Under review as a conference paper at ICLR 2026

<X>—C0DER: ADVANCING COMPETITIVE PROGRAM-

MING WITH FULLY SYNTHETIC TASKS, SOLUTIONS,
AND TESTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Competitive programming presents great challenges for Code LLMs due to its in-
tensive reasoning demands and high logical complexity. However, current Code
LLMs still rely heavily on real-world data, which limits their scalability. In this
paper, we explore a fully synthetic approach: training Code LLMs with entirely
generated tasks, solutions, and test cases, to empower code reasoning models
without relying on real-world data. To support this, we leverage feature-based syn-
thesis to propose a novel data synthesis pipeline called SynthSmith. SynthSmith
shows strong potential in producing diverse and challenging tasks, along with veri-
fied solutions and tests, supporting both supervised fine-tuning and reinforcement
learning. Based on the proposed synthetic SFT and RL datasets, we introduce
the X-Coder model series, which achieves a notable pass rate of 62.9 avg@8 on
LiveCodeBench v5 and 55.8 on v6, outperforming DeepCoder-14B-Preview and
AReal-boba?-14B despite having only 7B parameters. In-depth analysis reveals
that scaling laws hold on our synthetic dataset, and we explore which dimensions
are more effective to scale. We further provide insights into code-centric rein-
forcement learning and highlight the key factors that shape performance through
detailed ablations and analysis. Our findings demonstrate that scaling high-quality
synthetic data and adopting staged training can greatly advance code reasoning,
while mitigating reliance on real-world coding data. Our code, data and models
will be made publicly available.

Previous Ours 62.9 Left: v5 (2024.8-2025.2)
7 Right: v6 (2025.2-2025.5)
Task Task g o 57.5 57.1 9
SFT |: (X) 93 52.1 51.7 51.3
Solution Solution : 24 476
445
6 40.8 40
Task Task
RL {
Test Test 3 3 3 3 3 a a
ode"1 '\«\"'1 > ® ot A | v&‘aj ““4_1 -0"*\:I
P % W aw 222 e A0 o
Real-world or Evolved Data| | Synthetic Data [G ov® v_0"“" $V“"w

Figure 1: Left: SynthSmith generates high-quality synthetic tasks, solutions, and test cases to sup-
port both SFT and RL training. Right: Avg@8 results on LiveCodeBench. X-Coder achieves sig-
nificant performance gains on competitive programming using fully synthetic data.

1 INTRODUCTION

As code language models advance, reasoning-focused models such as OpenAl-ol-ioi (OpenAl et al.,
2025) have reached expert-level performance in programming. Classic benchmarks including Hu-
manEval (Chen et al., 2021; Liu et al., 2023) and MBPP (Austin et al., 2021) have been largely

Under review as a conference paper at ICLR 2026

solved, whereas tasks from LiveCodeBench (Jain et al., 2024) and Codeforces continue to demand
deeper reasoning and more complex algorithmic problem solving.

Recently, DeepSeek-R1 (Guo et al., 2025) has opened two opportunities for further boosting the
reasoning capabilities of Code LLMs. The first is supervised fine-tuning (SFT) (Ouyang et al.,
2022) on long Chain-of-Thought (CoT) demonstrations to distill reasoning patterns into student
models (Hugging Face, 2025; Labs, 2025; Liu et al., 2025a). The second is reinforcement learn-
ing (RL) (Schulman et al., 2017) with GRPO (Shao et al., 2024b) and related algorithms to refine
reasoning foundation models (Luo et al., 2025; Fu et al., 2025a; He et al., 2025).

Both pathways have proven effective but face a common bottleneck: progress on competitive
programming remains constrained by the scarcity of datasets. Widely used collections such as
APPS (Hendrycks et al., 2021), CodeContests (Li et al., 2022), and TACO (Li et al., 2023) are
heavily reused during post-training. They remain too modest in scale to support continued benefits
and still lack the level of sufficiently challenging, diverse, and scalable. Meanwhile, collecting new
real-world data tailored for competitive programming is also challenging. Although recent work has
synthesized rewritten or evolutionary variants (Luo et al., 2024; Liu et al., 2025a; Xu et al., 2025)
from existing resources, their diversity and complexity remain tightly bounded by the seed tasks.

To address this gap, we explore a fully synthetic approach: training Code LLMs with fully gen-
erated tasks, solutions, and test cases. Building on this insight, we present SynthSmith, a novel
coding data synthesis pipeline tailored for competitive programming. To enable the synthesis of
diverse and challenging competitive programming tasks, SynthSmith extends feature-based meth-
ods (Wang et al., 2025) with competition-oriented feature extraction, dedicated feature integration,
and multi-style task construction. SynthSmith further supports the development of high-quality so-
lutions and tool-based test case generation, both of which are cross-validated through the proposed
dual-verification strategy. Thereby, SynthSmith demonstrates strong potential in producing scal-
able and challenging tasks, together with verified solutions and tests, offering support for both SFT
and subsequent RL. Starting from a base model (e.g., Qwen3-8B-Base) or a non-reasoning model
(e.g., Qwen2.5-Coder-7B-Instruct), we present the X-Coder series, which achieves significant per-
formance gains on challenging LiveCodeBench v5 and v6 without relying on any real-world data,
as shown in Figure 1. Beyond this, built upon verl (Sheng et al., 2025), we present an RL infrastruc-
ture featuring automated high-concurrency code validation, leveraging the CPUs of all distributed
machines to support efficient and large-scale code execution.

Our in-depth analysis examines (i) whether synthetic SFT data scale effectively and which dimen-
sions scale more favorablys; (ii) the role of code-centric reinforcement learning, including the “good-
gets-better” principle and RL’s resilience to noisy supervision; (iii) the factors that shape perfor-
mance (long- vs. short-CoT, effects of solution verification, task style, and data-selection strategies);
and (iv) the bottlenecks that limit code reasoning, together with the chained relationship among task
difficulty, reasoning length, and pass rate. We further conduct case studies to uncover cognitive
behaviors that emerge after SFT and RL, including reward hacking and undesirable patterns.

