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Abstract

Adversarial attacks pose safety and security concerns for deep learning applications.1

Yet largely imperceptible, a strong PGD-like attack may leave strong trace in the2

adversarial example. Since attack triggers the local linearity of a network, we3

speculate network behaves in different extents of linearity for benign examples and4

adversarial examples. Thus, we construct Adversarial Response Characteristics5

(ARC) features to reflect the model’s gradient consistency around the input to indi-6

cate the extent of linearity. Under certain conditions, it shows a gradually varying7

pattern from benign example to adversarial example, as the later leads to Sequel8

Attack Effect (SAE). ARC feature can be used for informed attack detection (pertur-9

bation magnitude is known) with binary classifier, or uninformed attack detection10

(perturbation magnitude is unknown) with ordinal regression. Due to the unique-11

ness of SAE to PGD-like attacks, ARC is also capable of inferring other attack12

details such as loss function, or the ground-truth label as a post-processing defense.13

Qualitative and quantitative evaluations manifest the effectiveness of ARC feature14

on CIFAR-10 w/ ResNet-18 and ImageNet w/ ResNet-152 and SwinT-B-IN1K15

with considerable generalization among PGD-like attacks despite domain shift.16

Our method is intuitive, light-weighted, non-intrusive, and data-undemanding.17

1 Introduction18

Recent studies have revealed the vulnerabilities of deep neural networks by adversarial attacks [1, 2],19

where undesired output (e.g. misclassification) could be incurred by an imperceptible perturbation20

added to network input, posing safety and security concerns for respective applications. In the21

literature, PGD-like attacks, including BIM [1], PGD [2], MIM [3], and APGD [4], are strong and22

widely used. Yet, such strong attack may also leave strong trace in its result, as does in the feature23

maps [5]. Consider an extremely limited setting – given an already trained deep neural network and24

merely a tiny set (e.g., 50) of training data, without any change in architecture or weights, nor any25

auxiliary deep networks, can we still identify any trace of adversarial attack?26

Recall that FGSM [6], the foundation of PGD-like attacks, attributes network vulnerability to “local27

linearity” being easily triggered by adversarial perturbations. Thus, we conjecture that a network28

behaves in a higher extent of linearity to adversarial examples than to benign (i.e., unperturbed) ones.29

With the first-order Taylor expansion of a network, “local linearity” implies high gradient proximity30

in the respective local area. Thus, we can select a series of data points with stable pattern near the31

input as exploitation vectors using BIM [1] attack, and then compute the model’s Jacobian matrices32

with respect to them. Next, the Adversarial Response Characteristics (ARC) matrix is constructed33

from these Jacobian matrices reflecting the gradient direction consistency across all exploitation34

vectors. Different from benign examples, PGD-like attacks will trigger Sequel Attack Effect (SAE),35

leaving higher values in the ARC matrix and hence reflecting higher gradient consistency among36

exploitation vectors around the input. Visualization results suggest SAE is a gradually varying pattern37

with perturbation magnitude increasing, indicating feasibility of attack detection.38

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



Input Image
Take Jacobians

ARC Matrix
ARC Vector

Examples (            )
Take the n-th row from each

Repeat for                            and
gather all cosine similarity matrices

Jacobian and stack toegether

...

(either benign/adversarial)

(perturbed samples in local area

shape:

Exploitation Vectors

created using BIM with    steps)

1 2 3 T

R
es

N
et

-1
8

C
IF

A
R

-1
0

R
es

N
et

-1
52

Im
ag

eN
et

Sw
in

T
-B

-I
N

1K
Im

ag
eN

et(normalize rows to have 1 norm)

Select the matrix with Fit Laplacian
maximum mean value function

. =

Example Scatter Plot

Benign
Adversarial

Figure 1: Diagram for computing the ARC matrix and the ARC vector. They reflect the model’s
gradient consistency within a local linear area around the input to indicate the extent of linearity.
Shallow network like ResNet-18 shows higher linearity to benign examples, while deeper networks
like ResNet-152 and SwinT-B-IN1K show lower linearity.

The ARC matrix can be simplified into the 2-D ARC vector by fitting a Laplacian function due to39

their resemblance, in order to make subsequent procedure simple to interpret. The ARC vector can40

be used for informed attack detection (the perturbation magnitude ε is known) with an SVM-based41

binary classifier; or for uninformed attack detection (the perturbation magnitude ε is unknown) with42

an SVM-based ordinal regression model. The SAE is the unique trace of PGD-like attacks. Due43

to the uniqueness of SAE to PGD-like attacks, once the attack is detected, we can also infer some44

attack details including the attack loss function, or the ground-truth label used during the attack as a45

post-processing defense method.46

We evaluate our method on CIFAR-10 [7] with ResNet-18 [8], and ImageNet [9] with ResNet-152 [8]47

and SwinT-B-IN1K [10]. Qualitative and quantitative experimental results manifest the effectiveness48

of our method in identifying SAE, the unique trace of PGD-like attacks for attack detection, which49

also possess considerable generalization capability (despite domain shift among PGD-like attacks)50

even if training data only involves few benign and adversarial examples from BIM attack.51

Contributions. We present the ARC features to identify the unique trace, i.e., SAE of PGD-like52

attacks from adversarially perturbed inputs. It can be used for informed/uninformed attack detection53

and inferring attack details (including correcting prediction). Through the lens of ARC feature54

(reflecting network’s gradient behavior), we also obtain insights on why networks are vulnerable,55

as well as why adversarial training works well as a defense. Although our method is only sensitive56

to PGD-like attacks, it is (1) light-weighted (requires no auxiliary deep model); (2) non-intrusive57

(requires no change to the network architecture or weights); (3) data-undemanding (can generalize58

with very few samples). Such a problem setting is extremely limited, requiring strong cues to solve.59

2 Adversarial Response Characteristics & Sequel Attack Effect60

A neural network f(·) maps the input x ∈ RM into a pre-softmax output y ∈ RN , where the61

maximum element after softmax corresponds to the class prediction ĉ(x), which is expected to match62

with the ground truth c(x). Then, a typical adversarial attack [1, 2] aims to find an imperceptible63

adversarial perturbation r ∈ RM that induces misclassification, i.e., argmaxn fn(x + r) ̸= c(x)64

where ∥r∥p ≤ ε, x+ r ∈ [0, 1]M , and fn(·) is the n-th element of vector function f(·).65

According to FGSM [6], the neural network is vulnerable because the “locally linear” property being66

triggered by the attack. Thus, we assume that the neural network f(·) behaves relatively non-linear67

against benign examples, while relatively linear against adversarial examples. Then, f(·) can be68

approximated by the first-order Taylor expansion around an either benign or adversarial sample x̃:69

x̃ ≜ x+ r, fn(x̃+ δ) ≈ fn(x̃) + δT∇fn(x̃), ∀n ∈ {1, 2, . . . , N}, (1)

where δ is a small vector exploiting the local area around the point x̃, and the gradient vector70

∇fn(·) is the n-th row of the Jacobian ∇f(·) of size N×M . We name the twice-perturbed x̃+ δ71

as “exploitation vector”. This equation means in order to reflect linear behaviour, the first-order72

gradient∇fn(·) is expected to remain in high consistency (or similarity) in the local area regardless73

of δ. In contrast, when the input x̃ is not adversarial (r = 0), neither Taylor approximation nor the74

gradient consistency is expected to hold. Next, the gradient consistency will be quantized to verify75

our conjecture, and reveal difference between benign and adversarial inputs.76
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Figure 2: The ARC features (i.e. ARC matrix/vector) of adversarial examples created by the BIM
attack. 1st row: ResNet-18 on CIFAR-10; 2nd row: ResNet-152 on ImageNet; 3rd row: SwinT-B-IN1K
on ImageNet. Blue and red dots in the scatter plots correspond to the benign and adversarial examples,
respectively. The cluster centers of the ARC vector correlates with the perturbation magnitude ε.

