
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

-CODER: ADVANCING COMPETITIVE PROGRAM-
MING WITH FULLY SYNTHETIC TASKS, SOLUTIONS,
AND TESTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Competitive programming presents great challenges for Code LLMs due to its in-
tensive reasoning demands and high logical complexity. However, current Code
LLMs still rely heavily on real-world data, which limits their scalability. In this
paper, we explore a fully synthetic approach: training Code LLMs with entirely
generated tasks, solutions, and test cases, to empower code reasoning models
without relying on real-world data. To support this, we leverage feature-based syn-
thesis to propose a novel data synthesis pipeline called SynthSmith. SynthSmith
shows strong potential in producing diverse and challenging tasks, along with veri-
fied solutions and tests, supporting both supervised fine-tuning and reinforcement
learning. Based on the proposed synthetic SFT and RL datasets, we introduce
the X-Coder model series, which achieves a notable pass rate of 62.9 avg@8 on
LiveCodeBench v5 and 55.8 on v6, outperforming DeepCoder-14B-Preview and
AReal-boba²-14B despite having only 7B parameters. In-depth analysis reveals
that scaling laws hold on our synthetic dataset, and we explore which dimensions
are more effective to scale. We further provide insights into code-centric rein-
forcement learning and highlight the key factors that shape performance through
detailed ablations and analysis. Our findings demonstrate that scaling high-quality
synthetic data and adopting staged training can greatly advance code reasoning,
while mitigating reliance on real-world coding data. Our code, data and models
will be made publicly available.

62.9

57.8 57.5 57.1

51.7 51.3

47.6

55.8

49.3 48.4

52.1

40.8

44.5

40

X-Coder-7B
Mimo-7B

Qwen3-8B

AceReason1.1-7B

OpenThinker3-7B

OCR-Qwen-Instruct-7B

Skywork-OR1-7B

Task

Solution

Task

Test

Previous

Task

Solution

Task

Test

SFT

RL

Ours

Real-world or Evolved Data Synthetic Data

Left: v5 (2024.8-2025.2)

Right: v6 (2025.2-2025.5)

Figure 1: Left: SynthSmith generates high-quality synthetic tasks, solutions, and test cases to sup-
port both SFT and RL training. Right: Avg@8 results on LiveCodeBench. X-Coder achieves sig-
nificant performance gains on competitive programming using fully synthetic data.

1 INTRODUCTION

As code language models advance, reasoning-focused models such as OpenAI-o1-ioi (OpenAI et al.,
2025) have reached expert-level performance in programming. Classic benchmarks including Hu-
manEval (Chen et al., 2021; Liu et al., 2023a) and MBPP (Austin et al., 2021) have been largely

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

solved, whereas tasks from LiveCodeBench (Jain et al., 2024) and Codeforces continue to demand
deeper reasoning and more complex algorithmic problem solving.

Recently, DeepSeek-R1 (Guo et al., 2025) has opened two opportunities for further boosting the
reasoning capabilities of Code LLMs. The first is supervised fine-tuning (SFT) (Ouyang et al.,
2022) on long Chain-of-Thought (CoT) demonstrations to distill reasoning patterns into student
models (Hugging Face, 2025; Labs, 2025; Liu et al., 2025a). The second is reinforcement learn-
ing (RL) (Schulman et al., 2017) with GRPO (Shao et al., 2024b) and related algorithms to refine
reasoning foundation models (Luo et al., 2025; Fu et al., 2025; He et al., 2025).

Both pathways have proven effective but face a common bottleneck: progress on competitive
programming remains constrained by the scarcity of datasets. Widely used collections such as
APPS (Hendrycks et al., 2021), CodeContests (Li et al., 2022), and TACO (Li et al., 2023) are
heavily reused during post-training. They remain too modest in scale to support continued benefits
and still lack the level of sufficiently challenging, diverse, and scalable. Meanwhile, collecting new
real-world data tailored for competitive programming is also challenging. Although recent work has
synthesized rewritten or evolutionary variants (Luo et al., 2024; Liu et al., 2025a; Xu et al., 2025)
from existing resources, their diversity and complexity remain tightly bounded by the seed tasks.

To address this gap, we explore a fully synthetic approach: training Code LLMs with fully gen-
erated tasks, solutions, and test cases. Building on this insight, we present SynthSmith, a novel
coding data synthesis pipeline tailored for competitive programming. To enable the synthesis of
diverse and challenging competitive programming tasks, SynthSmith extends feature-based meth-
ods (Wang et al., 2025) with competition-oriented feature extraction, dedicated feature integration,
and multi-style task construction. SynthSmith further supports the development of high-quality so-
lutions and tool-based test case generation, both of which are cross-validated through the proposed
dual-verification strategy. Thereby, SynthSmith demonstrates strong potential in producing scal-
able and challenging tasks, together with verified solutions and tests, offering support for both SFT
and subsequent RL. Starting from a base model (e.g., Qwen3-8B-Base) or a non-reasoning model
(e.g., Qwen2.5-Coder-7B-Instruct), we present the X-Coder series, which achieves significant per-
formance gains on challenging LiveCodeBench v5 and v6 without relying on any real-world data,
as shown in Figure 1. Beyond this, built upon verl (Sheng et al., 2025), we present an RL infrastruc-
ture featuring automated high-concurrency code validation, leveraging the CPUs of all distributed
machines to support efficient and large-scale code execution.

Our in-depth analysis examines (i) whether synthetic SFT data scale effectively and which dimen-
sions scale more favorably; (ii) the role of code-centric reinforcement learning, including the “good-
gets-better” principle and RL’s resilience to noisy supervision; (iii) the factors that shape perfor-
mance (long- vs. short-CoT, effects of solution verification, task style, and data-selection strategies);
and (iv) the bottlenecks that limit code reasoning, together with the chained relationship among task
difficulty, reasoning length, and pass rate. We further conduct case studies to uncover cognitive
behaviors that emerge after SFT and RL, including reward hacking and undesirable patterns.

We make the following contributions:

(1) We explore a fully synthetic approach and propose a novel data synthesis pipeline tailored for
competitive programming, producing high-quality datasets for both SFT and RL stages.

(2) We train both base and non-reasoning LLMs under an SFT-then-RL paradigm to develop the X-
Coder model series, which achieves significant performance gains on LiveCodeBench v5 (avg@8:
62.9) and v6 (avg@8: 55.8), along with extensive analyses and ablations.

(3) We introduce an optimized infrastructure for code RL, featuring a dedicated sandbox environ-
ment that speeds up code execution and improves training efficiency.

2 SYNTHSMITH: SYNTHESIS OF COMPETITION-LEVEL CODING DATA

We introduce SynthSmith, a fully synthetic framework for constructing competitive programming
tasks that support both the SFT and RL stages. Figure 2 illustrates the SynthSmith pipeline, which
consists of four key steps: (i) generating novel and challenging problems (with the capacity for easy
scaling in quantity); (ii) constructing diverse and comprehensive input test cases for each problem
(including boundary and stress tests); (iii) producing high-quality candidate solutions; and (iv) em-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Sorting:

Quik sorting

Math:
Number
 Theory

Travesal:
Post-order
travesal

Quik
Sorting

Merge
Sorting

Pre order
travesal

Post order
travesal

Evovled

…

Code Snippet Extract Features Evolve and Merge Select and Thinking

Task Generation1

Task

LLM

2 Test Generation

3 Solution Generation

Tool

Prompt

…

Sampling

Test Inputs

…

Solutions

Tasks

Selected Subtree

Scenario
Priority Extraction During

Traversal. You are given a

tree with weighted nodes ...

Solutions Outputs

…
X1

Test
Input

… …

Major Voting

X1 Y1

Test
Case

…

Scoring
Golden

Solution

…

Test Cases

Dual Verification4
Y1

Y2

Y1

Figure 2: Framework of SynthSmith. SynthSmith first extracts and evolves competitive program-
ming related features from small-scale code instruction data and merges them into tree structures.
It then samples subtrees from the feature tree, selects a compatible feature set, and formulates a
scenario that naturally integrates these consistent features. Novel tasks are generated based on a
proposed scenario according to specific styles. Advanced reasoning models are used to synthesize
solutions and tests for the generated tasks, which are further cross-verified using the proposed dual-
verification strategy to yield reliable test outputs and the top solution.

ploying a dual-verification strategy that cross-checks solutions with test cases to yield more accurate
test outputs and more reliable solutions.

(i) Task Generation. Inspired by EpiCoder (Wang et al., 2025), which generates novel program-
ming tasks through a feature-based framework by combining sampled features into problem scenar-
ios, we extend this approach with three key improvements to synthesize diverse and complex tasks
tailored for competitive programming. First, instead of relying on broad definitions of features,
we explicitly extract and evolve competition-related features from 10k code snippets in the TACO
dataset (Li et al., 2023) using GPT-4o-0513 (detailed in §B.1). Second, formulating competitive sce-
narios from a rich feature tree is non-trivial, as LLMs often oversimplify complex prompts into trivial
cases, thereby reducing both diversity and difficulty. To address this, we adopt a two-stage process
that separates feature selection from scenario formulation: first, selecting mutually consistent fea-
tures for meaningful composition; and second, formulating hint-free tasks that demand genuine rea-
soning. We further incorporate one-shot prompting to improve task understanding and instruction-
following. Third, we adapt the synthesis method to support multi-style task generation, covering
Codeforces1-style tasks (standard input/output with imaginable narrative contexts), LeetCode-style2

tasks (starter code with predefined function signatures), and AtCoder3-style tasks (concise specifica-
tions with minimal explanations), thereby enhancing task diversity. Examples of the task generation
process are provided in §B.2, together with difficulty estimates on generated tasks in §B.3.

(ii) Test Input Generation. Obtaining sufficient and accurate test cases is a formidable challenge.
Problems from competitive programming platforms often do not provide test cases, or only provide
a limited number, due to platform constraints. This results in insufficient quantity, difficulty, and
coverage of test cases during RL training. To address the inherent scarcity of test cases in synthesized
data, we investigate two complementary methods for generating the input component of the test
case. The Prompting-based method instructs the LLM to interpret the problem’s input constraints

1https://codeforces.com/
2https://leetcode.com/
3https://atcoder.jp/

3

https://codeforces.com/
https://leetcode.com/
https://atcoder.jp/

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and directly generate multiple test inputs, covering both standard cases and edge-case instances. The
Tool-based method leverages CYaRon4, a dedicated test case generation library, enabling the LLM
to construct test inputs by invoking functions documented within the library after understanding the
problem. For each task, we generate a set of n test case inputs [x1, x2, . . . , xn]. Detailed description
of test input generation is provided in §D, and a comparative analysis is presented in Sec 4.

(iii) Candidate Solutions Generation. For each task, we generate multiple candidate solutions us-
ing advanced open-source reasoning LLMs, obtaining m answers [A1, A2, . . . , Am]. We verify that
each candidate solution includes a complete reasoning process and a Python code implementation,
and we ensure the absence of syntax errors through static analysis methods based on Abstract Syntax
Tree (AST). Filtering criteria are provided in §C.1.

(iv) Dual-Verification of Solutions and Test Cases.

To ensure the robustness and reliability of both the generated solutions and the constructed test
cases, we adopt a dual-verification strategy. Step 1 of this strategy extends the principle of self-
consistency (Wang et al., 2023) by applying majority voting across candidate solutions from mul-
tiple LLMs, which mitigates model-specific biases and enhances generalization, thereby yielding a
reliable test output for each input. Step 2 then identifies the top-performing candidate solution by
incorporating test case difficulty weighting alongside a hold-out validation set.

Step 1: Verification of Test Cases via Consensus Voting. First, we establish a preliminary ground
truth for each test case input. For a given input xi, we execute all candidate solutions to obtain a set
of outputs {y1i , y2i , . . . , ymi }, where yji = Aj(xi). A provisional ground truth output ŷi is determined
via majority voting:

ŷi = argmax
y

m∑
j=1

I(yji = y) , (1)

where I(·) is the indicator function. This yields a candidate test set Tcandidate =
{(x1, ŷ1), . . . , (xn, ŷn)}. Crucially, we posit that not all test cases are of equal importance; bound-
ary or edge cases are critical for robust evaluation. We therefore introduce a weighting function
w(xi) → wi that assigns a higher score to more challenging test cases. The weight wi is determined
by a set of heuristics based on input characteristics, such as character or token count, structural
complexity, or semantic novelty, which serve as proxies for difficulty.

Step 2: Verification of Solutions via Weighted Evaluation and Hold-out Validation. To ensure that
our selected “golden” solution generalizes beyond the generated data, we partition the candidate test
set. We randomly sample a subset of Tcandidate (e.g., 50%) to form a hold-out validation set, Tval.
The remaining data constitutes our primary weighted test suite, Tgolden. The dual-verification pro-
cess culminates in selecting the golden answer, Agolden. A candidate solution Aj is first evaluated
on Tgolden using a weighted score. The top-performing candidate, A′

golden, is identified as:

A′
golden = argmax

Aj∈{A1,...,Am}

∑
(xi,ŷi)∈Tgolden

wi · I(Aj(xi) = ŷi) . (2)

The final confirmation of Agolden is contingent upon its performance on the unseen hold-out set
Tval. We verify that A′

golden also achieves the highest (or a competitively high) unweighted accu-
racy on Tval relative to other candidates. This additional validation step ensures that the selected
solution is not merely overfitted to the specifics of the weighted test cases but demonstrates superior,
generalizable correctness. The detailed algorithm is provided in §E.

Finally, we obtain Agolden and Tgolden for each task q. The pair [q, Agolden] is used to compute the
SFT loss, and [q, Tgolden] are used for RL via the GRPO algorithm.

Discussion. Compared to rewriting-based data synthesis methods (Luo et al., 2024; Liu et al.,
2025a), SynthSmith reduces reliance on seed tasks by formulating novel tasks from evolved com-
petitive features. Compared with EpiCoder, it generates more challenging tasks and selects high-
quality solutions via a dual-verification strategy, yielding a 21% absolute performance gain on Live-
CodeBench v5 (Figure 5c). Moreover, SynthSmith extends data synthesis to the RL stage, showing
that synthetic RL data can further improve performance beyond the SFT model as shown in Table 1.

4https://github.com/luogu-dev/cyaron

4

https://github.com/luogu-dev/cyaron

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Performance on LiveCodeBench v5. X-Coder shows strong coding expertise with fewer,
fully synthetic tasks, and achieves additional gains through subsequent RL stages. †: OpenThinker3
integrates human-written tasks with synthetic math tasks. rStar-Coder augments real-world coding
tasks with synthesized rewrites for mixed training, whereas X-Coder relies on fully synthetic tasks.

