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Abstract

Direct Preference Optimization (DPO) has proven effective at improving the performance of
large language models (LLMs) on downstream tasks such as reasoning and alignment. In this
work, we propose Step-Controlled DPO (SCDPO), a method for automatically providing
stepwise error supervision by creating negative samples of mathematical reasoning rationales
that start making errors at a specified step. By applying these samples in DPO training,
SCDPO can better align the model to avoid reasoning errors and output accurate reasoning
steps. Qualitative analysis of the credit assignment of SCDPO and DPO demonstrates the
effectiveness of SCDPO at identifying errors in mathematical solutions. We then apply
SCDPO to an InternLM2-20B model, resulting in a 20B model that achieves competitive
scores of 88.5% on GSM8K and 58.1% on MATH, rivaling all other open-source LLMs,
showing the great potential of our method. The code, models and data are released to
inspire future work.

1 Introduction

Recently, Direct Preference Optimization (DPO; Rafailov et al. (2024b)) has emerged as a popular choice
for aligning large language models (LLMs) with relative feedback to improve the quality of generated text.

∗Corresponding authors.
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Prior works Christiano et al. (2023); Pal et al. (2024); Xu et al. (2024) have demonstrated that reinforce-
ment learning algorithms and DPO can improve the mathematical reasoning abilities of LLMs, making the
generated reasoning process more controllable. The final answer to a mathematical problem serves as a nat-
ural way to judge the quality of the model’s response, since a mathematical problem typically has a single
correct answer. As a result, the responses producing the correct final answers are desirable and can serve as
the preferred samples, while the ones reaching incorrect final answers are undesirable and can serve as the
dispreferred samples.

However, solutions to a mathematical problem can be diverse, with many different reasoning paths arriving at
the correct final answer and many subtle ways to make mistakes. Determining the preferred and dispreferred
responses based on the final answer is coarse and may be inadequate for capturing the intricacies of the
multi-step mathematical reasoning process. Previous studies introduce process supervision Lightman et al.
(2023), but it requires large amounts of meticulous and expensive human annotation and only applies to
traditional RL algorithms.

In this paper, we show how to automatically provide explicit stepwise preference supervision by generating
diverse dispreferred solutions that start making errors at a specific step. We propose Step-Controlled DPO
(SCDPO), an simple yet effective algorithm that introduces stepwise supervision without necessitating extra
human annotation. This approach starts with a model finetuned with question-solution pairs and possessing
initial math-solving capabilities, which is used to generate solutions to a set of math problems. We choose
the solutions whose final answers match those of the ground truth. We take each of these correct solutions
and start generating with the model via modulating the hyperparameter of the model, i.e., increasing the
temperature of the final softmax function, from various intermediate steps of that solution, and retain the
samples where the final answer is incorrect. In this way, the steps before the intermediate step are the same
as the original correct solution, while the steps after are the ones with possible errors. During DPO training,
the correct solutions are the preferred samples, and they are paired with the wrong solutions generated in
this way, with the question and the steps before the intermediate step as the prompts. These step-controlled
training samples help models learn detailed reasoning abilities and are mixed with naive DPO training data
produced by only checking the final answer, which optimizes the general form of the solution.

Our contributions are as follows:

• We introduce SCDPO, a method that automatically provides explicit stepwise supervision to enhance
mathematical abilities of LLMs.

• We conduct pilot experiments on chain-of-thought and code-integrated solutions, showing that
SCDPO can effectively improve mathematical problem-solving performance of three different SFT
models. We also conduct qualitative analysis of credit assignment of SCDPO.

• Using SCDPO, we finetune an InternLM2-20B model, which reaches 88.5% on GSM8K Cobbe et al.
(2021) and 58.1% on MATH Hendrycks et al. (2021), demonstrating the great potential of our
method.

2 Step-Controlled DPO Pipeline

In this section, we introduce Step-Controlled DPO (SCDPO), a pipeline for automatically generating pre-
ferred and dispreferred responses to math problems, with annotations of erroneous solving steps, and using
these responses in DPO training to enhance the mathematical reasoning abilities of LLMs. Our method con-
sists of two stages: step-controlled data generation, and step-aware DPO training. The two stages construct
a feedback-alignment framework that is both effective and cost-efficient.

Initial Model. Our method starts with an initial model, denoted as πSFT, which has been finetuned
with question-solution pairs from math datasets such as GSM8K and MATH. When prompted with a math
problem q, πSFT is able to generate a step-by-step solution, denoted as a. a can be broken down into a
sequence of reasoning steps, for example, a = (t0, . . . , tm). Here, ti (i = 0, . . . , m) represents either a code
reasoning step or a natural language reasoning step within a. For Chain-of-Thought solutions, the reasoning
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a.

Preferred Solutions Dispreferred Solutions 

First, we need to calculate a quarter of 48.

```python
multiply_result = 48 * 0.25
multiply_result
```

```sh
12.0
```

Now, we'll calculate fifteen more than the 
quarter of 48.

```python
add_result = multiply_result + 15
add_result
```

```sh
27.0
```

The solution to the problem is  
$$\boxed{27}$$ .

First, we need to calculate a quarter of 48.

```python
multiply_result = 48 * 0.25
multiply_result
```

```sh
12.0
```

Next, we'll add 15 to the result we just 
obtained.

```python
addition_result = 48 + 15 + multiply_result
addition_result
```

```sh
75.0
```

The answer is $$\boxed{75}$$ .

What is fifteen more 
than a quarter of 48?

b.

reference model πsft

    

Figure 1: Demonstration and example of the step-controlled data generation process. a. Step-controlled
data generation. First, a solution reaching the correct final answers is collected, which we denote as a

(pre)
i .

