

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Overview

3D assets Edited 3D assets

Stage1

Gemini-
2.5-Flash-

Image

Render

Editing Prompt: Remove 
the wings of the dragonImage

Stage1: Voxel-based Structural Edit Stage2: Latent-based Structure Edit

Edit Voxel

Edit SLat

Remove the wings 
of the dragon

Voxel

Voxelize

Input

Image

Flow
Edit

Voxel
Merge

Sparse Flow Latent Merge

Edit Image

FlowEdit

…
Sparse Flow

…
SLat Merge

Edit SLat

Stage2

Edit Image

Tar-SLat

Image
Embeddings

 Output

Input  Output Merge Src-SLat

Dino

Encode
0
1
1
0

1
1
1
0

Voxel Merge

1
1
0
0Input

Edit Voxel

Figure 2: The Nano3D pipeline. The original 3D object is voxelized and encoded into sparse
structure and structured latent respectively. Stage 1 modifies geometry via Flow Transformer with
FlowEdit, guided by Nano Banana–edited images. Stage 2 generates structured latents with Sparse
Flow Transformer, supporting TRELLIS-inherent appearance editing. Voxel/Slat-Merge further en-
sures consistency across both stages before decoding the final 3D object.

with unedited ones. Finally, we present a training-free, user-friendly pipeline (Sec. 4.4) that also
supports large-scale dataset construction. By combining FlowEdit with Voxel/Slat-Merge, Nano3D
achieves geometrically consistent and semantically faithful 3D object editing within TRELLIS.

4.2 FLOWEDIT

Inspired by FlowEdit’s success in 2D image editing, we extend it to 3D object editing by integrating
it into TRELLIS stage 1, leveraging the pretrained generative prior to establish an editing path
between source and target objects instead of starting from noise. The input is the source 3D voxel
grid ssrc, TRELLIS applies the FlowEdit algorithm to output the edited target voxel grid stgt, by
treating the rendered front-view image csrc and the modified target front-view image ctgt as the
source control condition and the target control condition respectively. Specifically, this process is
divided into the following two stages:

Front-View Image Editing. Given the editing instruction txt and the rendered front-view image
csrc of the source 3D object, we first utilize the advanced 2D image editing model Nano Banana to
edit csrc, thereby obtaining the edited front-view image ctgt of the target 3D object.

Voxel Editing. Subsequently, we consider the voxel grids ssrc, stgt of the source and target 3D
objects, and define the noise-to-voxel generation trajectories as pt, qt. With csrc, ctgt serving as
conditions, the velocity fields vθt (pt, csrc), v

θ
t (qt, ctgt) of these trajectories are predicted by the

pretrained Flow Transformer from TRELLIS stage 1. Then FlowEdit is adopted to establish an
editing trajectory st with timestep t ∈ [0, 1] by aligning pt, qt to start from the same sampled noise
ϵ ∼ N (0, I):

st = ssrc + qt − pt, (1)

≈ ssrc +
(
vθt (qt, ctgt)− vθt (pt, csrc)

)
dt. (2)

where pt = (1− t)ssrc + t ϵ, qt = (1− t)stgt + t ϵ.

Such rectified flow-based trajectory gradually moves toward s0 = stgt under the semantic guidance
provided by the velocity field differences, and preserves the source geometry consistency by starting
from s1 = ssrc, rather than directly generates stgt from a random noise.

4.3 VOXEL/SLAT-MERGE

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Voxel-Merge. We observe that the voxel edited by FlowEdit sometimes still exhibit minor geometry
inconsistencies with the source 3D object, e.g., when editing a dragon to remove its wings, the result
may not only modify the wings but also inadvertently alter other unrelated regions. To this end, we
further introduce a region-aware merging strategy, Voxel-Merge, which takes the source 3D voxel
grid ssrc and the FlowEdit-edited voxel grid sfe as inputs, and outputs the final target voxel
grid stgt that merges the desirable edited regions from sfe with the non-edited regions from
ssrc. Specifically, it defines a difference map g via an element-wise XOR operation between ssrc
and sfe:

g(i) = ssrc(i)⊕ sfe(i) =

{
1, if ssrc(i) ̸= sfe(i),

0, if ssrc(i) = sfe(i).
∀i (3)

where all modified elements of sfe are explicitly marked with 1, and connectivity analysis is em-
ployed on such elements to group them into distinct regions. Regions larger than the threshold τ
are then selected, separating the desired edited regions from those irrelevant modifications. Next, a
binary mask m is initialized, with elements corresponding to the selected regions set to 1 and the
rest to 0. Finally, another XOR operation is performed between the mask and ssrc:

ssrc ⊕m→ stgt. (4)

thereby transferring the correct edited regions onto ssrc with the non-edited regions preserved.

Now that the geometry consistency is sufficiently achieved, we proceed to feed the merged voxel grid
stgt together with the edited front-view image ctgt into TRELLIS stage 2, leveraging its pretrained
Sparse Flow Transformer to output the target SLat ztgt. To similarly ensure the generated SLat
ztgt are consistent with zsrc encoded from the original 3D object, we also introduce SLat-Merge by
reusing the mask m during the Voxel-Merge stage and performing:

zsrc ⊕m→ z·tgt. (5)

Therefore, SLat-Merge outputs the final merged target SLat z·tgt by combining the appear-
ance features of both the non-edited and desirable edited regions from the input zsrc and ztgt,
preserving the apprearance consistency.

4.4 NANO3D

As illustrated in Fig. 2, Nano3D builds upon TRELLIS to enable decoupled geometry and ap-
pearance editing of 3D objects. The input object is voxelized and, along with DINOv2 Oquab et al.
(2023) features, encoded into a structured latent representation via a VAE Kingma & Welling (2013).
Meanwhile, we use Nano Banana with the front view of a 3D asset and editing instructions as input
to generate the edited front view. In TRELLIS-Stage 1, we replace the standard flow iteration with
FlowEdit, which takes the source object’s voxel and the before/after front views as input, and outputs
the edited voxel. We then apply Voxel-Merge to ensure geometric consistency. In TRELLIS-Stage
2, the edited voxel and edited front view jointly guide TRELLIS to generate the final SLat. At this
stage, we further adopt Slat-Merge to guarantee both geometric and texture consistency. Finally, the
edited SLat is decoded by the VAE to reconstruct the target 3D object.

Data Construction Pipeline. As illustrated in Fig. 3, we extend Nano3D by constructing a complete
and streamlined 3D editing data generation pipeline. The process consists of the following stages:

1. Image Sampling from Existing Datasets: We sample views from publicly available 3D
asset datasets Xiang et al. (2025); Deitke et al. (2022). For each asset, the frontal view is
selected as the editing target.