Adversarial Response Characteristics (ARC). Using random noise as δ does not lead to a stable77

pattern of change in a series of exploitation vectors {x̃+δt}t=0,1,...,T . Instead, we use Basic Iterative78

Method (BIM) [1] to make f(·) more linear starting from x̃, which means to “continue” the attack if79

x̃ is already adversarial, or “restart” otherwise. However, the ground-truth label for an arbitrary x̃ is80

unknown. Since PGD-like attacks tend to make the ground-truth least-likely based on our observation,81

we treat the least-likely prediction č(x) as the label. Then, the BIM iteratively maximizes the cross82

entropy loss LCE(x̃+ δ, č(x)) via projected gradient ascent as83

δt+1 ← ClipΩ

(
δt + α sign[∇LCE(x̃+ δt, č(x))]

)
, t = 1, 2, . . . , T, (2)

where ClipΩ(·) clips the perturbation to the Lp bound centered at x̃, and δ0 = 0. If the input x̃ is84

benign, then the network behaviour is expected to changed from “very non-linear“ to “somewhat-85

linear” during the process; if the input x̃ is already adversarially perturbed, then the process will86

“continue” the attack, making the model even more “linear” – we call this Sequel Attack Effect (SAE).87

To quantize the extent of “linearity”, we measure the model’s gradient consistency across exploitation88

vectors with cosine similarity. For each fn(·), we construct a matrix Sn of shape (T+1, T+1):89

s(i,j)n = cos
[
∇fn(x̃+ δi),∇fn(x̃+ δj)

]
, ∀i, j = 0, 1, . . . , T. (3)

As the model f(·) becoming more “linear” to the input (higher gradient consistency), the off-diagonal90

values in Sn is expected to gradually increase from the top-left to the bottom-right corner. Note that91

the attack may not necessarily make all fn(·) behave linear, so we select the most representative cosine92

matrix with the highest mean as the ARC matrix: S∗ ≜ Sn∗ , where n∗ = argmaxn
∑

i,j s
(i,j)
n .93

Due to the resemblance of the ARC matrix to the Laplacian function with matrix diagonal being94

the center, we simplify it into a two-dimensional ARC vector (A, σ) by fitting L(i, j;A, σ) =95

A exp(−|i− j|/σ) with Levenberg-Marquardt algorithm [11], where i, j are matrix row and column96

indexes, while A and σ are function parameters. For brevity, we abbreviate the ARC matrix as97

“ARCm”, and the ARC vector as “ARCv”. The process for computing them is summarized in Fig. 1.98

Visualizing Sequel Attack Effect (SAE). We compute ARCm based on some benign examples using99

T=48, as shown in Fig. 1. The trend of being gradually “linear” (higher cosine similarity) along the100

diagonal is found across architectures. Thus, SAE is similar to “continue” attack from halfway on101

the diagonal in such a large ARCm. As illustrated in Fig. 2, already adversarially perturbed input102

(using BIM) leads to larger cosine similarity at the very first exploitation vectors as perturbation103

magnitude ε increases from 0 to 16/255. Meanwhile, the cluster separation for ARCv is more and104

more clear. Thus, a clear and gradually changing pattern can be seen in ARCm and ARCv. This105

pattern is even valid and clear for the state-of-the-art ImageNet models. In brief, SAE is reflected by106

higher gradient consistency in ARCm, or greater σ and smaller A in ARCv. Similar visualization107

from other PGD-like attacks, including PGD [2], MIM [3] and APGD [4] in Fig. 3, indicates the108

possibility of generalization for all PGD-like attacks with only training samples from the BIM attack109

despite domain shift. We adopt SVM afterwards to retain explainability and simplicity.110

3



Figure 3: ARCm with adversarial examples created by PGD (left), MIM (middle), and APGD (right)
attacks. The three rows correspond to ResNet-18, ResNet-152, and SwinT-B-IN1K, respectively. It is
clear that PGD-like attacks qualitatively manifest similar SAE through ARCm.

Uniqueness of SAE to PGD-Like Attack. Whether SAE can be consistently triggered depends111

on whether the following conditions are simultaneously true: (I) whether the input is adversarially112

perturbed by an iterative projected gradient update method; (II) whether the attack leverages first-113

order gradient of the model; (III) whether the Lp boundary types are the same for the two stages, i.e.,114

attack and exploitation vectors; (IV) whether the loss functions for the two stages are the same; (V)115

whether the labels used (if any) for the two stages are relevant. Namely, only when the attack and116

exploitation vectors “match”, SAE can be uniquely triggered as the exploitation vectors “continue”117

an attack, or they will “restart” an attack. Thus, in Fig. 1, Fig. 2 and Fig. 3, all the conditions are118

true as they involve PGD-like attacks. We acknowledge the ARC being insensitive to non-PGD-like119

attacks (such as C&W [12]) is a limitation in practice. However, the unique SAE meanwhile shows120

possibility of inferring the attack details mentioned in the above conditions once triggered. SAE is121

the trace of PGD-like attacks. Ablations for these five conditions are presented in Sec. 5.122

Adaptive Attack against ARC. Adaptive attacks can be designed against defense [13] or detec-123

tion [14]. Likewise, they can be designed against ARC feature. To avoid SAE in ARCm, the adaptive124

attack must reach a point where the corresponding ARCm has a mean value as small as that for benign125

examples. Intuitively, an adaptive attack has to simultaneously solve minr ∥S∗(x+ r)∥F (Frobenius126

norm) alongside its original attack goal. It however requires gradient of the Jacobians, namely at127

least T + 1 Hessian matrices, i.e., ∇2fn(·) of size M ×M to perform gradient descent. This is128

computationally prohibitive as in the typical ImageNet setting (i.e., M=3×224×224), a Hessian in129

float32 precision needs 84.4GiB memory. At this point, the cost of adaptive attack is much higher130

than computing ARC. We conclude that it is impractical to hide SAE from ARC at an acceptable131

cost without significant algorithm modification. The viable ways for attacker to avoid SAE is to use132

non-PGD-like attacks or break the SAE uniqueness conditions. Being resistant to adaptive attacks133

while surviving our extremely limited problem setting is left for future study.134

3 Attack Detection and Inferring Attack Details135

Attack detection aims to identify the attempt to adversarially perturb an image even if it fails to136

change the prediction (but meanwhile left the trace).1 As demonstrated in the previous section, the137

SAE indicates the feasibility of attack detection specifically against PGD-like attacks.138

Informed Attack Detection is to determine whether an arbitrary input x̃ is adversarially perturbed,139

while the perturbation magnitude ε is known. It can be viewed a binary classification problem, where140

the input is ARCv of x̃, and the output 1 indicates “adversarially perturbed”, while 0 indicates141

“unperturbed”. Thus, for a given ε = 2k/255 where k ∈ {1, 2, 3, 4}, a corresponding Support Vector142

Machine (SVM) [15] classifier hk(x̃) ∈ {0, 1} can be trained using some benign (ε=0) samples and143

their adversarial counterparts (ε=2k/255). Even if the training data only involves the BIM attack,144

from visualization results, we expect generalization for other PGD-like attacks despite domain shift.145

Uninformed Attack Detection is to determine whether an arbitrary input x̃ is adversarially perturbed,146

while the perturbation magnitude ε is unknown. It can be viewed as an ordinal regression [16]147

problem, where the input is ARCv, and the output is the estimation of k, namely k̂ ∈ {0, 1, 2, 3, 4}.148

The corresponding estimate of ε is ε̂ = 1{k̂ > 0}2k̂/255, where 1{·} is the indicator function.149

1In practice it is undesirable to wait and react until the attack has succeeded.

4



(f1) BIM[]; ARC[] (f2) BIM[]; Gaussian (f3) BIM[]; Uniform (f4) FGSM[✗Iter]; ARC[] (f5) Gaussian; ARC[]

(f6) BIM[L2]; ARC[] (f7) BIM[]; ARC[L2] (f8) BIM[L2]; ARC[L2] (f9) BIM[]; ARC[ĉ(x)] (f10) BIM[]; ARC[c?]

(f11) BIM[DLR]; ARC[] (f12) BIM[]; ARC[DLR] (f13) BIM[DLR]; ARC[DLR] (f14) NES[✗∇f ]; ARC[] (f15) SPSA[✗∇f ]; ARC[]

Figure 4: Ablation on SAE uniqueness by adjusting exploitation vectors for ARC. Each subfigure
of ARCm pair has two annotations: (1) attack and its settings, where empty brackets means default
setting unless overriden: [Lp is L∞; Loss is LCE; ✓(is) iterative; ✓(can access) gradient∇f(·)]; (2)
expoitation vector settings, e.g. “ARC[]” with the default setting [Lp is L∞; Loss is LCE; Label is
č(·)]. The “c?” means random guess. This figure is supplementary to Tab. 2.

Specifically, this is implemented as a series of binary classifiers (SVM), where the k-th (k ̸=0)150

classifier predicts whether the level of perturbation is greater or equal to k, i.e., whether k̂ ⩾ k. Note,151

based on our visualization, the ARCv cluster of adversarial examples is moving away from that of152

benign examples as ε (or k) increases. This means the ARCv of an adversarial example with k̂ ⩾ k153

will also cross the decision boundary of the k-th SVM hk(·). Namely the SVM hk(·) can also tell154

whether k̂ ⩾ k, and thus can be reused. Finally, the ordinal regression model can be expressed155

as the sum of prediction over the SVMs: k̂ =
∑

k∈{1,2,3,4} hk(x̃). A perturbation is detected as156

long as k̂ > 0. Estimating k (or ε) for x̃ is similar to matching its ARCm position inside a much157

larger ARCm calculated starting from benign example. But, the estimate does not have to be precise,158

because the detection is already successful once any of the SVMs correctly raises an alert.159

Although a detector in practice knows completely nothing about a potential attack including the attack160

type, evaluation of uninformed attack detection with known attack type is enough. Regarding the161

performance for uninformed attack detection given a specific attack type of attack as a conditional162

performance, the expected performance in the wild can be calculated as the sum of conditional163

performance weighted by the prior probabilities that the corresponding attack happens.164