Then, erroneous solutions that reach incorrect final answers are generated, starting from intermediate steps
of a

(pre)
i , creating dispreferred solutions a

(dis-sc)
i1 , a

(dis-sc)
i2 , and a

(dis-sc)
i3 . These dispreferred solutions share

the steps before the intermediate steps with a
(pre)
i . The temperature of the newly generated steps gradually

increases with each step to make the generation more erroneous. b. An example of a pair of preferred and
dispreferred solutions. The dispreferred solution starts making errors after a particular intermediate step.

steps are separated by “\n”. In code-integrated solutions, the reasoning steps are separated by special tokens
as described in Wang et al. (2023a).

2.1 Step-Controlled Data Generation

The data we collect is in two parts: naive DPO data Dnaive and Step-Controlled DPO data DSC.

Generation of Dnaive. Dnaive contains pairs of preferred-dispreferred samples, used to optimize the general
form of the solution. To create Dnaive, we prompt πSFT with math questions in the training sets of GSM8K
and MATH. Each question is presented to πSFT multiple times and various solutions are generated, with
a temperature of 1. If a solution reaches the same final answer as the ground truth, and no errors or
adjustments occur at any of the reasoning steps (we detect these by looking for strings like “error” or
“apologies”), the solution is seen as preferred, while the solutions that reach answers different from the
ground truth are considered dispreferred. To find out the frequency of incorrect solution process reaching
the correct final answer, we randomly sampled 87 solutions that reach correct final answers, and found that
of the 369 reasoning steps in these solutions, only 2 contain errors, which is a very small percentage (about
0.5%). This demonstrates that, in most cases, a correct final answer indicates correct intermediate steps.
The solution generation of each question stops when at least one preferred solution and one dispreferred
solution are generated, or the number of solutions generated reaches an upper limit of 100. We use questions
from the training sets of the GSM8K and MATH datasets for solution sampling, and repeated sampling
ensures that 99.8% of the questions in the GSM8K training set and 91.8% of the questions in the MATH
training set yield at least one positive sample. The resulting data can be expressed as:

Dnaive = {(qi, a
(pre)
i , a

(dis)
i ) : i = 1, . . . , Nnaive}
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Here, qi denotes the ith question, while a
(pre)
i and a

(dis)
i represent the preferred and dispreferred solution to

the ith question.

Generation of DSC. In order to generate solutions with stepwise error information for DPO training,
we propose a method to automatically generate training data with errors starting to occur at a controlled
step. The process is demonstrated in Fig. 1. We first take a preferred solution from Dnaive, denoted as
a

(pre)
i = (t(pre)

0 , . . . , t
(pre)
k , t

(pre)
k+1 , . . . , t

(pre)
mi ). Here, t

(pre)
k is a random intermediate step within a

(pre)
i . As

a
(pre)
i is a correct solution, t

(pre)
0 , . . . , t

(pre)
mi can all be seen as correct steps. As shown in Fig. 1 a, to

create a solution with errors occurring after step k, we present πSFT with sequence (qi, t
(pre)
0 , . . . , t

(pre)
k ),

and raise the temperature of the final softmax function to affect the generation quality, increasing the
occurrence of errors in the following steps. Raising the temperature causes the model performance to become
unstable and erroneous. We observe that when the temperature is instantly raised and remains at a high
value, the model can generate garbled strings as errors accumulate, which does not represent any reasoning
mistakes and contains no valuable information. To avoid this, we adopt a gradually increasing temperature,
which initially starts at 1.1, and increases by 0.05 with each generated step, until the generation ends or
the temperature reaches 1.4. This setting empirically reduces the frequency of the occurrence of garbled
text, while increasing the error rate and diversity of generated errors. We generate the steps following
(qi, t

(pre)
0 , . . . , t

(pre)
k ) multiple times, until one reaching an incorrect answer is generated. Appending the

generated steps to (t(pre)
0 , . . . , t

(pre)
k ), we get a dispreferred solution with step-controlled error, denoted as

a
(dis-sc)
ik = (t(pre)

0 , . . . , t
(pre)
k , t

(dis-sc)
k+1 , . . . , t

(dis-sc)
ni ), where the sequence (t(dis-sc)

k+1 , . . . , t
(dis-sc)
ni ) is erroneous. An

example is presented in Fig. 1 b. The resulting data can be expressed as:

DSC = {(qi, a
(pre)
i , a

(dis-sc)
ik ) : i = 1, . . . , NSC}

Here, qi denotes the ith question, while a
(pre)
i is the preferred solution, and a

(dis-sc)
ik is the dispreferred solution

with step-controlled error that occurs after t
(pre)
k . NSC is the number of questions in DSC, while mi is the

index of the last step of a
(pre)
i .

2.2 Step-Controlled DPO Training

Having collected Dnaive and DSC, we apply them to DPO training. Dnaive serves to regulate the general
form of solutions, while DSC supervises the model’s reasoning on a step level. During DPO training, samples
in Dnaive and DSC are mixed together randomly, and the DPO loss is applied to each sample. For samples
from Dnaive, the loss is applied to all steps in the preferred and dispreferred solutions, which can be written
as:

Lnaive(πθ; πSFT) = −E(qi,a
(pre)
i

,a
(dis)
i

)∼Dnaive

[
log σ

(
β log πθ(a(pre)

i |qi)
πSFT(a(pre)

i |qi)
− β log πθ(a(dis)

i |qi)
πSFT(a(dis)

i |qi)

)]
(1)

For a pair of preferred and dispreferred solutions in DSC where the erroneous steps are generated starting from
the kth step of the preferred solution, the preferred solution can be denoted as a

(pre)
i , and the dispreferred

solution can be denoted as a
(dis-sc)
ik . The first k reasoning steps are shared between the pair of solutions.