Model Base Model SFT RL Size Data Task Metric V5 Score V6 Score

SFT Baselines
Bespoke-Stratos (Labs, 2025) Qwen2.5-Instruct (Qwen et al., 2025) ✓ ✗ 7B 17k Real pass@1 16.2 8.57
OpenThinker3 (Guha et al., 2025) Qwen2.5-Instruct ✓ ✗ 7B 1,200k Mixed† - 51.7 40.8
OlympicCoder (Hugging Face, 2025) Qwen2.5-Coder-Instruct (Hui et al., 2024) ✓ ✗ 7B 100k Real - 40.9 19.3
OCR-Qwen-Instruct (Ahmad et al., 2025) Qwen2.5-Instruct ✓ ✗ 7B 736k Real avg@64 51.3 44.5
rStar-Coder (Liu et al., 2025a) Qwen2.5-Coder-Instruct ✓ ✗ 7B 580K Mixed† avg@16 57.3 –
Qwen3-8B (Yang et al., 2025) Qwen3-8B-Base ✓ ✗ 8B - Real - 57.5 48.4

RL Baselines
Skywork-OR1 (He et al., 2025) R1-Distilled-Qwen (DeepSeek-AI, 2025) ✗ ✓ 7B 124k Real avg@32 47.6 40.0
DeepCoder-Preview (Luo et al., 2025) R1-Distilled-Qwen ✗ ✓ 14B 24k Real pass@1 57.9 48.5
AReal-boba² (Fu et al., 2025) R1-Distilled-Qwen ✗ ✓ 14B 24k Real avg@32 58.1 56.7

SFT-then-RL Baselines (Stage 1)
AceReason1.1-SFT (Liu et al., 2025b) Qwen2.5-Math (Yang et al., 2024) ✓ ✗ 7B 2.2M Real avg@8 51.2 -
MiMo-SFT (Xiaomi et al., 2025) MiMo-Base ✓ ✗ 7B 500k Unclear avg@8 52.3 45.5
Klear-Reasoner-SFT (Su et al., 2025) Qwen3-Base (Yang et al., 2025) ✓ ✗ 8B 1500k Real avg@8 58.5 49.6
X-Coder-Qwen2.5-SFT Qwen2.5-Coder-Instruct ✓ ✗ 7B 200k Syn avg@8 60.3±2.5 53.5±1.7

X-Coder-Qwen3-SFT Qwen3-8B-Base ✓ ✗ 8B 200k Syn avg@8 59.4±2.0 55.4±2.3

SFT-then-RL Baselines (Stage 2)
AceReason1.1 AceReaon1.1-SFT ✓ ✓ 7B - Real avg@8 57.2 52.1
MiMo MiMo-SFT ✓ ✓ 7B 130k Unclear avg@8 57.8 49.3
Klear-Reasoner Klear-Reasoner-SFT ✓ ✓ 8B 106k Real avg@8 61.6 53.1
X-Coder-Qwen2.5 X-Coder-Qwen2.5-SFT ✓ ✓ 7B 40k Syn avg@8 62.9±1.8 55.8±1.9

X-Coder-Qwen3 X-Coder-Qwen3-SFT ✓ ✓ 8B 40k Syn avg@8 64.0±2.5 56.5±1.3

3 EXPERIMENT

Setup. In this study, we adopt GPT-o3-mini (OpenAI, 2025) for task formulation, Deepseek-R1-
0528 (DeepSeek-AI, 2025) and Qwen3-235B-A22B-Thinking-2507 (Yang et al., 2025) for solution
sampling, and R1-0528 for test case generation. Statistics for SFT datasets are provided in §C.2.
For SFT, we set the learning rate at 5e-5, with a global batch size of 128 to train 8 epochs. For RL,
the reward is defined as the fraction of passed tests among all given tests (detailed in §A.2). The
program executes in an isolated sandbox environment deployed with Redis, which supports opti-
mized concurrent code testing (infrastructure details are provided in §A.5). Training configurations
and costs are supplemented in §A.4.

Evaluation. We evaluate Code LLMs on LiveCodeBench (Jain et al., 2024) v5 (covering problems
released between Aug. 2024 and Feb. 2025) and v6 (Feb. to May 2025), which are the most widely
used benchmarks for code reasoning models. Baselines are documented in §A.6. To ensure a fair
comparison, we use Qwen2.5-Coder-7B-Instruct and Qwen3-8B-Base as backbones, and report the
avg@8 pass rate using a sampling temperature of 0.6 with top-p 0.95 to align with the baselines.

3.1 MAIN RESULTS

As shown in Table 1, during the SFT stage, X-Coder-SFT achieves an avg@8 pass rate of 60.3.
Compared with RL baselines, X-Coder-SFT exhibits a clear advantage over 14B-based RL models
(e.g., DeepCoder-Preview-14B, AReal-boba²-14B), despite those models being built on the stronger
foundation R1-Distilled-Qwen. Relative to SFT-then-RL models, X-Coder further boosts its perfor-
mance after RL, reaching 62.9. On Qwen3-Base, X-Coder attains an avg@8 pass rate of 64.0.

3.2 SFT EXPERIMENTS AND ANALYSIS

During the SFT stage, we investigate a central question: Can the SFT dataset be effectively scaled,
and along which dimension should it be scaled more favorably? To explore this, we are inspired by
AceReason-Nemotron 1.1 (Liu et al., 2025b) and expand the SFT dataset from two distinct perspec-
tives: increasing the number of unique tasks and enlarging the number of solutions per task. We
design seven subsets (v1–v6): v1–v4 increase the number of unique tasks (32k, 64k, 128k, and 192k
unique prompts, each with 1 solution), while v5–v6 expand the number of solutions per task (16k
unique prompts with 4 solutions, and 8k unique prompts with 8 solutions). The results in Figure 3
reveal a promising scaling trend, where v4 > v3 > v2 > v1, with performance steadily improving
from 43.7% to 62.7%.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

20

30

40

50

60

70

0 2000 4000 6000 8000 10000 12000

43.7 47
54.1

62.7

20

40

60

32K×1 64K×1 128K×1 200K×1

44.4 45.1 47

20

40

60

8K×8 16K×4 64K×1

Task Scaling Comparison

Solution Scaling Comparison

Learning Dynamics of Different Scaling Dimensions

B
es

t
Sc

or
e

(%
)

B
es

t
Sc

or
e

(%
)

Sc
or

e
(%

)

Training Step

35%

40%

45%

50%

2000 2500 3000 3500 4000

v1: 32K tasks × 1 solution
v2: 64K tasks × 1 solution
v3: 128K tasks × 1 solution
v4: 200K tasks × 1 solution
v5: 16K tasks × 4 solutions
v6: 8K tasks × 8 solutions

Figure 3: Scaling laws on the SFT dataset generated by SynthSmith. Left: Performance comparison
of on LiveCodebench v5 to examine scaling trend. Right: Performance comparison across scaling
unique tasks and scaling solutions per task.

Furthermore, the comparison v2 (64k×1) > v5 (16k×4) > v6 (8k×8) shows that scaling the number
of unique tasks is more effective than increasing the number of solutions per task. When computa-
tional budget is fixed, expanding task diversity is more efficient for improving generalization.

Comparison with Real-World and Synthetic Code Datasets. For real-world datasets, we compare
against OpenCodeReasoning (Ahmad et al., 2025), the largest reasoning-based synthetic dataset to
date for competitive coding. We train our dataset and OpenCodeReasoning using the same number
of training tokens with Qwen2.5-Coder-7B-Instruct. The results are shown in Table 2. Our proposed
dataset yields a 6.7-point improvement after SFT, with most gains coming from the medium and hard
splits. The improvement is attributed to our pipeline’s ability to synthesize more challenging tasks,
which demand longer reasoning (average length 17.7k vs. 8.0k), and to provide greater prompt
diversity, which proves more effective than increasing solution diversity.

Table 2: OpenCodeReasoning vs. Dataset from SynthSmith.

Model Avg. Easy Medium Hard

OCR-Qwen-7B-Instruct (Ahmad et al., 2025) 51.3 95.4 64.0 18.0
OCR-Qwen-Coder-7B-Instruct 53.6 95.2 67.0 21.8
X-Coder-Qwen-Coder-7B-Instruct 60.3 (+6.7) 96.8 73.3 37.8

Table 3: Synthetic Data by SelfCodeAlign vs. by SynthSmith.

Method Task Gen. Ans. Gen. Data Score

SelfCodeAlign (Wei et al., 2024) GPT-o3-mini DeepSeek-R1 10k 27.1
SynthSmith (Ours) GPT-o3-mini DeepSeek-R1 10k 31.7 (+4.6)

For synthetic datasets, we implemented the SelfCodeAlign (Wei et al., 2024) method using same
teacher models and adapted it to the competitive programming domain to deliver a 10k-sample
dataset. The results in Table 3 shows our method achieves a 4.6 performance gains, demonstrating
the effectiveness of our data synthesis strategy for competitive programming.

3.3 RL EXPERIMENTS AND ANALYSIS

Our investigation of the RL stage uncovers the following key insights into its role and behavior:

(i) RL as a Powerful Refiner. RL fine-tuning is not merely an incremental add-on but a powerful
optimization step. As shown in Table 1, when applied to a converged SFT model using only code
data, it yields a substantial 4.6% absolute gain in average pass-rate. This highlights RL’s unique
capability to refine policy beyond the distribution of the initial supervised dataset.

(ii) The “Good-gets-Better” Principle. RL performance is tightly coupled to the strength of the
SFT initializer. Using two SFT models trained on similar data distributions but with different Live-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

CodeBench scores as starting points, we observe in Figure 4 that, under identical RL settings, the
stronger initializer consistently attains higher rewards.

0 50 100 150 200 250
Step

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Re
w

ar
d

Stronger SFT Model
Weaker SFT Model

Figure 4: Reward comparison of weak
and strong SFT models as RL initializer.

A stronger SFT foundation enablings to explore a more
promising policy space and achieve a higher performance
ceiling. This underscores the importance of a high-quality
initial model as a prerequisite for effective RL.

(iii) Resilience to Noisy Supervision. Contrary to the
common assumption that RL requires pristine reward sig-
nals, our experiments reveal a resilience to data imperfec-
tions during RL. The model also effectively benefits from
synthetic test cases, suggesting that RL can be success-
fully deployed in scenarios with large-scale but imperfect
feedback (Wang et al., 2020; Lv et al., 2025), significantly
lowering the barrier to code RL data collection.

4 ABLATION STUDY

Despite the strong performance of X-Coder, the determinants of high-quality synthetic data for SFT
remain insufficiently understood. To elucidate these factors, we conduct a comprehensive ablation
along six axes: (i) the effect of the proposed dual-verification strategy; (ii) the impact of distinct
thinking types in solutions; (iii) the influence of task styles; (iv) a head-to-head comparison of tasks
produced by SynthSmith versus those from open-source synthetic datasets; (v) data-selection strate-
gies to identify patterns that shape downstream performance; and (vi) comparison of prompting-
based and tool-based test generation strategies.

35

40

45

50

55

2100 2500 2900 3300 3700 4100
5

15

25

35

45

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

1400 1800 2200 2600 3000 3400 3800

Verified

Raw

AtCoder
Codeforces
LeetCode Epicoder

Ours

Training Step

Pa
ss

@
1

on
 L

C
B

 v
5

(%
)

Training Step Training Step

(a) Raw vs. verified solutions.

35

40

45

50

55

2100 2500 2900 3300 3700 4100
5

15

25

35

45

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

1400 1800 2200 2600 3000 3400 3800

Raw

Verified

AtCoder
Codeforces
LeetCode Epicoder

Ours

Training Step

Pa
ss

@
1

on
 L

C
B

 v
5

(%
)

Training Step Training Step

(b) Task style comparison.

35

40

45

50

55

2100 2500 2900 3300 3700 4100
5

15

25

35

45

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

1400 1800 2200 2600 3000 3400 3800

Raw

Verified

AtCoder
Codeforces
LeetCode Epicoder

Ours

Training Step

Pa
ss

@
1

on
 L

C
B

 v
5

(%
)

Training Step Training Step

(c) Comparison with EpiCoder.

Figure 5: Ablations on verification, task style, and task sources.

Q1: Dual-verification for High-Quality Data Curation. To mitigate the noise introduced by
stochastically sampled solutions, we employ a dual-verification strategy for data curation. This
strategy first leverages the self-consistency principle to identify the most likely correct solution from
multiple candidates. Subsequently, these candidate solutions are executed against a comprehensive
set of test cases to verify their functional correctness and robustness, thereby capturing subtle run-
time errors (e.g., ValueError, IndexError, or Timeout) that are undetected by static analysis methods
like AST checks. The efficacy of this approach is validated by our empirical results, as shown in
Figure 5a. Using an identical backbone (Qwen2.5-Coder-7B-Instruct) and dataset (64k tasks), the
model trained on verified solutions significantly outperforms its counterpart trained on raw solutions.
However, this quality assurance comes at a considerable computational cost. For instance, fully ver-
ifying 200k samples necessitates the generation of 1.6 million long-CoT trajectories and 24 million
test executions. This overhead establishes a clear trade-off, as prior work (Li et al., 2025; Gandhi
et al., 2025) indicates that models can still learn effectively from unverified long-CoT data, making
raw-solution training a more resource-efficient, albeit potentially less performant, alternative.

Q2: Solution Types: Long CoT vs. Short CoT. The length of CoT proves to be a critical fac-
tor for performance, with longer CoTs yielding superior results despite higher training costs. To
demonstrate this, we compare the Qwen2.5-Coder-7B-Instruct trained on solutions generated by
DeepSeek-R1-0528 (Long-CoT) and Qwen3-235B-A22B-Instruct-2507 (Short-CoT) for an identi-
cal set of tasks (200k).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Long CoT vs. Short CoT.

Epoch LCB v5 LCB v6

Short-CoT
3 35.0 29.3
8 43.1 37.6
∆ +8.1 +8.3

Long-CoT
3 42.9 36.0
8 60.3 53.5
∆ +17.4 +17.5

As shown in Table 4, the long-CoT approach achieves a
17.2% absolute gain. This substantial improvement jus-
tifies the increased computational demand, which mani-
fests as a slower convergence requiring 8–10 epochs com-
pared to the 2–3 epochs needed for short-CoT data.

Q3: Ablation on Task Style. We evaluate the effect of
task styles (AtCoder, Codeforces, and LeetCode) by syn-
thesizing three corpora of 32k tasks each (8k unique prob-
lems with 4 solutions per problem) from identical input
features. For each corpus, solutions are generated with
DeepSeek-R1-0528 and used to fine-tune the Qwen2.5-
Coder-7B-Instruct. Results are shown in Figure 5b. Although AtCoder-style tasks yield slightly
higher scores, we adopt Codeforces-style as the predominant format in our demonstration dataset
(Codeforces : AtCoder : LeetCode = 70 : 15 : 15), reflecting its prominence as the mainstream
competitive-programming platform.

Q4: Tasks from SynthSmith vs Tasks from EpiCoder-380k. We randomly select 64k tasks from
our SFT dataset and another 64k from EpiCoder-380k, and use DeepSeek-R1-0528 to complete
solutions. Figure 5c shows that tasks from SynthSmith yield a 21% absolute performance gain,
demonstrating its ability to produce high-quality tasks tailored for competitive programming.

15

20

25

30

35

0.5 1 1.5 2 2.5 3

Rationale-based Selection

Difficulty-based Selection

Random Selection
P

as
s@

1
on

 L
C

B
 v

5
(%

)

Epoch

Figure 6: Comparison of data selection.

Q5: Data Selection. To investigate data utilization ef-
ficiency, we explore task selection strategies for com-
petitive programming. Specifically, we evaluate three
approaches: (1) difficulty-based selection, where GPT-
4o-2411 assigns discrete difficulty scores to tasks, sim-
ulating the Codeforces rating system; (2) rationale-
based selection, where DeepSeek-R1-0528 generates
CoT reasoning for each task, and tasks that elicit longer
reasoning traces are prioritized; and (3) random selec-
tion as a baseline. For validation, each strategy inde-
pendently samples a 50k-task subset from a 200k-task
pool. Solutions are generated by Qwen3-235B-A22B-
Instruct-2507, and models were trained for three epochs with a 16k context length.