2. Instruction Generation via VLM: An editing instruction is automatically generated us-
ing the vision-language model Qwen-VL-2.5 Bai et al. (2025), based on three predefined
prompt templates:

• Add: add <something> to <somewhere>
• Remove: remove <something> in <somewhere>
• Replace: replace <something> with <something>

The model fills in these templates with visual context from the image to produce diverse
and semantically grounded instructions.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Sample From 
Image Dataset

Trellis
Source Image

Nano3D

Replace <the chicken> 
with <a dog>.

Source Mesh

Edited Mesh

Data Filter

Yes NoQwen2.5-vl

Edited Instruction

Figure 3: Data Construction Pipeline. The figure shows our pipeline. We first sample images
from the dataset and prompt Qwen2.5-VL to generate editing instructions by completing templates.
Trellis then generates 3D meshes from the images. Finally, the image, instruction, and mesh are fed
into Nano3D, and the resulting 3D assets are filtered for quality.

3. 3D Asset Generation via TRELLIS: Given the selected image, we use TRELLIS to
reconstruct the corresponding 3D asset. Instead of using the original mesh, we choose
to regenerate the source mesh via TRELLIS for two reasons: (1) obtaining the structured
latent (sLat) from the original mesh requires rendering ∼150 views, which is inefficient;
(2) the reconstructed sLat still diverges from the original mesh due to the inherent loss in
TRELLIS’s VAE encoding. Using the TRELLIS-reconstructed mesh ensures consistency
and reduces computational overhead.

4. Image Editing via Nano-Banana or Flux-Kontext: The generated instruction is input
into Nano-Banana or Flux-Kontext to synthesize the edited target image.

5. 3D Editing via Nano3D: The original 3D asset, the source image, and the edited image
are fed into Nano3D, which outputs an edited 3D asset.

5 EVALUATION

5.1 SETUP

Implementation Detail. Our method is implemented on TRELLIS. The sampling step is fixed at 25,
and FlowEdit is configured with nmax = 15, nmin = 0, and navg = 5. The CFG guidance scales
for vθt (pt) and vθt (qt) are set to 1.5 and 5.5, respectively, with λ set to 0.5. For both Voxel-Merge and
Slat-Merge, τ is set to 100. For the construction of Nano3D-Edit-100k, we employ 32 A800 GPUs
for inference, utilizing the Qwen2.5-vl-72B API to generate editing instructions and Flux-Kontext
to perform image editing operations. The creation of each editing pair required approximately five
minutes, and empirical observations revealed two key findings: first, the vast majority of failed
cases originated from errors in the image editing stage, whereas successful adherence to instruc-
tions at this stage led to a very high success rate in the subsequent Nano3D editing process; second,
the predominant computational cost arose from the Flexicube module, which consumed nearly 4.5
minutes per pair, while the preceding steps required only about 30 seconds. Based on these observa-
tions and in order to further reduce computational overhead, we adopted a storage strategy in which
only the SLAT (Structured Latent) representation and the voxel sum of each asset are preserved,
thereby allowing users to flexibly decide whether to directly train on SLAT or to employ Flexicube
to convert SLAT into explicit GLB meshes for downstream applications. To improve dataset qual-
ity, we use Qwen2.5-VL-7B to automatically filter edited images based on instruction compliance.
Non-compliant samples are returned to the pool for re-sampling.

Baseline. We select three representative state-of-the-art methods as baselines: Vox-E based on
SDS, Tailor3D based on ”multi-view editing then reconstruction”, and TRELLIS, which leverages
a RePaint-based method. For all baselines, we strictly follow their original implementations and use
the official codebases to obtain the results reported in this paper.

Dataset. Our Nano3D-Edit-100k dataset comprises two sources of image data: images collected
from the internet and rendered views from the Trellis-500K dataset. During dataset construction, we

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Add a shield to the penguin’s 
left hand.

Remove one leaf from the 
right side of the stem.

Remove the backpack from 
the character’s back.

Replace the shield in the 
character’s hand with a sword.

Remove the handle from the 
lamp.

Remove the chimney from the 
train.

Add a satellite dish on top of 
the house.

Remove the dragon horn 
headpiece from the character’s 
head.

Add a basket to the front of 
the scooter.

Add a shield to the warrior’s  
hand.

Remove the bottom drawer.

Replace the jacket with a 
yellow down coat

Replace the front wheel with 
a wooden wheel.

Add trousers to the character.

Open the wooden door from 
the archway.

Add a carrot  to the snowman’s 
mouth.

Add a white flag to the mast 
of the boat.

Figure 4: Qualitative results. We present three edit types—object removal, addition, and replace-
ment. In each case, Nano3D confines changes to the target region (red dashed circles) and produces
view-consistent edits, while leaving the rest of the scene unchanged. Geometry stays sharp and
textures remain faithful in unedited areas, with no noticeable artifacts.

follow the methodology of 3D-Alpaca Ye et al. (2025b), employing Qwen2.5-VL to automatically
annotate 3D assets and classify them accordingly. We then perform class balancing across ten dis-
tinct categories, ultimately selecting 100K image samples. We select 100 representative cases from
the Nano3D-Edit-100k dataset for the experiments and demonstrations in this section.

Metric. We systematically evaluate the edited 3D objects from three perspectives: source structure
preservation, target semantic alignment, and generation quality. For source structure preservation,
we assess non-edited regions against the original 3D object using Chamfer Distance (CD) Fan et al.
(2017). For target semantic alignment, we employ the DINO-I Caron et al. (2021) metric to quantify
adherence to the target edited image. For generation quality, we use FID Heusel et al. (2017) on
rendered multi-view images to measure fidelity and diversity.

5.2 MAIN RESULT

Qualitative Comparison. As shown in Fig. 5, Nano3D not only strictly follows editing instruc-
tions but also maintains perfect structure consistency with the source 3D object across multi-view
images. In contrast, Tailor3D introduces noticeable geometry distortions and appearance artifacts.
Vox-E produces results that are overly blurry, smoothed, and misaligned with the target semantic.
TRELLIS, though showing relative improvements, still suffers from several issues, such as local
detail corruption, shape enlargement, and incorrect orientation. These findings demonstrate that our
method delivers impressive and steady visual effects beyond the reach of existing methods.

Quantitative Comparison. As shown in Tab. 1, Nano3D outperforms all baselines, achieving
the lowest CD and FID and the highest DINO-I score, indicating superior structural consistency,
perceptual quality, and semantic alignment, as seen in Fig. 5.