The erroneous steps after the kth step in a
(dis-sc)
ik is denoted as (t(dis-sc)

k+1 , . . . , t
(dis-sc)
ni ), while the correct steps

in a
(pre)
i after the kth step is denoted as (t(pre)

k+1 , . . . , t
(pre)
mi ). SCDPO directly contrast between the steps in

a
(pre)
i and a

(dis-sc)
ik after the kth step, applying the DPO loss only on the different steps.
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Figure 2: Credit assignment of part of a solution for a GSM8K problem. Each token is colored corresponding
to the DPO implicit reward as expressed in Eq. 4 (darker is higher). The left is the credit assignment of
SCDPO, which correctly highlights the error – 4 less than a dozen is not 4 times (12 - 4), while the credit
assignment of DPO on the right fails to highlight it.

LSC(πθ; πSFT) =

− E(qi,a
(pre)
i

,a
(dis-sc)
ik

)∼DSC

[
log σ

((
mi∑

j=k+1

β log
πθ(t(pre)

j |qi, t<j)

πSFT(t(pre)
j |qi, t<j)

)
−

(
ni∑

j=k+1

β log
πθ(t(dis-sc)

j |qi, t<j)

πSFT(t(dis-sc)
j |qi, t<j)

))]
(2)

Combining Lnaive and LSC, the final loss function of Step-Controlled DPO is as follows:

LSCDPO = Lnaive + LSC (3)

In this way, Lnaive optimizes the general form of the solution, while LSC focuses on detailed reasoning steps,
thus improving the model’s accuracy in solving mathematical problems.

3 Theoretical Explanation of Step-Controlled DPO

Theoretical Insight. In this section, we provide some theoretical insights into why SCDPO can effectively
enhance the reasoning ability of LLMs. As explained in Rafailov et al. (2024a), the DPO loss can be cast
into token-level MDP (Markov Decision Process; Puterman (1994)). Similarly, we can also interpret DPO

as a step-level MDP. As presented in Eq. 2, β log πθ(t
(pre)
j

|qi,t<j)
πSFT(t

(pre)
j

|qi,t<j)
and β log πθ(t

(dis-sc)
j

|qi,t<j)
πSFT(t

(dis-sc)
j

|qi,t<j)
represent the

reward of a single preferred or dispreferred step. For naive DPO, all steps in the preferred and dispreferred
solutions have their rewards affecting the loss. However, many steps in the dispreferred solution are actually
correct, as the error often occurs in a later step. Step-Controlled DPO reduces the range of steps, starting
from the (k + 1)th step, from which the dispreferred steps are more likely to be erroneous due to the raised
sampling temperature. The focus of the optimization is thus cast on the errored steps rather than the whole
solution, letting the model learn more detailed reasoning abilities.

Qualitative Evaluation of Credit Assignment of SCDPO. We perform qualitative evaluation of credit
assignment on two models trained with SCDPO and DPO respectively. For a sequence of tokens x =
(x0, . . . , xm), where xi is the ith token in the sequence, we denote all the tokens before xi as si, written as
si = (x0, . . . , xi−1). As introduced in recent research Rafailov et al. (2024a), the DPO implicit reward can
be expressed as follows:

r(si, xi) = β log π(xi|si) − β log πSFT(xi|si) (4)

Here r(si, xi) denotes the DPO implicit reward of token xi, which is the value we visualize as the background
color of the token. A darker color represents a higher reward value. As demonstrated in Fig. 2 and Fig. 3,
when presented with an incorrect reasoning step, SCDPO more accurately identifies the incorrect tokens
compared to DPO. Fig. 2 shows part of a solution for a GSM8K question. In step 2, the solution incorrectly
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Figure 3: Credit assignment of part of a solution for a MATH problem. Each token is colored corresponding
to the DPO implicit reward as expressed in Eq. 4 (darker is higher). The left is the credit assignment
of SCDPO, which correctly highlights the error – as the original question was “Find the remainder when
8 · 1018 + 118 is divided by 9”, the remainders of the terms 8, 1018, and 118 should not be summed, while the
credit assignment of DPO on the right fails to highlight the error.

interprets “4 less than a dozen” as “4 × (12 − 4)”, when it should have been “(12 − 4)”. The SCDPO model
correctly highlights “4 × (12 − 4)”, while the DPO does not. Fig. 3 shows part of a solution for a MATH
question. The solution sums the terms in the expression when two of the terms should have been multiplied.
SCDPO correctly highlights the incorrect solution, while DPO does not. Several other credit assignment
analysis examples are shown in Fig. 6, Fig. 7 and Fig. 8 of Appendix C,respectively. These examples show
that the stepwise supervision provided in SCDPO results in a better token-level understanding of reasoning
errors.

4 Experiments

In this section, we first train a 20B model using SCDPO, reaching a performance rivaling all other models of
similar scale. Then, we perform a comprehensive empirical comparison between SCDPO and DPO on three
kinds of Mistral-7B SFT models. We also present ablation studies to further explain the design of increasing
temperature during the generation of erroneous steps and combining Dnaive with DSC during training.

4.1 Main Result

Training Data. We collect solutions for questions in the training set of APE210K Zhao et al. (2020),
GSM8K and MATH from GPT-4 Code Interpreter. Combining 169K samples from APE210K, 34K from
GSM8K and 47K from MATH, we get an SFT dataset of 250K question-solution pairs. The SCDPO and
DPO training data is collected as described before in Sec. 2.1. During sampling, top-p is set to 1 and top-k
is set to -1 to consider all tokens. The training data for SCDPO contains 13K samples from GSM8K, 46K
samples from MATH, and 29K samples from APE210K.