‘We make the following contributions:

(1) We explore a fully synthetic approach and propose a novel data synthesis pipeline tailored for
competitive programming, producing high-quality datasets for both SFT and RL stages.

(2) We train both base and non-reasoning LLMs under an SFT-then-RL paradigm to develop the X-
Coder model series, which achieves significant performance gains on LiveCodeBench v5 (avg@8:
62.9) and v6 (avg@8: 55.8), along with extensive analyses and ablations.

(3) We introduce an optimized infrastructure for code RL, featuring a dedicated sandbox environ-
ment that speeds up code execution and improves training efficiency.

2 SYNTHSMITH: SYNTHESIS OF COMPETITION-LEVEL CODING DATA

We introduce SynthSmith, a fully synthetic framework for constructing competitive programming
tasks that support both the SFT and RL stages. Figure 2 illustrates the SynthSmith pipeline, which
consists of four key steps: (i) generating novel and challenging problems (with the capacity for easy
scaling in quantity); (ii) constructing diverse and comprehensive input test cases for each problem
(including boundary and stress tests); (iii) producing high-quality candidate solutions; and (iv) em-

Under review as a conference paper at ICLR 2026

Task Generation [7]

i ,,,,,, :% Sorting: qukg Selected Subtree (
4] Quik sorting N pe—)
10 sorting
E— | iy Math:) T
OO . (2 tumber 99 Boved DO Scenario 299 "
””” T 1| preorder Priority Extraction During o
Com— - Travesal: a1 Traversal. You are given a _ 15@7*
' ;% Post-order Post order tree with weighted nodes AeCoder
- travesal travesal
Code Snippet Extract Features Evolve and Merge Select and Thinking Tasks
Dual Verification
o Test Generation (4 g N oy 2
! @ ¥ Tool QOO o 99 @ 9 [x,v,)
Task a Prompt Test Inputs Test NS L7 Test
" /2 Input . ') Case
\\“/)_v, P Solutions Outputs Major Voting
o Solution Generation ‘
‘-oe ® > - : L 289
Lle -/\" C:> E . i Test Cases
Sampling Solutions ! Golden
===t Scoring Solution

Figure 2: Framework of SynthSmith. SynthSmith first extracts and evolves competitive program-
ming related features from small-scale code instruction data and merges them into tree structures.
It then samples subtrees from the feature tree, selects a compatible feature set, and formulates a
scenario that naturally integrates these consistent features. Novel tasks are generated based on a
proposed scenario according to specific styles. Advanced reasoning models are used to synthesize
solutions and tests for the generated tasks, which are further cross-verified using the proposed dual-
verification strategy to yield reliable test outputs and the top solution.

ploying a dual-verification strategy that cross-checks solutions with test cases to yield more accurate
test outputs and more reliable solutions.

(i) Task Generation. Inspired by EpiCoder (Wang et al., 2025), which generates novel program-
ming tasks through a feature-based framework by combining sampled features into problem scenar-
ios, we extend this approach with three key improvements to synthesize diverse and complex tasks
tailored for competitive programming. First, instead of relying on broad definitions of features,
we explicitly extract and evolve competition-related features from 10k code snippets in the TACO
dataset (Li et al., 2023) using GPT-40-0513 (detailed in §C.1). Second, formulating competitive sce-
narios from a rich feature tree is non-trivial, as LLMs often oversimplify complex prompts into trivial
cases, thereby reducing both diversity and difficulty. To address this, we adopt a two-stage process
that separates feature selection from scenario formulation: first, selecting mutually consistent fea-
tures for meaningful composition; and second, formulating hint-free tasks that demand genuine rea-
soning. We further incorporate one-shot prompting to improve task understanding and instruction-
following. Third, we adapt the synthesis method to support multi-style task generation, covering
Codeforces'-style tasks (standard input/output with imaginable narrative contexts), LeetCode-style”
tasks (starter code with predefined function signatures), and AtCoder’-style tasks (concise specifica-
tions with minimal explanations), thereby enhancing task diversity. Examples of the task generation
process are provided in §C.2, together with difficulty estimates on generated tasks in §C.3.

(ii) Test Input Generation. Obtaining sufficient and accurate test cases is a formidable challenge.
Problems from competitive programming platforms often do not provide test cases, or only provide
a limited number, due to platform constraints. This results in insufficient quantity, difficulty, and
coverage of test cases during RL training. To address the inherent scarcity of test cases in synthesized
data, we investigate two complementary methods for generating the input component of the test

1
2
3

https://codeforces.com/
https://leetcode.com/
https://atcoder.jp/

Under review as a conference paper at ICLR 2026

case. The Prompting-based method instructs the LLM to interpret the problem’s input constraints
and directly generate multiple test inputs, covering both standard cases and edge-case instances. The
Tool-based method leverages CYaRon®, a dedicated test case generation library, enabling the LLM
to construct test inputs by invoking functions documented within the library after understanding the
problem. For each task, we generate a set of n test case inputs [z1, X2, . . ., Z,,]. Detailed description
of test input generation is provided in §E, and a comparative analysis is presented in Sec 4.

(iii) Candidate Solutions Generation. For each task, we generate multiple candidate solutions us-
ing advanced open-source reasoning LLMs, obtaining m answers [A', A%, ... A™]. We verify that
each candidate solution includes a complete reasoning process and a Python code implementation,
and we ensure the absence of syntax errors through static analysis methods based on Abstract Syntax
Tree (AST). Filtering criteria are provided in §D.1.

(iv) Dual-Verification of Solutions and Test Cases. To ensure the robustness and reliability of both
the generated solutions and the constructed test cases, we adopt a dual-verification strategy. Step 1
of this strategy extends the principle of self-consistency (Wang et al., 2023) by applying majority
voting across candidate solutions from multiple LLMs, which mitigates model-specific biases and
enhances generalization, thereby yielding a reliable test output for each input. Step 2 then identifies
the top-performing candidate solution by incorporating test case difficulty weighting alongside a
hold-out validation set.