Inferring Attack Details. Due to the SAE uniqueness in Sec. 2, once attack is detected, we can165

also predict that the attack: (I) is an iterative method performing projected gradient updates; (II) can166

access the first-order gradient of f(·); (III) uses the same type of Lp bound as that in creation of167

exploitation vectors (L∞ by default); (IV) uses the same function as that in creation of exploitation168

vectors (LCE(· · · ) by default); (V) uses a ground-truth label which is relevant to the least-likely class169

č(x̃) used for exploitation vectors (in many cases č(x̃) is exactly the ground-truth). In other words, a170

feasible post-processing defense is to correct prediction into the least-likely class č(x̃) upon detection.171

Namely, the disadvantage of ARC being insensitive to non-PGD-like attacks is meanwhile advantage172

of being able to infer attack details of PGD-like attacks.173

4 Experiments174

In this section, we quantitatively verify the effectiveness of the ARC features in attack detection, and175

the performance of the post-processing defense under an extremely limited setting. Unlike related176

works, the MNIST evaluation is omitted, as the corresponding conclusions may not hold [14] on177

CIFAR-10, let alone ImageNet. We evaluate ResNet-18 [8] on CIFAR-10 [7]; ResNet-152 [8] and178

SwinT-B-IN1K [10] on ImageNet [9] with their official pre-trained weights (advantage of being179

non-intrusive). Our code is implemented based on PyTorch [17], TorchAttacks [18] and Foolbox [19].180

ARC Feature Parameter. For the BIM attack for exploitation vectors, we set step number T = 6,181

and step size α = 2/255 under the L∞ bound with ε = 8/255. Note, the mean value of ARCm will182

tend to 1 with a larger T , making ARCv less separatable. We choose T = 6 to clearly visualize the183

value changes within ARCm, but this does not necessarily lead to the best performance.184
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Table 1: Informed and Uninformed (the “ε=?” column) Attack Detection. All numbers are percentage
with the “%” sign omitted, except for MAE. Numbers greater than 50% are highlighted in bold font.

Dataset
Model

Attack ϵ = 2/255 ϵ = 4/255 ϵ = 8/255 ϵ = 16/255 ϵ =?
DR FPR Acc Acc* DR FPR Acc Acc* DR FPR Acc Acc* DR FPR Acc Acc* MAE DR FPR Acc Acc*

CIFAR-10
ResNet-18

BIM 0.0 0.0 33.5 33.5 0.0 0.0 6.4 6.4 32.3 1.5 0.4 17.8 79.2 1.1 0.0 62.4 1.55 30.9 1.5 10.1 30.7
PGD 0.0 0.0 33.7 33.7 0.0 0.0 6.4 6.4 33.0 1.5 0.4 18.6 81.2 1.1 0.0 64.8 1.54 31.5 1.5 10.1 31.5
MIM 0.0 0.0 30.4 30.4 0.0 0.0 6.5 6.5 37.5 1.5 0.4 22.3 84.5 1.1 0.0 67.4 1.50 33.6 1.5 9.3 32.4

APGD 0.0 0.0 29.3 29.3 0.0 0.0 5.1 5.1 36.9 1.5 0.2 20.7 78.8 1.1 0.0 55.8 1.53 31.5 1.5 8.7 28.0
AA 0.0 0.0 27.4 27.4 0.0 0.0 2.1 2.1 37.3 1.5 0.0 20.6 78.4 1.1 0.0 55.6 1.53 31.6 1.5 7.4 26.8
? 0.0 0.0 30.9 30.9 0.0 0.0 5.3 5.3 35.4 1.5 0.3 20.0 80.4 1.1 0.0 61.2 1.53 31.8 1.5 9.1 29.9

ImageNet
ResNet-152

BIM 0.0 0.0 0.0 0.0 4.7 1.4 0.0 0.0 20.5 1.4 0.0 0.0 91.6 1.4 0.0 0.4 1.36 30.6 1.6 0.0 0.1
PGD 0.0 0.0 0.0 0.0 4.7 1.4 0.0 0.0 18.8 1.4 0.0 0.0 85.9 1.4 0.0 0.0 1.44 28.9 1.6 0.0 0.0
MIM 0.0 0.0 0.0 0.0 2.3 1.4 0.0 0.0 4.7 1.4 0.0 0.0 81.2 1.4 0.0 0.0 1.52 23.8 1.6 0.0 0.2

APGD 0.0 0.0 0.0 0.0 2.0 1.4 0.0 0.0 11.3 1.4 0.0 0.0 61.7 1.4 0.0 0.4 1.59 19.7 1.6 0.0 0.1
AA 0.0 0.0 0.0 0.0 2.5 1.4 0.0 0.0 10.7 1.4 0.0 0.0 61.5 1.4 0.0 0.0 1.59 19.9 1.6 0.0 0.0
? 0.0 0.0 0.0 0.0 3.2 1.4 0.0 0.0 13.2 1.4 0.0 0.0 76.3 1.4 0.0 0.2 1.50 24.6 1.6 0.0 0.1

ImageNet
SwinT-B-IN1K

BIM 4.1 1.6 6.1 6.2 13.7 2.0 0.0 8.4 77.3 2.0 0.0 74.0 97.9 0.2 0.0 97.9 0.96 49.1 2.0 1.5 47.3
PGD 3.9 1.6 2.3 3.1 16.4 2.0 0.0 10.9 72.7 2.0 0.0 68.8 98.4 0.2 0.0 98.4 1.01 48.6 2.0 0.6 45.9
MIM 1.6 1.6 0.0 1.6 10.2 2.0 0.0 10.2 63.3 2.0 0.0 63.3 93.8 0.2 0.0 93.8 1.09 43.8 2.0 0.0 43.8

APGD 1.4 1.6 0.0 1.0 5.3 2.0 0.0 4.5 32.6 2.0 0.0 25.2 65.0 0.2 0.0 51.0 1.37 29.4 2.0 0.0 23.2
AA 1.8 1.6 0.0 1.0 5.7 2.0 0.0 4.3 31.6 2.0 0.0 25.0 68.4 0.2 0.0 54.1 1.37 29.5 2.0 0.0 23.2
? 2.6 1.6 1.7 2.6 10.2 2.0 0.0 7.7 55.5 2.0 0.0 51.2 84.7 0.2 0.0 79.0 1.16 40.1 2.0 0.4 36.7

Training. To train SVMs hk(·) with RBF kernel, we randomly select 50 training samples from185

CIFAR-10, and perturb them using only BIM [1] with magnitude ε = 2/255, 4/255, 8/255, 16/255,186

respectively. Then each of the four hk(·) is trained with ARCv of the benign (ε = 0) samples and187

perturbed (ε = 2k/255) samples. Likewise, for ImageNet we randomly select 50 training samples188

and train SVM in a similar setting separately for ResNet-152 and SwinT-B-IN1K. The weight for189

benign sample can be adjusted for training in order to control False Positive Rate (FPR).190

Testing. For CIFAR-10, all 10000 testing data and their perturbed versions with different ε are191

used to test our SVM. For ImageNet, we randomly choose 512 testing samples to test our SVM192

due to computation cost of Jacobian matrices. A wide range of adversarial attacks are involved,193

including (1) PGD-like attacks: include BIM [1], PGD [2], MIM [3], APGD [4], AutoAttack194

(AA) [4]; (2) Non-PGD-like attacks: (2.1) other white-box attacks: FGSM [6], C&W [12] (we195

use ε ∈ {0.5, 1.0, 2.0, 3.0} in L2 case), FAB [20], FMN [21]; (2.2) transferability-based attacks:196

DI-FGSM [22], TI-FGSM [23] (using ResNet-50 as proxy); (2.3) score-based black-box methods:197

NES [24], SPSA [25], Square [26]. Existing attack detection methods seldom evaluate on many types198

of attacks. AutoAttack is regarded as PGD-like because APGD is its most significant component for199

attack success rate. Details of all attacks can be found in the supplementary code.200

Metrics. We evaluate the SVMs using Detection Rate (DR, a.k.a., True Positive Rate), as well as False201

Positive Rate (FPR). For the post-processing defense method, we report the original classification202

accuracy for perturbed examples (denoted as “Acc”) as well as accuracy after correction (denoted as203

“Acc*”). For ordinal regression, we also report Mean Average Error (MAE) for reference.204

4.1 Informed and Uninformed Attack Detection for PGD-like Attacks205
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Figure 5: ROC of SVMs in Tab. 1 & Tab. 3.

For each network, the corresponding SVMs206

are trained and evaluated as shown in Tab. 1.207

Columns with a concrete ε value are informed208

attack detection, while the “ε=?“ column is un-209

informed attack detection. As can be expected210

from visualization results, the ARCv clusters are211

gradually becoming separatable with ε increas-212

ing, and hence the increase of DR. Notably, the213

large perturbations (i.e., ε = 16/255) are very214

hard to defend [27], but can be consistently and accurately detected across architectures. The ARC215

feature is especially effective for Swin-Transformer, because this model transitions faster from being216

non-linear to being linear than other architectures. Such characteristics are beneficial for ARC.217

Upon detection of attack, our method corrects the prediction into the least-likely class as a post-218

processing defense. Success of such method depends on whether the attack is efficient to make219

ground-truth class least-likely, and whether the network is easy for the attack to make a class least-220

likely. From Tab. 1, both ResNet-18 and SwinTransformer have such property and lead to high221
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Table 2: Ablation on SAE uniquenss by varying attacks. The row (t1) is regarded as a baseline, and
notation “..” means “same as baseline” in order to ease comparison. SAE will only show consistent
effectiveness across architectures when the four conditions in Sec. 2 are satisfied.

