
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NANO3D: A TRAINING-FREE APPROACH FOR EFFI-
CIENT 3D EDITING WITHOUT MASKS

Anonymous authors
Paper under double-blind review

User:
Removing the chair

User:
Holding a sword

User:
Replacing the eagle 
head with lion head

Task-1:Removing Task-2:Adding Task-3: ReplacingNano3D

FlowEdit

Voxel Merge

SLat Merge

Input

User:
replace the chicken 

with a dog

Editing Prompt

3D assets w/o mask

Output

…
Figure 1: Highly-consistent 3D objects edited by Nano3D. Our framework supports a range of
training-free and part-level tasks especially on shape, including removal, addition, and replacement,
while only requiring users to provide source 3D objects and instructions, without any mask.

ABSTRACT

3D object editing is essential for interactive content creation in gaming, animation,
and robotics, yet current approaches remain inefficient, inconsistent, and often fail
to preserve unedited regions. Most methods rely on editing multi-view render-
ings followed by reconstruction, which introduces artifacts and limits practical-
ity. To address these challenges, we propose Nano3D, a training-free framework
for precise and coherent 3D object editing without masks. Nano3D integrates
FlowEdit into TRELLIS to perform localized edits guided by front-view render-
ings, and further introduces region-aware merging strategies, Voxel/Slat-Merge,
which adaptively preserve structural fidelity by ensuring consistency between
edited and unedited areas. Experiments demonstrate that Nano3D achieves su-
perior 3D consistency and visual quality compared with existing methods. Based
on this framework, we construct the first large-scale 3D editing datasets Nano3D-
Edit-100k, which contains over 100,000 high-quality 3D editing pairs. This work
addresses long-standing challenges in both algorithm design and data availability,
significantly improving the generality and reliability of 3D editing, and laying the
groundwork for the development of feed-forward 3D editing models.

1 INTRODUCTION

Generative models for 3D asset creation have made tremendous progress Lai et al. (2025); Chen
et al. (2025b; 2024d); Wang et al. (2023), leading to widespread applications across entertainment,
robotics, and healthcare. In particular, recent rectified flows (reflows) Liu et al. (2022), such as
TRELLIS Xiang et al. (2025), achieve high-quality 3D object generation by embedding heteroge-
neous representations into a unified latent space while explicitly disentangling geometry and ap-
pearance. Beyond generation, editing (i.e., revising the intended region while keeping other regions
unchanged) is also valuable as users usually need to refine existing assets rather than regenerate en-
tirely new ones, which requires multiple unpredictable iterations to obtain a satisfactory result. For
example, TRELLIS can generates diverse plausible appearances easily with style-modified text or
image prompts, such as texture and material, but fail to reliably repeat identical geometries.

In image editing, an increasing number of powerful models have recently emerged, including GPT-
4o Hurst et al. (2024), Flux.1 Kontext Labs et al. (2025), and Nano Banana Fortin et al. (2025).

1
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A closer look at the evolution of these models reveals a clear three-stage development paradigm.
Stage 1 introduced training-free image editing algorithms Hertz et al. (2022), which demonstrated
the feasibility of editing without model finetuning. Stage 2 focused on the automatic construction
of large-scale, high-quality paired editing datasets, providing the foundation for supervised learn-
ing Brooks et al. (2023). Stage 3 leveraged these datasets to train feedforward image editing models
capable of real-time inference and high fidelity generation.

In contrast, 3D object editing still remains bottlenecked in the initial stage (i.e., algorithm). Specifi-
cally, existing methods, such as those based on Score Distillation Sampling (SDS) Sella et al. (2023)
or the “multi-view editing then reconstruction” paradigm Qi et al. (2024), struggle to maintain con-
sistency across views or attributes and usually demand time-consuming optimization. This leaves us
wondering: can 3D objects be edited versatilely, efficiently and consistently in a training-free man-
ner using only pretrained generative models, as achieved in 2D images? Resolving this problem
will allow 3D object editing to enter a virtuous cycle of data expansion and training models capable
of flexible asset customization, thereby accelerating the whole field toward maturity like 2D images.

We propose Nano3D, a training-free 3D editing algorithm designed for constructing paired 3D edit-
ing datasets. Drawing inspiration from the training-free 2D editing method FlowEdit Kulikov et al.
(2024), Nano3D leverages the first stage of TRELLIS to generate an iterative trajectory from input
to edited voxel representations, thereby enabling efficient training-free 3D editing.

To further enhance source consistency between the original and edited objects, we introduce a
region-aware merging strategy, Voxel/Slat-Merge, applied after TRELLIS’s two-stage geometry and
appearance editing. Based on simple connectivity analysis, this strategy adaptively identifies mod-
ified voxel regions in the edited 3D object and integrates them back into the original object. This
effectively merges the edited content while preserving the structure of unedited regions.

Building on the Nano3D algorithm, we design an efficient pipeline for large-scale construction of
3D editing datasets and generate a high-quality dataset of 100,000 samples——Nano3D-Edit-100k.
Our work addresses two long-standing gaps in the 3D editing domain—the lack of training-free
editing algorithms and the absence of large-scale datasets—thereby laying a solid foundation for the
third stage of 3D editing: training feedforward models under 3D editing supervision.

Overall, our contributions can be summarized as follows:

• We make the first attempt to introduce FlowEdit to 3D object editing, demonstrating that the
powerful priors of 3D object generative models can also support effective training-free editing
(like 2D images)

• We propose Voxel/Slat-Merge, a region-aware merging strategy that automatically preserves
source consistency in the non-edited regions of 3D objects.

• We develop a user-friendly 3D editing framework, Nano3D, which achieves state-of-the-art edit-
ing performance without requiring any manual masks.

• Building upon Nano3D, we curate the first large-scale 3D editing dataset Nano3D-Edit-100k,
comprising over 100,000 high-quality samples to support further research and development.