As shown in Figure 6, tasks that induce longer CoT are regarded as more valuable training data for
competitive programming, as they demand deeper reasoning and are potentially more challenging.

Q6: Prompting-based vs. Tool-based Test Generation. We compare prompting-based and tool-
based test generation using tasks from CodeContests (Li et al., 2022). We leverage the correspond-
ing golden solutions to evaluate the accuracy and complexity of the tests produced by the two ap-
proaches. The results in Table 5 show that the tool-based approach outperforms the prompting-based
method across multiple dimensions. Qualitatively, it is more versatile, capable of systematically gen-
erating random, scalable, boundary, and stress tests, which are essential for robust code evaluation
but not supported by prompting-based methods.

Quantitatively, the tool-based approach achieves a higher pass rate on ground-truth solutions (87.9%
vs. 77.4%), confirming that its test cases are more accurate and reliable. It also generates more chal-
lenging and discriminative tests, as reflected by the lower consensus ratio (78.8% vs. 82.0%), which
indicates stronger effectiveness in uncovering subtle bugs. In addition, the tool-based generator
provides broader test coverage, albeit at a higher computational cost.

Table 5: Comparison of Prompting-based and Tool-based Test Generation. The tool-based approach
excels in test diversity, accuracy, and the ability to generate more challenging test cases.

Random Scalable Boundary Stress Cost Avg Tests Min Tests Max Tests Consensus Pass Rate

Prompting-based ✗ ✗ ✗ ✗ low 13.6 5 15 82.0% 77.4%
Tool-based ✓ ✓ ✓ ✓ high 18.3 5 27 78.8% 87.9%

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 DISCUSSION

In this section, we present an in-depth analysis of the main challenges in code reasoning. Reasoning
models often suffer from assertion errors, highlighting persistent reasoning limitations on harder
tasks. We further identify a mediation pattern among task difficulty, reasoning length, and pass rate,
and extend our analysis with test-time scaling experiments and case studies on cognitive behavior,
reward hacking, and undesirable patterns.

Failure Analysis. We classify failure cases into seven types: Wrong Answer (output mismatches
the expected answer), Time Limit Exceeded, Memory Limit Exceeded, No Code Block Generated
(truncated due to heavy reasoning before the final code is generated), Incomplete Code Block (par-
tial code without closure), Function Signature Mismatch (incorrect function definition), and Syntax
Error (complete code with syntax issues). The error distribution in Table 6 indicates that the pri-
mary bottleneck lies in reasoning capability, with most errors stemming from wrong answers. Two
other major failure categories are No Code Block Generated and Time Limit Exceeded (TLE). We
carefully inspected the no-code samples and found that all of them exceeded the 32k context win-
dow, causing the reasoning process to be truncated and incomplete. The frequency of TLE errors
highlights the need for Code LLMs to prioritize code efficiency.

After RL, X-Coder reduces assertion errors compared to its SFT counterparts by learning from
correctness-based rewards. At the same time, the RL optimization process may introduce instability,
leading to issues such as syntax errors, signature mismatches, and other flaws.

Table 6: Distribution of failure cases for 16 rollouts on LiveCodeBench v5 (268 tasks).

Error Type Qwen2.5-Coder-7B-Instruct Qwen3-8B X-Coder-7B-SFT X-Coder-7B

Wrong Answer 194.6± 10.7 87.1± 4.6 69.6± 3.7 67.9± 4.9
No Code Block 6.5± 8.2 7.7± 1.2 21.9± 3.7 11.8± 3.9
Time Limit Exceeded 18.1± 4.1 21.8± 3.8 13.7± 3.3 11.5± 2.6
Memory Limit Exceeded 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.17± 0.4
Incomplete Code Block 0.0± 0.0 0.0± 0.0 0.0± 0.0 1.0± 0.8
Signature Mismatch 0.0± 0.0 0.0± 0.0 0.0± 0.0 1.0± 0.8
Syntax Error 0.0± 0.0 0.0± 0.0 0.0± 0.0 8.3± 2.2

Pass Rate by Reasoning Token Length. The results in Table 7 show that the pass rate decreases
sharply as reasoning token length increases, exhibiting a clear downward trend. This finding runs
counter to the intuitive expectation that greater test-time token usage reflects deeper reasoning and
should therefore yield higher accuracy. Instead, we observe a significant chained relationship among
problem difficulty, reasoning length, and pass rate: problem difficulty is positively correlated with
reasoning length, while reasoning length is strongly negatively correlated with pass rate. This medi-
ation pattern can be summarized as higher difficulty → longer reasoning length → lower pass rate.

Table 7: Performance analysis by reasoning token length.

Token Total Passed Easy Medium Hard

0–5k 38 38 30/30 (100.0%) 8/8 (100.0%) 0/0 (–)
5k–10k 41 38 16/17 (94.1%) 14/16 (87.5%) 8/8 (100.0%)
10k–15k 41 32 10/11 (90.9%) 14/19 (73.7%) 8/11 (72.7%)
15k–20k 52 36 4/4 (100.0%) 16/16 (100.0%) 16/32 (50.0%)
20k–25k 36 15 1/1 (100.0%) 9/13 (69.2%) 5/22 (22.7%)
>25k 60 10 0/0 (–) 2/14 (14.3%) 8/46 (17.4%)

Total 268 169 61/63 (96.8%) 63/86 (73.3%) 45/119 (37.8%)

100
92.7

78

69.2

41.7

16.7
15

35

55

75

95

115

0-5 5-10 10-15 15-20 20-25 >25

Reasoning Token Length (K)

Pa
ss

 R
at

e
(%

)

Figure 7: Pass rate by token.

Test-time Scaling. We compare the pass@k performance of Qwen2.5-Coder-7B-Instruct, Qwen3-
8B, X-Coder-7B-SFT, and X-Coder-7B in Figure 8. X-Coder-7B outperforms its foundation model
by 51.3 points in pass@16, and matches Qwen3-8B with 8× fewer rollouts. Moreover, X-Coder
shows a larger gap between pass@1 and pass@16 compared to Qwen3-8B (19.2 vs. 13.8), indicating
greater diversity in the reasoning patterns it can explore. Although RL models begin with higher
initial performance than the SFT model, the gap does not expand within 16 rollouts, suggesting that
RL improves pass@1 but may not escape its starting point (Wu et al., 2025).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

55.9
60.4

63.7
66.5

69.7

16.7
20.5

24
27.3

30.2

60.3

67.9

73.6
77 79.1

15

35

55

75

0 2 4 6 8 10 12 14 16

4x fewer

Number of Rollouts

Pa
ss

 @
 K

 (
%

)

X-Coder-SFT

Qwen3-8B

Qwen2.5-Coder-7B-Instruct

55.9
60.4

63.7
66.5

69.7

16.7
20.5

24
27.3 30.2

60.3

67.9

73.6 77
79.1

62.3

70

76
79.5 81.5

15

35

55

75

0 2 4 6 8 10 12 14 16

8x fewer

Number of Rollouts

Pa
ss

 @
 K

 (
%

)

X-Coder-7B-SFT
Qwen3-8B
Qwen2.5-Coder-7B-Instruct

X-Coder-7B

Figure 8: Test-time performance.

Behaviors after SFT and RL. After SFT, the model
frequently exhibits cognitive behaviors such as planning,
verification, backtracking, and reflection, as illustrated by
the case study in §H.1. This suggests that such behaviors
can be directly distilled from the teacher rather than
induced by the RL process. During the later stages of RL,
the model shows signs of reward hacking, attempting to
exploit edge cases for partial rewards instead of producing
genuine solutions, as detailed in §H.3. We also observe
several bad patterns in code reasoning, including prema-
ture termination when the model is aware that the context
is running out, recalling memorized submissions in C++
and attempting to translate them into Python, and emitting incomplete code before the context
window is exhausted. These cases are illustrated in §H.2.

6 RELATED WORK

Data Synthesis for Code. The research community has long recognized the scarcity of high-quality
coding tasks. To address this, Wizard-Coder (Luo et al., 2024) extends Evol-Instruct (Xu et al., 2024)
by evolving basic code-instruction data into augmented variants. rStar-Coder (Liu et al., 2025a)
further adapts this augmentation strategy to the competitive programming domain. CodeEvo (Sun
et al., 2025) introduces a coder–reviewer interaction framework to collaboratively synthesize high-
quality instruction–code pairs.

SelfCodeAlign (Wei et al., 2024) advanced task synthesis beyond simple seed evolution by introduc-
ing concept composition. It extracts fundamental concepts from seed problems and uses these build-
ing blocks to generate a vastly larger bank of novel coding tasks through the systematic combination
of underlying concepts, pioneering a new pathway for scaling problem synthesis. Epicoder (Wang
et al., 2025) follows this direction by sampling sub-features from a large and expressive feature tree
to formulate novel problems, further improving task complexity and diversity.

This work targets competitive programming, a domain where previous synthetic methods struggle
to synthesize tasks requiring deep reasoning and accurate test cases. We demonstrate that a fully
synthetic pipeline offers a practical and scalable solution to these challenges. Methodologically,
we employ competition-oriented feature extraction to synthesize challenging, coherent, and diverse
tasks. Crucially, we construct high-fidelity test cases using prompt- and tool-based input generation
combined with voting-based labeling. These accurate tests enable Code RL advancements.

Post-training Recipe for Code Reasoning Model. From the training perspective, current ap-
proaches to building coding-expert LLMs generally fall into three paradigms: (i) purely supervised
fine-tuning on real-world tasks or their rewritten or evolved variants (Labs, 2025; Guha et al., 2025;
Liu et al., 2025a), (ii) purely reinforcement-based fine-tuning using a GRPO-related (Shao et al.,
2024b; He et al., 2025; Luo et al., 2025; Fu et al., 2025) algorithm, and (iii) reinforcement learn-
ing staged after supervised fine-tuning on mixed coding and mathematical data (Liu et al., 2025b;
Xiaomi et al., 2025; Su et al., 2025). High-quality code data is scarcer than mathematical data. Con-
sequently, existing approaches rely heavily on real-world data and lack a stable two-stage recipe for
coding expertise, often mixing in mathematics with little evidence of success on code alone. In this
paper, we show that stable and consistent improvements in code reasoning can be achieved solely
with synthetic data, while also reducing the risk of data leakage shown in §G.

7 CONCLUSION

In this paper, we explore a fully synthetic approach to competitive programming and propose a
novel data synthesis framework that demonstrates how synthetic tasks, solutions, and tests can train
large reasoning models to achieve significant performance gains, thereby reducing reliance on real-
world data. Building on this framework, we contribute scalable synthetic SFT and RL training sets,
supported by a dedicated RL infrastructure, and introduce the X-Coder series. Furthermore, we
provide insights into code-centric SFT-then-RL training, ablate key factors that shape performance,
and present in-depth analyses with illustrative case studies of code reasoning models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work aims to advance large code reasoning models for competitive programming through fully
synthetic data. No personal, private, or sensitive information is included in the datasets or experi-
ments, and no ethical risks are associated with this study.

REPRODUCIBILITY STATEMENT

With respect to reproducibility, we affirm our commitment to ensuring that all reported results
can be faithfully reproduced, and we will provide the necessary resources and documentation to
facilitate replication. The anonymous repository link for reference and reproduction is https:
//anonymous.4open.science/r/x-coder.

REFERENCES

Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain,
Jocelyn Huang, Vahid Noroozi, and Boris Ginsburg. Opencodereasoning: Advancing data distil-
lation for competitive coding, 2025. URL https://arxiv.org/abs/2504.01943.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Mark Chen, Jerry Tworek, Heewoo Jun, and Qiming Yuan et al. Evaluating large language models
trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
4299–4307, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
d5e2c0adad503c91f91df240d0cd4e49-Abstract.html.

Ning Dai, Zheng Wu, Renjie Zheng, Ziyun Wei, Wenlei Shi, Xing Jin, Guanlin Liu, Chen Dun,
Liang Huang, and Lin Yan. Process supervision-guided policy optimization for code generation.
CoRR, abs/2410.17621, 2024. doi: 10.48550/ARXIV.2410.17621. URL https://doi.org/
10.48550/arXiv.2410.17621.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evalu-
ating llms on class-level code generation. CoRR, abs/2308.01861, 2023. doi: 10.48550/ARXIV.
2308.01861. URL https://doi.org/10.48550/arXiv.2308.01861.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
Mei, Jiashu Wang, Tongkai Yang, Binhang Yuan, and Yi Wu. Areal: A large-scale asynchronous
reinforcement learning system for language reasoning, 2025. URL https://arxiv.org/
abs/2505.24298.

Kanishk Gandhi, Ayush K Chakravarthy, Anikait Singh, Nathan Lile, and Noah Goodman. Cog-
nitive behaviors that enable self-improving reasoners, or, four habits of highly effective STars.
In Second Conference on Language Modeling, 2025. URL https://openreview.net/
forum?id=QGJ9ttXLTy.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su,

11

https://anonymous.4open.science/r/x-coder
https://anonymous.4open.science/r/x-coder
https://arxiv.org/abs/2504.01943
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://doi.org/10.48550/arXiv.2410.17621
https://doi.org/10.48550/arXiv.2410.17621
https://arxiv.org/abs/2501.12948
https://doi.org/10.48550/arXiv.2308.01861
https://arxiv.org/abs/2505.24298
https://arxiv.org/abs/2505.24298
https://openreview.net/forum?id=QGJ9ttXLTy
https://openreview.net/forum?id=QGJ9ttXLTy

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,
Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models,
2025. URL https://arxiv.org/abs/2506.04178.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang,
Fuxiang Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tianwen Wei, Cheng Cheng,
Bo An, Yang Liu, and Yahui Zhou. Skywork open reasoner 1 technical report. arXiv preprint
arXiv:2505.22312, 2025.

Dan Hendrycks, Steven Basart, Saurav Kadavath, and et al. Measuring coding challenge competence
with APPS. In NeurIPS Datasets and Benchmarks, 2021.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men,
Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xu-
ancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL
https://arxiv.org/abs/2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/
2403.07974.

Bespoke Labs. Bespoke-stratos: The unreasonable effectiveness of reasoning dis-
tillation. https://www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-
reasoning-distillation, 2025. Accessed: 2025-01-22.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-
Tau Yih, Daniel Fried, Sida I. Wang, and Tao Yu. DS-1000: A natural and reliable bench-
mark for data science code generation. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Confer-
ence on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp. 18319–18345. PMLR, 2023. URL
https://proceedings.mlr.press/v202/lai23b.html.

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Eric Tang, Sumanth Hegde, Kourosh
Hakhamaneshi, Shishir G. Patil, Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica. Llms can
easily learn to reason from demonstrations structure, not content, is what matters!, 2025. URL
https://arxiv.org/abs/2502.07374.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. arXiv preprint arXiv:2203.07814, 2022.

12

https://arxiv.org/abs/2506.04178
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://proceedings.mlr.press/v202/lai23b.html
https://arxiv.org/abs/2502.07374

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. In
Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS ’23, Red Hook, NY, USA, 2023a. Curran Associates Inc.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023b. URL https:
//openreview.net/forum?id=1qvx610Cu7.