Step 1: Verification of Test Cases via Consensus Voting. First, we establish a preliminary ground
truth for each test case input. For a given input z;, we execute all candidate solutions to obtain a set
of outputs {y}, y2,...,y™}, wherey] = A7 (x;). A provisional ground truth output §; is determined
via majority voting:

m
i = argmax 31 =) n

A
where I(-) is the indicator function. This yields a candidate test set Tcandidate =
{(z1,91), .-, (Tn,Un)}. Crucially, we posit that not all test cases are of equal importance; bound-

ary or edge cases are critical for robust evaluation. We therefore introduce a weighting function
w(x;) — w; that assigns a higher score to more challenging test cases. The weight w; is determined
by a set of heuristics based on input characteristics, such as character or token count, structural
complexity, or semantic novelty, which serve as proxies for difficulty.

Step 2: Verification of Solutions via Weighted Evaluation and Hold-out Validation. To ensure that
our selected “golden” solution generalizes beyond the generated data, we partition the candidate test
set. We randomly sample a subset of T.qndidate (€-€., 50%) to form a hold-out validation set, 7.
The remaining data constitutes our primary weighted test suite, Tgo1den. The dual-verification pro-
cess culminates in selecting the golden answer, Agoi4en. A candidate solution A is first evaluated

on Tgo1den using a weighted score. The top-performing candidate, A;Ol den- 18 identified as:

bolden = Argmax Z w; - T(AT () = §;) . (2)
ATe{Al,...Aam} (zi,9:)E€Tgolden

The final confirmation of Ay 4er is contingent upon its performance on the unseen hold-out set
Toar- We verify that A;Ol den also achieves the highest (or a competitively high) unweighted accu-
racy on 7,4 relative to other candidates. This additional validation step ensures that the selected
solution is not merely overfitted to the specifics of the weighted test cases but demonstrates superior,

generalizable correctness. The detailed algorithm is provided in §F.

Finally, we obtain Agegen, and Tgorqer for each task g. The pair [¢, Agorden] is used to compute the
SFT loss, and (g, Tyo1den] are used for RL via the GRPO algorithm.

Discussion. Compared to rewriting-based data synthesis methods (Luo et al., 2024; Liu et al.,
2025a), SynthSmith reduces reliance on seed tasks by formulating novel tasks from evolved com-
petitive features. Compared with EpiCoder, it generates more challenging tasks and selects high-
quality solutions via a dual-verification strategy, yielding a 21% absolute performance gain on Live-
CodeBench v5 (Figure 5c). Moreover, SynthSmith extends data synthesis to the RL stage, showing
that synthetic RL data can further improve performance beyond the SFT model as shown in Table 1.

4

https://github.com/luogu-dev/cyaron

Under review as a conference paper at ICLR 2026

Table 1: Performance on LiveCodeBench v5. X-Coder shows strong coding expertise with fewer,
fully synthetic tasks, and achieves additional gains through subsequent RL stages. : OpenThinker3
integrates human-written tasks with synthetic math tasks. rStar-Coder augments real-world coding
tasks with synthesized rewrites for mixed training, whereas X-Coder relies on fully synthetic tasks.

Model | Base Model SFT RL Size Data Task Metric | Score
SFT Baselines
Bespoke-Stratos (Labs, 2025) Qwen2.5-Instruct (Qwen et al., 2025) v X 7B 17k Real pass@1 16.2
OpenThinker3 (Guha et al., 2025) Qwen2.5-Instruct v X 7B 1200k Mixed! - 51.7
OlympicCoder (Hugging Face, 2025) Qwen2.5-Coder-Instruct (Hui et al., 2024) v/ X 7B 100k Real - 40.9
OCR-Qwen-Instruct (Ahmad et al., 2025) | Qwen2.5-Coder-Instruct v X 1B 736k Real avg@64 51.3
rStar-Coder (Liu et al., 2025a) Qwen?2.5-Coder-Instruct v X 7B 580K Mixed' avg@16 573
Qwen3-8B (Yang et al., 2025) Qwen3-8B-Base v X 8B - Real - 57.5
RL Baselines
Skywork-OR1 (He et al., 2025) R1-Distilled-Qwen (DeepSeck-AI 2025) X 7B 124k Real avg@32| 47.6
DeepCoder-Preview (Luo et al., 2025) R1-Distilled-Qwen X v 14B 24k Real pass@1 579
AReal-boba? (Fu et al., 2025a) R1-Distilled-Qwen X v 14B 24k Real avg@32 58.1
SFT-then-RL Baselines (Stage 1)
AceReasonl.1-SFT (Liu et al., 2025b) Qwen?2.5-Math (Yang et al., 2024) v X 1B 22M Real avg@8 51.2
MiMo-SFT (Xiaomi et al., 2025) MiMo-Base v X 7B 500k Unclear avg@8 52.3
Klear-Reasoner-SFT (Su et al., 2025) Qwen3-Base (Yang et al., 2025) v X 8B 1500k Real avg@8 58.5
X-Coder-Qwen2.5-SFT Qwen2.5-Coder-Instruct v X 7B 200k Syn avg@8 60.312 5
X-Coder-Qwen3-SFT Qwen3-8B-Base v X 8B 200k Syn avg@8 5944,
SFT-then-RL Baselines (Stage 2)

AceReasonl.1 AceReaonl.1-SFT v v B - Real avg@8 572
MiMo MiMo-SFT v/ 7B 130k Unclear avg@g 57.8
Klear-Reasoner Klear-Reasoner-SFT v v/ 8B 106k Real avg@8 61.6
X-Coder-Qwen2.5 X-Coder-Qwen2.5-SFT v v 7B 40k Syn avg@8 629413
X-Coder-Qwen3 X-Coder-Qwen3-SFT v v/ 8B 40k Syn avg@8 64.042 5

3 EXPERIMENT

Setup. In this study, we adopt GPT-03-mini (OpenAl, 2025) for task formulation, Deepseek-R1-
0528 (DeepSeek-Al, 2025) and Qwen3-235B-A22B-Thinking-2507 (Yang et al., 2025) for solution
sampling, and R1-0528 for test case generation. Statistics for SFT datasets are provided in §D.2.
For SFT, we set the learning rate at Se-5, with a global batch size of 128 to train 8 epochs. For RL,
the reward is defined as the fraction of passed tests among all given tests (detailed in §B.2). The
program executes in an isolated sandbox environment deployed with Redis, which supports opti-
mized concurrent code testing (infrastructure details are provided in §B.5). Training configurations
and costs are supplemented in §B.4.