# Attack ARC ResNet-18 w/ ϵ =? ResNet-152 w/ ϵ =? SwinT-B-IN1K w/ ϵ =?
Name Lp Loss Iter. ∇f(·) Lp Loss Label MAE DR FPR Acc Acc* MAE DR FPR Acc Acc* MAE DR FPR Acc Acc*

t1 BIM ∞ CE Yes Yes ∞ CE č(x) 1.55 30.9 1.5 10.1 30.7 1.36 30.6 1.6 0.0 0.1 0.96 49.1 2.0 1.5 47.3
t2 BIM 2 .. .. .. .. .. .. 1.27 49.9 1.5 2.6 39.0 1.98 3.5 1.6 0.2 0.2 2.02 1.0 2.0 1.4 1.8
t3 BIM .. DLR .. .. .. .. .. 1.98 2.1 1.5 10.5 10.6 1.63 18.9 1.6 0.0 0.6 1.44 27.5 2.0 1.8 6.6
t4 FGSM .. .. No .. .. .. .. 1.96 3.4 1.5 30.3 29.5 1.63 18.6 1.6 8.4 6.8 1.44 27.1 2.0 44.9 32.4
t5 C&W 2 C&W .. .. .. .. .. 1.99 1.2 1.5 0.0 0.0 2.02 2.3 1.6 0.0 0.0 2.03 1.6 2.0 0.0 0.0
t6 FAB .. FAB .. .. .. .. .. 1.99 1.0 1.5 10.6 10.5 2.00 2.5 1.6 9.2 9.2 2.03 0.8 2.0 9.4 9.4
t7 FMN .. FMN .. .. .. .. .. 1.99 1.4 1.5 8.8 8.6 2.02 2.1 1.6 0.0 0.0 2.03 0.8 2.0 0.0 0.0
t8 DI-FGSM .. DI-FGSM .. No .. .. .. 1.98 2.2 1.5 42.9 42.0 1.98 3.5 1.6 27.9 27.5 1.87 8.2 2.0 67.2 62.1
t9 TI-FGSM .. TI-FGSM .. No .. .. .. 1.98 1.9 1.5 59.4 58.3 2.00 2.9 1.6 40.0 39.1 2.02 1.6 2.0 72.3 70.9

t10 NES .. .. .. No .. .. .. 1.94 4.7 1.5 38.6 39.4 1.98 3.1 1.6 28.3 27.3 2.02 1.6 2.0 50.6 49.4
t11 SPSA .. .. .. No .. .. .. 1.97 3.0 1.5 39.2 39.1 2.00 3.1 1.6 29.9 28.9 2.00 2.7 2.0 52.7 50.6
t12 Square .. Square .. No .. .. .. 1.99 1.6 1.5 85.7 84.3 2.02 2.1 1.6 68.6 67.4 1.84 10.2 2.0 77.9 70.1
t13 Gaussian .. N/A No No .. .. .. 1.99 1.7 1.5 87.0 85.6 2.00 2.7 1.6 75.2 73.2 2.00 3.1 2.0 82.4 79.7
t14 Uniform .. N/A No No .. .. .. 1.99 1.8 1.5 86.6 85.0 1.97 4.1 1.6 73.6 70.9 1.84 10.2 2.0 81.8 73.2

classification accuracy after correction. For ResNet-152, the least-likely label is merely relevant (not222

identical) to the ground-truth due to network property during attack, and hence leads to effective223

detection but not correction (this will be explained in next subsection). In contrast, the correction224

method performs best on Swin-Transformer, as it can restore classification accuracy from 0.4% to225

36.7% even if both concrete type of PGD-like attack and ε are unknown (“Attack=?” row and “ε=?”226

column in Tab. 1), assuming flat prior. By adjusting the weights assigned to benign examples, the227

decision boundary of SVMs can be moved and hence influence the FPR, as shown in in Fig. 5.228

4.2 Sequel Attack Effect as Unique Trace of PGD-like Attacks229

The SAE is unique to PGD-like attacks, as it requires five conditions listed in Sec. 2 to hold for230

consistent effectiveness. To clarify this, we change the attack settings (quantitatively in Tab. 2), or the231

exploitation vector for ARCm (qualitatively on CIFAR10 in Fig. 4), and then review these conditions:232

(I). Iterative attack (Iter.). The single-step version of PGD, i.e., FGSM (t4, f4) does not effectively233

exploit the search space within the Lp bound, and hence will not easily trigger linearity and234

SAE. Only Swin Transformer slightly reacts against FGSM due to its own characteristics of235

being easy to be turned linear. Thus, SAE requires the attack to be iterative;236

(II). Gradient access (∇f(·)). Transferability-based attacks (t8, t9) uses proxy model gradients to237

create adversarial examples, and hence could not trigger SAE. NES (t10, f14) and SPSA (t11,238

f15) can be seen as PGD using gradients estimated from only network logits, but can still not239

trigger SAE as it cannot efficiently trigger linearity. Neither does Square attack (t12). Thus,240

SAE requires that the attacks use the target model gradient;241

(III). Same Lp bound. When the attack is BIM in L2 bound (t2, f6), SAE will no longer be triggered242

for ImageNet models, because the change of Lp influences perturbation search process.243

However, SAE is still triggered for CIFAR-10 possibly due to relatively low-dimensional244

search space. This means CIFAR-10 property does not necessarily generalize to ImageNet.245

When ARC is changed accordingly (f7, f8), the feature clusters are still separatable. Thus,246

SAE requires the same type of Lp bound for consistent effectiveness;247

(IV). Same loss. When the loss for the BIM attack is switched from LCE to DLR [4] (t3, f11), the248

SAE is significantly reduced. However, if exploitation vectors are also created using DLR249

loss (f12, f13), SAE will be triggered again. Thus, SAE requires a consistent loss function;250

(V). Relevant label. When the most-likely label ĉ(x̃) is used for exploitation vectors, it leads to251

the least significant SAE (f9). Besides, even a random label (c?) leads to moderate SAE (f10),252

while the least-likely label č(x̃) (which is ground-truth label in many cases) leads to distinct253

SAE (f1). The most significant SAE correspond to č(x̃) = c(x). This means in order to254

maximize cross-entropy, a large portion of output functions fn(·) has been triggered local255

linearity during attack. Thus, SAE requires a relevant label (if any) for exploitation vectors.256

When the exploitation vectors are created using random noise (f2, f3), SAE is not triggered. Neither257

does random noise as attack trigger SAE (t13, t14, f5). Other non-PGD-like attacks (t5, t6, t7) do not258

trigger SAE as well. A special case is targeted PGD-like attack, where the creation of exploitation259

vector needs to be use negative cross-entropy loss on the most-likely label to reach a similar level of260

effectiveness (this paper focuses on the default untargeted attack to avoid complication).261
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Table 3: Comparison with existing methods that are compatible with our problem setting.
Method Metric BIM PGD MIM APGD AA

2/255 4/255 8/255 16/255 ? 2/255 4/255 8/255 16/255 ? 2/255 4/255 8/255 16/255 ? 2/255 4/255 8/255 16/255 ? 2/255 4/255 8/255 16/255 ?

CIFAR10 ResNet-18

NSS [29] DR 0.0 0.0 0.0 0.1 0.5 0.0 0.0 0.0 0.1 0.5 0.0 0.0 0.0 0.1 4.7 0.0 0.0 0.3 0.2 0.8 0.0 0.0 0.3 0.2 0.8
FPR 0.0 0.0 1.8 1.5 2.5 0.0 0.0 1.8 1.5 2.5 0.0 0.0 1.8 1.5 2.5 0.0 0.0 1.8 1.5 2.5 0.0 0.0 1.8 1.5 2.5

ARC DR 0.0 0.0 32.3 79.2 30.9 0.0 0.0 33.0 81.2 31.5 0.0 0.0 37.5 84.5 33.6 0.0 0.0 36.9 78.8 31.5 0.0 0.0 37.3 78.4 31.6
FPR 0.0 0.0 1.5 1.1 1.5 0.0 0.0 1.5 1.1 1.5 0.0 0.0 1.5 1.1 1.5 0.0 0.0 1.5 1.1 1.5 0.0 0.0 1.5 1.1 1.5

ImageNet ResNet-152

NSS [29] DR 2.9 19.1 39.6 47.2 41.6 2.9 19.9 39.6 46.5 41.1 4.2 31.2 41.4 9.1 32.9 1.1 12.6 28.3 35.7 29.1 1.0 11.9 29.8 33.3 28.7
FPR 0.4 1.4 1.2 1.4 2.0 0.4 1.4 1.2 1.4 2.0 0.4 1.4 1.2 1.4 2.0 0.6 1.4 1.2 1.4 2.0 0.4 1.4 1.2 1.4 2.0