Yifei Liu, Li Lyna Zhang, Yi Zhu, Bingcheng Dong, Xudong Zhou, Ning Shang, Fan Yang, and
Mao Yang. rstar-coder: Scaling competitive code reasoning with a large-scale verified dataset,
2025a. URL https://arxiv.org/abs/2505.21297.

Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. Acereason-nemotron 1.1: Advancing math and code reasoning through sft and rl
synergy, 2025b. URL https://arxiv.org/abs/2506.13284.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
Deepcoder: A fully open-source 14b coder at o3-mini level, 2025. Notion Blog.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=UnUwSIgK5W.

Ang Lv, Ruobing Xie, Xingwu Sun, Zhanhui Kang, and Rui Yan. The climb carves wisdom deeper
than the summit: On the noisy rewards in learning to reason, 2025. URL https://arxiv.
org/abs/2505.22653.

OpenAI. Openai o3-mini: Pushing the frontier of cost-effective reasoning. https://openai.
com/index/openai-o3-mini/, 2025. Accessed: 2025-09-11.

OpenAI, :, Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam,
David Dohan, Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, Jerry Tworek,
Lorenz Kuhn, Lukasz Kaiser, Mark Chen, Max Schwarzer, Mostafa Rohaninejad, Nat McAleese,
o3 contributors, Oleg Mürk, Rhythm Garg, Rui Shu, Szymon Sidor, Vineet Kosaraju, and
Wenda Zhou. Competitive programming with large reasoning models, 2025. URL https:
//arxiv.org/abs/2502.06807.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In International Con-
ference on Learning Representations (ICLR), 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

13

https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2505.21297
https://arxiv.org/abs/2506.13284
https://openreview.net/forum?id=UnUwSIgK5W
https://arxiv.org/abs/2505.22653
https://arxiv.org/abs/2505.22653
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
https://arxiv.org/abs/2502.06807
https://arxiv.org/abs/2502.06807
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/1707.06347

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024a. URL https://arxiv.org/abs/
2402.03300.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024b.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, EuroSys ’25, pp. 1279–1297. ACM,
March 2025. doi: 10.1145/3689031.3696075. URL http://dx.doi.org/10.1145/
3689031.3696075.

Zhenpeng Su, Leiyu Pan, Xue Bai, Dening Liu, Guanting Dong, Jiaming Huang, Wenping Hu,
Fuzheng Zhang, Kun Gai, and Guorui Zhou. Klear-reasoner: Advancing reasoning capability via
gradient-preserving clipping policy optimization, 2025. URL https://arxiv.org/abs/
2508.07629.

Qiushi Sun, Jinyang Gong, Lei Li, Qipeng Guo, and Fei Yuan. Codeevo: Interaction-driven synthesis
of code-centric data through hybrid and iterative feedback, 2025. URL https://arxiv.org/
abs/2507.22080.

Jingkang Wang, Yang Liu, and Bo Li. Reinforcement learning with perturbed rewards. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 34, pp. 6202–6209, 2020.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
forum?id=1PL1NIMMrw.

Yaoxiang Wang, Haoling Li, Xin Zhang, Jie Wu, Xiao Liu, Wenxiang Hu, Zhongxin Guo, Yangyu
Huang, Ying Xin, Yujiu Yang, et al. Epicoder: Encompassing diversity and complexity in code
generation. arXiv preprint arXiv:2501.04694, 2025.

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng Ding, Naman Jain, Zachary Mueller, Harm
de Vries, Leandro Von Werra, Arjun Guha, and LINGMING ZHANG. Selfcodealign: Self-
alignment for code generation. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=xXRnUU7xTL.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing llm reasoning via re-
inforcement learning on open software evolution, 2025. URL https://arxiv.org/abs/
2502.18449.

Fang Wu, Weihao Xuan, Ximing Lu, Zaid Harchaoui, and Yejin Choi. The invisible leash: Why rlvr
may not escape its origin, 2025. URL https://arxiv.org/abs/2507.14843.

Chunqiu Steven Xia, Yinlin Deng, and LINGMING ZHANG. Top leaderboard ranking = top coding
proficiency, always? evoeval: Evolving coding benchmarks via LLM. In First Conference on
Language Modeling, 2024. URL https://openreview.net/forum?id=zZa7Ke7WAJ.

LLM-Core Xiaomi, :, Bingquan Xia, Bowen Shen, Cici, Dawei Zhu, Di Zhang, Gang Wang, Hailin
Zhang, Huaqiu Liu, Jiebao Xiao, Jinhao Dong, Liang Zhao, Peidian Li, Peng Wang, Shihua
Yu, Shimao Chen, Weikun Wang, Wenhan Ma, Xiangwei Deng, Yi Huang, Yifan Song, Zihan
Jiang, Bowen Ye, Can Cai, Chenhong He, Dong Zhang, Duo Zhang, Guoan Wang, Hao Tian,
Haochen Zhao, Heng Qu, Hongshen Xu, Jun Shi, Kainan Bao, Kai Fang, Kang Zhou, Kangyang
Zhou, Lei Li, Menghang Zhu, Nuo Chen, Qiantong Wang, Shaohui Liu, Shicheng Li, Shuhao
Gu, Shuhuai Ren, Shuo Liu, Sirui Deng, Weiji Zhuang, Weiwei Lv, Wenyu Yang, Xin Zhang,
Xing Yong, Xing Zhang, Xingchen Song, Xinzhe Xu, Xu Wang, Yihan Yan, Yu Tu, Yuanyuan

14

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
http://dx.doi.org/10.1145/3689031.3696075
http://dx.doi.org/10.1145/3689031.3696075
https://arxiv.org/abs/2508.07629
https://arxiv.org/abs/2508.07629
https://arxiv.org/abs/2507.22080
https://arxiv.org/abs/2507.22080
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=xXRnUU7xTL
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2507.14843
https://openreview.net/forum?id=zZa7Ke7WAJ

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Tian, Yudong Wang, Yue Yu, Zhenru Lin, Zhichao Song, and Zihao Yue. Mimo: Unlocking the
reasoning potential of language model – from pretraining to posttraining, 2025. URL https:
//arxiv.org/abs/2505.07608.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. WizardLM: Empowering large pre-trained language models to follow
complex instructions. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=CfXh93NDgH.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. KodCode: A di-
verse, challenging, and verifiable synthetic dataset for coding. In Wanxiang Che, Joyce Nabende,
Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for Com-
putational Linguistics: ACL 2025, pp. 6980–7008, Vienna, Austria, July 2025. Association for
Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.365.
URL https://aclanthology.org/2025.findings-acl.365/.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement, 2024. URL https://arxiv.org/abs/2409.12122.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

15

https://arxiv.org/abs/2505.07608
https://arxiv.org/abs/2505.07608
https://openreview.net/forum?id=CfXh93NDgH
https://aclanthology.org/2025.findings-acl.365/
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2505.09388

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Appendix

A Training and Evaluation. 18

A.1 SFT-then-RL Training . 18

A.2 Reward Function. 19

A.3 Training Dynamics. 19

A.4 Training Configs and Costs . 19

A.5 A Distributed Framework for Automated Code Verification 20

A.6 Baselines . 21

B Novel Task Synthesis . 21

B.1 Feature Extraction and Evolution . 21

B.1.1 Statistics for Feature Extraction and Evolution 23

B.2 Stylized Task Generation for Competitive Programming 23

B.2.1 Compatibale Feature Selection . 25

B.2.2 From Feature to Stylized Task . 28

B.3 Task Difficulty Estimates . 30

B.4 Task Diversity Estimates . 30

C Solution Generation and Quality Assurance . 31

C.1 Validation on Solution . 31

C.2 SFT Dataset Statistics . 31

D Test Case Generation . 32

D.1 Prompting-based Test Generation . 32

D.2 Tool-based Test Generation . 32

E Dual-verification . 35

E.1 Algorithm . 35

E.2 Test-Case Weighting Criteria. 36

E.3 Error Rate for Labeling Test Outputs via Voting. 37

E.4 Error Rate of Golden Solution . 37

E.5 Solvability of Generated Problem. 38

F Generality . 38

F.1 Generality Across Model Families. 38

F.2 Generality Across Benchmarks. 38

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

G Data Leakage Analysis . 39

H Case Study . 39

H.1 Successful Case . 39

H.2 Bad Case . 41

H.3 Reward Hacking and Pretraining Artifacts. 43

I The Use of Large Language Models . 43

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A TRAINING AND EVALUATION

A.1 SFT-THEN-RL TRAINING

Supervised Fine-tuning. Given a dataset of task–solution pairs D = {(xi, yi)}Ni=1, the model with
parameters θ is trained by minimizing the negative log-likelihood (NLL) of the target solution y
conditioned on the task x:

JSFT(θ) = −E(x,y)∼D

[|y|∑
t=1

log πθ

(
yt | x, y<t

)]
. (3)

The loss is applied over full long-CoT trajectories, including both reasoning steps and final code,
enabling the model to imitate not only the solutions but also the underlying reasoning patterns.

Reinforcement Learning. Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a widely
adopted policy gradient method in Reinforcement Learning from Human Feedback (RLHF) (Chris-
tiano et al., 2017) for LLM due to its balance between exploration and exploitation and its empirical
robustness. The method optimizes a policy πθ by using a clipped surrogate objective to limit pol-
icy divergence, incorporating a value function to estimate expected rewards, and an entropy term to
encourage exploration. The overall objective function for PPO is designed to maximize the policy
performance while maintaining stability, and it is typically formulated as minimizing the following:

JPPO(θ) = Es∼P (S),a∼πθ(a|s)

[
min

(
πθ(a|s)
πθold(a|s)

A(s, a), clip
(πθ(a|s)
πθold(a|s)

, 1− ϵ, 1 + ϵ
)
A(s, a)

)]
(4)

where the expectation is computed over states s (drawn from distribution P (S)) and actions a (sam-
pled from the current policy πθ(a | s)), combining the minimum of two terms: (1) the product
of the probability ratio πθ(a|s)

πθold
(a|s) and the advantage function A(s, a), where the advantage function

quantifies the relative benefit of taking action a in state s; and (2) the same product but with the
probability ratio clipped to the interval [1−ϵ, 1+ϵ]. Here, ϵ is a hyperparameter governing the mag-
nitude of policy updates. This clipping mechanism effectively constrains excessive policy changes,
thereby enhancing training stability.

However, its application to LLMs encounters significant challenges, including substantial compu-
tational overhead from maintaining a critic network, which increases memory usage and training
time for models with billions of parameters. Additionally, training stability can be undermined
by inaccurate value function estimates or suboptimal tuning of Generalized Advantage Estimation
(GAE) (Schulman et al., 2016) parameters, issues that become more pronounced as LLMs scale in
size. To address these limitations, Group Relative Policy Optimization (GRPO) (Shao et al., 2024a)
has emerged as an efficient alternative. By eliminating the critic network, GRPO reduces compu-
tational and memory demands, estimating advantages directly from rewards of multiple rollouts to
the same prompt, thus leveraging the comparative nature of reward models and offering a scalable
solution for LLM training. The GRPO objective function is mathematically formulated as an aver-
aged composite expression across multiple rollouts, incorporating policy ratio optimization and KL
regularization:

JGRPO(θ) =
1

G

G∑
i=1

1

|ai|

|ai|∑
t=1

{
min

(
ρi,tÂi,t, clip

(
ρi,t, 1− ϵ, 1 + ϵ

)
Âi,t

)
− βDKL[πθ ∥ πref]

}
(5)

where ρi,t =
πθ(ai,t|s, ai,<t)

πθold(ai,t|s, ai,<t)
denotes the probability ratio of the old and new strategies. G is

the number of rollouts per prompt, |ai| denotes the length of the i-th action sequence, Âi,t estimates
the advantage of action ai,t at timestep t. The clipping is analogous to PPO, and β penalizes devi-
ations from πref via the KL-divergence term. The objective averages across rollouts and timesteps,
combining a clipped probability ratio (to stabilize updates while leveraging advantage signals) with
a KL penalty to balance policy improvement against alignment with the reference policy. This dual
mechanism ensures controlled optimization by restricting drastic policy shifts while maintaining
coherence with prior behavior.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.2 REWARD FUNCTION.

We remove formatting rewards (e.g., enforcing “think” tags), as the SFT model already follows the
format, allowing the policy to focus on passing test cases. Given a rollout, the reward R is practiced
as:

R =


−2, if no code is extracted or the code fails to compile,

0, if the code compiles but passes no test cases,

5.0×#passed
#total

, otherwise.

(6)

We adopt a continuous reward setting, as it provides denser supervision than the all-or-nothing
alternative and leads to faster convergence (Wei et al., 2025; Dai et al., 2024).

A.3 TRAINING DYNAMICS.

As shown in Figure 9 and Figure 10, we present the SFT training curves (loss and token accuracy).
Figure 11 and Figure 12 illustrate the RL training curves (reward and entropy).

0 2000 4000 6000 8000 10000 12000
Step

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Lo

ss

Figure 9: Training loss of SFT.

0 2000 4000 6000 8000 10000 12000
Step

0.70

0.75

0.80

0.85

0.90

0.95

Tr
ai

n
To

ke
n

Ac
c

Figure 10: Training token accuracy of SFT.

0 50 100 150 200 250
Step

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Re
w

ar
d

Figure 11: Training reward of RL.

0 50 100 150 200 250
Step

0.14

0.16

0.18

0.20

0.22

0.24

0.26

En
tr

op
y

Figure 12: Training entropy of RL.

A.4 TRAINING CONFIGS AND COSTS

For SFT, we use a learning rate of 5e-5 with a global batch size of 128 for 8 training epochs. For
RL, the policy models are updated with a global batch size of 128 and a consistent learning rate
of 7e-5, without applying the KL-divergence constraint to the starter model, and employ a rollout
temperature of 1.0 with 8 rollouts to encourage exploration.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Training large reasoning models incurs significant costs compared to standard (eg. short-CoT) in-
struction models. In the SFT stage, the dominant overhead stems from longer sequence lengths and
the need for more update epochs, which together lead to several times more compute consumption
than training non-reasoning counterparts. In the RL stage, the major bottleneck lies in generating
multiple rollouts for each problem used for GRPO-algorithm.

Concretely, training X-Coder on Qwen2.5-Coder-7B-Instruct required 128 H20 Enterprise (96 GB)
GPUs for 220 hours during SFT, and 32 H200 (141 GB) GPUs for 7 days to complete 270 update
steps during RL. We are going to make X-Coder a readily accessible, open-source model, enabling
the community to benefit from its capabilities without having to bear the training costs.

A.5 A DISTRIBUTED FRAMEWORK FOR AUTOMATED CODE VERIFICATION

To provide a robust and scalable solution for code validation, we develop a distributed arbitration
framework inspired by open-source repository implementations5. The system is based on a mi-
croservice architecture, comprising a FastAPI-based asynchronous API Gateway, a pool of code
execution workers in the sandbox and a central Redis instance. Redis serves as a high-performance
message broker and state manager, effectively decoupling the client-facing gateway from the back-
end computational workers. This architectural choice facilitates independent scaling, deployment,
and enhances the overall resilience of the system. Based on this evaluation framework, we imple-
mented highly concurrent code testing during RL training. We used batching when submitting
tasks to the Redis server to achieve high concurrency even with low request rates. This process
required the server to distribute all test tasks to different workers, utilizing the CPU power of all
participating machines. Figure 13 shows the system diagram of the framework.