User Study. To assess editing quality and usability, we conducted a user study with 50 participants.
Each round presented the original 3D object, task instructions, and results from Tailor3D, Vox-E,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Replace the stack of 
green notebooks with 

a stack of books.

Tailor3D

Input

Vox-E

Trellis

Nano3D

Holding a sword Remove the wings.
Make the backpack 
the boy is carrying 

bigger.
Replace the headban

d with a crown.

Figure 5: Qualitative comparison. Our method achieves the best editing performance with faithful
instruction semantic alignment and perfect original structure consistency across multi-view images.

Table 1: Quantitative comparison. Our
method achieves the best structure consis-
tency, semantic alignment with the target
edited image, and generation fidelity.

Method CD↓ DINO-I↑ FID↓

Tailor3D 0.037 0.759 140.93
Vox-E / 0.782 117.12
TRELLIS 0.019 0.901 49.57
Instant3DiT 0.014 0.879 56.73
Nano3D 0.013 0.950 27.85

Table 2: User study. Given that most users
favored TRELLIS and Nano3D, the results
for Tailor3D and Vox-E are omitted from the
table for clarity. As shown in the table, our
method is strongly preferred by participants,
significantly outperforming TRELLIS.

Method Prompt
Algn.

Visual
Quality

Shape
Preserv.

TRELLIS 32% 21% 5%
Nano3D 68% 79% 95%

TRELLIS, and Nano3D. Participants selected the best method based on Prompt Alignment, Visual
Quality, and Shape Preservation. As shown in Tab. 2, Nano3D received the highest preference across
all criteria, demonstrating superior semantic alignment, visual quality, and shape fidelity. For clarity,
Tailor3D and Vox-E results are omitted, as user choices mainly favored TRELLIS and Nano3D.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Src Voxel Thres=100 Thres=50 Thres=30

Figure 6: Ablation study on τ . The leftmost voxel represents the pre-editing state, with the edit-
ing instruction being to remove the wings. The three voxels on the right correspond to the masks
generated during the voxel-merge stage for τ = 100, τ = 50, and τ = 30 (from left to right). As
observed, when τ = 100, the detected mask most accurately aligns with the editing regions, while
lower values include irrelevant non-editing areas.

Nano3D-Edit-100k v.s. 3D-Alpaca. High-quality 3D editing requires consistency in both 2D
image appearance and 3D structure—that is, the rendered images before and after editing should
remain coherent, and the 3D assets themselves should preserve structural integrity throughout the
editing process. The 3D-Alpaca dataset lacks both aspects, leading to significantly lower data quality
compared to ours. To quantify this, we randomly sample 500 edited pairs from each dataset and
evaluate text–image alignment using CLIPScore Hessel et al. (2021) and ViLT R-Precision Kim
et al. (2021). Specifically, we use a VLM to infer the caption of the edited asset based on the
original asset’s caption and the editing instruction. As shown in Table 3, our Nano3D-Edit-100k
consistently outperforms 3D-Alpaca across all metrics.

Table 3: Semantic alignment comparison between NANO3D-EDIT-100K and 3D-Alpaca.

CLIPScore ViLT R-Precision R@5 ViLT R-Precision R@10
3D-Alpaca 28.42 33.6 40.2
Nano3D-Edit-100k 39.71 45.3 52.4

5.3 ABLATION STUDY

Voxel/Slat-Merge. We sequentially validate the effectiveness of Voxel-Merge and Slat-Merge
strategies. As shown in Fig. 7, relying solely on FlowEdit leads to geometry misalignments and
deformations, accompanied by missing, blurred, and distorted appearances, resulting in obvious in-
consistencies with the original 3D object. Incorporating Voxel-Merge substantially improves the
overall performance, restoring geometry and enhancing cross-view global consistency, but leaving
appearance issues unresolved. With the additional incorporation of Slat-Merge, local visual quality
is further enhanced, and appearances exhibit greater consistency before and after editing. These re-
sults indicate that our methods effectively exploit the advantage of geometry-appearance decoupling
in 3D objects, ensuring more reliable consistency.

Ablation on τ . We further compare different values of τ , as shown in Fig. 6. The leftmost voxel
represents the pre-editing state, with the editing instruction being to remove the wings. The three
voxels on the right correspond to the masks generated during the voxel-merge stage for τ = 100,
τ = 50, and τ = 30 (from left to right). As observed, when τ = 100, the detected mask most
accurately aligns with the editing regions, while lower values include irrelevant non-editing areas.

6 CONCLUSION

In this work, we present Nano3D, a training-free and user-friendly framework for localized 3D ob-
ject editing, supporting operations such as object removal, addition, and replacement. By integrating
FlowEdit into the TRELLIS pipeline and introducing region-aware merging strategies (Voxel/Slat-
Merge), Nano3D achieves geometrically consistent and semantically faithful edits. Extensive ex-
periments demonstrate its state-of-the-art performance across diverse editing tasks. Furthermore,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

+FlowEdit
+VoxleMerge

+FlowEdit
+VoxleMerge
+SLatMerge

+FlowEdit

Source 
Mesh

replace the hat with a 
helmet

remove the chimney replace the chicken 
with a dog

add a monkey on the 
chair

Figure 7: Ablation study on Voxel/Slage-Merge. Our methods sequentially ensure geometry and
appearance consistency, demonstrating their complementary roles.

we construct Nano3D-Edit-100k, the first large-scale dataset tailored for 3D editing, enabling future
research on feedforward DiT-based editing models.

Limitation. Nano3D demonstrates strong performance in 3D editing tasks, but has the following
limitations: it supports only localized edits; the VAE in TRELLIS introduces reconstruction loss; and
the overall performance is constrained by TRELLIS’s generative capacity. We view these limitations
as important directions for future research.

7 ETHICS STATEMENT

We propose Nano3D, a training-free framework for precise and coherent 3D object editing without
masks. Building on this framework, we construct the first large-scale 3D editing dataset, Nano3D-
Edit-100k, which contains over 100,000 high-quality 3D editing pairs. This dataset is built upon
publicly available data and will be released as an open resource for the research community. We
declare no competing interests.

8 REPRODUCIBILITY STATEMENT

This paper presents a training-free 3D editing pipeline and, based on it, constructs a 100K-scale 3D
editing dataset. We will release all code, annotation scripts, and the dataset as open-source resources.

REFERENCES

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the
stylegan latent space? In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 4432–4441, 2019.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
URL https://arxiv.org/abs/2502.13923.