2 RELATED WORK

2.1 2D IMAGE EDITING

With the advent of large-scale 2D generative models, image editing has shifted from manual pixel-
level operations to controllable semantic-level manipulation. Early approaches modify noisy latents
via inversion to balance new details with original structures Meng et al. (2021); Mokady et al. (2023);
Abdal et al. (2019), while others finetune generative models on curated editing pairs to enable in-
struction following Brooks et al. (2023); Wei et al. (2024); Sheynin et al. (2024). Localized editing
has also been explored through attention map manipulation Hertz et al. (2022); Tumanyan et al.
(2023); Couairon et al. (2022), and adapters have been introduced to inject additional conditions for
enhanced controllability Ye et al. (2023); Ju et al. (2024); Mou et al. (2024). More recently, rec-
tified flows (reflow) Liu et al. (2022); Esser et al. (2024) have enabled high-fidelity synthesis with
few sampling steps. To support reflow-based editing, RFSolver Wang et al. (2024) approximates
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ODEs via higher-order Taylor expansion while preserving structures through attention replacement,
whereas FlowEdit Kulikov et al. (2024) introduces an inversion-free strategy by interpolating be-
tween sampled noise and the source image.

2.2 3D OBJECT EDITING

Compared to 2D image editing, maintaining spatial consistency is substantially more challenging
in 3D. Many approaches adopt score distillation sampling (SDS) Poole et al. (2022) to optimize 3D
representations using gradients from pretrained 2D diffusion models Sella et al. (2023); Li et al.
(2024); Chen et al. (2024c); Palandra et al. (2024); Chen et al. (2023). Others edit multi-view im-
ages and reconstruct them with large reconstruction models (LRMs) Qi et al. (2024); Chen et al.
(2024a); Barda et al. (2025); Huang et al. (2025); Erkoç et al. (2025); Bar-On et al. (2025); Zheng
et al. (2025); Li et al. (2025a); Gao et al. (2024), or directly manipulate triplanes as a bridge between
2D and 3D Kathare et al. (2025); Bilecen et al. (2025). Inspired by InstructPix2Pix Brooks et al.
(2023), several works construct paired 3D editing datasets for supervised training Ye et al. (2025b);
Xu et al. (2023). To enable finer control, diverse conditions such as sketches Mikaeili et al. (2023);
Liu et al. (2024); Guillard et al. (2021), part-level masks Chen et al. (2025a); Yang et al. (2025a;b),
and point-based dragging Chen et al. (2024b); Xie et al. (2023); Lu et al. (2025) have been ex-
plored. More recently, rectified flows (reflow) Zhao et al. (2025); Li et al. (2025b); Ye et al. (2025a)
achieved large-scale 3D generation and zero-shot appearance editing, yet still face bottlenecks in
shape modification. In this work, we unlock their potential for versatile and consistent 3D editing in
a training-free and user-friendly manner.

3 PRELIMINARY

3.1 FLOWEDIT

FlowEdit Kulikov et al. (2024) is a text-guided image editing method tailored for text-to-image
flow models. It is characterized by being inversion-free, optimization-free, and model-agnostic.
Rather than relying on traditional inversion-reconstruction processes that often introduce distortion,
FlowEdit constructs an ordinary differential equation (ODE) trajectory in the latent space from the
source prompt to the target prompt. This trajectory enables direct evolution of image representations
over the velocity field. By leveraging a weighted combination of the source and target velocity fields,
FlowEdit ensures a shorter editing path and stronger structural preservation throughout the editing
process. Therefore, given a source image, along with the two conditions before and after editing
(e.g., the text describing the image or a single view rendered from the 3D asset), the pretrained
generative models can adopt FlowEdit to output the target image. We provide a more detailed
descriptions of FlowEdit’s editing process in Sec. A.13

3.2 TRELLIS

TRELLIS generates 3D objects through a two-stage geometry-appearance decoupling pipline. In
stage 1, it predicts a sparse structure from noise, which represents geometry by a voxel occupancy
grid s = {si}Li=1, where si ∈ {0, 1, . . . , N − 1}3, L is the grid spatial length and N is the number
of active voxels. In stage 2, TRELLIS predicts a structured latent (SLat) based on s, which
further incorporates appearance information, represented by z = {(zi, si)}Li=1, where zi ∈ RC is
the aggregated multi-view DINOv2 feature for the i-th voxel, with C as the feature dimensionality.

4 METHOD

4.1 OVERVIEW

A common approach is to edit rendered images of a 3D object and reconstruct it with a generative
model, but this often breaks geometric consistency. To address this, we introduce FlowEdit into
the first-stage generation of TRELLIS (Sec. 4.2). To further ensure geometric and appearance con-
sistency, we propose Voxel/Slat-Merge (Sec. 4.3), which detects edited regions and integrates them

3
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Figure 2: The Nano3D pipeline. The original 3D object is voxelized and encoded into sparse
structure and structured latent respectively. Stage 1 modifies geometry via Flow Transformer with
FlowEdit, guided by Nano Banana–edited images. Stage 2 generates structured latents with Sparse
Flow Transformer, supporting TRELLIS-inherent appearance editing. Voxel/Slat-Merge further en-
sures consistency across both stages before decoding the final 3D object.

with unedited ones. Finally, we present a training-free, user-friendly pipeline (Sec. 4.4) that also
supports large-scale dataset construction. By combining FlowEdit with Voxel/Slat-Merge, Nano3D
achieves geometrically consistent and semantically faithful 3D object editing within TRELLIS.

4.2 FLOWEDIT

Inspired by FlowEdit’s success in 2D image editing, we extend it to 3D object editing by integrating
it into TRELLIS stage 1, leveraging the pretrained generative prior to establish an editing path
between source and target objects instead of starting from noise. The input is the source 3D voxel
grid ssrc, TRELLIS applies the FlowEdit algorithm to output the edited target voxel grid stgt, by
treating the rendered front-view image csrc and the modified target front-view image ctgt as the
source control condition and the target control condition respectively. Specifically, this process is
divided into the following two stages:

Front-View Image Editing. Given the editing instruction txt and the rendered front-view image
csrc of the source 3D object, we first utilize the advanced 2D image editing model Nano Banana to
edit csrc, thereby obtaining the edited front-view image ctgt of the target 3D object.