The framework’s efficacy is derived from its strategic implementation of Redis data structures. Task
distribution is managed by a Sorted Set, which functions as a time-prioritized FIFO queue; submis-
sions are added with a timestamp score via ZADD, and workers atomically retrieve the next task
using BZPOPMIN. This approach ensures ordered processing and prevents race conditions. For
result transmission, each task is assigned a dedicated List, to which a worker pushes the outcome us-
ing RPUSH. The API Gateway then performs a blocking pop (BLPOP) on this unique list to retrieve
the corresponding result efficiently. Furthermore, worker health and presence are monitored using
String keys with a Time-To-Live (TTL). Workers periodically refresh their key’s TTL as a heartbeat,
enabling the system to automatically detect and de-register unresponsive nodes.

The resulting system exhibits several key advantages. The asynchronous, in-memory nature of its
core components yields high throughput and low-latency performance. Its design is inherently scal-
able, as the stateless worker pool can be expanded horizontally to meet computational demand, while
native support for Redis Cluster addresses data-tier bottlenecks. Finally, the framework’s reliabil-
ity is bolstered by the atomicity of Redis operations and the integrated fault-detection mechanism,
ensuring dependable and consistent code verification.

FastAPI Web
(API Gateway)

Redis Queue
(Message Broker)

Worker Pool
(Code Executors)

Request Handling Task & Result Queues Sandbox Execution

Figure 13: The distributed architecture of the code verification framework.

5https://github.com/0xWJ/code-judge.git

20

https://github.com/0xWJ/code-judge.git

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.6 BASELINES

We compare the X-Coder with three categories of baselines: (1) SFT model, e.g., Bespoke-Stratos,
OlympicCoder, OCR-Qwen-Instruct, OpenThinker3, Qwen3-8B, and rStar-Coder; (2) RL model,
including Skywork-OR1, DeepCoder-14B-Preview, and AReal-boba²-14B; (3) SFT-then-RL model,
such as AceReason1.1, Klear-Reasoner, and MiMo-RL.

B NOVEL TASK SYNTHESIS

Building on EpiCoder, which synthesizes programming tasks through feature-based combinations,
we introduce three key improvements to generate more diverse and complex instructions.

First, rather than relying on broad feature definitions, we explicitly extract and evolve competition-
related features from 10,000 question–solution pairs in TACO (Li et al., 2023) using GPT-4o-0513
(§B.1). Second, we adopt a two-stage process: selecting mutually consistent features and then for-
mulating challenging, hint-free tasks (§B.2). Third, we extend the synthesis method to support multi-
style generation, covering CodeForces-style tasks (rich narratives with standard I/O), LeetCode-style
tasks (starter code with fixed signatures), and AtCoder-style tasks (concise specifications), thereby
enhancing task diversity. In §B.3, we further estimate the difficulty of synthesized problems using a
trained discriminator.

B.1 FEATURE EXTRACTION AND EVOLUTION

While EpiCoder extracts general-purpose features from raw corpus, we explictly extract and evol
compatetitive programming-related feature. Speficilly, we design multiple aspect of features that
highly relates to competitve programming, such as data structure, algorithm, mathmatical, ect.

We improve the extraction process to guide the LLM to focus on competitive programming–related
concepts, as follows:

Extract features from the provided problem and solution code related to algorithmic
programming, competitive programming, Leetcode, and Codeforces, following the requirements
for each category below, formatted in JSON structure.

Responses in the following categories should be concise and organized in a JSON format
surrounded with <begin> and <end>. Categories may include nested structures if applicable.
Here is an example of the expected format:

<begin>{
"programming language": [

"Python"
],
"problem type": [

"graph traversal"
],
"algorithm": {

"graph algorithms":[
"Dijkstra’s algorithm",
"DFS",
"BFS"

],
"dynamic programming":[

"Longest Increasing Subsequence",
"Knapsack Problem"

]
},
"data structures": [

"array",
"linked list",
"heap",
"segment tree"

],
"implementation logic":["recursive", "iterative"]

}<end>

Categories to extract:
1. Programming Language: Note the specific programming language used. Example: ["Python",
"C++"].
2. Problem Type: Outline the type of problem the code is solving. Example: ["graph
traversal", "sorting", "dynamic programming"].

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

3. Algorithm: Identify the specific algorithm or method being used in the code. This category
can include the following subcategories:

3.1 Graph Algorithms: Specify graph algorithms used. Example: ["Dijkstra’s algorithm",
"DFS", "BFS"].

3.2 Sorting Algorithms: Specify sorting algorithms used. Example: ["QuickSort",
"MergeSort"].

3.3 Dynamic Programming: Specify dynamic programming techniques. Example: ["Longest
Increasing Subsequence", "Knapsack Problem"].

3.4 Search Algorithms: Identify search algorithms used. Example: ["Binary Search",
"Linear Search"].

3.5 Other relevant subcategories...
4. Data Structures: Describe the primary data structures utilized. Example: ["array",
"graph", "tree", "heap"].
5. Implementation Logic: Describe the implementation logic. Example: ["iterative",
"recursive", "bit manipulation"].
6. Complexity Analysis: Provide time and space complexity of the code if available. Example:
["Time Complexity: O(n log n)", "Space Complexity: O(n)"]
7. Optimization Techniques: Specify any optimizations applied. Example: ["memoization",
"greedy approaches", "bitwise operations"].
8. Purpose: What the code is used to do. Example: "To find the shortest path in a graph using
Dijkstra’s algorithm."
9. Summary: Provide a concise summary. Example: "Solves the given competitive programming
problem using a depth-first search approach to traverse the graph."

Extract as many features as possible and try not to let a feature appear in multiple
categories at the same time.

Then we increase the diversity and complexity through evolution along both the breadth and depth
dimensions. For example, along the breadth dimension, given an extracted feature such as quicksort,
the LLM may evolve new features like bubble sort, even if they were not originally extracted. Along
the depth dimension, a concept such as prefix sum can evolve into more advanced variants like
difference array or Fenwick tree, reflecting increasing levels of abstraction and difficulty. The overall
evolution process is illustrated below.

Feature Tree Evolution Task:
You are provided with a feature tree represented as a nested JSON structure. Each node in
this tree represents a feature or a sub-feature of competitive algorithm programming, with
the leaves being the most specific features. Your task is to expand this feature tree both in
depth and breadth. Depth expansion means adding more specific sub-features to existing
leaves. Breadth expnasion means adding more sibling features at the current levels.

Here are some explanations of the features:
{explanations}

The input feature tree will be provided in JSON format, and your output should be a JSON
structure that represents the expanded feature tree.

Output Format:
- Expanded Feature Tree: Provide the expanded feature tree as a JSON structure. Surround the
json with <begin> and <end>.

Input Feature Tree Example:
{

"algorithm": {
"sorting": ["quick sort", "merge sort"],
"tree traversal": ["in-order traversal"]

},
"mathematics": [

"number theory",
"combinatorics"

]
}

Expanded Feature Tree Example:
<begin>
{

"algorithm": {
"sorting": {

"quick sort": ["3-way quick sort", "dual-pivot quick sort"],
"merge sort": ["top-down merge sort", "bottom-up merge sort"],
"heap sort":[]

},
"tree traversal": {

"in-order traversal": ["recursive in-order traversal", "iterative in-order
traversal"],

"pre-order traversal":[],
"post-order traversal":[],
"level-order traversal":[],

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

}
},
"mathematics": {

"number theory": [
"prime factorization",
"greatest common divisor",
"power modular reduction"

],
"combinatorics": [

"Pascals triangle",
"permutations and combinations",
"binomial coefficients"

]
}

}
<end>

Constraints:
1. For breadth expansion, add at least 2 new sibling features to each existing node.
2. For deep expansion, you need to add new sub-features to it, provided that you think the
current leaf node has a more fine-grained feature.
3. Focus on generating new and innovative features that are not present in the provided
examples.
4. The features are related to competitive algorithm programming.
Please follow the above constraints and expand the feature tree accordingly.

Input:
{features}

Output:
<begin>expanded feature tree<end>

After evolution, we merge features that share common traits into a larger tree, providing a rich pool
of features for subsequent task formulation.

B.1.1 STATISTICS FOR FEATURE EXTRACTION AND EVOLUTION

We present detailed statistics on feature evolution and data filtering to demonstrate how the pipeline
expands feature diversity and yields a high-quality 240k dataset. The statistics of feature extracted
and evoled as follows.

Table 8: Statistics of Features Extracted and Evolved. The evolution strategy significantly increases
feature quantity across all categories.

Category Features Extracted Features After Evolution Growth
Algorithm 27,400 176,914 ×6.46
Data Structures 12,353 65,104 ×5.27
Problem Type 14,134 130,293 ×9.22
Implementation Logic 12,419 106,157 ×8.55
Complexity Analysis 16,124 90,016 ×5.58
Optimization Techniques 1,537 14,124 ×9.19

The evolution strategy greatly enhances both the quantity and diversity of features, providing support
for generating diverse tasks.

B.2 STYLIZED TASK GENERATION FOR COMPETITIVE PROGRAMMING

We design a prompt template to systematically transform extracted features into stylized competitive
programming tasks.

Input: a sampled feature tree represented in JSON format.

Output: a feature-role tree (JSON), where each node is assigned roles such as core technique,
subroutine, or constraint, together with an integration strategy (string) that explains how to combine
these features into a coherent problem.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

To improve instruction-following and task understanding, the template is equipped with a one-shot
example that demonstrates how raw features are mapped into roles and integrated into a task.

"""
Stage 1 Prompt Template for Feature Selection
"""

STAGE1_PROMPT_TEMPLATE = """You are a professional competitive programming problem setter.

Your task consists of three parts:

Step 1: Tree-Structured Feature Role Explanation

Recursively traverse the provided feature tree.
- For each leaf node, annotate it with a "potential_use" field describing how this feature is
typically used in competitive programming problems (e.g., input modeling, optimization,
search, handling edge cases, etc.).
- Internal nodes retain their structure for hierarchy.

Output the annotated tree in the same structure, with every leaf node containing its
"potential_use".

Step 2: Subtree Selection for Problem Integration

Based on your role analysis, select a subtree (tree-structured subset) where all selected
leaf features can be naturally integrated into a single, high-quality competitive programming
problem.

- Only include features that contribute meaningfully to the same problem idea.
- Internal nodes are included only if they have selected children.
- For each selected leaf, include only its "feature" name and "potential_use".

Step 3: Integration Strategy

Briefly describe ("integration_strategy") how the selected features can be integrated
together in a single problem, focusing on how their combination enables a meaningful and
challenging algorithmic scenario.

Output Format:

Return a JSON object **with exactly this structure** (an example):

{{
"feature_roles_tree": {{
"algorithm": {{

"search algorithm": {{
"binary search": {{
"recursive binary search": {{
"potential_use": "Used for divide-and-conquer searching in sorted structures or

answer spaces."
}},
"iterative binary search": {{
"potential_use": "Efficient loop-based implementation for finding bounds or

specific elements."
}}

}},
"breadth-first search (BFS)": {{
"level-order BFS": {{
"potential_use": "Traverses graphs layer by layer; useful for shortest path or

component discovery."
}}

}}
}}

}},
"data structures": {{

"bitmap": {{
"bit manipulation": {{
"bitwise AND": {{
"potential_use": "Filters or checks properties using bitmasks."

}},
"bitwise OR": {{
"potential_use": "Combines flags or sets with bitwise aggregation."

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

}}
}}

}}
}}

}},

"selected_features_tree": {{
"algorithm": {{

"search algorithm": {{
"binary search": {{
"recursive binary search": {{
"feature": "recursive binary search",
"potential_use": "Used for divide-and-conquer searching in sorted structures or

answer spaces."
}}

}}
}}

}},
"data structures": {{

"bitmap": {{
"bit manipulation": {{
"bitwise AND": {{
"feature": "bitwise AND",
"potential_use": "Filters or checks properties using bitmasks."

}}
}}

}}
}}

}},

"integration_strategy": "The problem will require recursive binary search to efficiently
search over a sorted value space, while bitwise AND operations will be used to filter
candidate solutions according to constraints. Their combination allows for a problem that
involves searching over sets and optimizing bitwise criteria."
}}

Available Features (Tree):
{features_json}

Instructions:
- Always preserve the tree structure in "feature_roles_tree" and "selected_features_tree".
- In selected_features_tree, only include "feature" and "potential_use" fields for leaf nodes.
- "integration_strategy" should make clear how/why these features form a coherent, advanced
problem.
- Do not be overly conservative; it is often possible to design advanced problems where many
features interact in non-trivial ways. Challenge yourself to maximize feature use without
sacrificing problem quality.
"""

B.2.1 COMPATIBALE FEATURE SELECTION

We present a case to examine how model selects compatibale features and combine them.

Given a sampled feature tree:

"input_features": {
"algorithms": {

"graph_algorithms": {
"shortest_path": [
"Dijkstra’s algorithm",
"Floyd-Warshall"

],
"network_flow": [
"Ford-Fulkerson",
"Edmonds-Karp"

]
},
"string_algorithms": {

"pattern_matching": [
"KMP algorithm",
"Boyer-Moore"

]
}

},

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

"data_structures": {
"tree_structures": [

"segment tree",
"fenwick tree"

],
"hash_structures": [

"rolling hash",
"cuckoo hashing"

]
},
"optimization_techniques": {

"dynamic_programming": [
"interval DP",
"tree DP"

]
}

}

LLM pairs each feature with potentially usage to obtain feature tree with role annotation. For ex-
ample, LLM will anonotes feature “rolling hash” as “Compute hash values for sliding windows in
constant time”. These annotations help LLM to aggregate these features based on their potentially
usage. For above given feature tree, the feature tree with potential usage looks like:
"feature_roles_tree": {

"algorithms": {
"graph_algorithms": {

"shortest_path": {
"Dijkstra’s_algorithm": {
"potential_use": "Find single-source shortest paths in weighted graphs with

non-negative edges"
},
"Floyd_Warshall": {
"potential_use": "Compute all-pairs shortest paths with O(nˆ3) complexity"

}
},
"network_flow": {
"Ford_Fulkerson": {
"potential_use": "Find maximum flow using augmenting paths with DFS"

},
"Edmonds_Karp": {
"potential_use": "Guarantee polynomial time maximum flow using BFS"

}
}

},
"string_algorithms": {

"pattern_matching": {
"KMP_algorithm": {
"potential_use": "Linear time pattern matching with failure function

preprocessing"
},
"Boyer_Moore": {
"potential_use": "Efficient pattern search using bad character and good suffix

heuristics"
}

}
}

},
"data_structures": {

"tree_structures": {
"segment_tree": {
"potential_use": "Support range queries and updates in O(log n) time"

},
"fenwick_tree": {
"potential_use": "Efficiently compute prefix sums with point updates"

}
},
"hash_structures": {

"rolling_hash": {
"potential_use": "Compute hash values for sliding windows in constant time"

},
"cuckoo_hashing": {
"potential_use": "Achieve worst-case O(1) lookup with multiple hash functions"

}
}

},
"optimization_techniques": {

"dynamic_programming": {
"interval_DP": {
"potential_use": "Solve optimization problems on contiguous ranges"

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

},
"tree_DP": {
"potential_use": "Compute optimal solutions on tree structures bottom-up"

}
}

}
}

LLM then selects a compatible and consistent subtree that can formulate a self-contained com-
patetiting programming problem. For example, LLM keeps the features that can be aggregated into
selected feature tree, and concluding with an intergration strategy, which displays how to combine
these features into a unified problem.