ARC DR 0.0 4.7 20.5 91.6 30.6 0.0 4.7 18.8 85.9 28.9 0.0 2.3 4.7 81.2 23.8 0.0 2.0 11.3 61.7 19.7 0.0 2.5 10.7 61.5 19.9
FPR 0.0 1.4 1.4 1.4 1.6 0.0 1.4 1.4 1.4 1.6 0.0 1.4 1.4 1.4 1.6 0.0 1.4 1.4 1.4 1.6 0.0 1.4 1.4 1.4 1.6

ImageNet SwinT-B-IN1K

NSS [29] DR 4.5 16.2 42.4 47.5 44.2 4.9 15.8 41.8 47.1 44.1 12.3 28.7 29.3 4.5 28.9 1.6 11.0 31.3 35.5 31.1 1.4 10.4 31.8 35.1 30.8
FPR 0.6 1.0 1.2 1.6 2.3 0.6 1.0 1.2 1.6 2.3 0.6 1.0 1.2 1.5 2.3 0.6 1.0 1.2 1.6 2.3 0.6 1.0 1.2 1.6 2.3

ARC DR 4.1 13.7 77.3 97.9 49.1 3.9 16.4 72.7 98.4 48.6 1.6 10.2 63.3 93.8 43.8 1.4 5.3 32.6 65.0 29.4 1.8 5.7 31.6 68.4 29.5
FPR 1.6 2.0 2.0 0.2 2.0 1.6 2.0 2.0 0.2 2.0 1.6 2.0 2.0 0.2 2.0 1.6 2.0 2.0 0.2 2.0 1.6 2.0 2.0 0.2 2.0

The non-PGD attacks, or PGD attacks do not meed all conditions cannot consistently trigger SAE262

across architectures because they provide a less “matching” starting point for exploitation vectors,263

and hence make the BIM for exploitation vectors “restart” an attack, where the network behaves264

non-linear again. Only when all the conditions are satisfied will SAE be consistently triggered across265

different architectures, especially for ImageNet models. As for label correction, PGD-like attacks can266

effectively leak the ground-truth labels in the adversarial example, as long as the network allows the267

attack to easily reduce the corresponding logit value to lowest among all.268

In summary, SAE is the unique trace of PGD-like attacks. Although insensitive to non-PGD-like269

attacks for general attack detection, SAE is a specific signature [28], indicating the feasibility of270

correcting prediction upon detection of PGD-like attacks.271

4.3 Comparison with Previous Attack Detection Methods272

As discussed in Sec. 6, due to our extremely limited problem setting – (1) no auxiliary deep model;273

(2) non-intrusive; (3) data-undemanding, the most relevant methods that do not lack of ImageNet274

evaluation are [29, 30, 31, 32, 33]. But [30, 31, 32, 33] still require a considerable amount of data275

to build accurate (relatively) high-dimensional statistics. The remaining NSS [29] method craft 18-276

dimensional features from Natural Scene Statistics, which are fed into SVM for binary classification.277

We adapt the trained SVMs in our ordinal regression framework as well, with a reduced training set278

size to 100 (50 benign + 50 BIM adversarial) for each SVM for fair comparison. All SVMs are tuned279

to control FPR. The results and ROC curves for “ε=?” task can be found Tab. 3 and Fig. 5. It is noted280

that (1) SVM with the 18-D NSS feature may fail to generalize due to insufficient sampling (hence281

the below-diagonal ROC); (2) NSS performs better for small ε, but performance saturates with larger282

ε, because NSS does not incorporate any cue from network gradient behavior; (3) small ε is difficult283

for ARC, but its performance soars with larger ε towards 100%, which is consistent and expected284

from our visualization; (4) SVM with ARCv can generalize against all PGD-like attacks, while NSS285

failed for MIM; (5) SVM with NSS may generalize against some non-PGD-like attacks [29], while286

ARC could not due to SAE uniqueness; (6) SVM with the 2-D NSS feature (“Method 2” in [29]) fails287

to generalize. Thus, ARC achieves competitive performance consistently across different settings288

despite the extreme limits, because the ARC feature is low-dimensional, and incorporates cue from289

network gradient behavior. Apart from these, ARC also provides a new perspective to understanding290

attack and defense from model’s gradient behavior, as discussed in Sec. 5.291

5 Discussions and Justifications292

Ordinal Regression. Intuitively, the uninformed attack detection can be formulated as standard293

regression to estimate a continuous k value. However, this introduces an undesired additional294

threshold hyper-parameter for deciding whether an input with e.g., 0.5 estimation is adversarial.295

Ordinal regression produces discrete k values and avoids such ambiguity and unnecessary parameter.296

Training Set Size. Each of our SVMs has only 100 training data (i.e., 50 benign + 50 adversarial).297

The simple 2-D ARCv distribution (Fig. 2) can be reflected by few data points, which even allows an298

SVM to generalize with less than 100 data points (but may suffer from insufficient sampling with too299

few, e.g., 10+10 samples). In contrast, the performance gain will be marginal starting from roughly300

200 training samples, because the ARCv feature distribution is already well represented.301

8



ARCm = 2/255 ARCm = 4/255 ARCm = 8/255 ARCm = 16/255

ARCm = 2/255 ARCm = 4/255 ARCm = 8/255 ARCm = 16/255

ARCm = 2/255 ARCm = 4/255 ARCm = 8/255 ARCm = 16/255

Figure 6: ARCm from regu-
lar (1st row), and adversarially
trained ResNet-50 (2nd row w/
ε=4/255, 3rd row w/ ε=8/255).

Combination with Adversarial Training. From our experiment302

and recent defenses [2, 34, 27], its noted that (1) small perturba-303

tions are hard to detect, but easy to defend; while (2) large pertur-304

bations are hard to defend, but easy to detect. However, combining305

defense and our detection is not effective on ImageNet. As shown306

in Fig. 6, we compute ARCm based on regular ResNet-50 (from307

PyTorch [17]) and adversarially trained ResNet-50 on ImageNet308

(from [34]). Unlike the regular ResNet-50, adversarially trained309

one has much higher mean value in ARCm, and the resulting ARC310

vectors are almost non-separatable. This means adversarial train-311

ing makes the model very linear around the data [35]. As a new312

perspective on why adversarial training works, the networks are313

trained to generalize while being already very linear to the input,314

and thus it will be hard for attack to make the model behave even315

more linear to significantly manipulate the output.316

Limitations. (1) The ARC Feature is only sensitive to the PGD-like attacks, and relies on the least-317

likely assumption for effectiveness of prediction correction. But such selective sensitivity meanwhile318

leads to the uniqueness of SAE. (2) Jacobian computation is slow for ImageNet models because it319

requires 1000 iterations of backward pass. A single Jacobian of ResNet-152 takes 161±0.5 seconds320

on Nvidia Titan Xp. Thus we are unable evaluate our method on all ImageNet data with 2 GPUs.321

Future Recommendations. (1) Include ImageNet evaluation, as CIFAR-10 property may not hold322

on ImageNet; (2) Check detector sensitivity w.r.t. attack algorithm parameter, as it may be significant.323

6 Related Works324

Adversarial Attack and Defense. Neural networks are vulnerable to attacks [36, 6, 12]. To325

exploit such vulnerability, attacks under different threat models are designed, including but not326

limited to white-box attacks [1, 2, 3, 4], transferability-based attacks [37, 38, 22, 23], score-based327

black-box attacks [39, 24, 25, 26], and decision-based black-box attacks [40]. Different from these328

run-time attacks, backdoor attack [41] happens during the training. To counter the attacks, adversarial329

training [2, 27, 42] is the most promising defense to make networks resistant to the adversarial330

perturbations, but is meanwhile intrusive (i.e. requires retraining), and suffering from a notable331

generalization gap. Certified defense [43] and perturbation reverse engineering are also proposed [44].332

A defense may be invalidated by adaptive attacks [45, 13]. Our method to correct the prediction upon333

detection can be seen as a post-processing defense.334

Adversarial Example Detection [46, 14] aims to predict whether a given image is adversarial or not,335

so that adversarial ones can be rejected. This can be achieved through adversarial training [47, 48],336

customized subnet [49] or customized loss [50], but will be costly for ImageNet. Generative337

model-based detection methods check adversarial example reconstruction error [51] or probability338

density [52], but are data-demanding in order to learn accurate distributions. Auxiliary deep model [53,339

54] for attack detection not only require large amount of data, but are also susceptible to adaptive340

attack [14]. Dropout can be used for detection when combined with Bayesian uncertainty [55].341

Feature statistics-based methods [31, 30, 29, 32, 33] leverage (high-dimensional) features, which342

is the most compatible group of method to our problem setting, but most of them are still data-343

demanding for an accurate statistics. Whilst MNIST property may not hold on CIFAR-10 [14], let344

alone ImageNet, many related works lack the evaluation on ImageNet. Whilst detection difficulty345

varies with attack parameters, a very large portion of related works have neglected the respective346

sensitivity analysis. Additionally, we point out conditions under which our method will be invalidated.347