Training Settings. We use InternLM2-20B Cai et al. (2024) as the foundation model, as it has demonstrated
high performance in previous works Lu et al. (2024); Cai et al. (2024), even surpassing larger models such
as Mixtral-8x7B Jiang et al. (2024) and Llama2-70B Touvron et al. (2023) in some cases. In the SFT stage,
we finetune the model with a learning rate of 1.0 × 10−5 for 3 epochs, with a context length of 2048 tokens.
In DPO and SCDPO training, we use a learning rate of 1.5 × 10−7 to train the SFT model for 2 epochs,
with a context length of 1024 and β set to 0.1. The models are trained on 16 NVIDIA A800 80GB GPUs
with a batch size of 64. To further demonstrate the effectiveness of SCDPO, we also train two other strong
open-source models—Qwen-2.5-1.5B-Instruct and Qwen-2.5-7B-Instruct—using our method.

Evaluation Datasets. Ten representative mathematical datasets covering a wide range of question types
and difficulties are used in evaluating the models: GSM8K Cobbe et al. (2021), MATH Hendrycks et al.
(2021), OCWCourses (OCW) Lewkowycz et al. (2022), Hungarian National Exams (hungarian) Paster
(2023), Mathematics Saxton et al. (2019), SVAMP Patel et al. (2021), Simuleq Kushman et al. (2014),
APE210K Zhao et al. (2020), CMATH Wei et al. (2023b) and MGSM-zh Shi et al. (2023). The first seven
datasets consist of English math questions, while the last three consist of Chinese math questions. The
evaluation datasets contain a wide range of problem types, covering mathematical problems from grade-
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Model Size English Chinese

GSM8K MATH OCW Hung-
arian

Mathe-
matics

SVA-
MP

Simul-
eq

APE-
210K

CMA-
TH

MGSM-
zh

Proprietary Models

GPT-3.5 - 80.8 34.1 - 41 - - - - 73.8 -
GPT-4 - 93.6 53.6 30.1 92 - - - 84.2 89.3 -
GPT-4 Code Interpreter - 97.0 69.7 - - - - - - - -
GLM-4∗ - 91.8 49.0 - 75 - - - 93.5 89.0 -
GPT-4o - 95.0 76.6 - - - - - - - -
Claude-3.5-Sonnet - 96.4 71.1 - - - - - - - -
DeepSeek-V3 671B 89.3 61.6 - - - - - 90.7 90.7 79.8

Open-Source Models

Qwen2 7B 85.7 52.9 10.7 56 51.4 86.3 83.6 54.2 73.8 58.0
Math-Shepherd 7B 84.1 33.0 12.5 46 36.6 81.8 84.6 45.9 68.8 67.6
DeepSeekMath-RL 7B 86.7 58.8 22.1 55 57.4 86.7 69.6 71.9 87.6 78.4
SVPO 7B 81.7 59.5 34.2 - - - - - - -
InternLM2-Math 20B 80.7 54.3 12.9 66 41.1 83.4 55.6 64.3 69.0 58.4
MathGenie 20B 87.7 55.7 23.5 69 85.1 87.3 88.5 - - -
ChatGLM3-32B 32B 82.6 40.6 - 73 - - - 89.4 85.6 -
ToRA 34B 80.7 50.8 5.5 - 77.9 80.5 50.2 - 53.4 41.2
MAmmoTH 70B 76.9 41.8 - - 65.4 84.3 51.8 - - -
MathCoder 70B 83.9 45.1 - - 74.4 84.9 77.0 - - -

InternLM2 Family

InternLM2-SFT 20B 86.4 55.8 21.6 71 84.0 86.9 91.2 77.1 88.4 74.8
InternLM2-SFT-DPO 20B 87.0 57.6 25.5 74 85.6 89.7 92.6 78.7 89.9 76.0
InternLM2-SFT-DPO(d-e) 20B 88.2 57.5 24.5 73 86.3 88.9 91.1 78.8 89.3 76.0
InternLM2-SFT-SCDPO 20B 88.5 58.1 29.4 78 87.5 90.2 93.6 79.3 90.3 80.4

Qwen2.5-1.5B Family

Qwen2.5-1.5B-Inst. 1.5B 73.2 55.2 22.8 69 57.3 84.0 75.7 45.9 76.9 57.6
Qwen2.5-1.5B-Inst.-DPO 1.5B 74.6 56.7 23.6 71 61.2 83.7 84.5 45.4 78.2 60.0
Qwen2.5-1.5B-Inst.-DPO(d-e) 1.5B 74.3 56.1 22.8 74 61.4 84.0 84.9 46.8 78.0 60.4
Qwen2.5-1.5B-Inst.-SCDPO 1.5B 75.7 56.5 24.6 76 64.5 84.0 84.7 57.2 83.8 62.0

Qwen2.5-7B Family

Qwen2.5-7B-Inst. 7B 91.3 75.5 38.6 77 76.4 88.0 87.9 79.4 88.4 79.2
Qwen2.5-7B-Inst.-DPO 7B 91.3 76.4 40.4 80 80.3 89.3 87.8 78.8 85.2 79.0
Qwen2.5-7B-Inst.-DPO(d-e) 7B 91.4 76.0 37.9 81 76.2 88.3 87.6 78.9 87.1 79.8
Qwen2.5-7B-Inst.-SCDPO 7B 92.0 76.6 41.2 84 82.3 91.3 88.2 80.5 89.0 79.8

Table 1: Performance of open-source and closed-source models on seven English datasets (GSM8K, MATH,
OCW, Hungarian, Mathematics, SVAMP, and Simul-eq) and three Chinese datasets (APE-210K, CMATH,
and MGSM-zh). All results are obtained with greedy decoding. The best score for each block is shown in
bold; the second-best is underlined.

school level to college level, comprehensively evaluating the models’ mathematical reasoning abilities. We
use greedy decoding for all evaluations.