For example, in this case, LLM selects “Dijkstra’s algorithm”, “Edmonds-Karp”, “segment tree”,
and “tree DP”, and aims to formulate a problem around “dynamic network optimization”.

"selected_features_tree": {
"algorithms": {

"graph_algorithms": {
"shortest_path": {
"Dijkstra’s_algorithm": {
"feature": "Dijkstra’s algorithm",
"potential_use": "Primary pathfinding algorithm"

}
},
"network_flow": {
"Edmonds_Karp": {
"feature": "Edmonds-Karp",
"potential_use": "Flow computation with guaranteed complexity"

}
}

}
},
"data_structures": {

"tree_structures": {
"segment_tree": {
"feature": "segment tree",
"potential_use": "Maintain dynamic edge weights or capacities"

}
}

},
"optimization_techniques": {

"dynamic_programming": {
"tree_DP": {
"feature": "tree DP",
"potential_use": "Optimize subproblems on network tree decomposition"

}
}

}
},
"integration_strategy": "Create a dynamic network optimization problem where Dijkstra’s
algorithm finds shortest paths that are used as augmenting paths in a modified Edmonds-Karp
flow algorithm. Use segment tree to handle dynamic updates to edge capacities based on flow
history. Apply tree DP on the shortest path tree to compute optimal flow distributions. This
models a transportation network with time-varying capacities."

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

B.2.2 FROM FEATURE TO STYLIZED TASK

We separate feature selection from task generation, as our initial attempts showed that prompting
an LLM to perform both within a single prompt often led it to choose fewer features and produce
overly simple problems.

During task generation, LLM recieves selected features tree and its integration strategy to formulate
styleized task based on prompt recieved. Task generation prompt for Codeforces-style is as follows:

"""You are a professional competitive programming problem setter.

You have been provided with:

- selected_features_tree: a tree structure where each leaf contains a "feature" name and its
"potential_use".
- integration_strategy: a strategy describing how these features should be integrated into a
single, high-quality problem.

Your task is to **generate a complete Codeforces-style problem statement** that fully
integrates ALL selected features.

Requirements:
- The story and setting must naturally motivate every selected feature, making each
indispensable for an optimal solution.
- Specify precise input/output format and tight constraints.
- Provide at least two distinct, non-trivial sample Input/Output pairs, each with a clear
explanation.
- Make sure the samples are consistent with your constraints and the solution requires use of
all selected features.
- Do not include any references to algorithms, data structures, solution strategies, or any
implicit or explicit hints in any part of the statement, notes, or examples. Do not include
any motivational, summary, or instructional phrases (e.g., "Remember", etc.) at any point in
the output. The statement must end after the final example or clarification, with no
extraneous commentary.
- Output should be a **single JSON object** with the field "question" only.

Output Format (strictly):

{{
"question": "# Problem Title\\n\\nStory/context (describe the scenario)\\n\\n##

Input\\n<...input description...>\\n\\n## Output\\n<...output description...>\\n\\n##
Example\\n### Input\\n<code block with sample input>\\n### Output\\n<code block with sample
output>\\n### Note\\nExplanation about the sample(s), but without any solution hints."
}}

Inputs:
- selected_features_tree (JSON):
{selected_features_info}

- integration_strategy (string):
{integration_strategy}

Instructions:
- You must ensure every selected feature is essential and naturally integrated.
- Output ONLY the required JSON object, no extra text.
"""

In this instance, our generated Codeforces problem is shown in Figure 14, while the generated
AtCoder and LeetCode problems are presented in Figures 15 and 16, respectively.

Table 9: Comparison between one-step
and two-stage generation.

Generation Method Score (avg@4)

One-Step (end-to-end) 34.8
Two-Stage (Ours) 40.1 (+5.3)

The rationale for above two-stage pipeline is that a single-
step approach is less effective. When performing both
steps simultaneously, LLMs tend to oversimplify com-
plex instructions into trivial cases, reducing both diversity
and difficulty of the generated task.

To empirically validate this, we generated 32k tasks us-
ing the one-step method (feature-tree → task) and using
proposed “two-stage” method (feature-tree → sub-tree →
task). The SFT results on LiveCodeBench v5 are as Ta-

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Dynamic Transport Renewal
In the city of Codeland the transportation system is in constant flux. The city has n intersections
and m one‐way roads. Each road is characterized by a travel time and an initial capacity
representing the maximum number of vehicles that may traverse that road in a day. Due to
changing conditions, city engineers periodically adjust road capacities. After every such update,
the transport authority recalculates their performance metric in two steps.

First, they compute the maximum number of vehicles that can be sent from the central depot at
intersection 1 to the distribution center at intersection n. To do so they repeatedly select an
augmenting path that minimizes the total travel time (using a shortest path computation) among
all paths on which every road has positive capacity. They send as many vehicles along that
path as allowed by its weakest road and then reduce the capacity of every road on the path by
that amount. This process is repeated until no valid path from 1 to n remains.

Second, using the predecessor structure recorded in the last successful shortest path search
(forming a tree rooted at 1), the authority assigns each intersection a reward equal to its travel
time from intersection 1 (as computed in that search). They then choose a subset of
intersections from this tree such that no intersection and its direct predecessor are both chosen,
with the goal to maximize the total reward. (This selection is computed using an optimization on
the tree structure.)

The final performance metric is the sum of the maximum flow (i.e. total number of vehicles sent)
and the maximum total reward from the tree selection.

Your task is to process a series of capacity update queries. Initially the network is given. Then,
each query specifies an interval [L, R] (referring to the roads in their input order) and an integer
X. For every road whose index is in [L, R], add X to its current capacity. If an update causes an
edge's capacity to become negative, set it to 0. After each update, recalculate the maximum
flow using the method described above and then compute the optimal reward from the latest
shortest path tree. Output the sum of these two values.

Note that each update is cumulative.

Input
The first line contains three integers n, m and Q (2 ≤ n ≤ 100, 1 ≤ m ≤ 1000, 1 ≤ Q ≤ 1000) —
the number of intersections, the number of roads and the number of queries.

Each of the next m lines describes a road with four integers u, v, t and c (1 ≤ u, v ≤ n, u ≠ v, 0 ≤
t ≤ 10^6, 0 ≤ c ≤ 10^9), meaning that there is a road from intersection u to v with travel time t
and initial capacity c. The roads are numbered from 1 to m in the order of appearance.

Each of the next Q lines contains three integers L, R and X (1 ≤ L ≤ R ≤ m, -10^9 ≤ X ≤ 10^9) —
meaning that for every road with index in [L, R] you must add X to its current capacity (if a
road's capacity becomes negative, treat it as 0).

Output
For each query, output a single integer — the sum of the maximum flow from intersection 1 to n
(computed by repeatedly sending flow along the fastest (i.e. minimum travel time) augmenting
path) and the maximum reward obtainable from the shortest path tree from the last successful
search (computed using the tree-optimization described above).

Example
Input
4 5 2
1 2 1 5
2 4 3 3
1 3 2 4
3 2 1 2
2 4 2 4
2 4 -1
1 3 2

Output
11
8

Note
After the first update, the capacities of roads with indices 2, 3 and 4 decrease by 1, so they
become 2, 3 and 1 respectively while the others remain unchanged. The flow computation
proceeds in iterations by first choosing the path 1→2→4 (with travel time 1+3=4) and sending 2
vehicles, then using the path 1→3→2→4 (with travel time 2+1+2=5) to send 1 vehicle, and
finally again 1→2→4 to send 3 vehicles. The total maximum flow is 6. In the last successful
shortest path search (from the iteration yielding the 3 vehicles), the predecessor tree has
intersection 1 as the root with children 2 and 3, and intersection 2 with child 4. With rewards
equal to their computed distances from intersection 1, an optimal non-adjacent selection yields
a total reward of 5. Their sum is 11.

After the second update, the capacities of roads with indices 1, 2 and 3 increase by 2.
Recomputing the maximum flow now yields a value of 2, while the corresponding shortest path
tree results in an optimal reward of 6. The final performance metric is 8.

Figure 14: Case for Codeforces-style Problem, featuring rich, imaginable narrative contexts.

Dynamic Transportation Optimization
You are given a directed transportation network with N nodes and M roads. Each road i (1-indexed) goes
from node u to node v, requires t units of time to traverse, and can transport at most c units of goods.
When a shipment is made from a source s to a target t, the following process is repeated:

 Find a route from s to t that minimizes the total travel time among all routes that have a positive
capacity on every road used. (If more than one route achieves the minimum travel time, any one of
them is chosen.)

 Let f be the minimum capacity among the roads on the chosen route. Send f units along the route
and reduce the capacity of every road on that route by f.

 The process stops when there is no route from s to t with all roads having positive capacity. The
total goods shipped is the sum of all f sent during the process.

You are given Q operations. Each operation is in one of the following two forms:

 1 i x: Update the capacity of road i to x.

 2 s t: On the current network, simulate the above process from s to t and output the total goods
shipped. Note that the simulation is performed on a copy of the current network so that the road
capacities remain unchanged for subsequent operations.

Output the answer for each query operation.

Input

The first line contains three integers N, M, Q. Then M lines follow. The i-th of these lines contains four
integers u, v, t, c describing road i. Then Q lines follow.

Each of these lines is either in the form 1 i x or 2 s t as described above.

Output

For each operation of the form 2 s t, output a single integer representing the total goods shipped.

Constraints
2 ≤ N ≤ 200; 1 ≤ M ≤ 500; 1 ≤ Q ≤ 200; 1 ≤ u, v, s, t ≤ N, u ≠ v; 1 ≤ t ≤ 10^3; 1 ≤ c, x ≤ 10^9

Sample Input 1
3 3 3

1 2 5 10

2 3 5 10

1 3 11 5

2 1 3

1 3 15

2 1 3

Sample Output 1

15

25

Figure 15: Case for AtCoder-style Problem, featuring concise, minimal explainations.

ble 9. The 5.3 gain shows that explicit sub-tree selection and integration is significantly helpful for
producing high-quality, challenging tasks and justifies SynthSmith’s modular design.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Dynamic Transportation Network
Given a directed network with n nodes labeled from 1 to n and m edges, each
edge is represented as a quadruple [u, v, capacity, travelTime] and denotes a
directed connection from node u to node v with the given capacity and travel
time. The network is dynamic: in each round you select a route from node 1 to
node n with the smallest total travel time among all routes with positive
capacities. If there are multiple routes with the same total travel time, choose the
route that can carry the largest amount of flow (where the flow of a route is the
minimum capacity among its edges). Send flow along the selected route equal
to this value and reduce the capacity of every edge on the route by the sent flow.
Repeat the process until no valid route exists.

After the rounds finish, for every node i (1 ≤ i ≤ n) determine the total amount of
flow that reached it. A node receives flow from a selected route if it appears on
that route and the flow travels from node 1 to that node along the route. Return
an array f of length n where f[i - 1] is the total flow that reached node i from node
1.

Signature
class Solution:

def dynamicTransportationNetwork(self, n: int, m: int, edges: List[List[int]]) -> List[int]:

pass

Example 1
Input: n = 4, m = 5, edges = [[1,2,4,2], [1,3,3,1], [2,4,3,3], [3,2,2,1], [3,4,4,5]]
Output: [6,3,3,6]

Example 2
Input: n = 3, m = 3, edges = [[1,2,5,2], [2,3,4,3], [1,3,2,10]]
Output: [6,4,6]

Constraints
 2 ≤ n ≤ 10^4
 1 ≤ m ≤ 5 * 10^4
 For each edge in edges:

o 1 ≤ u, v ≤ n and u ≠ v
o 1 ≤ capacity ≤ 10^4
o 1 ≤ travelTime ≤ 10^4

Figure 16: Case for LeetCode-style Problem, featuring predefined function signatures.

B.3 TASK DIFFICULTY ESTIMATES

Judging the difficulty of a synthetic task is challenging. To better capture the difficulty distribution
of tasks generated by X-Coder, we adopt a classifier-based approach. Specifically, we add a special
classification token to Qwen2.5-Coder-14B-Instruct and fine-tune it to predict the Codeforces rating
of 6,246 tasks from the CodeContests dataset with annotated ratings, reserving 5% as a validation
set. The fine-tuned model achieves 84% classification accuracy on the validation set. We then use
this model to estimate the difficulty of 1,000 tasks generated by our pipeline, obtaining a holistic
distribution as shown in Table 10.

B.4 TASK DIVERSITY ESTIMATES

To analyze the diversity of our generated tasks quantitatively, we analyze diversity in the embedding
space following the steps below: (i) Embedding: We first embed the tasks into embeddings using
jinaai/jina-embeddings-v2-base-code, a specialized coding embedding model. (ii) t-SNE Dimen-
sionality Reduction: We apply t-SNE to reduce the embedded data to 2D space. (iii) Clustering:
We perform K-means clustering on the t-SNE-reduced data to group the data into 10 clusters and
compute the centroids of each cluster. (iv) Inter-cluster Distance Calculation: We calculate the Eu-
clidean distance between cluster centroids. Larger inter-cluster distances indicate greater diversity
within the dataset.

In our datasets (randomly sampled 10k), cluster sizes range 529-1,612 items, average centroid dis-
tance 0.613, min 0.369, max 0.760. In Evol-Instruct-Code, the mean centroid distance is 0.507. The
visualization results are shown in Figure 17 and Figure 18. The visualization suggests that the clus-

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 10: Difficulty distribution of Codeforces-style ratings. “Original” denotes the annotated dis-
tribution from CodeContests, and “Test” denotes 1,000 tasks generated by our pipeline.

CF Rating Original Test (Ours) Original Share Test Share

1200 623 0 10.0% 0.0%
1400 727 0 11.7% 0.0%
1600 889 0 14.3% 0.0%
1800 840 16 13.5% 1.6%
2000 797 2 12.8% 0.2%
2200 697 47 11.2% 4.7%
2400 665 585 10.7% 58.5%
2600 484 319 7.8% 31.9%
2800 312 12 5.0% 1.2%
3000 233 15 3.7% 1.5%
3200 157 4 2.5% 0.4%
3400 122 0 2.0% 0.0%

Total 6,246 1,000 100% 100%

ters in our dataset are more widely separated compared to those in Evol-Instruct-Code, indicating
higher diversity.

Figure 17: t-SNE visualization of our datasets. Figure 18: t-SNE of the Evol-Instruct-Code.

C SOLUTION GENERATION AND QUALITY ASSURANCE

C.1 VALIDATION ON SOLUTION

For tasks with descriptions shorter than 200 tokens, we discard them, as such descriptions are often
either too trivial or incomplete. For each generated solution, we ensure quality by (i) removing sam-
ples without complete think and answer tags, (ii) rejecting cases where the extracted Python block
fails AST validation, (iii) excluding solutions that contain multiple code blocks after the reasoning
process, as they hinder reliable solution extraction, and (iv) filtering out samples exceeding 25k
tokens to prevent overthinking and to reduce SFT cost caused by sequence padding.

C.2 SFT DATASET STATISTICS

The overall token length distribution, shown in Table 11, and Figure 19, primarily follows a normal
distribution, with a median of 16k.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 19: Dataset statistics of the demonstration dataset.