7 Conclusions348

In this paper, we design an Adversarial Response Characteristic (ARC) feature with an intuition that349

the model being attacked behaves more “linear” against adversarial examples than does to benign350

ones, which is valid for PGD-like attacks in terms of attack detection and prediction correction. Our351

method is light-weighted, non-intrusive, data-undemanding and simple to interpret.352
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Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,381

Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,382

Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:383

Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.384

[12] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 ieee385

symposium on security and privacy (sp), pages 39–57. IEEE, 2017.386

[13] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to387

adversarial example defenses. Advances in Neural Information Processing Systems, 33:1633–1645, 2020.388

[14] Nicholas Carlini and David Wagner. Adversarial Examples Are Not Easily Detected: Bypassing Ten389

Detection Methods, page 3–14. Association for Computing Machinery, New York, NY, USA, 2017.390

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,391

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.392

Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.393

[16] Zhenxing Niu, Mo Zhou, Le Wang, Xinbo Gao, and Gang Hua. Ordinal regression with multiple output cnn394

for age estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition395

(CVPR), June 2016.396

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor397

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,398

Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie399

Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In400

Advances in Neural Information Processing Systems 32, pages 8024–8035. 2019.401

[18] Hoki Kim. Torchattacks: A pytorch repository for adversarial attacks. arXiv preprint arXiv:2010.01950,402

2020.403

10



[19] Jonas Rauber, Roland Zimmermann, Matthias Bethge, and Wieland Brendel. Foolbox native: Fast404

adversarial attacks to benchmark the robustness of machine learning models in pytorch, tensorflow, and405

jax. Journal of Open Source Software, 5(53):2607, 2020.406

[20] Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive407

boundary attack. In International Conference on Machine Learning, pages 2196–2205. PMLR, 2020.408

[21] Maura Pintor, Fabio Roli, Wieland Brendel, and Battista Biggio. Fast minimum-norm adversarial attacks409

through adaptive norm constraints. In Advances in Neural Information Processing Systems, volume 34,410

pages 20052–20062, 2021.411

[22] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan Yuille. Improving412

transferability of adversarial examples with input diversity. In Computer Vision and Pattern Recognition.413

IEEE, 2019.414

[23] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading defenses to transferable adversarial examples415

by translation-invariant attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision and416

Pattern Recognition, pages 4312–4321, 2019.417

[24] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with limited418

queries and information. In ICML, pages 2137–2146. PMLR, 2018.419

[25] Jonathan Uesato, Brendan O’donoghue, Pushmeet Kohli, and Aaron Oord. Adversarial risk and the dangers420

of evaluating against weak attacks. In ICML, pages 5025–5034. PMLR, 2018.421

[26] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square attack: a422

query-efficient black-box adversarial attack via random search. 2020.423

[27] Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy (Dj) Dvijotham, Alhussein424

Fawzi, Soham De, Robert Stanforth, and Pushmeet Kohli. Adversarial robustness through local linearization.425

In Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019.426

[28] Hossein Souri, Pirazh Khorramshahi, Chun Pong Lau, Micah Goldblum, and Rama Chellappa. Identifica-427

tion of attack-specific signatures in adversarial examples. CoRR, abs/2110.06802, 2021.428

[29] Anouar Kherchouche, Sid Ahmed Fezza, Wassim Hamidouche, and Olivier Déforges. Detection of429

adversarial examples in deep neural networks with natural scene statistics. In 2020 International Joint430

Conference on Neural Networks (IJCNN), pages 1–7, 2020.431

[30] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The odds are odd: A statistical test for detecting ad-432

versarial examples. In Proceedings of the 36th International Conference on Machine Learning, volume 97,433

pages 5498–5507, 09–15 Jun 2019.434

[31] Xin Li and Fuxin Li. Adversarial examples detection in deep networks with convolutional filter statistics.435

In 2017 IEEE International Conference on Computer Vision (ICCV), pages 5775–5783, 2017.436

[32] Jiajun Lu, Theerasit Issaranon, and David A. Forsyth. Safetynet: Detecting and rejecting adversarial437

examples robustly. CoRR, abs/1704.00103, 2017.438

[33] Shiqing Ma and Yingqi Liu. Nic: Detecting adversarial samples with neural network invariant checking.439

In Proceedings of the 26th network and distributed system security symposium (NDSS 2019), 2019.440

[34] Logan Engstrom, Andrew Ilyas, Hadi Salman, Shibani Santurkar, and Dimitris Tsipras. Robustness (python441

library), 2019. https://github.com/MadryLab/robustness.442

[35] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. Adversarial training is a form of data-dependent443

operator norm regularization. In Advances in Neural Information Processing Systems, volume 33, pages444

14973–14985, 2020.445

[36] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and446

Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.447

[37] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learning: from448

phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277, 2016.449

[38] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal adver-450

sarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern recognition,451

pages 1765–1773, 2017.452

11

https://github.com/MadryLab/robustness


[39] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order optimization453

based black-box attacks to deep neural networks without training substitute models. In Proceedings of the454

10th ACM workshop on artificial intelligence and security, pages 15–26, 2017.455

[40] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable attacks456

against black-box machine learning models. In 6th International Conference on Learning Represen-457

tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.458

OpenReview.net, 2018.459

[41] Nicholas Carlini and Andreas Terzis. Poisoning and backdooring contrastive learning. In International460

Conference on Learning Representations, 2022.461

[42] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust generalization.462

In NeurIPS, 2020.463

[43] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified robustness464

to adversarial examples with differential privacy. In 2019 IEEE Symposium on Security and Privacy (SP),465

pages 656–672. IEEE, 2019.466

[44] Yifan Gong, Yuguang Yao, Yize Li, Yimeng Zhang, Xiaoming Liu, Xue Lin, and Sijia Liu. Reverse467

engineering of imperceptible adversarial image perturbations. In International Conference on Learning468

Representations, 2022.469

[45] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security:470

Circumventing defenses to adversarial examples. In International conference on machine learning, pages471

274–283. PMLR, 2018.472

[46] Ahmed Aldahdooh, Wassim Hamidouche, Sid Ahmed Fezza, and Olivier Déforges. Adversarial example473

detection for dnn models: a review and experimental comparison. Artificial Intelligence Review, Jan 2022.474

[47] Xuwang Yin, Soheil Kolouri, and Gustavo K Rohde. Gat: Generative adversarial training for adversarial475

example detection and robust classification. In International Conference on Learning Representations,476

2020.477

[48] Xuwang Yin, Soheil Kolouri, and Gustavo K. Rohde. Divide-and-conquer adversarial detection. CoRR,478

abs/1905.11475, 2019.479

[49] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting adversarial480

perturbations. arXiv preprint arXiv:1702.04267, 2017.481

[50] Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu. Towards robust detection of adversarial examples. In482

Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18,483

page 4584–4594, Red Hook, NY, USA, 2018. Curran Associates Inc.484

[51] Dongyu Meng and Hao Chen. Magnet: A two-pronged defense against adversarial examples. In Proceed-485

ings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS ’17, page486

135–147, New York, NY, USA, 2017. Association for Computing Machinery.487

[52] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend: Leveraging488

generative models to understand and defend against adversarial examples. In International Conference on489

Learning Representations, 2018.490

[53] Gaurav Kumar Nayak, Ruchit Rawal, and Anirban Chakraborty. Dad: Data-free adversarial defense at491

test time. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages492

3562–3571, 2022.493

[54] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Jun Zhu, and Xiaolin Hu. Defense against494

adversarial attacks using high-level representation guided denoiser. CoRR, abs/1712.02976, 2017.495

[55] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. Detecting adversarial samples496

from artifacts. arXiv preprint arXiv:1703.00410, 2017.497

[56] Shengyuan Hu, Tao Yu, Chuan Guo, Wei-Lun Chao, and Kilian Q Weinberger. A new defense against498

adversarial images: Turning a weakness into a strength. Advances in Neural Information Processing499

Systems, 32, 2019.500

[57] Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast adversarial training.501

In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information502

Processing Systems, volume 33, pages 16048–16059. Curran Associates, Inc., 2020.503

12



[58] Soorya Gopalakrishnan, Zhinus Marzi, Upamanyu Madhow, and Ramtin Pedarsani. Combating adver-504

sarial attacks using sparse representations. Sixth International Conference on Learning Representations,505

Workshop Track, 2018.506

[59] Ambar Pal and Rene Vidal. A game theoretic analysis of additive adversarial attacks and defenses. In507

H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information508

Processing Systems, volume 33, pages 1345–1355. Curran Associates, Inc., 2020.509

[60] Peter Bartlett, Sebastien Bubeck, and Yeshwanth Cherapanamjeri. Adversarial examples in multi-layer510

random relu networks. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,511

editors, Advances in Neural Information Processing Systems, volume 34, pages 9241–9252. Curran512

Associates, Inc., 2021.513

13



A Additional Discussions514

A.1 Summary of Pros & Cons of the Proposed Method515

Pros:516

• Relies on strong assumptions and hence is specifically effective for PGD-like attacks.517

Namely, the unique trace of PGD-like attacks can be used in specific (instead of generic)518

defense scenarios with knowledge about the attacker, or forensics scenarios to tell whether519

an adversarial example is created by PGD-like methods by identifying the unique trace.520