Baselines. We compare our 20B models with powerful closed-source models such as GPT-3.5 (Brown et al.,
2020), GPT-4 OpenAI et al. (2024), GPT-4 Code Interpreter OpenAI et al. (2024) and GLM-4 †, as well as
open-source models such as MARIO Liao et al. (2024), Qwen2 Yang et al. (2024), Math-Shepherd Wang et al.
(2024), SeaLLM-v2 Nguyen et al. (2024), DeepSeekMath-RL Shao et al. (2024), SVPO Chen et al. (2024),
Skywork-13B-Math Yang et al. (2023a), InternLM2-Math ‡ Ying et al. (2024), MathGenie Lu et al. (2024),
ChatGLM3-32B-RFT-DPO Xu et al. (2024), Yi-Chat Yi (2023), ToRA Gou et al. (2024), MAmmoTH Yue
et al. (2023), MathCoder Wang et al. (2023a) and WizardMath Luo et al. (2023).

†https://open.bigmodel.cn/dev/api#glm-4
‡https://github.com/InternLM/InternLM-Math

7

https://open.bigmodel.cn/dev/api#glm-4
https://github.com/InternLM/InternLM-Math


Published in Transactions on Machine Learning Research (11/2025)

Method GSM8K MATH OCW hungarian Mathematics SVAMP Simuleq

Mistral-7B-Ours

SFT (Baseline) 76.8 43.2 21.7 52 69.8 81.3 73.9
SFT-continued 76.3 43.9 18.8 55 70.3 80.8 74.5
SFT+DPO 78.8 45.1 18.4 56 74.8 81.0 74.9
SFT+DPO(d-e) 79.0 45.7 18.0 59 74.4 79.2 73.2
SFT+DPO+SC 80.1 47.7 22.4 61 76.5 82.3 79.0

MetaMath-Mistral-7B

SFT (Baseline) 77.7 28.2 12.5 33 33.9 80.0 68.5
SFT-continued 76.8 28.5 13.2 35 33.6 80.3 69.1
SFT+DPO 81.0 28.7 14.0 34 33.8 81.0 68.3
SFT+DPO(d-e) 81.4 29.0 14.7 38 34.3 80.9 70.6
SFT+DPO+SC 81.7 29.3 15.4 42 35.0 81.6 73.2

MathCoder-Mistral-7B

SFT (Baseline) 78.1 39.3 12.9 62 70.4 79.4 80.5
SFT-continued 78.2 40.3 12.5 65 71.2 77.3 80.7
SFT+DPO 79.2 42.9 14.3 65 74.9 85.4 81.3
SFT+DPO(d-e) 78.3 41.1 14.7 68 74.9 84.9 82.3
SFT+DPO+SC 80.4 43.4 15.7 70 75.4 85.4 83.1

Table 2: Effect of using Step-Controlled DPO (SCDPO) on three different SFT models: Mistral-7B-Ours,
MetaMath-Mistral-7B and MathCoder-Mistral-7B. “(d-e)” denote the DPO baseline using the same amount
of data as SCDPO. In all three cases, SCDPO outperforms the starting SFT model, continue pretraining on
correct samples, naive DPO, and naive DPO with equal amount of data.

Model GSM8K MATH

Mistral-7B-Ours-SFT 76.8 43.2
Mistral-7B-Ours-SCDPO (temperature=1.0) 78.6 45.9
Mistral-7B-Ours-SCDPO (temperature=1.3) 80.0 45.9
Mistral-7B-Ours-SCDPO (ascending temperature) 80.1 47.7

Table 3: Pilot experiments of using different temperatures when generating error steps. When temperature
equals 1.0, the errors are not diverse enough. When temperature equals 1.3, the model generates unintelligible
strings due to accumulated errors. The design of ascending temperature offers more diversity while avoids
generating meaningless errors, resulting in the best performance.

Main Results. Tab. 1 displays our main results, as well as various closed-source and open-source baselines.
InternLM2-SFT-SCDPO achieves a score of 88.5% on GSM8K, 78 on hungarian, 87.5% on Mathematics,
90.2% on SVAMP, 93.6% on Simuleq, 90.3% on CMATH, and 80.4% on MGSM-zh, surpassing all pre-
vious models with published parameters, and obtaining second-best scores among open-source models on
APE210K. Our model obtains a score of 58.1% on MATH, which is close to the best and second-best open-
source score of 59.5% and 58.8%. While our model rivals the performance of GPT-3.5 on GSM8K and
MATH, and surpasses GPT-4 and GLM-4 on MATH, it still underperforms GPT-4 Code Interpreter on
GSM8K and MATH, and GLM-4 on APE210K.

Compared to InternLM2-SFT, InternLM2-SFT-SCDPO consistently increases the score on each of datasets
by approximately 2% to 3%. Compared to both InternLM2-SFT-DPO, which uses the Dnaive part of
InternLM2-SFT-SCDPO’s training data, and InternLM2-SFT-DPO(data-equal), which uses about the same
amount of training data as InternLM2-SFT-SCDPO, InternLM2-SFT-SCDPO consistently achieves the best
performance across all five datasets, highlighting the effectiveness of SCDPO in enhancing mathematical
problem-solving abilities. SCDPO consistently improves performance across ten mathematical datasets on
the Qwen2.5 models, with Qwen-2.5-7B-Instruct-SCDPO achieving scores of 92% on GSM8K, 76.6% on
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Model GPQA (%)

SFT 26.9
SFT + DPO 7.3
SFT + DPO (e-q) 26.8
SFT + DPO + SC 28.3

Table 4: Performance of InternLM2-20B variants on the GPQA benchmark.