Roi Bar-On, Dana Cohen-Bar, and Daniel Cohen-Or. Editp23: 3d editing via propagation of image
prompts to multi-view. arXiv preprint arXiv:2506.20652, 2025.

Amir Barda, Matheus Gadelha, Vladimir G Kim, Noam Aigerman, Amit H Bermano, and Thibault
Groueix. Instant3dit: Multiview inpainting for fast editing of 3d objects. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 16273–16282, 2025.

Bahri Batuhan Bilecen, Yigit Yalin, Ning Yu, and Aysegul Dundar. Reference-based 3d-aware
image editing with triplanes. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 5904–5915, 2025.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 18392–18402, 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Hansheng Chen, Ruoxi Shi, Yulin Liu, Bokui Shen, Jiayuan Gu, Gordon Wetzstein, Hao Su, and
Leonidas Guibas. Generic 3d diffusion adapter using controlled multi-view editing. arXiv preprint
arXiv:2403.12032, 2024a.

Honghua Chen, Yushi Lan, Yongwei Chen, Yifan Zhou, and Xingang Pan. Mvdrag3d: Drag-
based creative 3d editing via multi-view generation-reconstruction priors. arXiv preprint
arXiv:2410.16272, 2024b.

Minghao Chen, Junyu Xie, Iro Laina, and Andrea Vedaldi. Shap-editor: Instruction-guided latent 3d
editing in seconds. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 26456–26466, 2024c.

Minghao Chen, Roman Shapovalov, Iro Laina, Tom Monnier, Jianyuan Wang, David Novotny, and
Andrea Vedaldi. Partgen: Part-level 3d generation and reconstruction with multi-view diffusion
models. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 5881–
5892, 2025a.

Yige Chen, Teng Hu, Yizhe Tang, Siyuan Chen, Ang Chen, and Ran Yi. Plasticine3d: 3d
non-rigid editing with text guidance by multi-view embedding optimization. arXiv preprint
arXiv:2312.10111, 2023.

Yiwen Chen, Yikai Wang, Yihao Luo, Zhengyi Wang, Zilong Chen, Jun Zhu, Chi Zhang, and Gu-
osheng Lin. Meshanything v2: Artist-created mesh generation with adjacent mesh tokenization.
arXiv preprint arXiv:2408.02555, 2024d.

Zhaoxi Chen, Jiaxiang Tang, Yuhao Dong, Ziang Cao, Fangzhou Hong, Yushi Lan, Tengfei Wang,
Haozhe Xie, Tong Wu, Shunsuke Saito, et al. 3dtopia-xl: Scaling high-quality 3d asset gener-
ation via primitive diffusion. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 26576–26586, 2025b.

Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-
based semantic image editing with mask guidance. arXiv preprint arXiv:2210.11427, 2022.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
tated 3d objects, 2022. URL https://arxiv.org/abs/2212.08051.

Ziya Erkoç, Can Gümeli, Chaoyang Wang, Matthias Nießner, Angela Dai, Peter Wonka, Hsin-Ying
Lee, and Peiye Zhuang. Preditor3d: Fast and precise 3d shape editing. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 640–649, 2025.

11

https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2212.08051


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object recon-
struction from a single image. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 605–613, 2017.

Alisa Fortin, Guillaume Vernade, Kat Kampf, and Ammaar Reshi. Introducing Gemini 2.5 Flash Im-
age, our state-of-the-art image model. Blog Post, August 2025. URL https://developers.
googleblog.com/en/introducing-gemini-2-5-flash-image/. Accessed:
2025-09-12.

Will Gao, Dilin Wang, Yuchen Fan, Aljaz Bozic, Tuur Stuyck, Zhengqin Li, Zhao Dong, Rakesh
Ranjan, and Nikolaos Sarafianos. 3d mesh editing using masked lrms. arXiv preprint
arXiv:2412.08641, 2024.

Benoit Guillard, Edoardo Remelli, Pierre Yvernay, and Pascal Fua. Sketch2mesh: Reconstructing
and editing 3d shapes from sketches. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 13023–13032, 2021.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626,
2022.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Junchao Huang, Xinting Hu, Shaoshuai Shi, Zhuotao Tian, and Li Jiang. Edit360: 2d image edits to
3d assets from any angle. arXiv preprint arXiv:2506.10507, 2025.

Team Hunyuan3D, Shuhui Yang, Mingxin Yang, Yifei Feng, Xin Huang, Sheng Zhang, Zebin He,
Di Luo, Haolin Liu, Yunfei Zhao, et al. Hunyuan3d 2.1: From images to high-fidelity 3d assets
with production-ready pbr material. arXiv preprint arXiv:2506.15442, 2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Xuan Ju, Xian Liu, Xintao Wang, Yuxuan Bian, Ying Shan, and Qiang Xu. Brushnet: A plug-and-
play image inpainting model with decomposed dual-branch diffusion. In European Conference
on Computer Vision, pp. 150–168. Springer, 2024.

Kunal Kathare, Ankit Dhiman, K Vikas Gowda, Siddharth Aravindan, Shubham Monga,
Basavaraja Shanthappa Vandrotti, and Lokesh R Boregowda. Instructive3d: Editing large recon-
struction models with text instructions. In 2025 IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pp. 3246–3256. IEEE, 2025.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convo-
lution or region supervision. In International conference on machine learning, pp. 5583–5594.
PMLR, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Vladimir Kulikov, Matan Kleiner, Inbar Huberman-Spiegelglas, and Tomer Michaeli. Flowedit:
Inversion-free text-based editing using pre-trained flow models. arXiv preprint arXiv:2412.08629,
2024.

12

https://developers.googleblog.com/en/introducing-gemini-2-5-flash-image/
https://developers.googleblog.com/en/introducing-gemini-2-5-flash-image/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, et al. Flux. 1 kontext:
Flow matching for in-context image generation and editing in latent space. arXiv preprint
arXiv:2506.15742, 2025.

Zeqiang Lai, Yunfei Zhao, Haolin Liu, Zibo Zhao, Qingxiang Lin, Huiwen Shi, Xianghui Yang,
Mingxin Yang, Shuhui Yang, Yifei Feng, et al. Hunyuan3d 2.5: Towards high-fidelity 3d assets
generation with ultimate details. arXiv preprint arXiv:2506.16504, 2025.

Peng Li, Suizhi Ma, Jialiang Chen, Yuan Liu, Congyi Zhang, Wei Xue, Wenhan Luo, Alla Shef-
fer, Wenping Wang, and Yike Guo. Cmd: Controllable multiview diffusion for 3d editing and
progressive generation. In Proceedings of the Special Interest Group on Computer Graphics and
Interactive Techniques Conference Conference Papers, pp. 1–10, 2025a.