Voxel Editing. Subsequently, we consider the voxel grids ssrc, stgt of the source and target 3D
objects, and define the noise-to-voxel generation trajectories as pt, qt. With csrc, ctgt serving as
conditions, the velocity fields vθt (pt, csrc), v

θ
t (qt, ctgt) of these trajectories are predicted by the

pretrained Flow Transformer from TRELLIS stage 1. Then FlowEdit is adopted to establish an
editing trajectory st with timestep t ∈ [0, 1] by aligning pt, qt to start from the same sampled noise
ϵ ∼ N (0, I):

st = ssrc + qt − pt, (1)

≈ ssrc +
(
vθt (qt, ctgt)− vθt (pt, csrc)

)
dt. (2)

where pt = (1− t)ssrc + t ϵ, qt = (1− t)stgt + t ϵ.

Such rectified flow-based trajectory gradually moves toward s0 = stgt under the semantic guidance
provided by the velocity field differences, and preserves the source geometry consistency by starting
from s1 = ssrc, rather than directly generates stgt from a random noise.

4.3 VOXEL/SLAT-MERGE

4
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Voxel-Merge. We observe that the voxel edited by FlowEdit sometimes still exhibit minor geometry
inconsistencies with the source 3D object, e.g., when editing a dragon to remove its wings, the result
may not only modify the wings but also inadvertently alter other unrelated regions. To this end, we
further introduce a region-aware merging strategy, Voxel-Merge, which takes the source 3D voxel
grid ssrc and the FlowEdit-edited voxel grid sfe as inputs, and outputs the final target voxel
grid stgt that merges the desirable edited regions from sfe with the non-edited regions from
ssrc. Specifically, it defines a difference map g via an element-wise XOR operation between ssrc
and sfe:

g(i) = ssrc(i)⊕ sfe(i) =

{
1, if ssrc(i) ̸= sfe(i),

0, if ssrc(i) = sfe(i).
∀i (3)

where all modified elements of sfe are explicitly marked with 1, and connectivity analysis is em-
ployed on such elements to group them into distinct regions. Regions larger than the threshold τ
are then selected, separating the desired edited regions from those irrelevant modifications. Next, a
binary mask m is initialized, with elements corresponding to the selected regions set to 1 and the
rest to 0. Finally, another XOR operation is performed between the mask and ssrc:

ssrc ⊕m→ stgt. (4)

thereby transferring the correct edited regions onto ssrc with the non-edited regions preserved.

Now that the geometry consistency is sufficiently achieved, we proceed to feed the merged voxel grid
stgt together with the edited front-view image ctgt into TRELLIS stage 2, leveraging its pretrained
Sparse Flow Transformer to output the target SLat ztgt. To similarly ensure the generated SLat
ztgt are consistent with zsrc encoded from the original 3D object, we also introduce SLat-Merge by
reusing the mask m during the Voxel-Merge stage and performing:

zsrc ⊕m→ z·tgt. (5)

Therefore, SLat-Merge outputs the final merged target SLat z·tgt by combining the appear-
ance features of both the non-edited and desirable edited regions from the input zsrc and ztgt,
preserving the apprearance consistency.

4.4 NANO3D

As illustrated in Fig. 2, Nano3D builds upon TRELLIS to enable decoupled geometry and ap-
pearance editing of 3D objects. The input object is voxelized and, along with DINOv2 Oquab et al.
(2023) features, encoded into a structured latent representation via a VAE Kingma & Welling (2013).
Meanwhile, we use Nano Banana with the front view of a 3D asset and editing instructions as input
to generate the edited front view. In TRELLIS-Stage 1, we replace the standard flow iteration with
FlowEdit, which takes the source object’s voxel and the before/after front views as input, and outputs
the edited voxel. We then apply Voxel-Merge to ensure geometric consistency. In TRELLIS-Stage
2, the edited voxel and edited front view jointly guide TRELLIS to generate the final SLat. At this
stage, we further adopt Slat-Merge to guarantee both geometric and texture consistency. Finally, the
edited SLat is decoded by the VAE to reconstruct the target 3D object.

Data Construction Pipeline. As illustrated in Fig. 3, we extend Nano3D by constructing a complete
and streamlined 3D editing data generation pipeline. The process consists of the following stages:

1. Image Sampling from Existing Datasets: We sample views from publicly available 3D
asset datasets Xiang et al. (2025); Deitke et al. (2022). For each asset, the frontal view is
selected as the editing target.

2. Instruction Generation via VLM: An editing instruction is automatically generated us-
ing the vision-language model Qwen-VL-2.5 Bai et al. (2025), based on three predefined
prompt templates:

• Add: add <something> to <somewhere>
• Remove: remove <something> in <somewhere>
• Replace: replace <something> with <something>

The model fills in these templates with visual context from the image to produce diverse
and semantically grounded instructions.

5
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Source Image

Nano3D

Replace <the chicken> 
with <a dog>.

Source Mesh

Edited Mesh

Data Filter

Yes NoQwen2.5-vl

Edited Instruction

Figure 3: Data Construction Pipeline. The figure shows our pipeline. We first sample images
from the dataset and prompt Qwen2.5-VL to generate editing instructions by completing templates.
Trellis then generates 3D meshes from the images. Finally, the image, instruction, and mesh are fed
into Nano3D, and the resulting 3D assets are filtered for quality.

3. 3D Asset Generation via TRELLIS: Given the selected image, we use TRELLIS to
reconstruct the corresponding 3D asset. Instead of using the original mesh, we choose
to regenerate the source mesh via TRELLIS for two reasons: (1) obtaining the structured
latent (sLat) from the original mesh requires rendering ∼150 views, which is inefficient;
(2) the reconstructed sLat still diverges from the original mesh due to the inherent loss in
TRELLIS’s VAE encoding. Using the TRELLIS-reconstructed mesh ensures consistency
and reduces computational overhead.

4. Image Editing via Nano-Banana or Flux-Kontext: The generated instruction is input
into Nano-Banana or Flux-Kontext to synthesize the edited target image.

5. 3D Editing via Nano3D: The original 3D asset, the source image, and the edited image
are fed into Nano3D, which outputs an edited 3D asset.