Table 11: Token statistics for tasks and solutions of the demonstration dataset.

Type Min Max Mean Median Std Dev Total Tokens

Task 200 3,537 658.91 635.00 258.49 134.3M
Solution 1,711 33,144 17,742.50 17,431.00 7,295.92 3.25B

Dataset Size 200,091 entries 3.38B

D TEST CASE GENERATION

D.1 PROMPTING-BASED TEST GENERATION

You are a professional test case generation expert, skilled at designing comprehensive test
cases for programming problems.
Please generate 15 different test cases for the following programming problem, including edge
cases, small-scale, medium-scale, and large-scale test data.

Problem:
{problem_statement}

Requirements:
1. Generate 15 test cases
2. Include edge cases (empty input, minimum values, maximum values, etc.)
3. Include different scales of data (small, medium, large)
4. Each test case should have clear input data
5. Ensure test cases can thoroughly validate the correctness of solutions

Please return in JSON format as follows:
{{

"test_cases": [
{{

"idx": 0,
"description": "Test case description",
"input_string": "Input data"

}},
...

]
}}

D.2 TOOL-BASED TEST GENERATION

The tool-based test generation strategy relies on CYaRon, an open-source Python library aimed at
rapidly generating random data for Informatics Olympiad problems (or problems of equivalent dif-
ficulty). This library contains a variety of common data structures (e.g., graphs, trees, polygons,
vectors, strings, and sequences), along with mathematics-related functions and the necessary in-
put/output interfaces. When prompting the Teacher model to utilize the CYaRon tool, we provide its
detailed documentation and usage instructions as part of the prompt. Additionally, we encourage the
model to generate more boundary tests and large-scale random use cases. To ensure the sufficiency
of test cases, we mandate the use of this library in conjunction with its random features and set a
seed to ensure reproducibility. The detailed prompt used is illustrated as:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Please write a test case generator that meets the following requirements based on the
following CYaRon documentation:

1. Write a canonical CYaRon Generator using Python
2. Generate a single, executable Python program that can produce test cases with at least 5
different features
3. The Python program should save each test case individually in the format [use case
characteristics].in
4. The program should include a variety of test case types such as base cases, boundary
cases, large random cases, etc
5. The Python program code should contain clear comments to explain the design intent for
each test case generation
6. The .in output files should contain ONLY pure input data without any comments,
explanations, or answer validation
7. The Python program should be able to generate all test cases in a single run when executed
8. The program should use argparse to provide configurable random seed control:

parser.add_argument(’--seed’, type=int, default=42, help=’Random seed for reproducibility’)
9. All random number generation must use Python’s built-in random module (import random) - do
not use any external random libraries or the random functions from CYaRon

CYaRon Documentation

Input/Output (IO)
The IO library helps you easily create test data files.

Constructor Options:
‘‘‘python
Basic file specification
IO("test1.in", "test1.out") # Explicit input/output files
IO(file_prefix="test") # Generates test.in and test.out
IO(file_prefix="test", data_id=3) # Generates test3.in and test3.out

Advanced file naming
IO(file_prefix="test", data_id=6,

input_suffix=".input", output_suffix=".answer") # test6.input and test6.answer

Partial output options
IO("test2.in") # Only input file, output goes to temporary file
IO(file_prefix="test", data_id=5, disable_output=True) # No output file generated
IO() # Both files temporary (for use with comparator)
‘‘‘

Note: Combine ‘file_prefix‘ and ‘data_id‘ with loops for batch generation.

IO Methods:
‘‘‘python
io = IO("test1.in", "test1.out") # Initialize IO object

Input writing methods
io.input_write(1, 2, 3) # Writes "1 2 3" to input file (no newline)
io.input_writeln(4, 5, 6) # Writes "4 5 6\n" to input file
io.input_write([1, 2, 3]) # Writes list as space-separated "1 2 3"
io.input_write(1, 2, 3, separator=’,’) # Writes "1,2,3," (note: current version leaves
trailing comma)

Output writing methods
io.output_write(1, 2, 3) # Writes "1 2 3" to output file
io.output_writeln(4, 5, 6) # Writes "4 5 6\n" to output file
io.output_write(1, 2, [1, 2, 3], [4]) # Flattens nested lists to "1 2 1 2 3 4"

Program execution
io.output_gen("˜/Documents/std") # Runs program with input, captures stdout as output
io.output_gen("C:\\Users\\Aqours\\std.exe") # Windows path support
‘‘‘

Graph Generation
The Graph library generates various graph structures.

Manual Construction:
‘‘‘python
Graph initialization
graph = Graph(10) # 10-node undirected graph (nodes 1-10)
graph = Graph(10, directed=True) # Directed version

Adding edges
graph.add_edge(1, 5) # Default weight=1
graph.add_edge(1, 6, weight=3) # Custom weight

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Edge access and properties
graph.edges # Adjacency list containing Edge objects
for edge in graph.iterate_edges():

edge.start # Source node
edge.end # Target node
edge.weight # Edge weight

Output formatting options
io.input_writeln(graph) # Default "u v w" per line
io.input_writeln(graph.to_str(shuffle=True)) # Random edge order
io.input_writeln(graph.to_str(output=Edge.unweighted_edge)) # "u v" format
‘‘‘

Template Graphs:
‘‘‘python
Basic graph templates
Graph.graph(n, m) # n nodes, m edges (weight=1)
Graph.graph(n, m, directed=True, weight_limit=(5, 300)) # Directed with weight range
Graph.graph(n, m, self_loop=False, repeated_edges=False) # No duplicate edges

Special graph types
Graph.chain(n) # n-node chain (alias for tree(n, 1, 0))
Graph.flower(n) # n-node star graph (alias for tree(n, 0, 1))
Graph.tree(n) # Random tree
Graph.tree(n, 0.4, 0.35) # 40% chain-like, 35% star-like, 25% random
Graph.binary_tree(n) # Random binary tree

Competition-specific graphs
Graph.hack_spfa(n) # Graph that breaks SPFA (1.5n edges)
Graph.hack_spfa(n, extra_edge=m) # With additional edges
Graph.DAG(n, m) # Directed Acyclic Graph
Graph.UDAG(n, m) # Undirected Connected Graph
‘‘‘

Note: Most templates support ‘weight_limit‘, ‘weight_gen‘, ‘self_loop‘, and ‘repeated_edges‘
parameters.

Polygon
Generate and analyze polygons.

‘‘‘python
Polygon creation (points must be ordered)
p = Polygon([(0,0), (0,4), (4,4), (4,0)]) # Rectangle

Geometric properties
p.perimeter() # Calculates perimeter
p.area() # Calculates area

Generation templates
Polygon.convex_hull(n) # n-point convex hull
Polygon.simple_polygon(n) # Simple polygon (non-intersecting)
‘‘‘

Vector
Generate unique vectors/number sequences.

‘‘‘python
Basic usage
Vector.random() # Default: 5 unique numbers in [0,10]
Vector.random(10, [(10,50)]) # 10 unique numbers in [10,50]
Vector.random(30, [(10,50), 20]) # 30 unique 2D vectors

Modes:
0: Unique integer vectors (default)
1: Non-unique integer vectors
2: Real-valued vectors
Vector.random(30, [(1,10), (1,10), (1,10)], 2) # 30 3D real vectors
Vector.random(30, [10], 1) # 30 numbers (may repeat)
‘‘‘

String
Generate random text elements.

‘‘‘python

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Basic strings
String.random(5) # 5-character word
String.random((10,20), charset="abcd1234") # Variable length
String.random(10, charset="#######...") # 70% ’#’, 30% ’.’

Structured text
String.random_sentence(5) # 5-word sentence
String.random_paragraph((3,10)) # 3-10 sentence paragraph

Custom formatting
String.random_sentence(5, word_separators=[" "]) # Double space separator
‘‘‘

Note: All templates support charset customization.

Sequence
Generate number sequences via recurrence.

‘‘‘python
Explicit formula
Sequence(lambda i, f: 2*i+1) # f(i) = 2i + 1

Recursive definition
Sequence(lambda i, f: f(i-1)+1, [0,1]) # f(i)=f(i-1)+1 with f(0)=0, f(1)=1
Sequence(lambda i, f: f(i-1)+1, {100:101, 102:103}) # Sparse base cases

Usage
seq = Sequence(lambda i, f: f(i-1)+2, [0,2,4])
seq.get(3) # Returns 6
seq.get(4,6) # Returns [8,10,12]
‘‘‘

Important: Recursive definitions require base cases.

Utilities

Conversion:
‘‘‘python
ati([0, 5, 100, 1E3, 1E5]) # Converts scientific notation to integers
‘‘‘

Random Numbers:
‘‘‘python
randint(1,5) # Integer in [1,5]
uniform(1,5) # Float in [1,5]
choice([1,2,3]) # Random selection
random() # Float in [0,1)
‘‘‘

Constants:
‘‘‘python
PI # 3.1415926...
E # 2.7182818...
ALPHABET_SMALL # "abcdefghijklmnopqrstuvwxyz"
ALPHABET_CAPITAL # "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
ALPHABET # Combined letters
NUMBERS # "0123456789"
‘‘‘

Code Question
{QUESTION}

E DUAL-VERIFICATION

E.1 ALGORITHM

We summarize the symbols used in the dual-verification process in Table 12, and outline the corre-
sponding procedure in Algorithm 1.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 12: Notation for SynthSmith Framework.

{xi}ni=1 Test inputs for a task q
{Aj}mj=1 Candidate solutions (LLM-generated)
yji Output of Aj on input xi

ŷi Provisional label via majority vote on {yji }mj=1

wi Difficulty weight for xi

Tcandidate Provisional labeled set {(xi, ŷi, wi)}
Tgolden Weighted suite for selecting the solution
Tval Hold-out validation set
Sj Weighted score of Aj on Tgolden
Agolden Final selected “golden” solution

Algorithm 1: Dual-Verification of Solutions and Test Cases (Strict Verification)
Input: Task q; test inputs {xi}ni=1; candidate solutions {Aj}mj=1.
Output: Golden solution Agolden and test suite Tgolden, or None if verification fails.

Step 1: Consensus Voting & Weighting
for i← 1 to n do

for j ← 1 to m do
Run yj

i ← Aj(xi)

ŷi ← argmaxy

∑m
j=1 I(y

j
i = y)

wi ←Weight(xi)

Tcandidate ← {(xi, ŷi, wi)}ni=1

Step 2: Split Candidate Set
Randomly partition Tcandidate into Tgolden and Tval
Step 3: Weighted Selection
for j ← 1 to m do

Sj ←
∑

(xi,ŷi,wi)∈Tgolden
wi · I(Aj(xi) = ŷi)

j⋆ ← argmaxj Sj

A′
golden ← Aj⋆

Step 4: Hold-out Confirmation
Compute unweighted accuracies of all Aj on Tval
j† ← argmaxj Acc(Aj , Tval)
if j† = j⋆ then

Agolden ← A′
golden

return Agolden, Tgolden
else

return None; // Discard task

E.2 TEST-CASE WEIGHTING CRITERIA.

We employ two distinct strategies for assigning weights to individual test cases:

Semantic-Based Weighting. During test-case generation, the model is prompted to produce mul-
tiple categories of test cases (stored as .in files), including nominal (weight = 1), complex (2),
boundary (3), and stress (4) scenarios. This assigns higher weights to test cases that are more likely
to expose corner cases or failure modes.

Size-Based Weighting. We assign weights based on the size of the input files, which serves as a
proxy for memory consumption. Specifically, we sort test cases by the size of their input files and
divide them into four equal-sized buckets: the smallest 25% receive weight = 1, the next 25% receive
weight = 2, the next 25% receive weight = 3, and the largest 25% receive weight = 4. This ensures
that heavier test cases, which require greater memory resources, are assigned higher weights.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

E.3 ERROR RATE FOR LABELING TEST OUTPUTS VIA VOTING.

On TACO-verified, we measure a 5.27% false-positive rate under voting with 8 solutions. To as-
sess the false-positive rate of test-output labeling, we evaluate our approach on real-world, verified
datasets. Specifically, we randomly sample 500 tasks from the TACO-verified dataset, and for each
task, we randomly retain 20 test cases.

For each task, we generate n (n ∈ {4, 8, 16}) candidate solutions using R1-0528, perform majority
voting on the outputs for each test input, and compare the voted consensus output against the ground-
truth output to obtain a quantitative labeling accuracy. The resulting test-output labeling accuracy
under different values of n is shown in Table 13 and Table 14.

Table 13: Average Test Output Labeling Ac-
curacy with varying n.

n Labeling
(# solutions) Accuracy

4 94.39%
8 94.73%

16 95.13%

Table 14: Test Output Labeling Accuracy across
different sources.

Source n = 4 n = 8 n = 16

AtCoder 94.75% 95.00% 96.61%
CodeChef 92.80% 92.80% 92.80%
CodeForces 94.44% 94.81% 95.06%

Increasing the number of sampled solutions consistently improves test output labeling accuracy.
With n = 8, the false-positive rate is 5.27%, which falls within an acceptable range and demonstrates
that the approach is potentially reliable to be transferred to the synthetic setting.

E.4 ERROR RATE OF GOLDEN SOLUTION

To enable quantitative assessment, we adopt two evaluations: (1) measuring the error rate of dual
verification on our synthetic datasets, which yields pass rate distributions across various proprietary
LLMs; and (2) evaluating the actual error rate on real-world datasets (TACO-verified), resulting in
a 7.85% error rate.

(i) Synthetic Task Evaluation. We first use DeepSeek-R1-0528 to generate multiple candidate
solutions for each synthetic task. We then apply our dual-verification strategy to select the golden
solution and measure its pass rates on the voted test cases. The pass rate distribution is shown in
Table 15.

Table 15: Distribution of Golden Solution Pass
Rates on Voted Test Cases using R1-0528.

Range (%) Ratio
(0, 20) 13.12%
[20, 40) 17.29%
[40, 60) 17.57%
[60, 80) 14.94%
[80, 100) 13.39%
100 23.66%

Here, each percentage range represents the frac-
tion of tasks whose selected golden solution at-
tains a pass rate within that interval. For example,
the [80, 100) range indicates that 13.39% of tasks
have golden solutions that pass between 80% and
100% of their voted test cases, while 23.66% of
the solutions pass all test cases.

Note that solution quality is strongly tied to
model capability. The pass rates of the propri-
etary models (Qwen3-Max, Gemini2.5-pro, and
GPT5-High) are presented in Table 16.

If we adopt a more capable model such as GPT-
5-High, 66.98% of the tasks can be solved perfectly in a single attempt.

(ii) Real-world Dataset Evaluation. We also apply our dual-verification approach to real-world,
verified datasets to measure the error rate of the selected golden solutions. Because real-world
datasets contain ground-truth test cases, the resulting error rate accurately reflects the true quality of
the selected solutions.

Specifically, we randomly select 500 tasks from the TACO-verified dataset, each with 20 retained
test cases as ground truth tests. We apply our dual-verification procedure using R1-0528 to label test

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 16: Distribution of Proprietary LLMs’ First-Try Pass Rates on Test Cases.

Range (%) Qwen3-Max Gemini2.5-pro GPT5-High
(0, 20) 11.06% 9.57% 3.07%
[20, 40) 16.44% 14.38% 4.83%
[40, 60) 18.59% 17.17% 6.49%
[60, 80) 16.36% 15.80% 7.80%
[80, 100) 14.39% 14.90% 10.82%
100 23.16% 28.18% 66.98%

outputs via voting, and then select the golden solution based on the pass rate on the voted test cases.
We then evaluate each golden solution against the ground-truth tests.