MATH, and 41.2% on OCW, approaching the performance of the proprietary models. Notably, Qwen-
2.5-1.5B-Instruct and Qwen-2.5-7B-Instruct had already been trained with multistage reinforcement learn-
ing—including offline DPO and online GRPO (Yang et al., 2024); yet SCDPO continues to improve their
performance. This result demonstrates that SCDPO can be combined with RLHF-based tuning methods.

4.2 Effect of SCDPO on Other Subjects

In this paper, we mostly focus on mathematical problem-solving tasks as it is a representative reasoning task
and can be easily verified. To demonstrate SCDPO’s effect on other subjects, we test our 20B models on
GPQA Diamond, a challenging multiple-choice Q&A dataset featuring difficult questions in biology, physics,
and chemistry. As shown in the table below, SCDPO also improves performance on GPQA, demonstrating
the potential of our method for reasoning tasks in subjects beyond mathematics. We will explore the effect
of SCDPO on other reasoning tasks such as code generation and theorem proving in future works.

4.3 Comparison using Different Starting 7B Models

We validate the generalizability of SCDOP on three baseline SFT models: Mistral-7B-Ours, MetaMath-
Mistral-7B, and MathCoder-Mistral-7B. Mistral-7B-Ours is finetuned on the 34K GSM8K samples and
47K MATH samples we collected from GPT-4. MetaMath-Mistral-7B is downloaded from the MetaMath
HuggingFace repository§. MathCoder-Mistral-7B is finetuned using the MathCodeInstruct dataset Wang
et al. (2023a), downloaded from HuggingFace¶. We collect Dnaive and DSC as described in 2.1 using problems
from GSM8K and MATH. We compare 4 methods of aligning the starting SFT models: 1. Continue
finetuning the starting SFT model using supervised finetuning with preferred solutions from Dnaive (SFT-
continued). 2. Doing naive DPO training with Dnaive (SFT+DPO). 3. Doing naive DPO training with the
same amount of training pairs as the SCDPO training, expanded from Dnaive (SFT+DPO(d-e)). 4. Doing
SCDPO training with Dnaive and DSC (SFT+DPO+SC).

The results are shown in Tab. 2. The purpose of SFT+DPO(d-e) is to rule out the possibility that the
performance gain of SCDPO is the effect of more training samples. SFT-continued shows no obvious gains,
likely due to the fact that the models has already been finetuned on many solutions from GSM8K and
MATH. As demonstrated in Tab 2, on all three SFT baseline models, SCDPO shows superior performance
compared to DPO. This can be attributed to SCDPO’s more detailed supervision on the reasoning steps of
the math solutions, demonstrating the effectiveness of our method.

4.4 Ablation Study

Analysis of the Increasing Temperature Design. We present the result of using different temperature
during sampling of erroneous steps in Tab. 3. Originally, we tried sampling for the incorrect solutions at the
same temperature as the correct solutions (1.0). However, we observed that generated error steps are less
diverse than we hoped. Also, as shown in Fig. 4, the accuracy decreases with the increase of temperature, as
the generation becomes less stable. We then tried raising the temperature to 1.3, and found that a notable
part of the generated solutions contains incomprehensible strings at later steps due to accumulated errors.
Finally, we settled on raising the temperature gradually, which enables more diversity while lowering the

§https://huggingface.co/meta-math/MetaMath-Mistral-7B
¶https://huggingface.co/datasets/MathLLMs/MathCodeInstruct
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Figure 4: Accuracy of Mistral-7B-Ours (SFT) on GSM8K and MATH when temperature is set at different
values.

Data GSM8K MATH
DSC 79.0% 46.2%
Dnaive + DSC 80.1% 47.7%

Table 5: Ablation study of using and not using Dnaive during training. The starting SFT model is Mistral-
7B-Ours.

frequency of generating unintelligible sentences. As shown in Tab. 3, this method also performs best in the
pilot experiments.

Ablation Study of Dnaive and DSC. To demonstrate the necessity of combining Dnaive and DSC, we
conduct experiment of using only DSC in DPO training. The results are presented in Tab. 5. As demonstrated
in the table, combining Dnaive and DSC results in better performance than only using DSC during DPO
training. This is likely because Dnaive helps regulate the general format of the generated solutions.

Comparison with Step-DPO. We also compare our method with Step-DPO Lai et al. (2024), a work
concurrent with ours, which uses GPT-4 to locate erroneous steps. As Step-DPO is in the Chain-of-Thought
format, we train MetaMath-Mistral-7B using the dataset and code of Step-DPO. As shown in Tab. 6, our
method outperforms Step-DPO on most datasets without relying on any stronger LLMs (e.g., GPT-4),
demonstrating the effectiveness of our approach.

4.5 Data Quality Analysis

Analysis of Generated Errors. In this section, we provide quantitative analysis of the erroneous steps
generated. We observed seven main kinds of errors: value misusage, condition misinterpretation, coding er-
ror, commonsense error, math concept or understanding error, math calculation error, unintelligible strings.
The errors are explained as follows: (1) Value misusage: misusing values in places where another value
should have been used. (2) Condition misinterpretation: incorrectly interpreting the meaning or indications
of conditions. (3) Coding error: making mistakes in code snippets that causes errors. (4) Common sense
error: misunderstanding of common sense. (5) Math concept or understanding error: incorrect recollection
or understanding of math concepts. (6) Math calculation error: mistakes when making mathematical cal-
culations. (7) Unintelligible strings: generation of unintelligible strings that does not represent meaningful
reasoning errors. We randomly sampled 100 incorrect solutions in the training data of SCDPO, and counted
the number of each type of error. The result is presented in Fig. 5. As demonstrated in the chart, the
reasoning errors generated is diverse, distributed evenly among the different types. Only 4% of the incorrect
solutions contain unintelligible strings, demonstrating that the design of gradually increasing temperature
can mostly avoid the occurance of meaningless errors.