5 EVALUATION

5.1 SETUP

Implementation Detail. Our method is implemented on TRELLIS. The sampling step is fixed at 25,
and FlowEdit is configured with nmax = 15, nmin = 0, and navg = 5. The CFG guidance scales
for vθt (pt) and vθt (qt) are set to 1.5 and 5.5, respectively, with λ set to 0.5. For both Voxel-Merge and
Slat-Merge, τ is set to 100. For the construction of Nano3D-Edit-100k, we employ 32 A800 GPUs
for inference, utilizing the Qwen2.5-vl-72B API to generate editing instructions and Flux-Kontext
to perform image editing operations. The creation of each editing pair required approximately five
minutes, and empirical observations revealed two key findings: first, the vast majority of failed
cases originated from errors in the image editing stage, whereas successful adherence to instruc-
tions at this stage led to a very high success rate in the subsequent Nano3D editing process; second,
the predominant computational cost arose from the Flexicube module, which consumed nearly 4.5
minutes per pair, while the preceding steps required only about 30 seconds. Based on these observa-
tions and in order to further reduce computational overhead, we adopted a storage strategy in which
only the SLAT (Structured Latent) representation and the voxel sum of each asset are preserved,
thereby allowing users to flexibly decide whether to directly train on SLAT or to employ Flexicube
to convert SLAT into explicit GLB meshes for downstream applications. To improve dataset qual-
ity, we use Qwen2.5-VL-7B to automatically filter edited images based on instruction compliance.
Non-compliant samples are returned to the pool for re-sampling.

Baseline. We select three representative state-of-the-art methods as baselines: Vox-E based on
SDS, Tailor3D based on ”multi-view editing then reconstruction”, and TRELLIS, which leverages
a RePaint-based method. For all baselines, we strictly follow their original implementations and use
the official codebases to obtain the results reported in this paper.

Dataset. Our Nano3D-Edit-100k dataset comprises two sources of image data: images collected
from the internet and rendered views from the Trellis-500K dataset. During dataset construction, we

6
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Add a shield to the penguin’s 
left hand.

Remove one leaf from the 
right side of the stem.

Remove the backpack from 
the character’s back.

Replace the shield in the 
character’s hand with a sword.

Remove the handle from the 
lamp.

Remove the chimney from the 
train.

Add a satellite dish on top of 
the house.

Remove the dragon horn 
headpiece from the character’s 
head.

Add a basket to the front of 
the scooter.

Add a shield to the warrior’s  
hand.

Remove the bottom drawer.

Replace the jacket with a 
yellow down coat

Replace the front wheel with 
a wooden wheel.

Add trousers to the character.

Open the wooden door from 
the archway.

Add a carrot  to the snowman’s 
mouth.

Add a white flag to the mast 
of the boat.

Figure 4: Qualitative results. We present three edit types—object removal, addition, and replace-
ment. In each case, Nano3D confines changes to the target region (red dashed circles) and produces
view-consistent edits, while leaving the rest of the scene unchanged. Geometry stays sharp and
textures remain faithful in unedited areas, with no noticeable artifacts.

follow the methodology of 3D-Alpaca Ye et al. (2025b), employing Qwen2.5-VL to automatically
annotate 3D assets and classify them accordingly. We then perform class balancing across ten dis-
tinct categories, ultimately selecting 100K image samples. We select 100 representative cases from
the Nano3D-Edit-100k dataset for the experiments and demonstrations in this section.

Metric. We systematically evaluate the edited 3D objects from three perspectives: source structure
preservation, target semantic alignment, and generation quality. For source structure preservation,
we assess non-edited regions against the original 3D object using Chamfer Distance (CD) Fan et al.
(2017). For target semantic alignment, we employ the DINO-I Caron et al. (2021) metric to quantify
adherence to the target edited image. For generation quality, we use FID Heusel et al. (2017) on
rendered multi-view images to measure fidelity and diversity.

5.2 MAIN RESULT

Qualitative Comparison. As shown in Fig. 5, Nano3D not only strictly follows editing instruc-
tions but also maintains perfect structure consistency with the source 3D object across multi-view
images. In contrast, Tailor3D introduces noticeable geometry distortions and appearance artifacts.
Vox-E produces results that are overly blurry, smoothed, and misaligned with the target semantic.
TRELLIS, though showing relative improvements, still suffers from several issues, such as local
detail corruption, shape enlargement, and incorrect orientation. These findings demonstrate that our
method delivers impressive and steady visual effects beyond the reach of existing methods.

Quantitative Comparison. As shown in Tab. 1, Nano3D outperforms all baselines, achieving
the lowest CD and FID and the highest DINO-I score, indicating superior structural consistency,
perceptual quality, and semantic alignment, as seen in Fig. 5.

User Study. To assess editing quality and usability, we conducted a user study with 50 participants.
Each round presented the original 3D object, task instructions, and results from Tailor3D, Vox-E,

7
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Replace the stack of 
green notebooks with 

a stack of books.
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Input

Vox-E

Trellis

Nano3D

Holding a sword Remove the wings.
Make the backpack 
the boy is carrying 

bigger.
Replace the headban

d with a crown.

Figure 5: Qualitative comparison. Our method achieves the best editing performance with faithful
instruction semantic alignment and perfect original structure consistency across multi-view images.

Table 1: Quantitative comparison. Our
method achieves the best structure consis-
tency, semantic alignment with the target
edited image, and generation fidelity.

Method CD↓ DINO-I↑ FID↓

Tailor3D 0.037 0.759 140.93
Vox-E / 0.782 117.12
TRELLIS 0.019 0.901 49.57
Instant3DiT 0.014 0.879 56.73
Nano3D 0.013 0.950 27.85

Table 2: User study. Given that most users
favored TRELLIS and Nano3D, the results
for Tailor3D and Vox-E are omitted from the
table for clarity. As shown in the table, our
method is strongly preferred by participants,
significantly outperforming TRELLIS.

Method Prompt
Algn.

Visual
Quality

Shape
Preserv.