• Can infer other attack algorithm details such as loss function and the ground-truth labels,521

while the other attack detection methods cannot do the same.522

• Easy and straightforward to interpret for human, since the meaning of the ARC features is523

clearly defined, and the feature dimensionality is low.524

• Light-weighted in terms of algorithm components. No any additional deep neural networks525

is required.526

• Non-intrusive. Does not require any change in neural network architecture or parameters.527

The proposed method analyzes the Jacobian matrices calculated from the neural network of528

interest.529

• Data-undemanding. Does not require a large number of training data. We use merely 50530

training samples in our experiments.531

• The stronger the attack is, the stronger the trace is (and hence the higher detection rate).532

Previous methods compatible to our extremely-limited setting do not have such property533

and may even perform worse with large perturbations in some cases (See Table 3).534

• Reveals a new perspective to understand why Adversarial Training works. (See "Combina-535

tion with Adversarial Training" in Section 5).536

Cons:537

• Relies on strong assumptions (See "Uniqueness of SAE to PGD-Like Attack" in Section 2),538

and hence is not effective under non-PGD scenarios since assumptions are broken. Ablation539

studies are carefully carried out in Section 4.2 to examine and justify these assumptions.540

• Suffers from high time complexity due to Jacobian matrix calculation. In practice, this541

is reflected by time consumption of calculation of the ARC feature (See "Limitations"542

in Section 5). Experiments on ImageNet are extremely slow and hence we are unable to543

evaluate the method on all ImageNet data.544

• Performs worse than previous NSS method against small perturbations (i.e., ε = 2/255 or545

ε = 4/255). (But significantly better against large perturbations).546

• Incompatible with Adversarial Training. (But meanwhile provides a new perspective to547

understand why adversarial training works. See "Combination with Adversarial Training" in548

Section 5).549

A.2 Iterations of PGD-like Attacks550

It is known that the number of iterations (fixed at 100 in our experiments) also impacts the attack551

strength besides perturbation magnitude ε. As increasing number of iterations will also lead to a552

more linear response from the model given an fixed and appropriate ε and achieve SAE similarly, we553

stick to one controlled variable ε for simplicity.554

On the contrary, reducing the number of iterations of a PGD-like attack will also lead to small555

perturbations that are hard to detect (as demonstrated in Section 4), and hence increase the possibility556

that the attack will not trigger clear SAE and hence bypass the proposed detection method. As an557

extreme case, FGSM, namely the single-step version of PGD does not effectively trigger SAE (as558

discussed in Section 4.2).559

The related works usually fix at a single set of attack parameters, and hence miss the observation that560

smaller perturbations are harder to detect.561
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A.3 Motivation of Extremely Limited Setting, including Limited Data562

An extremely limited problem setting (Paragraph 1 in Section 1) makes the proposed method flexible563

and applicable in a wider range of defense and forensics scenarios compared to existing methods.564

Namely, a method can be used in more flexible scenarios if it requires less from the adopter.565

Limited number of data samples. Data-demanding methods is only applicable for models using566

publicly available datasets, or is only applicable by the first-party who trained the neural network.567

This limits the use cases of these methods. In contrast, we do not assume collecting a large amount568

of data is easy for potential adopters of the proposed method. Due to the low demand on data, the569

proposed method enables a wider range of defense or forensics scenarios, especially when there is no570

access to the whole training dataset. For instance, the "Third-party Attack Detection or Forensics"571

and "Attack Detection for Federated Learning" scenarios.572

• Third-party Attack Detection (identify whether the model is attacked) or Forensics (identify573

attack type and infer the attack detail). Being data-undemanding means the proposed method574

can be applied to any pre-trained neural network randomly downloaded from the internet,575

or purchased from an commercial entity. For pre-trained neural networks using proprietary576

training datasets with commercial secret or ethic/privacy concerns (such as commercial face577

datasets and CT scans from patients), the proposed method is still valid as long as there are578

are a few training samples for reference, or it is possible to request a few reference training579

samples.580

• Attack Detection for Federated Learning. In federated learning, raw training data (such as581

face images) is forbidden to be transmitted to the central server. And hence even the neural582

network trainer cannot access the full training dataset (will violate user privacy), and it is583

impossible to use any data-demanding methods to detect attack against a trained model (e.g.,584

face recognition model). In contrast, the proposed method is still valid in this scenario as585

long as a few training samples can be collected from several volunteers for reference.586

No change to network architecture or weights. Many models deployed in production are unaware587

of adversarial attack. Re-training and replacing these models will induce cost, and will even introduce588

the risk of reducing benign example performance.589

No auxiliary deep networks. Since a large amount of data is assumed to be not easy to obtain due to590

commercial or ethic reasons, training auxiliary deep networks are not always feasible. Pre-trained591

auxiliary deep networks are not always available for any classification task.592

A.4 More on Adaptive Attack593

According to [13], some similar attack detection methods are broken by adaptive attacks. Here we594

discuss more about the existing adaptive attacks and report the quantitative experimental results. We595

also further elaborate on the adaptive attack mentioned in Section 2.596

Logit Matching. (from Section 5.2 "The Odds are Odd" of [13]) Instead of maximizing the default597

entropy loss, we switch to minimize the MSE loss between the clean logits from another class and598

that of the adversarial example. We conduct experiment with all testing data from CIFAR-10, and599

128 random testing samples from ImageNet (due to limited time frame of rebuttal). The experimental600

results can be found in the following table. Note, switching loss function to MSE loss (Logit601

Matching) breaks our assumption (IV). However, the attack still triggers SAE through the least-likely602

class, and hence our method is still effective, but is (expectedly) weaker compared to the BIM with603

the original cross-entropy loss.604

Dataset
Model

Attack ϵ = 2/255 ϵ = 4/255 ϵ = 8/255 ϵ = 16/255 ϵ =?
DR FPR Acc Acc* DR FPR Acc Acc* DR FPR Acc Acc* DR FPR Acc Acc* DR FPR Acc Acc*

CIFAR-10
ResNet-18

BIM (Logit Matching) 0.0 0.0 80.6 80.6 0.0 0.0 63.2 63.2 23.8 1.5 46.3 35.5 48.0 1.1 38.0 20.2 22.8 1.5 57.1 46.9

ImageNet
ResNet-152

BIM (Logit Matching) 0.0 0.0 46.1 46.1 7.0 1.4 18.8 17.2 17.2 1.4 9.4 7.0 91.4 1.4 3.1 0.0 30.3 1.6 19.3 17.6

ImageNet
SwinT-B-IN1K

BIM (Logit Matching) 0.8 1.6 46.1 45.3 7.0 2.0 7.0 7.0 55.5 2.0 0.8 0.8 90.6 0.2 0.0 0.0 41.2 2.0 13.5 13.1

Table 4: Results of Logit Matching as adaptive attack against our method.

Interpolation with Binary Search. (from Section 5.13 "Turning a Weakness into a Strength" of605

[13]) This methods find interpolated adversarial examples that are close to the decision boundary606
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with binary search. We conduct experiment with all testing data from CIFAR-10, and 128 random607

testing samples from ImageNet (due to limited time frame of rebuttal). The experimental results can608

be found in the following table. Compared to the baseline results, the results show that our method is609

still effective against the adversarial examples close to the decision boundary.610

Dataset
Model

Attack ϵ = 2/255 ϵ = 4/255 ϵ = 8/255 ϵ = 16/255 ϵ =?
DR FPR Acc Acc* DR FPR Acc Acc* DR FPR Acc Acc* DR FPR Acc Acc* DR FPR Acc Acc*

CIFAR-10
ResNet-18

BIM (Interpolation) 0.0 0.0 65.7 65.7 0.0 0.0 44.6 44.6 28.0 1.5 21.9 28.0 74.4 1.1 6.0 56.4 28.0 1.5 34.6 48.8

ImageNet
ResNet-152

BIM (Interpolation) 0.0 0.0 18.8 18.8 4.7 1.4 6.2 5.5 25.0 1.4 0.8 0.8 90.6 1.4 0.0 0.8 31.4 1.6 6.4 6.2

ImageNet
SwinT-B-IN1K

BIM (Interpolation) 1.6 1.6 44.5 45.3 3.9 2.0 37.5 35.9 66.4 2.0 14.1 64.8 97.7 0.2 0.0 97.7 42.8 2.0 24.0 61.3

Table 5: Results of Interpolation with Binary Search as adaptive attack against our method.