Yangguang Li, Zi-Xin Zou, Zexiang Liu, Dehu Wang, Yuan Liang, Zhipeng Yu, Xingchao Liu,
Yuan-Chen Guo, Ding Liang, Wanli Ouyang, et al. Triposg: High-fidelity 3d shape synthesis
using large-scale rectified flow models. arXiv preprint arXiv:2502.06608, 2025b.

Yuhan Li, Yishun Dou, Yue Shi, Yu Lei, Xuanhong Chen, Yi Zhang, Peng Zhou, and Bingbing
Ni. Focaldreamer: Text-driven 3d editing via focal-fusion assembly. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 3279–3287, 2024.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.

Feng-Lin Liu, Hongbo Fu, Yu-Kun Lai, and Lin Gao. Sketchdream: Sketch-based text-to-3d gener-
ation and editing. ACM Transactions on Graphics (TOG), 43(4):1–13, 2024.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Ruijie Lu, Yu Liu, Jiaxiang Tang, Junfeng Ni, Yuxiang Wang, Diwen Wan, Gang Zeng, Yixin Chen,
and Siyuan Huang. Dreamart: Generating interactable articulated objects from a single image.
arXiv preprint arXiv:2507.05763, 2025.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021.

Aryan Mikaeili, Or Perel, Mehdi Safaee, Daniel Cohen-Or, and Ali Mahdavi-Amiri. Sked: Sketch-
guided text-based 3d editing. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 14607–14619, 2023.

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
editing real images using guided diffusion models. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 6038–6047, 2023.

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. In Proceedings of the AAAI conference on artificial intelligence, volume 38, pp. 4296–
4304, 2024.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Francesco Palandra, Andrea Sanchietti, Daniele Baieri, and Emanuele Rodola. Gsedit: Efficient
text-guided editing of 3d objects via gaussian splatting. arXiv preprint arXiv:2403.05154, 2024.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

13

https://openreview.net/forum?id=PqvMRDCJT9t


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhangyang Qi, Yunhan Yang, Mengchen Zhang, Long Xing, Xiaoyang Wu, Tong Wu, Dahua Lin,
Xihui Liu, Jiaqi Wang, and Hengshuang Zhao. Tailor3d: Customized 3d assets editing and gen-
eration with dual-side images. arXiv preprint arXiv:2407.06191, 2024.

Etai Sella, Gal Fiebelman, Peter Hedman, and Hadar Averbuch-Elor. Vox-e: Text-guided voxel
editing of 3d objects. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 430–440, 2023.

Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi Parikh,
and Yaniv Taigman. Emu edit: Precise image editing via recognition and generation tasks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8871–
8879, 2024.

Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for
text-driven image-to-image translation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 1921–1930, 2023.

Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu Li,
and Ying Shan. Taming rectified flow for inversion and editing. arXiv preprint arXiv:2411.04746,
2024.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
Advances in neural information processing systems, 36:8406–8441, 2023.

Cong Wei, Zheyang Xiong, Weiming Ren, Xeron Du, Ge Zhang, and Wenhu Chen. Omniedit:
Building image editing generalist models through specialist supervision. In The Thirteenth Inter-
national Conference on Learning Representations, 2024.

Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen,
Xin Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 21469–21480,
2025.

Tianhao Xie, Eugene Belilovsky, Sudhir Mudur, and Tiberiu Popa. Dragd3d: Realistic mesh editing
with rigidity control driven by 2d diffusion priors. arXiv preprint arXiv:2310.04561, 2023.

Jiale Xu, Xintao Wang, Yan-Pei Cao, Weihao Cheng, Ying Shan, and Shenghua Gao. Instructp2p:
Learning to edit 3d point clouds with text instructions. arXiv preprint arXiv:2306.07154, 2023.

Yunhan Yang, Yuan-Chen Guo, Yukun Huang, Zi-Xin Zou, Zhipeng Yu, Yangguang Li, Yan-
Pei Cao, and Xihui Liu. Holopart: Generative 3d part amodal segmentation. arXiv preprint
arXiv:2504.07943, 2025a.

Yunhan Yang, Yufan Zhou, Yuan-Chen Guo, Zi-Xin Zou, Yukun Huang, Ying-Tian Liu, Hao Xu,
Ding Liang, Yan-Pei Cao, and Xihui Liu. Omnipart: Part-aware 3d generation with semantic
decoupling and structural cohesion. arXiv preprint arXiv:2507.06165, 2025b.

Chongjie Ye, Yushuang Wu, Ziteng Lu, Jiahao Chang, Xiaoyang Guo, Jiaqing Zhou, Hao Zhao,
and Xiaoguang Han. Hi3dgen: High-fidelity 3d geometry generation from images via normal
bridging. arXiv preprint arXiv:2503.22236, 3:2, 2025a.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721, 2023.

Junliang Ye, Zhengyi Wang, Ruowen Zhao, Shenghao Xie, and Jun Zhu. Shapellm-omni: A native
multimodal llm for 3d generation and understanding. arXiv preprint arXiv:2506.01853, 2025b.

Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d shape
representation for neural fields and generative diffusion models. ACM Transactions On Graphics
(TOG), 42(4):1–16, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Rusty, vintage design 
with an abandoned, 
post-apocalyptic feel.

Low-poly design 
with sharp, angular 
shapes.

Plastic, futuristic 
design with 
transparent elements.

Input Mesh Editing Mesh

Figure 8: Nano3D can perform texture editing without altering the geometry.

Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng,
Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion models for
high resolution textured 3d assets generation. arXiv preprint arXiv:2501.12202, 2025.

Yang Zheng, Mengqi Huang, Nan Chen, and Zhendong Mao. Pro3d-editor: A progressive-views
perspective for consistent and precise 3d editing. arXiv preprint arXiv:2506.00512, 2025.

A APPENDIX

A.1 LLM USAGE STATEMENT

The authors used ChatGPT-5 exclusively for grammar checking and language polishing of the
manuscript text. All technical content, experimental design, data analysis, and scientific conclu-
sions are the original work of the authors. The LLM was not involved in generating scientific ideas,
conducting experiments, or interpreting results.

A.2 TEXTURE EDITING

As shown in the Figure 8, we include an experiment on texture editing. Specifically, we render a
front-view image of the source mesh and perform texture edits on the rendered image using an image
editing model Labs et al. (2025). We then feed the edited image together with the original mesh into
Trellis to produce textured Gaussians. Finally, we bake the resulting texture onto the input mesh.
This procedure enables texture editing while preserving geometric consistency.