TRELLIS 32% 21% 5%
Nano3D 68% 79% 95%

TRELLIS, and Nano3D. Participants selected the best method based on Prompt Alignment, Visual
Quality, and Shape Preservation. As shown in Tab. 2, Nano3D received the highest preference across
all criteria, demonstrating superior semantic alignment, visual quality, and shape fidelity. For clarity,
Tailor3D and Vox-E results are omitted, as user choices mainly favored TRELLIS and Nano3D.
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Src Voxel Thres=100 Thres=50 Thres=30

Figure 6: Ablation study on τ . The leftmost voxel represents the pre-editing state, with the edit-
ing instruction being to remove the wings. The three voxels on the right correspond to the masks
generated during the voxel-merge stage for τ = 100, τ = 50, and τ = 30 (from left to right). As
observed, when τ = 100, the detected mask most accurately aligns with the editing regions, while
lower values include irrelevant non-editing areas.

Nano3D-Edit-100k v.s. 3D-Alpaca. High-quality 3D editing requires consistency in both 2D
image appearance and 3D structure—that is, the rendered images before and after editing should
remain coherent, and the 3D assets themselves should preserve structural integrity throughout the
editing process. The 3D-Alpaca dataset lacks both aspects, leading to significantly lower data quality
compared to ours. To quantify this, we randomly sample 500 edited pairs from each dataset and
evaluate text–image alignment using CLIPScore Hessel et al. (2021) and ViLT R-Precision Kim
et al. (2021). Specifically, we use a VLM to infer the caption of the edited asset based on the
original asset’s caption and the editing instruction. As shown in Table 3, our Nano3D-Edit-100k
consistently outperforms 3D-Alpaca across all metrics.

Table 3: Semantic alignment comparison between NANO3D-EDIT-100K and 3D-Alpaca.

CLIPScore ViLT R-Precision R@5 ViLT R-Precision R@10
3D-Alpaca 28.42 33.6 40.2
Nano3D-Edit-100k 39.71 45.3 52.4

5.3 ABLATION STUDY

Voxel/Slat-Merge. We sequentially validate the effectiveness of Voxel-Merge and Slat-Merge
strategies. As shown in Fig. 7, relying solely on FlowEdit leads to geometry misalignments and
deformations, accompanied by missing, blurred, and distorted appearances, resulting in obvious in-
consistencies with the original 3D object. Incorporating Voxel-Merge substantially improves the
overall performance, restoring geometry and enhancing cross-view global consistency, but leaving
appearance issues unresolved. With the additional incorporation of Slat-Merge, local visual quality
is further enhanced, and appearances exhibit greater consistency before and after editing. These re-
sults indicate that our methods effectively exploit the advantage of geometry-appearance decoupling
in 3D objects, ensuring more reliable consistency.

Ablation on τ . We further compare different values of τ , as shown in Fig. 6. The leftmost voxel
represents the pre-editing state, with the editing instruction being to remove the wings. The three
voxels on the right correspond to the masks generated during the voxel-merge stage for τ = 100,
τ = 50, and τ = 30 (from left to right). As observed, when τ = 100, the detected mask most
accurately aligns with the editing regions, while lower values include irrelevant non-editing areas.

6 CONCLUSION

In this work, we present Nano3D, a training-free and user-friendly framework for localized 3D ob-
ject editing, supporting operations such as object removal, addition, and replacement. By integrating
FlowEdit into the TRELLIS pipeline and introducing region-aware merging strategies (Voxel/Slat-
Merge), Nano3D achieves geometrically consistent and semantically faithful edits. Extensive ex-
periments demonstrate its state-of-the-art performance across diverse editing tasks. Furthermore,
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+FlowEdit
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Figure 7: Ablation study on Voxel/Slage-Merge. Our methods sequentially ensure geometry and
appearance consistency, demonstrating their complementary roles.

we construct Nano3D-Edit-100k, the first large-scale dataset tailored for 3D editing, enabling future
research on feedforward DiT-based editing models.

Limitation. Nano3D demonstrates strong performance in 3D editing tasks, but has the following
limitations: it supports only localized edits; the VAE in TRELLIS introduces reconstruction loss; and
the overall performance is constrained by TRELLIS’s generative capacity. We view these limitations
as important directions for future research.

7 ETHICS STATEMENT

We propose Nano3D, a training-free framework for precise and coherent 3D object editing without
masks. Building on this framework, we construct the first large-scale 3D editing dataset, Nano3D-
Edit-100k, which contains over 100,000 high-quality 3D editing pairs. This dataset is built upon
publicly available data and will be released as an open resource for the research community. We
declare no competing interests.

8 REPRODUCIBILITY STATEMENT

This paper presents a training-free 3D editing pipeline and, based on it, constructs a 100K-scale 3D
editing dataset. We will release all code, annotation scripts, and the dataset as open-source resources.
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Figure 8: Nano3D can perform texture editing without altering the geometry.
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A APPENDIX

A.1 LLM USAGE STATEMENT

The authors used ChatGPT-5 exclusively for grammar checking and language polishing of the
manuscript text. All technical content, experimental design, data analysis, and scientific conclu-
sions are the original work of the authors. The LLM was not involved in generating scientific ideas,
conducting experiments, or interpreting results.

A.2 TEXTURE EDITING

As shown in the Figure 8, we include an experiment on texture editing. Specifically, we render a
front-view image of the source mesh and perform texture edits on the rendered image using an image
editing model Labs et al. (2025). We then feed the edited image together with the original mesh into
Trellis to produce textured Gaussians. Finally, we bake the resulting texture onto the input mesh.
This procedure enables texture editing while preserving geometric consistency.

A.3 DEFORMATION EDITING

As shown in the Figure 9, Nano3D supports deformation-based editing while preserving overall
consistency.

A.4 SCENE EDITING

As shown in Figure 10, Nano3D successfully handles simple scene edits, with indoor examples
on the left and outdoor examples on the right. For complex scenes, however, Nano3D alone is
insufficient because the SLAT representation in TRELLIS cannot encode high-complexity inputs.
To address this limitation, we adopt a block-wise editing strategy. We partition a complex scene
into uniform blocks, each constrained to a level of complexity that TRELLIS can encode. We then
identify the block containing the target region and apply Nano3D only to that portion. Using this
strategy, we are able to edit an entire city-scale scene. As shown in Figure 11, we replace a building
with a garden and subsequently replace the fountain within the garden with a sculpture. These results
demonstrate that our Nano3D supports coherent and effective scene-level editing.
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Raise the character’s arms outward 
into a T-pose

Raise the character’s arms forward and bend 
the elbows slightly, bringing both hands 
together in front of the chest

Editing MeshInput Mesh Editing MeshInput Mesh

Figure 9: Nano3D is capable of deformation; it can modify a character’s pose as required while
maintaining consistency.