Adaptive Attack discussed in Section 2. To avoid triggering SAE, the goal of the PGD attack can611

include an additional term to minimize ∥S∗(x+ r)∥F . Namely, the corresponding adaptive attack is:612

argmax
r

LCE(x+ r, c(x))− ∥S∗(x+ r)∥F

=argmax
r

LCE(x+ r, c(x))− [
∑
i

∑
j

|s(i,j)n∗ |2]1/2

=argmax
r

LCE(x+ r, c(x))− [

T+1∑
i=1

T+1∑
j=1

cos[∇fn∗(x+ r + δi),∇fn∗(x+ r + δj)]
2]1/2

To solve this adaptive attack problem, the straightforward solution is to conduct Z-step PGD updates613

with the modified loss function. Each step includes but is not limited to these computations: (1) T +1614

Jacobian matrices to calculate n∗ and ∇fn∗(·); (2) T + 1 Hessian matrices to calculate ∇2fn∗(·).615

Let ψJ and ψH be the time consumption for Jacobian and Hessian matrices respectively. Then the616

time consumption of the Z steps of optimization in total is greater than Z(T + 1)(ψJ + ψH).617

For reference, for Nvidia Titan Xp GPU and CIFAR-10/ResNet-18, the ψJ = 0.187± 0.012 seconds,618

and ψH = 20.959± 0.679 seconds (Python code for this benchmark can be found in Appendix). If619

we use Z = 100 steps of PGD attack, and T = 6 for calculating ARC, each adversarial example of a620

CIFAR-10 image takes more than Z(T + 1)(ψJ + ψH) ≈ 14802 seconds (i.e., 4.1 hours).621

Note, we acknowledge that other alternative adaptive attack designs are possible, but as long as the622

alternative design involves optimizing any loss term calculated from gradients, second-order gradients623

(Hessian) will be required to finish the optimization process, which again makes the alternative attack624

computationally prohibitive.625

A.5 More on Related Works626

We discuss the related works in more details, as an extension to Section 6.627

Similar Defenses.628

• “The Odds are Odd” [30] is an attack detection method based on feature statistical test.629

This method is categorized in Section 6 as feature statistics-based methods. In particular,630

it detects adversarial examples based on the difference between the logits of clean image631

and image with random noise. This method assumes that a random noise may break the632

adversarial perturbation and hence lead to notable changes in the logits, and is is capable of633

correcting test time predictions. Meanwhile, it can be broken by adaptive attack to match634

the logits with an image from another example [13]. Similarly, our method can be seen635

as a statistical test for gradient consistency as reflected by ARC feature. Our method is636

motivated by the assumption that neural networks will manifest “local linearity” with respect637

to adversarial examples, which will not happen for benign examples. Meanwhile the SAE is638

consistent across different architectures, and the corresponding 2-D ARCv feature shows639

very simple cluster structure for both benign and adversarial examples. The adaptive attack640

against [30] can merely slightly reduce the effectiveness of our attack, as shown in the641

additional adaptive attack experiments in this Appendix.642

• “Turning a Weakness into a Strength” [56] is an attack detection method which is concep-643

tually similar to [30]. This method involves two criterion for detection: (1) low density644
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of adversarial perturbations – random perturbations applied to natural images should not645

lead to changes in the predicted label. The input will be rejected if the change in predicted646

probability vector is significant after adding a Gaussian noise. (2) close proximity to the647

decision boundary – this leads to a method that rejects an input if it requires too many steps648

to successfully perturb with an iterative attack algorithm. Hence, this method can be seen as649

an detector with two-dimensional manually crafted feature. This method can be broken by650

an adaptive attack [13] that searches for an interpolation between the benign and adversarial651

example. Similarly, our method leverages BIM, an iterative attack to calculate the ARC652

feature. However, differently, our method use the iterative attack to explore the local area653

around the input, in order to calculate the extent of “local linearity” around the point as the654

ARC feature, while [56] leverages an iterative attack to count the number of required steps.655

The ARC feature shows clear difference between benign and adversarial examples, and656

hence does not need to combine with other manually crafted feature. [56] points out that657

solely using one criterion is insufficient, because the criterion (1) may be easily bypassed.658

The adaptive attack against [56] can merely slightly reduce the effectiveness of our attack,659

as shown in the additional adaptive attack experiments in this Appendix.660

Local Linearity. Local linearity is an important characteristics for the community to understand the661

adversarial attack as well as design defense methods.662

• FGSM [6] is designed based on the intuition that neural networks are vulnerable because663

their “local linear” property has been triggered by the attack. This is the first work that664

propose the concept of “local linearity” about adversarial attack. Many follow-up works665

about “local linearity” are adversarial training methods.666

• In LLS [27] (adversarial training), a regularizer is proposed that encourages the loss to667

behave linearly in the vicinity of the training data, thereby penalizing gradient obfuscation668

while encouraging robustness. This is relevant to our interpretation on adversarial training669

in Section 5.670

• In GradAlign [57] (adversarial training), it is noted that the network being highly non-linear671

locally is the main reason why FGSM training fails.672

• Sparsifying front end [58] points out that a “locally linear” model can be used to develop a673

theoretical foundation for crafting attacks and defenses.674

• In [59], it is proved that the Fast Gradient Method attack and a Randomized Smoothing675

defense form a Nash Equilibrium, under a locally linear decision boundary model for the676

underlying binary classifier.677

• [60] shows that local linearity arises naturally at initialization.678

A.6 Python Code for Evaluating Time Consumption of Jacobian / Hessian Calculation679

The python code for measuring the time consumption for Jacobian and Hessian matrices calculation680

is shown below. The code is based on CIFAR-10 settings with M = 3 × 32 × 32 and N = 10,681

and the neural network used is ResNet-18. For reference, the result on Nvidia Titan Xp GPU is682

0.187± 0.012 seconds for Jacobian, and 20.959± 0.679 seconds for Hessian.683

Note, for the ImageNet/ResNet-152 case, the Jacobian and Hessian calculation cost is much higher.684

import time, torch as th, torchvision as V, numpy as np
device = ’cuda’
resnet18 = V.models.resnet18(False).to(device) # standard resnet18
resnet18.eval()
resnet18.fc = th.nn.Linear(512, 10).to(device) # fit for 10 classes
X = th.rand(1, 3, 32, 32).to(device) # random input
# compute a jacobian
time_start = time.time()
J = th.autograd.functional.jacobian(resnet18, X)
time_end = time.time()
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print(’A Jacobian takes:’, time_end - time_start, ’seconds’)
# compute a hessian
time_start = time.time()
H = th.autograd.functional.hessian(lambda x: resnet18(x)[0, 0], X)
time_end = time.time()
print(’A Hessian takes:’, time_end - time_start, ’seconds’)
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Checklist685

The checklist follows the references. Please read the checklist guidelines carefully for information on686

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or687

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing688

the appropriate section of your paper or providing a brief inline description. For example:689

• Did you include the license to the code and datasets? [Yes] See Section ??.690

• Did you include the license to the code and datasets? [No] The code and the data are691

proprietary.692

• Did you include the license to the code and datasets? [N/A]693

Please do not modify the questions and only use the provided macros for your answers. Note that the694

Checklist section does not count towards the page limit. In your paper, please delete this instructions695

block and only keep the Checklist section heading above along with the questions/answers below.696

1. For all authors...697

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s698

contributions and scope? [Yes] Contributions are summarized at the end of Section 1.699

(b) Did you describe the limitations of your work? [Yes] Limitations are summarized at700

the end of Section 5.701

(c) Did you discuss any potential negative societal impacts of your work? [No] Attack702

detection is expected to build safer and more secure applications. Positive societal703

impacts are expected.704

(d) Have you read the ethics review guidelines and ensured that your paper conforms to705

them? [Yes]706

2. If you are including theoretical results...707

(a) Did you state the full set of assumptions of all theoretical results? [N/A]708

(b) Did you include complete proofs of all theoretical results? [N/A]709

3. If you ran experiments...710

(a) Did you include the code, data, and instructions needed to reproduce the main ex-711

perimental results (either in the supplemental material or as a URL)? [Yes] Code is712

included in supplementary material.713

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they714

were chosen)? [Yes] All training details are included in Section 4715

(c) Did you report error bars (e.g., with respect to the random seed after running experi-716

ments multiple times)? [N/A] SVM converges to a reproducible result.717

(d) Did you include the total amount of compute and the type of resources used (e.g.,718

type of GPUs, internal cluster, or cloud provider)? [Yes] We mentioned the computer719

resource at the end of Section 5. Our experiments are carried out with two Nvidia Titan720

Xp experiments.721

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...722

(a) If your work uses existing assets, did you cite the creators? [Yes] Dataset papers are723

cited. Compared methods are cited.724

(b) Did you mention the license of the assets? [N/A] The CIFAR-10 dataset webpage725

https://www.cs.toronto.edu/~kriz/cifar.html does not specify license. Im-726

ageNet dataset license can be found at https://www.image-net.org/download.727

php. The pretrained models available for public download, including ResNet-152 from728

PyTorch, and SwinT-B-IN1K are not specified with a license. The authors of code of729

compared method do not specify their license.730

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]731

There is no new assets in this paper.732

(d) Did you discuss whether and how consent was obtained from people whose data you’re733

using/curating? [N/A]734
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(e) Did you discuss whether the data you are using/curating contains personally identifiable735

information or offensive content? [N/A]736

5. If you used crowdsourcing or conducted research with human subjects...737

(a) Did you include the full text of instructions given to participants and screenshots, if738

applicable? [N/A]739

(b) Did you describe any potential participant risks, with links to Institutional Review740

Board (IRB) approvals, if applicable? [N/A]741

(c) Did you include the estimated hourly wage paid to participants and the total amount742

spent on participant compensation? [N/A]743
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