A.3 DEFORMATION EDITING

As shown in the Figure 9, Nano3D supports deformation-based editing while preserving overall
consistency.

A.4 SCENE EDITING

As shown in Figure 10, Nano3D successfully handles simple scene edits, with indoor examples
on the left and outdoor examples on the right. For complex scenes, however, Nano3D alone is
insufficient because the SLAT representation in TRELLIS cannot encode high-complexity inputs.
To address this limitation, we adopt a block-wise editing strategy. We partition a complex scene
into uniform blocks, each constrained to a level of complexity that TRELLIS can encode. We then
identify the block containing the target region and apply Nano3D only to that portion. Using this
strategy, we are able to edit an entire city-scale scene. As shown in Figure 11, we replace a building
with a garden and subsequently replace the fountain within the garden with a sculpture. These results
demonstrate that our Nano3D supports coherent and effective scene-level editing.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Raise the character’s arms outward 
into a T-pose

Raise the character’s arms forward and bend 
the elbows slightly, bringing both hands 
together in front of the chest

Editing MeshInput Mesh Editing MeshInput Mesh

Figure 9: Nano3D is capable of deformation; it can modify a character’s pose as required while
maintaining consistency.

Add a television on the table.

Editing SceneInput Mesh

Remove the helicopter from the garden.

Editing SceneInput Mesh

Figure 10: Two examples of scene editing using Nano3D are shown: the left illustrates indoor scene
editing, while the right illustrates outdoor scene editing.

Editing Scene-1Input Scene Editing Scene-2

Transform the house into a garden, with a 
fountain in the center of the garden.

Replace the fountain in the garden with a 
sculpture.

Figure 11: Two examples of block-wise complex scene editing using Nano3D are presented. In the
left example, a building within the city is replaced with a garden featuring a central fountain. In the
right example, the fountain in the garden is replaced with a sculpture.

A.5 ABLATION STUDY ON FRONT-VIEW SELECTION IN NANO3D

To investigate how the choice of front-view rendering influences Nano3D’s editing performance, we
conduct the ablation study illustrated in the Figure 13. Starting from a mesh with a fixed pose, we
render four distinct viewpoints and apply Nano3D editing to each view independently. The results
demonstrate that Nano3D produces plausible edits even when the input is a fully rear-facing view
(second to last row), despite a minor reduction in consistency. For the remaining three side-oriented
views, the method yields highly coherent and consistent outcomes. These observations indicate that
our method is robust to variations in the input viewpoint.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Input Mesh Editing Mesh

Replace the weapon in the character’s right hand with a red 
boxing glove, and add a waist bag on the character’s back.

Figure 12: Illustration of the multi-view guidance mechanism in Nano3D. To handle complex oc-
clusions and asymmetric objects, we independently edit the frontal and rear views of the input 3D
asset and inject them jointly into the FlowEdit pipeline. This strategy enables simultaneous editing
of spatially distinct features—such as adding a fist on the front and a backpack on the back—in a
single-pass process, significantly enhancing the system’s robustness.

A.6 MULTIVIEW 3D-FLOWEDIT

To address the challenges posed by complex occlusions and asymmetric objects, we incorporate
a multi-view guidance mechanism into the FlowEdit pipeline. Specifically, we independently per-
form image editing on both the frontal and rear views of the input 3D assets. These edited images
are then jointly injected into FlowEdit as guidance signals. As shown in Figure 12, this strategy
significantly enhances the robustness of Nano3D. For instance, the system successfully achieves si-
multaneous editing of spatially distinct features—such as a fist on the front and a backpack on the
back—thereby condensing a conventional two-stage workflow into a single-pass process. Conse-
quently, this approach substantially improves the overall robustness of Nano3D.

A.7 ADAPTIVE THRESHOLD ESTIMATION

To address the limitation where a fixed threshold τ = 100 fails to capture regions for fine-grained
edits—such as the subtle transformation of human ears into elf ears—we propose an Adaptive
Threshold Estimation algorithm. This method automatically adjusts τ according to the granularity
of the specific editing task.

Specifically, our algorithm dynamically determines the optimal threshold during mask generation.
We analyze the connected components of the potential edit regions; if the areas of all connected
components are smaller than the current threshold, we iteratively halve the threshold value (τ ←
⌊τ/2⌋). This process repeats until at least one connected component exhibits an area greater than or
equal to τ , ensuring that relevant editing regions are captured.

As illustrated in Figure 14, we demonstrate this using Nano3D to replace human ears with elf ears.
With a fixed threshold of τ = 100, the algorithm fails to generate a mask because the areas of the
largest connected components are [33, 30, 13, 6, 6, 6], all of which fall below 100. This results in
an unchanged output. In contrast, our adaptive approach detects this discrepancy and iteratively
reduces τ from 100 to 50, and subsequently to 25. At τ = 25, the regions corresponding to the ears
(areas 33 and 30) are successfully identified, generating an accurate edit mask.

In summary, this adaptive strategy effectively extends Nano3D’s capability to handle fine-grained
structural changes. By eliminating the need for manual hyperparameter tuning, it ensures robust
performance across editing tasks of vastly different scales.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Input View

Source Mesh

Editing Mesh

Editing Mesh

Editing Mesh

Editing Mesh

“Remove twin tails.”

Figure 13: Ablation study on the impact of front-view selection in Nano3D. The results demon-
strate that Nano3D produces plausible edits even when the input is a fully rear-facing view (second
to last row), despite a minor reduction in consistency. For the remaining three side-oriented views,
the method yields highly coherent and consistent outcomes. These observations indicate that our
method is robust to variations in the input viewpoint.

Input Mesh Editing Mesh

replacing human ears with elf ears

Figure 14: An example of our adaptive threshold estimation algorithm is shown in the figure, where
the task is to replace human ears with elf ears. The results indicate that, with the incorporation of this
algorithm, Nano3D can adaptively handle editing tasks exhibiting large variations in spatial scale,
without requiring any manual hyperparameter tuning.

A.8 ADDITIONAL EVALUATION RESULTS FOR THE EDITING DATASET

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Input Mesh Editing Mesh Input Mesh Editing Mesh

PrEditor3D（cvpr2025) Nano3D

Replace the rock on the car with a pizza.

Figure 15: We conduct a visual comparison between Nano3D and PrEditor Erkoç et al. (2025).
Given that PrEditor is not open-source, we utilize the results displayed on its official project page
for this comparison. As illustrated in the figure, PrEditor exhibits a noticeable lack of multi-view
consistency (highlighted by red boxes), which is particularly evident in the rear of the car and the
side mirrors. In contrast, our method achieves highly consistent editing results. These observations
demonstrate that Nano3D significantly outperforms the baseline in preserving global coherence.