Add a television on the table.

Editing SceneInput Mesh

Remove the helicopter from the garden.

Editing SceneInput Mesh

Figure 10: Two examples of scene editing using Nano3D are shown: the left illustrates indoor scene
editing, while the right illustrates outdoor scene editing.

Editing Scene-1Input Scene Editing Scene-2

Transform the house into a garden, with a 
fountain in the center of the garden.

Replace the fountain in the garden with a 
sculpture.

Figure 11: Two examples of block-wise complex scene editing using Nano3D are presented. In the
left example, a building within the city is replaced with a garden featuring a central fountain. In the
right example, the fountain in the garden is replaced with a sculpture.

A.5 ABLATION STUDY ON FRONT-VIEW SELECTION IN NANO3D

To investigate how the choice of front-view rendering influences Nano3D’s editing performance, we
conduct the ablation study illustrated in the Figure 13. Starting from a mesh with a fixed pose, we
render four distinct viewpoints and apply Nano3D editing to each view independently. The results
demonstrate that Nano3D produces plausible edits even when the input is a fully rear-facing view
(second to last row), despite a minor reduction in consistency. For the remaining three side-oriented
views, the method yields highly coherent and consistent outcomes. These observations indicate that
our method is robust to variations in the input viewpoint.
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Input Mesh Editing Mesh

Replace the weapon in the character’s right hand with a red 
boxing glove, and add a waist bag on the character’s back.

Figure 12: Illustration of the multi-view guidance mechanism in Nano3D. To handle complex oc-
clusions and asymmetric objects, we independently edit the frontal and rear views of the input 3D
asset and inject them jointly into the FlowEdit pipeline. This strategy enables simultaneous editing
of spatially distinct features—such as adding a fist on the front and a backpack on the back—in a
single-pass process, significantly enhancing the system’s robustness.

A.6 MULTIVIEW 3D-FLOWEDIT

To address the challenges posed by complex occlusions and asymmetric objects, we incorporate
a multi-view guidance mechanism into the FlowEdit pipeline. Specifically, we independently per-
form image editing on both the frontal and rear views of the input 3D assets. These edited images
are then jointly injected into FlowEdit as guidance signals. As shown in Figure 12, this strategy
significantly enhances the robustness of Nano3D. For instance, the system successfully achieves si-
multaneous editing of spatially distinct features—such as a fist on the front and a backpack on the
back—thereby condensing a conventional two-stage workflow into a single-pass process. Conse-
quently, this approach substantially improves the overall robustness of Nano3D.

A.7 ADAPTIVE THRESHOLD ESTIMATION

To address the limitation where a fixed threshold τ = 100 fails to capture regions for fine-grained
edits—such as the subtle transformation of human ears into elf ears—we propose an Adaptive
Threshold Estimation algorithm. This method automatically adjusts τ according to the granularity
of the specific editing task.

Specifically, our algorithm dynamically determines the optimal threshold during mask generation.
We analyze the connected components of the potential edit regions; if the areas of all connected
components are smaller than the current threshold, we iteratively halve the threshold value (τ ←
⌊τ/2⌋). This process repeats until at least one connected component exhibits an area greater than or
equal to τ , ensuring that relevant editing regions are captured.

As illustrated in Figure 14, we demonstrate this using Nano3D to replace human ears with elf ears.
With a fixed threshold of τ = 100, the algorithm fails to generate a mask because the areas of the
largest connected components are [33, 30, 13, 6, 6, 6], all of which fall below 100. This results in
an unchanged output. In contrast, our adaptive approach detects this discrepancy and iteratively
reduces τ from 100 to 50, and subsequently to 25. At τ = 25, the regions corresponding to the ears
(areas 33 and 30) are successfully identified, generating an accurate edit mask.

In summary, this adaptive strategy effectively extends Nano3D’s capability to handle fine-grained
structural changes. By eliminating the need for manual hyperparameter tuning, it ensures robust
performance across editing tasks of vastly different scales.
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Input View

Source Mesh

Editing Mesh

Editing Mesh

Editing Mesh

Editing Mesh

“Remove twin tails.”

Figure 13: Ablation study on the impact of front-view selection in Nano3D. The results demon-
strate that Nano3D produces plausible edits even when the input is a fully rear-facing view (second
to last row), despite a minor reduction in consistency. For the remaining three side-oriented views,
the method yields highly coherent and consistent outcomes. These observations indicate that our
method is robust to variations in the input viewpoint.

Input Mesh Editing Mesh

replacing human ears with elf ears

Figure 14: An example of our adaptive threshold estimation algorithm is shown in the figure, where
the task is to replace human ears with elf ears. The results indicate that, with the incorporation of this
algorithm, Nano3D can adaptively handle editing tasks exhibiting large variations in spatial scale,
without requiring any manual hyperparameter tuning.

A.8 ADDITIONAL EVALUATION RESULTS FOR THE EDITING DATASET

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Input Mesh Editing Mesh Input Mesh Editing Mesh

PrEditor3D（cvpr2025) Nano3D

Replace the rock on the car with a pizza.

Figure 15: We conduct a visual comparison between Nano3D and PrEditor Erkoç et al. (2025).
Given that PrEditor is not open-source, we utilize the results displayed on its official project page
for this comparison. As illustrated in the figure, PrEditor exhibits a noticeable lack of multi-view
consistency (highlighted by red boxes), which is particularly evident in the rear of the car and the
side mirrors. In contrast, our method achieves highly consistent editing results. These observations
demonstrate that Nano3D significantly outperforms the baseline in preserving global coherence.