Error Rate of Intermediate Steps When the Final Answer is Correct. In this section, we discuss
the error rate of intermediate steps in solutions that reaches the correct final answer. As we mentioned in the
main paper, we randomly sampled 87 solutions that reach correct final answer, and of the 369 reasoning steps
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Method GSM8K MATH OCW hungarian Mathematics SVAMP Simuleq

Step-DPO 80.4 29.3 12.5 42 33.4 80.4 72.6
SCDPO (ours) 81.7 29.3 15.4 42 35.0 81.6 73.2

Table 6: Comparison between our method and Step-DPO on MetaMath-Mistral-7B.

value misusage

14.0%

condition misinterpretation

21.0%
coding error

15.0%

common sense error

16.0%

math concept or understanding error

14.0%
math calculation error

16.0%

unintelligible strings4.0%

Figure 5: Percentage of each type of error in the 100 examples we sampled.

in these solutions, only 2 contain errors, which is a very small percentage (about 0.5%). The 2 erroneous
steps are in a question whose answer is to ask for “the number of real solutions”. The possible answers to
this question is very limited, which facilitates incorrect reasoning steps to happen to reach a correct final
answer. We observe that this kind of question is rare in the GSM8K and MATH datasets we chose to perform
SCDPO on, so in most cases a correct final answer indicates that the reasoning steps leading to it is highly
likely to be correct. We also removed solutions that contain apologies or error messages, so there are no
incorrect steps that are later revised in the correct solutions we retained. As a result, the steps before the
generated erroneous steps in SCDPO training data are correct with a high confidence.

Distribution of Error Generation Starting Points and Actual Error Step Index. We sampled
100 SCDPO rejected solutions and manually inspected them. While not all errors occur at the beginning
of the generation of erroneous steps, most of them occur early in the generation, as the earlier steps often
make decisions that have a large influence on the correctness of the solution. We present the distribution
of the step index where the first actual error occurs in the 100 SCDPO rejected solutions, as well as the
distribution of the index of the step where generation of erroneous steps begins. As shown in Tab. 7, the
two distributions are closely related, demonstrating that the index of the starting point of error generation
have a strong effect on the step index of the actual error. The step index of the actual error is often close to
the starting point of the error generation. We also manipulate the distribution of the step index where error
generation begins. Specifically, we train the Mistral-7B-SFT model with SCDPO data where the starting
index was either less than or equal to 4, or greater than 4. As shown in Tab. 8, limiting the error starting
point index decreases performance compared to not imposing any such limitation.

5 Related Work

LLM for Mathematical Reasoning. Prior works have explored various methods to enhance mathematical
reasoning abilities of LLMs. Prompting methods, such as Chain-of-Thought Wei et al. (2023a), Tree-of-
Thought Yao et al. (2023), PAL Gao et al. (2023), Program-of-Thought Chen et al. (2023), and CSV Zhou
et al. (2023), use carefully engineered prompts to bring out LLMs’ mathematical skills without changing
their parameters. Other works optimize parameters of LLMs for enhanced mathematical reasoning through
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Step Index 2 3 4 5 6 7 8 9 10 11 12 13 14
Actual Error Distr. 17 21 20 12 8 9 5 3 0 4 1 0 0
Starting Point Distr. 32.8 23.1 15.3 11.4 6.97 4.72 2.53 1.70 0.77 0.44 0.16 0.08 0.01

Table 7: The distribution of the actual error starting step index in 100 randomly sampled SCDPO rejected
solutions and the distribution of the starting point of the error generation of the SCDPO rejected solutions.

Data GSM8K MATH OCW Hungarian Mathematics SVAMP Simuleq

SFT+DPO+SC 80.1 47.7 22.4 61 76.5 82.3 79.0
SFT+DPO+SC (k ≤ 4) 80.7 46.7 17.7 53 74.7 82.0 79.2
SFT+DPO+SC (k > 4) 79.6 46.4 17.3 59 74.1 82.3 78.6

Table 8: Comparison of performance on various datasets using different ranges of error generation starting
point during training. “k” is the index of the starting step of error generation. Limiting the starting index
slightly affects performance compared to using the full range of indices.

either pretraining or finetuning. Llemma Azerbayev et al. (2024), and MathPile Wang et al. (2023b) continue
pretraining LLMs on large amounts of math-related data, while RFT Yuan et al. (2023), Mammoth Yue
et al. (2023), MathCoder Wang et al. (2023a), WizardMath Luo et al. (2023), ToRA Gou et al. (2024),
MetaMath Yu et al. (2024), MathGLM Yang et al. (2023b), and MathGenie Lu et al. (2024) finetune
pretrained models on question-solution pairs. These methods effectively improves LLMs’ ability to solve
challenging mathematical problems, demonstrating impressive performance on mathematical benchmarks
such as GSM8K Cobbe et al. (2021), MATH Hendrycks et al. (2021), etc. Our work builds upon models
that have undergone pretraining and finetuning, using DPO to further enhance their mathematical abilities.