In this section, we provide a comprehensive analysis of the Nano3D-Edit-100k dataset statistics and
a fine-grained performance evaluation. This analysis covers the distribution of editing types, the
complexity of editing instructions, and per-category semantic alignment metrics.

Distribution of Edit Types. To ensure the model’s robustness across diverse editing scenarios, we
curated the dataset to maintain a balanced composition of editing operations. As shown in Table 4,
the dataset comprises approximately 40% addition instructions, with removal and replacement op-
erations each accounting for 30%. This balanced distribution prevents the model from overfitting to
specific editing patterns.

Instruction Complexity Analysis. We assess the difficulty of the natural language instructions
to understand the dataset’s complexity profile. To ensure an objective and scalable assessment, we
employed a Vision-Language Model (VLM) as an evaluator. The VLM was prompted to score the
difficulty of each instruction on a scale from 0 (simplest) to 5 (most complex) using the following
prompt:

“You are an evaluator for 3D object editing tasks. Assess the difficulty of the
following instruction on a scale from 0 to 5: Instruction: {instruction}. Output
strictly only the single digit.”

The resulting distribution is presented in Table 5. The statistics indicate that the majority of instruc-
tions (53.87%) fall within the moderate difficulty range (Score 3). The distribution also retains a
significant portion of simpler instructions (Scores 0-2) and complex instructions (Score 4) to simu-
late real-world usage scenarios, while extreme cases (Score 1 and 5) remain rare.

Per-Category Semantic Alignment. Global metrics often mask category-specific performance
nuances. Therefore, we report the fine-grained semantic alignment results in Table 6.

Metric Note: It is important to emphasize that the ViLT R@5 and R@10 metrics in this table
are calculated via intra-class retrieval (retrieving the target from candidates within the same cate-
gory). This presents a significantly more challenging fine-grained discrimination task compared to
the global evaluation metrics reported in the main text (Global R@5: 45.3), where candidates are
drawn from the entire dataset.

Analysis: The results reveal that our method achieves highly stable and robust performance on
object-centric categories, such as Food and Personal Item. Conversely, performance is relatively
lower on categories characterized by high visual ambiguity or structural complexity, such as Weapon,

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Distribution of editing types in the Nano3D-Edit-100k dataset. The dataset maintains
a balanced distribution across three primary editing operations: adding, removing, and replacing
objects.

Edit Type Count Share (%)
Add 40,000 40.0
Remove 30,000 30.0
Replace 30,000 30.0

Total 100,000 100.0

Table 5: Distribution of scores in the dataset (Total N = 100, 000). The majority of samples fall
into Score 3, while extreme scores (1 and 5) are rare.

Score Count Percentage (%)
0 12,982 12.98
1 56 0.06
2 14,674 14.67
3 53,870 53.87
4 18,390 18.39
5 28 0.03

Total 100,000 100.00

Table 6: Reports the per-category semantic alignment evaluation. It is worth noting that the R@5
and R@10 metrics in this table are calculated within each category (intra-class retrieval), which
presents a more challenging fine-grained discrimination task compared to the global evaluation met-
rics (R@5: 45.3) reported earlier.

Semantic Alignment Metrics
Category Count CLIPScore ViLT R@5 ViLT R@10
Human 20,755 40.17 34.2 44.4
Weapon 11,021 35.05 14.8 20.2
Furniture 10,442 39.12 33.6 45.4
Personal Item 10,277 38.70 39.0 52.2
Animal 10,186 39.59 32.4 42.6
Vehicle 9,376 38.47 28.4 36.6
Building 9,005 37.56 26.6 35.6
Electronic Device 5,283 38.52 29.6 39.2
Plant 4,441 38.67 29.0 37.8
Food 3,622 39.61 45.6 57.0

Building, and Plant. These findings highlight the challenge of fine-grained semantic alignment in
complex structural domains and suggest meaningful directions for future optimization.

A.9 MORE VISUALIZATION RESULTS

In Fig. 16, we showcase additional editing results covering three types of operations: addition,
removal, and replacement. As illustrated in the figure, our method, Nano3D, effectively preserves
both geometric and textural consistency of the 3D assets before and after editing.

A.10 CHOICE OF 3D REPRESENTATION: VOXEL VS. VECSET

We attempted to integrate FlowEdit into Hunyuan2.1 Hunyuan3D et al. (2025), but the inference
results were highly unstable. When using aggressive hyperparameters, the generated 3D assets col-
lapsed into fragmented or ”mud-like” shapes. Conversely, with more conservative hyperparameters,
the edited assets ignored the target condition entirely and reproduced a mesh nearly identical to the
source. We believe the primary reason FlowEdit works in TRELLIS but fails in Hunyuan2.1 lies

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

in the difference in 3D representations: TRELLIS uses a voxel-based representation, which is more
local and thus compatible with localized editing methods, whereas Hunyuan2.1 adopts a vecset-
based representation Zhang et al. (2023), which is more global and less suitable for transferring
such localized editing techniques.

A.11 EFFECT OF IMAGE CONSISTENCY IN FLOWEDIT EDITING

We sample several cases from the 3D-Alpaca dataset Ye et al. (2025b). As shown in Fig. 17, the
dataset exhibits poor 2D consistency: in the left example, the cabinet changes its position after
editing, while in the right example, the character’s scale is altered. Such inconsistencies between
pre- and post-edit renderings also lead to significant mismatches in the corresponding 3D assets.
Following this observation, we further evaluate our Nano3D framework using the same data in
Fig. 17. The results show that under such inconsistent 2D conditions, FlowEdit fails to achieve
reliable localized editing. Specifically, when n max is set large, the output remains nearly identical
to the source asset, ignoring the target condition; when n max is set small, the source condition is
disregarded and the results become entirely inconsistent.

A.12 THE PROMPT USED TO GENERATE EDITING INSTRUCTION FROM THE RENDERING

As shown in the Table. 7, we present an example of constructing editing instructions with a VLM.
A strict template is used to constrain the VLM and prevent it from generating instructions beyond
Nano3D’s capabilities.