Evaluation. We evaluate Code LLMs on LiveCodeBench (Jain et al., 2024) v5 (covering problems
released between Aug. 2024 and Feb. 2025) and v6 (Feb. to May 2025), which are the most widely
used benchmarks for code reasoning models. Baselines are documented in §B.6. To ensure a fair
comparison, we use Qwen2.5-Coder-7B-Instruct and Qwen3-8B-Base as backbones, and report the
avg @8 pass rate using a sampling temperature of 0.6 with top-p 0.95 to align with the baselines.

3.1 MAIN RESULTS

As shown in Table 1, during the SFT stage, X-Coder-SFT achieves an avg@8 pass rate of 60.3.
Compared with RL baselines, X-Coder-SFT exhibits a clear advantage over 14B-based RL models
(e.g., DeepCoder-Preview-14B, AReal-boba2-14B), despite those models being built on the stronger
foundation R1-Distilled-Qwen. Relative to SFT-then-RL models, X-Coder further boosts its perfor-
mance after RL, reaching 62.9. On Qwen3-Base, X-Coder attains an avg @8 pass rate of 64.0.

3.2 SFT EXPERIMENTS AND ANALYSIS

During the SFT stage, we investigate a central question: Can the SFT dataset be effectively scaled,
and along which dimension should it be scaled more favorably? To explore this, we expand the SFT
dataset from two perspectives: increasing the number of unique tasks and enlarging the number of
solutions per task. We design seven subsets (v1-v6): v1-v4 increase the number of unique tasks
(32k, 64k, 128k, and 192k unique prompts, each with 1 solution), while v5—v6 expand the number
of solutions per task (16k unique prompts with 4 solutions, and 8k unique prompts with 8 solutions).

Under review as a conference paper at ICLR 2026

Learning Dynamics of Different Scaling Dimensions Task Scaling Comparison
70 62.7
v1: 32K tasks x 1 solution 5 60 54.1
v2: 64K tasks x 1 solution g 47
60 — v3:128Ktasks x 1 solution @ 43.7
~— v4: 200K tasks x 1 solution S a0
V5: 16K tasks x 4 solutions @
—— v6: 8K tasks x 8 solutions //’\Y._\/ 3
g 50 /\/-/\YH\/ 20
@ 50% 32Kx1 64Kx1 128Kx1 200Kx1
g
$ /*\/
40 5% Solution Scaling Comparison
/\\\/ g &0
b 47
- 40% g 444 45.1
3 40
35% K
2000 2500 3000 3500 4000 -
20 20
0 2000 4000 6000 8000 10000 12000 8Kx8 16Kx4 64Kx1

Training Step

Figure 3: Scaling laws on the SFT dataset generated by SynthSmith. Left: Performance comparison
of on LiveCodebench v5 to examine scaling trend. Right: Performance comparison across scaling
unique tasks and scaling solutions per task.

The results in Figure 3 reveal a promising scaling trend, where v4 > v3 > v2 > v1, with performance
steadily improving from 43.7% to 62.7%. The scaling is data-efficient, as v4 achieves significant
performance gains over baselines that use the same backbone but many more samples.

Furthermore, the comparison v2 (64kx 1) > v5 (16kx4) > v6 (8k x8) shows that scaling the number
of unique tasks is more effective than increasing the number of solutions per task. When computa-
tional budget is fixed, expanding task diversity is more efficient for improving generalization.

3.3 RL EXPERIMENTS AND ANALYSIS

Our investigation of the RL stage uncovers the following key insights into its role and behavior:

(i) RL as a Powerful Refiner. RL fine-tuning is not merely an incremental add-on but a powerful
optimization step. As shown in Table 1, when applied to a converged SFT model using only code
data, it yields a substantial 4.6% absolute gain in average pass-rate. This highlights RL’s unique
capability to refine policy beyond the distribution of the initial supervised dataset.

(ii) The “Good-gets-Better”” Principle. RL perfor-
mance is tightly coupled to the strength of the SFT 20
initializer. Using two SFT models trained on similar 1o
data distributions but with different LiveCodeBench
scores as starting points, we observe in Figure 4
that, under identical RL settings, the stronger initial-
izer consistently attains higher rewards. A stronger
SFT foundation acts as a multiplier, enabling the RL
agent to explore a more promising policy space and 14
achieve a higher performance ceiling. This under- o 50 100 150 200 250
scores the importance of a high-quality initial model step

as a prerequisite for effective RL.

14V

W {
‘ n'\‘“‘”ww\‘ l“ r\‘\ 4
\ y

Mpn ’\‘i "
\‘ﬂ“ﬁfirv" A AW

Figure 4: Reward comparison of weak and
(iii) Resilience to Noisy Supervision. Contrary to strong SFT models as RL initialization.

the common assumption that reinforcement learning

requires pristine reward signals, our experiments reveal a resilience to data imperfections during RL.
The model also effectively benefits from synthetic test cases, suggesting that RL can be successfully
deployed in scenarios with large-scale but imperfect feedback (Wang et al., 2020; Lv et al., 2025a),
significantly lowering the barrier to code RL data collection.