In this section, we provide a comprehensive analysis of the Nano3D-Edit-100k dataset statistics and
a fine-grained performance evaluation. This analysis covers the distribution of editing types, the
complexity of editing instructions, and per-category semantic alignment metrics.

Distribution of Edit Types. To ensure the model’s robustness across diverse editing scenarios, we
curated the dataset to maintain a balanced composition of editing operations. As shown in Table 4,
the dataset comprises approximately 40% addition instructions, with removal and replacement op-
erations each accounting for 30%. This balanced distribution prevents the model from overfitting to
specific editing patterns.

Instruction Complexity Analysis. We assess the difficulty of the natural language instructions
to understand the dataset’s complexity profile. To ensure an objective and scalable assessment, we
employed a Vision-Language Model (VLM) as an evaluator. The VLM was prompted to score the
difficulty of each instruction on a scale from 0 (simplest) to 5 (most complex) using the following
prompt:

“You are an evaluator for 3D object editing tasks. Assess the difficulty of the
following instruction on a scale from 0 to 5: Instruction: {instruction}. Output
strictly only the single digit.”

The resulting distribution is presented in Table 5. The statistics indicate that the majority of instruc-
tions (53.87%) fall within the moderate difficulty range (Score 3). The distribution also retains a
significant portion of simpler instructions (Scores 0-2) and complex instructions (Score 4) to simu-
late real-world usage scenarios, while extreme cases (Score 1 and 5) remain rare.

Per-Category Semantic Alignment. Global metrics often mask category-specific performance
nuances. Therefore, we report the fine-grained semantic alignment results in Table 6.

Metric Note: It is important to emphasize that the ViLT R@5 and R@10 metrics in this table
are calculated via intra-class retrieval (retrieving the target from candidates within the same cate-
gory). This presents a significantly more challenging fine-grained discrimination task compared to
the global evaluation metrics reported in the main text (Global R@5: 45.3), where candidates are
drawn from the entire dataset.

Analysis: The results reveal that our method achieves highly stable and robust performance on
object-centric categories, such as Food and Personal Item. Conversely, performance is relatively
lower on categories characterized by high visual ambiguity or structural complexity, such as Weapon,
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Table 4: Distribution of editing types in the Nano3D-Edit-100k dataset. The dataset maintains
a balanced distribution across three primary editing operations: adding, removing, and replacing
objects.

Edit Type Count Share (%)
Add 40,000 40.0
Remove 30,000 30.0
Replace 30,000 30.0

Total 100,000 100.0

Table 5: Distribution of scores in the dataset (Total N = 100, 000). The majority of samples fall
into Score 3, while extreme scores (1 and 5) are rare.

Score Count Percentage (%)
0 12,982 12.98
1 56 0.06
2 14,674 14.67
3 53,870 53.87
4 18,390 18.39
5 28 0.03

Total 100,000 100.00

Table 6: Reports the per-category semantic alignment evaluation. It is worth noting that the R@5
and R@10 metrics in this table are calculated within each category (intra-class retrieval), which
presents a more challenging fine-grained discrimination task compared to the global evaluation met-
rics (R@5: 45.3) reported earlier.

Semantic Alignment Metrics
Category Count CLIPScore ViLT R@5 ViLT R@10
Human 20,755 40.17 34.2 44.4
Weapon 11,021 35.05 14.8 20.2
Furniture 10,442 39.12 33.6 45.4
Personal Item 10,277 38.70 39.0 52.2
Animal 10,186 39.59 32.4 42.6
Vehicle 9,376 38.47 28.4 36.6
Building 9,005 37.56 26.6 35.6
Electronic Device 5,283 38.52 29.6 39.2
Plant 4,441 38.67 29.0 37.8
Food 3,622 39.61 45.6 57.0

Building, and Plant. These findings highlight the challenge of fine-grained semantic alignment in
complex structural domains and suggest meaningful directions for future optimization.

A.9 MORE VISUALIZATION RESULTS

In Fig. 16, we showcase additional editing results covering three types of operations: addition,
removal, and replacement. As illustrated in the figure, our method, Nano3D, effectively preserves
both geometric and textural consistency of the 3D assets before and after editing.

A.10 CHOICE OF 3D REPRESENTATION: VOXEL VS. VECSET

We attempted to integrate FlowEdit into Hunyuan2.1 Hunyuan3D et al. (2025), but the inference
results were highly unstable. When using aggressive hyperparameters, the generated 3D assets col-
lapsed into fragmented or ”mud-like” shapes. Conversely, with more conservative hyperparameters,
the edited assets ignored the target condition entirely and reproduced a mesh nearly identical to the
source. We believe the primary reason FlowEdit works in TRELLIS but fails in Hunyuan2.1 lies
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in the difference in 3D representations: TRELLIS uses a voxel-based representation, which is more
local and thus compatible with localized editing methods, whereas Hunyuan2.1 adopts a vecset-
based representation Zhang et al. (2023), which is more global and less suitable for transferring
such localized editing techniques.

A.11 EFFECT OF IMAGE CONSISTENCY IN FLOWEDIT EDITING

We sample several cases from the 3D-Alpaca dataset Ye et al. (2025b). As shown in Fig. 17, the
dataset exhibits poor 2D consistency: in the left example, the cabinet changes its position after
editing, while in the right example, the character’s scale is altered. Such inconsistencies between
pre- and post-edit renderings also lead to significant mismatches in the corresponding 3D assets.
Following this observation, we further evaluate our Nano3D framework using the same data in
Fig. 17. The results show that under such inconsistent 2D conditions, FlowEdit fails to achieve
reliable localized editing. Specifically, when n max is set large, the output remains nearly identical
to the source asset, ignoring the target condition; when n max is set small, the source condition is
disregarded and the results become entirely inconsistent.

A.12 THE PROMPT USED TO GENERATE EDITING INSTRUCTION FROM THE RENDERING

As shown in the Table. 7, we present an example of constructing editing instructions with a VLM.
A strict template is used to constrain the VLM and prevent it from generating instructions beyond
Nano3D’s capabilities.