A.13 FLOWEDIT

Given a source image xsrc ∼ Xsrc and target image xtgt ∼ Xtgt with corresponding conditions
csrc, ctgt, their flow matching-based Lipman et al. (2023) generative trajectories pt, qt are respec-
tively defined as

pt = (1− t)xsrc + tϵsrc, (6)
qt = (1− t)xtgt + tϵtgt. (7)

where t ∈ [0, 1] is the timesteps, ϵsrc, ϵtgt ∼ N (0, I) are the randomly sampled noise, and these
trajectories are differentiated with t to obtain the velocity fields vt(pt, csrc), vt(qt, ctgt):

vt(pt, csrc) =
dpt
dt

= ϵsrc − xsrc, (8)

vt(qt, ctgt) =
dqt
dt

= ϵtgt − xtgt. (9)

where the trajectories infer the images reversely and gradually by integrating the velocity fields
from noise. In practice, the real velocity fields vt(pt, csrc), vt(qt, ctgt) cannot be computed directly.
Existing approaches convert them to conditional velocity fields Lipman et al. (2023) and train a
model θ to predict vθt (pt, csrc), v

θ
t (qt, ctgt).

Unlike the generation from noise to image, FlowEdit directly defines an editing trajectory xt from
the source image to target image by first aligning the starting noise of their generative trajectories
(i.e., ϵ = ϵsrc = ϵtgt), which is based on the assumption that most regions of the source and target
images are same, except for the edited regions. Then, we reformulate by combining Eq. 6 and Eq. 7:

xt = xsrc + qt − pt. (10)

where x1 = xsrc and x0 = xtgt, and its velocity field is

vt =
dxt

dt
≈ vθt (qt, ctgt)− vθt (pt, csrc). (11)

Therefore, this editing trajectory starts from the source image at t = 1 and gradually moves toward
the target image at t = 0, guided by the semantic provided the velocity field differences in Eq. 11. At
each t, the computation of vt requires vθt (pt, csrc), v

θ
t (qt, ctgt), and predicting them further depends

on pt, qt, which is usually obtained by inverting the source image to the t-th timestep Wang et al.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(2024). However, the additional inversion steps incur significant time cost. In contrast, FlowEdit
shifts to constructing pt using the forward process in Eq. 6, and computes qt using Eq. 10:

pt = (1− t)xsrc + tϵt, (12)
qt = xt + pt − xsrc. (13)

where ϵt ∼ N (0, I) is the sampled noise at the t-th timestep. This substantially improves the
efficiency of the editing process, and since both the computation of qt, vθt (qt, ctgt) start from the
intermediate latent of source image rather than the original noisy latent used in generation, the
edited target image retains the structure consistency with source image.

The complete editing process is assembled in Alg. 1. In this paper, we leverage FlowEdit for 3D
object editing, transforming the edited entity from the image x to voxel s.

Algorithm 1 Sampling mode of FlowEdit

Input: xsrc, csrc, ctgt
Output: xtgt
Init: x1 ← xsrc
for t← 1 to 0 do

ϵt ∼ N (0, I)
pt ← (1− t)xsrc + tϵt
qt ← xt − xsrc + pt
vθt (pt, csrc)←Modelθ(pt, csrc, t)
vθt (qt, ctgt)←Modelθ(qt, ctgt, t)
vt ← vθt (qt, ctgt)− vθt (pt, csrc)
xt−1 ← xt + vtdt

Return: xtgt ← x0

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 7: The prompt used to generate editing instruction from the rendering
Editing Action Prompt

Replace

Given an image, generate a short “replace” type editing instruction in the format:
Replace [original object/part/pattern] with [new element]

Additional Requirements:
The [original object/part/pattern] must already exist in the image.
It can be an entire object, a part of an object, a geometric shape, or a pattern.
The [new element] should clearly differ from the original and fit naturally into the image.
It can be another object, a different part, a new shape, text, or a new pattern.
Avoid replacing with intangible elements (e.g., gases, smoke, light, shadow).
Do not change colors — replacements must not involve altering the color of any existing
element.

General Rules:
Keep the instruction short and clear.
No extra explanation or description.

Remove

Given an image, generate a short ’remove; type editing instruction in the format:
Remove [object/part]

Additional Requirements:
The [object/part] must already exist in the image.
It can be the whole object or a specific part of an object (e.g., handle of a cup, branch of a
tree).
The removal should be visually noticeable and affect the composition of the image.
Avoid removing intangible elements (e.g., light, shadow, gases, smoke).

General Rules:
Keep the instruction short and clear.
No extra explanation or description.

Add

Given an image, generate a short “add” type editing instruction in the format:
Add [element] to [location]

Additional Requirements:
The [location] can be:
an existing object in the image,
a position within the image (e.g., top left, bottom center),
or a specific part/position of an object (e.g., handle of a cup, roof of a house).
The [element] should blend naturally into the image and not appear abrupt.
It can be an object, text, pattern, or other visual addition.
Avoid adding gases, smoke, or other intangible elements.

General Rules:
Keep the instruction short and clear.
No extra explanation or description.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Replace the bottom part of the lamp 
with a rectangular stone base.

Add a basket to the front of 
the scooter.

Add a shield to the warrior’s  
hand.

Remove the bottom drawer.

Replace the front wheel with 
a wooden wheel.

Add trousers to the character.

Open the wooden door from 
the archway.

Add a carrot  to the snowman’s 
mouth.

Add a white flag to the mast 
of the boat.

Add a white cushion to the 
seat of the chair.

Add a padlock to he chest. Remove the red flag from 
the top of the chest.

Add a statue to the top of the 
pyramid.

Replace the chimney with a 
bell.

Remove the hat from the 
character’s head.

Replace the bucket with a 
bulldozer blade.

Remove the veil from the 
character’s head.

Remove the tail feathers 
from the bird.

Figure 16: We present additional editing results involving addition, removal, and replacement.
Edited regions are highlighted with red dashed circles. As shown, Nano3D achieves high editing
consistency, preserving geometry and texture outside the edited areas.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Source image Edited image Source image Edited image
example1 example2

Figure 17: A bad case sampled from the 3D-Alpaca Ye et al. (2025b) dataset shows that its image
consistency before and after editing is poorly maintained.

25


	Introduction
	Related Work
	2D Image Editing
	3D Object Editing

	Preliminary
	FlowEdit
	Trellis

	Method
	Overview
	FlowEdit
	Voxel/Slat-Merge
	Nano3D

	Evaluation
	Setup
	Main Result
	Ablation Study

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	LLM Usage Statement
	redTexture Editing
	redDeformation Editing
	redScene Editing
	redAblation Study on Front-View Selection in Nano3D
	redMultiview 3D-FlowEdit
	redAdaptive Threshold Estimation
	Additional evaluation results for the editing dataset
	More visualization results
	Choice of 3D Representation: Voxel vs. VecSet
	Effect of Image Consistency in FlowEdit Editing
	The prompt used to generate editing instruction from the rendering
	FlowEdit