4 ABLATION STUDY

Despite the strong performance of X-Coder, the determinants of high-quality synthetic data for SFT
remain insufficiently understood. To elucidate these factors, we conduct a comprehensive ablation
along six axes: (i) the effect of the proposed dual-verification strategy; (ii) the impact of distinct
thinking types in solutions; (iii) the influence of task styles; (iv) a head-to-head comparison of tasks

Under review as a conference paper at ICLR 2026

produced by SynthSmith versus those from open-source synthetic datasets; (v) data-selection strate-
gies to identify patterns that shape downstream performance; and (vi) comparison of prompting-
based and tool-based test generation strategies.

55 45 50

40

50 35
30

45 25
20

AtCoder
40 Verified ® Codeforces 10 Ours

Raw —o— LeetCode Epicoder

Pass@1 on LCB v5 (%)

0
35 5
2100 2500 2000 3300 3700 4100 0 200 400 600 800 1000 1200 1400 1400 1800 2200 2600 3000 3400 3800

Training Step Training Step Training Step

(a) Raw vs. verified solutions. (b) Task style comparison. (c) Comparison with EpiCoder.

Figure 5: Ablations on verification, task style, and task sources.

Q1: Dual-verification for High-Quality Data Curation. To mitigate the noise introduced by
stochastically sampled solutions, we employ a dual-verification strategy for data curation. This
strategy first leverages the self-consistency principle to identify the most likely correct solution from
multiple candidates. Subsequently, these candidate solutions are executed against a comprehensive
set of test cases to verify their functional correctness and robustness, thereby capturing subtle run-
time errors (e.g., ValueError, IndexError, or Timeout) that are undetected by static analysis methods
like AST checks. The efficacy of this approach is validated by our empirical results, as shown in
Figure 5a. Using an identical backbone (Qwen2.5-Coder-7B-Instruct) and dataset (64k tasks), the
model trained on verified solutions significantly outperforms its counterpart trained on raw solutions.
However, this quality assurance comes at a considerable computational cost. For instance, fully ver-
ifying 200k samples necessitates the generation of 1.6 million long-CoT trajectories and 24 million
test executions. This overhead establishes a clear trade-off, as prior work (Li et al., 2025; Gandhi
et al., 2025) indicates that models can still learn effectively from unverified long-CoT data, making
raw-solution training a more resource-efficient, albeit potentially less performant, alternative.

Q2: Solution Types: Long CoT vs. Short CoT. The Table 2: Long CoT vs. Short CoT.
length of CoT proves to be a critical factor for per-

formance, with longer CoTs yielding superior results Epoch LCBvS LCBv6
despite higher training costs. To demonstrate this, we 3 35.0 29.3
compare the Qwen2.5-Coder-7B-Instruct trained on so- ~ Short-CoT 8 43.1 37.6
lutions generated by DeepSeek-R1-0528 (Long-CoT) A +8.1 +8.3
and Qwen3-235B-A22B-Instruct-2507 (Short-CoT) for 3 42.9 36.0
an identical set of tasks (200k). As shown in Table 2, [ong-CoT 8 60.3 53.5
the long-CoT approach achieves a 17.2% absolute per- A +17.4 +17.5

formance gain. This substantial improvement justifies
the increased computational demand, which manifests as a slower convergence requiring 8—10
epochs compared to the 2-3 epochs needed for short-CoT data.

Q3: Ablation on Task Style. We evaluate the effect of task styles (AtCoder, Codeforces, and Leet-
Code) by synthesizing three corpora of 32k tasks each (8k unique problems with 4 solutions per
problem) from identical input features. For each corpus, solutions are generated with DeepSeek-
R1-0528 and used to fine-tune the Qwen2.5-Coder-7B-Instruct. Results are shown in Figure 5b.
Although AtCoder-style tasks yield slightly higher scores, we adopt Codeforces-style as the pre-
dominant format in our demonstration dataset (Codeforces : AtCoder : LeetCode = 70 : 15 : 15),
reflecting its prominence as the mainstream competitive-programming platform.

Q4: Tasks from SynthSmith vs Tasks from EpiCoder-380k. We randomly select 64k tasks from
our SFT dataset and another 64k from EpiCoder-380k, and use DeepSeek-R1-0528 to complete
solutions. Figure 5c shows that tasks from SynthSmith yield a 21% absolute performance gain,
demonstrating its ability to produce high-quality tasks tailored for competitive programming.

QS5: Data Selection. To investigate data utilization efficiency, we explore task selection strategies
for competitive programming. Specifically, we evaluate three approaches: (1) difficulty-based se-
lection, where GPT-40-2411 assigns discrete difficulty scores to tasks, simulating the Codeforces
rating system; (2) rationale-based selection, where DeepSeek-R1-0528 generates CoT reasoning for

Under review as a conference paper at ICLR 2026

each task, and tasks that elicit longer reasoning traces are prioritized; and (3) random selection as
a baseline. For validation, each strategy independently samples a 50k-task subset from a 200k-task
pool. Solutions are generated by Qwen3-235B-A22B-Instruct-2507, and models were trained for
three epochs with a 16k context length.

As shown in Figure 6, tasks that induce longer CoT are regarded as more valuable training data for
competitive programming, as they demand deeper reasoning and are potentially more challenging.

Q6: Prompting-based vs. Tool-based Test 35

Generation. We compare prompting-based —— Rationale-tased Selection
Difficulty-based Selection
30 —e— Random Selection

and tool-based test generation using tasks from
CodeContests (Li et al., 2022). We leverage the
corresponding golden solutions to evaluate the
accuracy and complexity of the tests produced
by the two approaches.

Pass@1 on LCB v5 (%)

The results in Table 3 show that the tool-based
approach outperforms the prompting-based 15

method across multiple dimensions. Qualita- 03 ! " Epoch 25 3
tively, it is more versatile, capable of system-

atically generating random, scalable, boundary, Figure 6: Comparison of data selection strategies.
and stress tests, which are essential for robust

code evaluation but not supported by prompting-based methods.