A.13 FLOWEDIT

Given a source image xsrc ∼ Xsrc and target image xtgt ∼ Xtgt with corresponding conditions
csrc, ctgt, their flow matching-based Lipman et al. (2023) generative trajectories pt, qt are respec-
tively defined as

pt = (1− t)xsrc + tϵsrc, (6)
qt = (1− t)xtgt + tϵtgt. (7)

where t ∈ [0, 1] is the timesteps, ϵsrc, ϵtgt ∼ N (0, I) are the randomly sampled noise, and these
trajectories are differentiated with t to obtain the velocity fields vt(pt, csrc), vt(qt, ctgt):

vt(pt, csrc) =
dpt
dt

= ϵsrc − xsrc, (8)

vt(qt, ctgt) =
dqt
dt

= ϵtgt − xtgt. (9)

where the trajectories infer the images reversely and gradually by integrating the velocity fields
from noise. In practice, the real velocity fields vt(pt, csrc), vt(qt, ctgt) cannot be computed directly.
Existing approaches convert them to conditional velocity fields Lipman et al. (2023) and train a
model θ to predict vθt (pt, csrc), v

θ
t (qt, ctgt).

Unlike the generation from noise to image, FlowEdit directly defines an editing trajectory xt from
the source image to target image by first aligning the starting noise of their generative trajectories
(i.e., ϵ = ϵsrc = ϵtgt), which is based on the assumption that most regions of the source and target
images are same, except for the edited regions. Then, we reformulate by combining Eq. 6 and Eq. 7:

xt = xsrc + qt − pt. (10)

where x1 = xsrc and x0 = xtgt, and its velocity field is

vt =
dxt

dt
≈ vθt (qt, ctgt)− vθt (pt, csrc). (11)

Therefore, this editing trajectory starts from the source image at t = 1 and gradually moves toward
the target image at t = 0, guided by the semantic provided the velocity field differences in Eq. 11. At
each t, the computation of vt requires vθt (pt, csrc), v

θ
t (qt, ctgt), and predicting them further depends

on pt, qt, which is usually obtained by inverting the source image to the t-th timestep Wang et al.
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(2024). However, the additional inversion steps incur significant time cost. In contrast, FlowEdit
shifts to constructing pt using the forward process in Eq. 6, and computes qt using Eq. 10:

pt = (1− t)xsrc + tϵt, (12)
qt = xt + pt − xsrc. (13)

where ϵt ∼ N (0, I) is the sampled noise at the t-th timestep. This substantially improves the
efficiency of the editing process, and since both the computation of qt, vθt (qt, ctgt) start from the
intermediate latent of source image rather than the original noisy latent used in generation, the
edited target image retains the structure consistency with source image.

The complete editing process is assembled in Alg. 1. In this paper, we leverage FlowEdit for 3D
object editing, transforming the edited entity from the image x to voxel s.

Algorithm 1 Sampling mode of FlowEdit

Input: xsrc, csrc, ctgt
Output: xtgt
Init: x1 ← xsrc
for t← 1 to 0 do

ϵt ∼ N (0, I)
pt ← (1− t)xsrc + tϵt
qt ← xt − xsrc + pt
vθt (pt, csrc)←Modelθ(pt, csrc, t)
vθt (qt, ctgt)←Modelθ(qt, ctgt, t)
vt ← vθt (qt, ctgt)− vθt (pt, csrc)
xt−1 ← xt + vtdt

Return: xtgt ← x0
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Table 7: The prompt used to generate editing instruction from the rendering
Editing Action Prompt

Replace

Given an image, generate a short “replace” type editing instruction in the format:
Replace [original object/part/pattern] with [new element]

Additional Requirements:
The [original object/part/pattern] must already exist in the image.
It can be an entire object, a part of an object, a geometric shape, or a pattern.
The [new element] should clearly differ from the original and fit naturally into the image.
It can be another object, a different part, a new shape, text, or a new pattern.
Avoid replacing with intangible elements (e.g., gases, smoke, light, shadow).
Do not change colors — replacements must not involve altering the color of any existing
element.

General Rules:
Keep the instruction short and clear.
No extra explanation or description.

Remove

Given an image, generate a short ’remove; type editing instruction in the format:
Remove [object/part]

Additional Requirements:
The [object/part] must already exist in the image.
It can be the whole object or a specific part of an object (e.g., handle of a cup, branch of a
tree).
The removal should be visually noticeable and affect the composition of the image.
Avoid removing intangible elements (e.g., light, shadow, gases, smoke).

General Rules:
Keep the instruction short and clear.
No extra explanation or description.

Add

Given an image, generate a short “add” type editing instruction in the format:
Add [element] to [location]

Additional Requirements:
The [location] can be:
an existing object in the image,
a position within the image (e.g., top left, bottom center),
or a specific part/position of an object (e.g., handle of a cup, roof of a house).
The [element] should blend naturally into the image and not appear abrupt.
It can be an object, text, pattern, or other visual addition.
Avoid adding gases, smoke, or other intangible elements.

General Rules:
Keep the instruction short and clear.
No extra explanation or description.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Replace the bottom part of the lamp 
with a rectangular stone base.

Add a basket to the front of 
the scooter.

Add a shield to the warrior’s  
hand.

Remove the bottom drawer.

Replace the front wheel with 
a wooden wheel.

Add trousers to the character.

Open the wooden door from 
the archway.

Add a carrot  to the snowman’s 
mouth.

Add a white flag to the mast 
of the boat.

Add a white cushion to the 
seat of the chair.

Add a padlock to he chest. Remove the red flag from 
the top of the chest.

Add a statue to the top of the 
pyramid.

Replace the chimney with a 
bell.

Remove the hat from the 
character’s head.

Replace the bucket with a 
bulldozer blade.

Remove the veil from the 
character’s head.

Remove the tail feathers 
from the bird.

Figure 16: We present additional editing results involving addition, removal, and replacement.
Edited regions are highlighted with red dashed circles. As shown, Nano3D achieves high editing
consistency, preserving geometry and texture outside the edited areas.
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Source image Edited image Source image Edited image
example1 example2

Figure 17: A bad case sampled from the 3D-Alpaca Ye et al. (2025b) dataset shows that its image
consistency before and after editing is poorly maintained.
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