Improving Mathematical Reasoning Using Relative Feedback. Reinforcement learning from human
(or AI) feedback Christiano et al. (2023); Bai et al. (2022) as well as several direct alignment methods Rafailov
et al. (2024b); Azar et al. (2023); Zhao et al. (2023); Pal et al. (2024); Ethayarajh et al. (2024); Liu et al.
(2024) have proven effective on various downstream tasks. Our method make use of DPO Rafailov et al.
(2024b), introducing a novel way to construct the DPO training data for better enhancement of mathematical
abilities of LLMs. Previous works using reinforcement learning or direct alignment methods for improving
mathematical reasoning utilize either outcome supervision or process supervision. Outcome supervision
such as Shao et al. (2024) is simple and use the outcome of a solution as supervision signal. Lightman et al.
(2023) found that process supervision offers better performance than outcome supervision, but needs expert
and detailed human or AI annotation, which is difficult to acquire. Math-Shepherd Wang et al. (2023a) and
Process Reward Synthesizing Jiao et al. (2024) estimate process rewards with multiple decoding rationales at
each step, and train a reward model with the synthesized rewards. Other works such as Xie et al. (2024), Yuan
et al. (2024) and Chen et al. (2024) use tree structure to provide fine-grained supervision, often relying on
a critique model to decide the correctness of reasoning steps. Concurrent works such as Setlur et al. (2024)
and Lai et al. (2024) rely on GPT-4 to synthesize data. Step-DPO (Lai et al., 2024) uses GPT-4 for erroneous
step localization, which is less cost-effective. In comparison, our method uses increasing temperature to start
generating erroneous steps from intermediate steps of a correct solution, and directly contrast erroneous steps
with correct steps, offering a simpler, more cost-effective alternative with high performance, without relying
on any stronger LLMs (e.g. GPT-4).

6 Conclusion

In this work, we propose Step-Controlled DPO (SCDPO), a method to automatically introduce stepwise
error supervision to the process of DPO training by generating dispreferred samples that start making er-
rors at a specified step. SCDPO effectively enhances the mathematical reasoning abilities of LLMs. The
20B model trained with SCDPO on both English and Chinese data achieves high scores on 10 representa-
tive mathematical datasets, consistently outperforming naive DPO, demonstrating the effectiveness of our
method.
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Figure 6: Credit assignment of part of a solution for a GSM8K problem. Each token is colored corresponding
to the DPO implicit reward as expressed in Eq. 4 (darker is higher). The left is the credit assignment of
SCDPO, which correctly highlighted the error – the number of damaged magazines (which is 4) should not
be first added to and then extracted from “total_magazines”, while the credit assignment of DPO on the
right fails to highlight it.
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B Limitations

Our work contains the following limitations, and we leave them for future work. Firstly, our work is conducted
on purely linguistic models, which struggle to solve mathematical problems requiring an understanding of
images. Secondly, due to the stepwise attribute of SCDPO, it is not very effective on solution formats
consisting of pure code. It only works on solutions consisting of natural language chain of thought or
interleaved natural language and code. A method to properly enhance pure code solutions needs to be
derived, which we leave for future work. Thirdly, as with all language models, our models can potentially
generate hallucinations or produce misleading solutions, which can have a negative effect. Finally, while the
data construction method distributionally narrow down the steps likely to be erroneous, it does not indicate
the exact step the error occurs, a problem inherent with synthetic process supervision methods. Additionally,
our work focuses on mathematical problem-solving, without discussing other reasoning tasks such as code
generation, theorem proving, etc. We plan to explore them in future works.

C Credit Assignment Analysis Examples

In this section, we present several other credit assignment analysis examples, comparing SCDPO to DPO.
Fig. 6, Fig. 7 and Fig. 8 show examples of part of the solutions of questions taken from GSM8K and MATH
datasets, colored with the DPO implicit reward of each token (darker is higher). As demonstrated in the
examples, SCDPO is better than DPO at identifying the errors in the reasoning steps.

D Effect of SCDPO on Harder Reasoning Benchmarks

We test the Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct models trained with SCDPO and naive DPO
on AIME24 and AMC23, two harder, competition-level reasoning benchmarks. As shown in the table below,
on both AIME24 and AMC23, SCDPO notably improves the performance of the 1.5B and 7B models and
demonstrates superior performance compared to naive DPO. This highlights the effectiveness of SCDPO on
harder reasoning tasks.
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Figure 7: Credit assignment of part of a solution for a GSM8K problem. Each token is colored corresponding
to the DPO implicit reward as expressed in Eq. 4 (darker is higher). The left is the credit assignment of
SCDPO, which correctly highlighted the error – Mitchell has 30 pencils, and Antonio has 6 less pencils than
Michell, which is 30 − 6, so the introduction of x is not needed, and x + (x + 6) = 30 is incorrect, while the
credit assignment of DPO on the right fails to highlight it.

Figure 8: Credit assignment of part of a solution for a MATH problem. Each token is colored corresponding
to the DPO implicit reward as expressed in Eq. 4 (darker is higher). The left is the credit assignment of
SCDPO, which correctly highlighted the error – 101 cannot be written as 5k where k = 20, while the credit
assignment of DPO on the right fails to highlight the error.

Model AIME24 AMC23

Qwen2.5-1.5B-Instruct 1/30 10/40
Qwen2.5-1.5B-Instruct-DPO 2/30 9/40
Qwen2.5-1.5B-Instruct-DPO(d−e) 1/30 11/40
Qwen2.5-1.5B-Instruct-SCDPO 2/30 15/40
Qwen2.5-7B-Instruct 3/30 20/40
Qwen2.5-7B-Instruct-DPO 5/30 19/40
Qwen2.5-7B-Instruct-DPO(d−e) 4/30 22/40
Qwen2.5-7B-Instruct-SCDPO 6/30 23/40

Table 9: Performance of Qwen2.5 models on AIME24 and AMC23 benchmarks.
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