Quantitatively, the tool-based approach achieves a higher pass rate on ground-truth solutions (87.9%
vs. 77.4%), confirming that its test cases are more accurate and reliable. It also generates more chal-
lenging and discriminative tests, as reflected by the lower consensus ratio (78.8% vs. 82.0%), which
indicates stronger effectiveness in uncovering subtle bugs. In addition, the tool-based generator
provides broader test coverage, albeit at a higher computational cost.

Table 3: Comparison of Prompting-based and Tool-based Test Generation. The tool-based approach
excels in test diversity, accuracy, and the ability to generate more challenging test cases.

Random Scalable Boundary Stress Cost Avg Tests Min Tests Max Tests Consensus Pass Rate

Prompting-based X X X X low 13.6 5 15 82.0% 77.4%
Tool-based v v v v' high 18.3 5 27 78.8% 87.9%

5 DISCUSSION

In this section, we present an in-depth analysis of the main challenges in code reasoning. Reasoning
models often suffer from assertion errors, highlighting persistent reasoning limitations on harder
tasks. We further identify a mediation pattern among task difficulty, reasoning length, and pass rate,
and extend our analysis with test-time scaling experiments and case studies on cognitive behavior,
reward hacking, and undesirable patterns.

Failure Analysis. We classify failure cases into five types: Assertion Error (runnable code produc-
ing wrong outputs), No Code Block Generated (reasoning without a final solution until tokens are
exhausted), Incomplete Code Block (partial code without closure), Function Signature Mismatch
(incorrect function definition), and Syntax Error (complete code with syntax issues). The error dis-
tribution in Table 4 indicates that the primary bottleneck lies in reasoning capability, with most errors

Table 4: Distribution of failure cases for 16 rollouts on LiveCodeBench v5 (268 tasks).

Error Type Qwen2.5-Coder-7B-Instruct Qwen3-8B X-Coder-SFT X-Coder
Assertion Error 212.7+£11.0 108.9 + 5.0 83.3£4.5 79.5£6.2
No Code Block 6.5+ 8.2 77+1.2 21.9+3.7 11.8+3.9
Incomplete Code Block 0.0£0.0 0.0+ 0.0 0.0+ 0.0 1.0£0.8
Signature Mismatch 0.0+0.0 0.0£0.0 0.0+0.0 1.0+0.8
Syntax Error 0.0+0.0 0.0+ 0.0 0.0+ 0.0 8.3+22

Under review as a conference paper at ICLR 2026

Table 5: Performance analysis by reasoning token length. e
95

Token Total Passed Easy Medium Hard § 75
0-5k 38 38 30/30 (100.0%) 8/8 (100.0%) 0/0 () 2,
S5k-10k 41 38 16/17 (94.1%) 14/16 (87.5%) 8/8 (100.0%) 8
10k-15k 41 32 10/11 (90.9%) 14/19 (73.7%) 8/11 (72.7%) 3
15k-20k 52 36 4/4 (100.0%) 16/16 (100.0%) 16/32 (50.0%) 1
20k-25k 36 15 1/1 (100.0%) 9/13 (69.2%) 5/22 (22.7%) 05 sf0 f0ts 1520 2025 52
>25k 60 10 0/0 (-) 2/14 (14.3%) 8/46 (17.4%) Reasoning Token Length (K)
Total 268 169 61/63 (96.8%) 63/86 (73.3%) 45/119 (37.8%)

Figure 7: Pass rate by token.

stemming from assertion failures. Although reasoning models can generate structurally valid and
executable code, they still struggle to produce logically correct solutions for complex tasks.

After RL, X-Coder reduces assertion errors compared to its SFT counterparts by learning from
correctness-based rewards. At the same time, the RL optimization process may introduce instability,
leading to issues such as syntax errors, signature mismatches, and other flaws.

Pass Rate by Reasoning Token Length. The results in Table 5 show that the pass rate decreases
sharply as reasoning token length increases, exhibiting a clear downward trend. This finding runs
counter to the intuitive expectation that greater test-time token usage reflects deeper reasoning and
should therefore yield higher accuracy. Instead, we observe a significant chained relationship among
problem difficulty, reasoning length, and pass rate: problem difficulty is positively correlated with
reasoning length, while reasoning length is strongly negatively correlated with pass rate. This medi-
ation pattern can be summarized as higher difficulty — longer reasoning length — lower pass rate.

Test-time Scaling. We compare the pass@k per-

formance of Qwen2.5-Coder-7B-Instruct, Qwen3-8B, 1 195 815
X-Coder-7B-SFT, and X-Coder-7B in Figure 8. X- 75 7 s T 8x fewer 791
Coder-7B outperforms its foundation model by 51.3 ws /o5 - o
points in pass@16, and matches Qwen3-8B with 8x §,, ©%"%: = Coder 78

fewer rollouts. Moreover, X-Coder shows a larger gap ¢ e o Kcoder Te-stT
between pass@1 and pass@16 compared to Qwen3- 4 Quen2 5-Coder-7B-Instruct
8B (19.2 vs. 13.8), indicating greater diversity in the ** X s e
reasoning patterns it can explore. Although RL mod- 107 22

els begin with higher initial performance than the SFT B s e s o o o
model, the gap does not expand within 16 rollouts, Number of Rollouts

suggesting that RL improves pass@1 but may not es-

cape its starting point (Wu et al., 2025). Figure 8: Test-time scaling performance.

Behaviors after SFT and RL. After SFT, the model

frequently exhibits cognitive behaviors such as planning, verification, backtracking, and reflection,
as illustrated by the case study in §H.1. This suggests that such behaviors can be directly distilled
from the teacher rather than induced by the RL process. During the later stages of RL, the model
shows signs of reward hacking, attempting to exploit edge cases for partial rewards instead of
producing genuine solutions, as detailed in §H.3. We also observe several bad patterns in code
reasoning, including premature termination when the model is aware that the context is running out,
recalling memorized submissions in C++ and attempting to translate them into Python, and emitting
incomplete code before the context window is exhausted. These cases are illustrated in §H.2.