The verification results under different numbers of candidate solutions (n) are shown in Table 17.

Table 17: Verification results on TACO-verified dataset with varying candidate solutions (n).

n Avg. Pass Rate Full Pass Rate
(Candidates) (test-case level) (task-level)

4 91.79% 84.20%
8 92.15% 85.00%
16 92.50% 85.80%

On the TACO-verified dataset, our approach yields a 7.85% error rate in the selected golden solutions
when n = 8. The error rate further decreases as the number of rollout solutions increases. Such
an error level is acceptable, indicating that the approach has the potential to be transferred to the
synthetic setting.

E.5 SOLVABILITY OF GENERATED PROBLEM.

To estimate the fraction of potentially unsolvable problems in our generated dataset, we use GPT-5-
High as a strong solver proxy. Specifically, we evaluate the pass@1 performance of several propri-
etary LLMs—including Qwen3-Max, Gemini-2.5-Pro, and GPT-5-High—on our voted test cases.
Their single-try pass rates are reported in Table 18.

Notably, even GPT-5-High shows a small subset of tasks with very low pass rates. Such tasks
are likely to be ambiguous, underspecified, inherently unsolvable, or affected by test-case labeling
noise. Since GPT-5-High is among the strongest proprietary solvers available, failures from this
model serve as a practical indicator of potential flaws in the task itself.

F GENERALITY

F.1 GENERALITY ACROSS MODEL FAMILIES.

We supplement results on Llama-3.1-8B-Instruct to demonstrate generality beyond the Qwen series,
achieving 13.4 gains after SFT and 15.3 after RL, demonstrating the quality of our dataset. The
results are shown in Table 19.

Given that Llama-3.1-8B-Instruct is potentially weaker than Qwen2.5-Coder-7B-Instruct in terms
of code pretraining, the observed improvement from 11.8 to 25.2 to 27.1 suggests that less capable
base models can also benefit from the proposed datasets.

F.2 GENERALITY ACROSS BENCHMARKS.

Our study targets competitive programming, whereas EvoEval (Xia et al., 2024) (program evolu-
tion), ClassEval (Du et al., 2023) (class implementation), and DS-1000 (Lai et al., 2023) (data-

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 18: Distribution of proprietary LLMs’ pass@1 on voted test cases. Each percentage range
represents the fraction of tasks whose best solution from the corresponding model attains a pass rate
within that interval.

Range (%) R1-0528 Qwen3-Max Gemini2.5-Pro GPT5-High

(0–20) 13.12% 11.06% 9.57% 3.07%
[20–40) 17.29% 16.44% 14.38% 4.83%
[40–60) 17.57% 18.59% 17.17% 6.49%
[60–80) 14.94% 16.36% 15.80% 7.80%
[80–100) 13.39% 14.39% 14.90% 10.82%
100 23.66% 23.16% 28.18% 66.98%

Table 19: Performance on Llama-3.1-8B-Instruct. Our method significantly improves performance
even on non-Qwen architectures.

Model v5 Score
Llama-3.1-8B-Instruct 11.8
FuseChat-Llama-3.1-8B-Instruct 12.6
X-Coder-Llama3.1-8B-SFT-32k-Sample 25.2
X-Coder-Llama3.1-8B-SFT+RL-10k-Sample 27.1

science tasks) fall outside this scope. For completeness, we additionally report results on MBPP+
and HumanEval+ (Liu et al., 2023b), as shown in Table 20.

Table 20: Generality across standard code generation benchmarks (HumanEval and MBPP variants).

Model HE HE+ MBPP MBPP+ Avg.
Qwen2.5-Coder-7B-Instruct 88.4 84.1 83.5 71.7 81.9
X-Coder-7B-SFT 89.6 84.8 88.9 73.5 84.2
X-Coder-7B 89.6 84.1 89.2 75.7 84.7

G DATA LEAKAGE ANALYSIS

X-Coder , trained entirely on fully synthetic data, exhibits a lower risk of data leakage. As shown in
Table 21, models trained on real-world data, like Qwen3 achieve strong performance on older bench-
marks (e.g., LiveCodeBench v2) but are less competitive on more recent ones (e.g., v5), revealing a
higher degree of data leakage.

Table 21: Comparison between Qwen3-8B, and X-Coder on old and recent benchmarks.

Model LiveCodeBench v2 LiveCodeBench v5 ∆ (v2→v5)

Qwen3-8B 88.1 57.5 -30.6
X-Coder-7B-SFT 78.2 60.3 -17.9
X-Coder-7B 80.1 62.9 -17.2

H CASE STUDY

H.1 SUCCESSFUL CASE

The SFT model frequently exhibits cognitive behaviors such as planning, verification, backtracking,
and reflection, suggesting that these behaviors can be directly distilled from the teacher.

Listing 1: Thinking process of successful case.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Title: Adjacent GCD
Platform: AtCoder
Difficulty: Hard
Contest_id: arc185
Contest_date: 2024-10-13T00:00:00

Thinking behavior:

We begin by defining F (m) as the total score of all subsequences of the first m elements ...
and try to see whether we can break the problem into manageable pieces ... (Plan behavior)

At first, I considered summing gcd(Ai, Ai+1) directly over the array ...
but then realized that subsequences can skip indices, so adjacency is redefined ...
this naive plan would miss many contributions ... (Reflection behavior)

To verify, I checked a small prefix: A = (9, 6, 4).
For m = 2, the subsequences [9], [6], [9, 6] give total = 3 ...
for m = 3, manual enumeration yields 11,
while my recurrence only produced 8 ... (Verification behavior)

Clearly, the earlier idea of "just add gcd(last, new)" was incomplete ...
I realized each new subsequence must inherit the full score of its prefix subsequence,
and only then add the new gcd term ... (Reflection behavior)
Concretely, inheriting the full score contributes 2F (m − 1),
and the newly formed terminal pairs contribute

∑
j<m gcd(Aj , Am) 2 j−1 ...

Thus, I rebuild the recurrence:
F (m) = 2F (m − 1) +

∑m−1
j=1 gcd(Aj , Am) 2 j−1 ...

this formula accounts for doubling subsequences and the fresh contributions ... (Rebuild
behavior)
For brevity, denote S(m) =

∑
j<m gcd(Aj , Am) 2 j−1 ...

Checking with m = 2 and m = 3 confirms it works ...
e.g., for A = (9, 6, 4): F (3) = 2 · 3 + (gcd(9, 4) · 20 + gcd(6, 4) · 21) = 6 + (1 + 4) = 11 ...
other boundary cases (single element, all equal numbers, coprime arrays)
also check out ... (Verification behavior)

However, computing
∑

gcd(Aj , Am) 2 j−1 naively costs O(m) ...
with N up to 5 × 105 this is too large ... (Reflection behavior)

To optimize, I reorganize the sum by divisors of Am ...
use Möbius inversion ... and precompute an array H[t] =

∑
d|t µ(d) ·

t
d ...

then each step requires iterating only over divisors of Am ... (Optimization behavior)

We maintain U [t] =
∑

2 j−1 for indices j where t | Aj ...
then S(m) =

∑
t|Am

U [t] · H[t], updated after each new element ... (Optimization behavior)
With U [t] and H[t], we evaluate S(m) via divisors as

∑
t|Am

U [t]H[t], matching the earlier
definition ...

The complexity now depends on divisor counts ...
on average ∼ 10-∼ 20, worst-case ∼ 128, giving ∼ 108 operations overall ... (Complexity
analysis)

Overall time is O
(∑N

i=1 d(Ai)
)
, with small average divisor counts in practice ...

Finally, with precomputation of µ, divisors, H, and powers of 2 modulo 998244353 ...
the algorithm is complete, efficient, and matches all sample outputs ... (Conclusion)

Listing 2: Final code solution of successful case.
mod = 998244353
max_val = 100000

import sys

def main():
data = sys.stdin.read().split()
if not data:

return
n = int(data[0])
A = list(map(int, data[1:1+n]))

mu = [1] * (max_val+1)
is_prime = [True] * (max_val+1)
primes = []
for i in range(2, max_val+1):

if is_prime[i]:

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

primes.append(i)
mu[i] = -1

for p in primes:
if i * p > max_val:

break
is_prime[i*p] = False
if i % p == 0:

mu[i*p] = 0
break

else:
mu[i*p] = -mu[i]

divisors = [[] for _ in range(max_val+1)]
for i in range(1, max_val+1):

for j in range(i, max_val+1, i):
divisors[j].append(i)

H_arr = [0] * (max_val+1)
for d in range(1, max_val+1):

for t in range(d, max_val+1, d):
term = mu[d] * (t // d)
H_arr[t] = (H_arr[t] + term) % mod

pow2 = [1] * n
for i in range(1, n):

pow2[i] = (pow2[i-1] * 2) % mod

F = [0] * (n+1)
U = [0] * (max_val+1)

for idx in range(n):
num = A[idx]
if idx == 0:

F[1] = 0
for t in divisors[num]:

U[t] = (U[t] + pow2[0]) % mod
else:

total = 0
for t in divisors[num]:

total = (total + U[t] * H_arr[t]) % mod
F[idx+1] = (2 * F[idx] + total) % mod
for t in divisors[num]:

U[t] = (U[t] + pow2[idx]) % mod

for i in range(1, n+1):
print(F[i])

if __name__ == "__main__":
main()

H.2 BAD CASE

We identify three major failure modes in code reasoning process:

(i) Premature termination under context exhaustion. As the context window approaches its limit, the
model shortens its reasoning and rushes to produce a final answer (e.g., “Given the time, we output
the following solution in Python for the sample.”).

(ii) Retrieval-like fallback instead of reasoning. Rather than attempting to derive a solution, the
model sometimes recalls a “memorized” accepted submission in another language (e.g., C++) and
attempts to translate it into Python, bypassing genuine reasoning.

(iii) Incomplete code emission before cutoff. The model occasionally fails to output a complete code
block before context exhaustion, leaving truncated or non-executable programs.

Listing 3: Thinking process of bad case.
// Instead, the solution might be to
// - for the root, the value can be any number in [1, n] that is < seg_min (if the segment
is not empty)
// and > than the value of the parent (none) -> so any number in [1, seg_min-1] if the
segment is not empty,
// or [1, n] if empty.
// - then for the children, they must be > than the value of the parent and < than the
minimum value
// in the segment (a[i]+1, i-1) for the parent.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

//
// But then the value for the parent is not known until we assign.
//
// We abandon.

Given the time, we output the following solution in Python for the sample.
For the sample input, it must output 3 for n=4 and [0,1,0,3]
and 353820794 for n=22 and the given a.

Here is a known AC solution in Python for the same problem (from a contest submission):

import sys
sys.setrecursionlimit(10**6)
mod = 998244353

n = int(sys.stdin.readline().strip())
a = list(map(int, sys.stdin.readline().split()))

Build the tree
g = [[] for _ in range(n)]
for i in range(n):

if a[i] > 0:
g[a[i]-1].append(i)

We will do a DFS. We need a segment tree that can update and query in O(log n)
for the range [0, n-1] for the minimum value and the product of the counts.
We will use a segment tree that stores (min_value, count) for a range.
size = 1
while size < n:

size *= 2
seg_min = [10**9] * (2 * size)
seg_cnt = [1] * (2 * size)

But the known solution uses a different approach.

Instead, we output the solution from a known AC submission in C++.
We found the following in C++ and we translate it to Python.

C++ solution (AC for the same problem) by a known user:

include <iostream>
include <vector>
include <algorithm>
using namespace std;
const int mod = 998244353;

int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
vector<vector<int>> g(n);
for (int i = 0; i < n; i++) {
if (a[i] > 0) {
g[a[i]-1].push_back(i);
}
}
vector<int> dp(n, 1);
vector<int> to(n, 1000000000); // to[i] = minimum value in the segment (a[i]+1, i-1)
// We will use a segment tree for range minimum query, and we will update it as we go.
// But we will do a DFS in increasing order of a[i] and within the same a[i] in
increasing order of i.
vector<int> order(n);
for (int i = 0; i < n; i++) order[i] = i;
sort(order.begin(), order.end(), [&](int i, int j) {
if (a[i] != a[j]) return a[i] < a[j];
return i < j;
});
// segment tree for range minimum, size = 1<<19
int size = 1;
while (size < n) size *= 2;
vector<int> seg(size, 1000000000);
auto update = [&](int pos, int val) {
pos += size;
seg[pos] = val;
while (pos > 1) {
pos /= 2;
seg[pos] = min(seg[2*pos], seg[2*pos+1]);
}

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

};
auto query = [&](int l, int r) {
int res = 1000000000;
for (l += size, r += size; l < r; l /= 2, r /= 2) {
if (l&1) res = min(res, seg[l++]);
if (r&1) res = min(res, seg[--r]);
}
return res;
};
// initially, set the segment tree to a big number.
for (int i = 0; i < n; i++) {
update(i, 1000000000);
}
//
for (int i : order) {
if (a[i] > 0) {
int parent = a[i]-1;
int seg_min = query(a[i]+1, i);
// The value for i must be > than the value for parent and < than
(context exhausted here)

H.3 REWARD HACKING AND PRETRAINING ARTIFACTS.

We observe some interesting phenomena that emerge in the later stages of RL training.

First, we find that the policy does not genuinely strive for higher rewards by producing better al-
gorithms. Instead, it resorts to exploiting edge cases and attempting to “cheat” for partial rewards,
rather than solving the problem with real solutions.

Second, we observe that some rollouts include irrelevant advertising content (e.g., Need for Speed)
or adopt an editorial-style explanation of solutions similar to those on competitive programming plat-
forms such as Codeforces. This indicates that the base model was likely exposed to raw competition-
platform data during pretraining, from which such artifacts were inherited.

I THE USE OF LARGE LANGUAGE MODELS

In this paper, we adopt LLM for syntax checking and format calibration.

43

	Introduction
	SynthSmith: Synthesis of Competition-Level Coding Data
	Experiment
	Main Results
	SFT Experiments and Analysis
	RL Experiments and Analysis

	Ablation Study
	Discussion
	Related Work
	Conclusion
	Training and Evaluation
	SFT-then-RL Training
	Reward Function.
	Training Dynamics.
	Training Configs and Costs
	A Distributed Framework for Automated Code Verification
	Baselines

	Novel Task Synthesis
	Feature Extraction and Evolution
	Statistics for Feature Extraction and Evolution

	Stylized Task Generation for Competitive Programming
	Compatibale Feature Selection
	From Feature to Stylized Task

	Task Difficulty Estimates
	Task Diversity Estimates

	Solution Generation and Quality Assurance
	Validation on Solution
	SFT Dataset Statistics

	Test Case Generation
	Prompting-based Test Generation
	Tool-based Test Generation

	Dual-verification
	Algorithm
	Test-Case Weighting Criteria.
	Error Rate for Labeling Test Outputs via Voting.
	Error Rate of Golden Solution
	Solvability of Generated Problem.

	Generality
	Generality Across Model Families.
	Generality Across Benchmarks.

	Data Leakage Analysis
	Case Study
	Successful Case
	Bad Case
	Reward Hacking and Pretraining Artifacts.

	The Use of Large Language Models