6 CONCLUSION

In this paper, we explore a fully synthetic approach to competitive programming and propose a
novel data synthesis framework that demonstrates how synthetic tasks, solutions, and tests can train
large reasoning models to achieve significant performance gains, thereby reducing reliance on real-
world data. Building on this framework, we contribute scalable synthetic SFT and RL training sets,
supported by a dedicated RL infrastructure, and introduce the X-Coder series. Furthermore, we
provide insights into code-centric SFT-then-RL training, ablate key factors that shape performance,
and present in-depth analyses with illustrative case studies of code reasoning models.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work aims to advance large code reasoning models for competitive programming through fully
synthetic data. No personal, private, or sensitive information is included in the datasets or experi-
ments, and no ethical risks are associated with this study.

REPRODUCIBILITY STATEMENT

With respect to reproducibility, we affirm our commitment to ensuring that all reported results
can be faithfully reproduced, and we will provide the necessary resources and documentation to
facilitate replication. The anonymous repository link for reference and reproduction is

REFERENCES

Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain,
Jocelyn Huang, Vahid Noroozi, and Boris Ginsburg. Opencodereasoning: Advancing data distil-
lation for competitive coding, 2025. URL

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL .

Mark Chen, Jerry Tworek, Heewoo Jun, and Qiming Yuan et al. Evaluating large language models
trained on code, 2021. URL

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
4299-4307, 2017. URL

Ning Dai, Zheng Wu, Renjie Zheng, Ziyun Wei, Wenlei Shi, Xing Jin, Guanlin Liu, Chen Dun,
Liang Huang, and Lin Yan. Process supervision-guided policy optimization for code generation.
CoRR, abs/2410.17621, 2024. doi: 10.48550/ARX1V.2410.17621. URL

DeepSeek-Al Deepseek-rl: Incentivizing reasoning capability in 1lms via reinforcement learning,
2025. URL

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
Mei, Jiashu Wang, Tongkai Yang, Binhang Yuan, and Yi Wu. Areal: A large-scale asynchronous
reinforcement learning system for language reasoning, 2025a. URL

Yugian Fu, Tinghong Chen, Jiajun Chai, Xihuai Wang, Songjun Tu, Guojun Yin, Wei Lin, Qichao
Zhang, Yuanheng Zhu, and Dongbin Zhao. Srft: A single-stage method with supervised and
reinforcement fine-tuning for reasoning, 2025b. URL

Kanishk Gandhi, Ayush K Chakravarthy, Anikait Singh, Nathan Lile, and Noah Goodman. Cog-
nitive behaviors that enable self-improving reasoners, or, four habits of highly effective STars.
In Second Conference on Language Modeling, 2025. URL

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su,

10

https://anonymous.4open.science/r/x-coder
https://anonymous.4open.science/r/x-coder
https://arxiv.org/abs/2504.01943
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://doi.org/10.48550/arXiv.2410.17621
https://doi.org/10.48550/arXiv.2410.17621
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2505.24298
https://arxiv.org/abs/2505.24298
https://arxiv.org/abs/2506.19767
https://arxiv.org/abs/2506.19767
https://openreview.net/forum?id=QGJ9ttXLTy
https://openreview.net/forum?id=QGJ9ttXLTy

Under review as a conference paper at ICLR 2026

Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,
Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models,
2025. URL

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang,
Fuxiang Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tianwen Wei, Cheng Cheng,
Bo An, Yang Liu, and Yahui Zhou. Skywork open reasoner 1 technical report. arXiv preprint
arXiv:2505.22312, 2025.

Dan Hendrycks, Steven Basart, Saurav Kadavath, and et al. Measuring coding challenge competence
with APPS. In NeurIPS Datasets and Benchmarks, 2021.

Hugging Face. Open rl: A fully open reproduction of deepseek-rl, January 2025. URL

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men,
Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xu-
ancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL

Bespoke Labs. Bespoke-stratos: ~ The unreasonable effectiveness of reasoning dis-
tillation. https://www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-
reasoning-distillation, 2025. Accessed: 2025-01-22.

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Eric Tang, Sumanth Hegde, Kourosh
Hakhamaneshi, Shishir G. Patil, Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica. Llms can
easily learn to reason from demonstrations structure, not content, is what matters!, 2025. URL

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. arXiv preprint arXiv:2203.07814, 2022.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. In
Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Yifei Liu, Li Lyna Zhang, Yi Zhu, Bingcheng Dong, Xudong Zhou, Ning Shang, Fan Yang, and

Mao Yang. rstar-coder: Scaling competitive code reasoning with a large-scale verified dataset,
2025a. URL

11

https://arxiv.org/abs/2506.04178
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2502.07374
https://arxiv.org/abs/2505.21297

Under review as a conference paper at ICLR 2026

Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. Acereason-nemotron 1.1: Advancing math and code reasoning through sft and rl
synergy, 2025b. URL

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
Deepcoder: A fully open-source 14b coder at 03-mini level, 2025. Notion Blog.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. In The Twelfth International Conference on Learning Representations, 2024. URL

Ang Lv, Ruobing Xie, Xingwu Sun, Zhanhui Kang, and Rui Yan. The climb carves wisdom deeper
than the summit: On the noisy rewards in learning to reason, 2025a. URL

Xingtai Lv, Yuxin Zuo, Youbang Sun, Hongyi Liu, Yuntian Wei, Zhekai Chen, Lixuan He, Xuekai
Zhu, Kaiyan Zhang, Bingning Wang, Ning Ding, and Bowen Zhou. Towards a unified view
of large language model post-training, 2025b. URL

OpenAl Openai 03-mini: Pushing the frontier of cost-effective reasoning.
, 2025. Accessed: 2025-09-11.

OpenAl, :, Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam,
David Dohan, Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, Jerry Tworek,
Lorenz Kuhn, Lukasz Kaiser, Mark Chen, Max Schwarzer, Mostafa Rohaninejad, Nat McAleese,
03 contributors, Oleg Miirk, Rhythm Garg, Rui Shu, Szymon Sidor, Vineet Kosaraju, and
Wenda Zhou. Competitive programming with large reasoning models, 2025. URL

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL .

John Schulman, Philipp Moritz, Sergey Levine, Michael 1. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In International Con-
ference on Learning Representations (ICLR), 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL .

Yunfan Shao, Linyang Li, Yichuan Ma, Peiji Li, Demin Song, Qinyuan Cheng, Shimin Li, Xi-
aonan Li, Pengyu Wang, Qipeng Guo, Hang Yan, Xipeng Qiu, Xuanjing Huang, and Dahua
Lin. Case2Code: Scalable synthetic data for code generation. In Owen Rambow, Leo Wan-
ner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.),
Proceedings of the 31st International Conference on Computational Linguistics, pp. 11056—
11069, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics. URL

12

https://arxiv.org/abs/2506.13284
https://openreview.net/forum?id=UnUwSIgK5W
https://arxiv.org/abs/2505.22653
https://arxiv.org/abs/2505.22653
https://arxiv.org/abs/2509.04419
https://arxiv.org/abs/2509.04419
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
https://arxiv.org/abs/2502.06807
https://arxiv.org/abs/2502.06807
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/1707.06347
https://aclanthology.org/2025.coling-main.733/

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024a. URL

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024b.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, EuroSys 25, pp. 1279-1297. ACM,
March 2025. doi: 10.1145/3689031.3696075. URL

Zhenpeng Su, Leiyu Pan, Xue Bai, Dening Liu, Guanting Dong, Jiaming Huang, Wenping Hu,
Fuzheng Zhang, Kun Gai, and Guorui Zhou. Klear-reasoner: Advancing reasoning capability via
gradient-preserving clipping policy optimization, 2025. URL

Qiushi Sun, Jinyang Gong, Lei Li, Qipeng Guo, and Fei Yuan. Codeevo: Interaction-driven synthesis
of code-centric data through hybrid and iterative feedback, 2025. URL

Jingkang Wang, Yang Liu, and Bo Li. Reinforcement learning with perturbed rewards. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 34, pp. 6202-6209, 2020.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL

Yaoxiang Wang, Haoling Li, Xin Zhang, Jie Wu, Xiao Liu, Wenxiang Hu, Zhongxin Guo, Yangyu
Huang, Ying Xin, Yujiu Yang, et al. Epicoder: Encompassing diversity and complexity in code
generation. arXiv preprint arXiv:2501.04694, 2025.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing llm reasoning via re-
inforcement learning on open software evolution, 2025. URL

Fang Wu, Weihao Xuan, Ximing Lu, Zaid Harchaoui, and Yejin Choi. The invisible leash: Why rlvr
may not escape its origin, 2025. URL .

LLM-Core Xiaomi, :, Bingquan Xia, Bowen Shen, Cici, Dawei Zhu, Di Zhang, Gang Wang, Hailin
Zhang, Huagqiu Liu, Jiebao Xiao, Jinhao Dong, Liang Zhao, Peidian Li, Peng Wang, Shihua
Yu, Shimao Chen, Weikun Wang, Wenhan Ma, Xiangwei Deng, Yi Huang, Yifan Song, Zihan
Jiang, Bowen Ye, Can Cai, Chenhong He, Dong Zhang, Duo Zhang, Guoan Wang, Hao Tian,
Haochen Zhao, Heng Qu, Hongshen Xu, Jun Shi, Kainan Bao, Kai Fang, Kang Zhou, Kangyang
Zhou, Lei Li, Menghang Zhu, Nuo Chen, Qiantong Wang, Shaohui Liu, Shicheng Li, Shuhao
Gu, Shuhuai Ren, Shuo Liu, Sirui Deng, Weiji Zhuang, Weiwei Lv, Wenyu Yang, Xin Zhang,
Xing Yong, Xing Zhang, Xingchen Song, Xinzhe Xu, Xu Wang, Yihan Yan, Yu Tu, Yuanyuan
Tian, Yudong Wang, Yue Yu, Zhenru Lin, Zhichao Song, and Zihao Yue. Mimo: Unlocking the
reasoning potential of language model — from pretraining to posttraining, 2025. URL

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. WizardLM: Empowering large pre-trained language models to follow
complex instructions. In The Twelfth International Conference on Learning Representations,
2024. URL

13

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
http://dx.doi.org/10.1145/3689031.3696075
http://dx.doi.org/10.1145/3689031.3696075
https://arxiv.org/abs/2508.07629
https://arxiv.org/abs/2508.07629
https://arxiv.org/abs/2507.22080
https://arxiv.org/abs/2507.22080
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2507.14843
https://arxiv.org/abs/2505.07608
https://arxiv.org/abs/2505.07608
https://openreview.net/forum?id=CfXh93NDgH

Under review as a conference paper at ICLR 2026

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. KodCode: A di-
verse, challenging, and verifiable synthetic dataset for coding. In Wanxiang Che, Joyce Nabende,
Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for Com-
putational Linguistics: ACL 2025, pp. 6980-7008, Vienna, Austria, July 2025. Association for
Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.365.
URL .

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement, 2024. URL

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL .

14

https://aclanthology.org/2025.findings-acl.365/
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2505.09388

Appendix

A

B

I

Related WOTK ... e e e 16
Training and Evaluation.............o. i e 16
B.1 SFT-then-RL Training 16
B.2 Reward Function. 17
B.3 Training Dynamics. e e 17
B.4 Training Configs and Costs o o v v i i s i e 18
B.5 A Distributed Framework for Automated Code Verification 18
B.6 Baselines e 19
Novel Task Synthesisooooiii i e 19
C.1 Feature Extraction and Evolution 20
C.2 Stylized Task Generation for Competitive Programming 22

C.2.1 Compatibale Feature Selection 23

C.2.2 From Feature to Stylized Task 26
C.3 Task Difficulty Estimates it 26
Solution Generation and Quality ASSUIANCEoviuuriittiiiiiie i eaaeeees 28
D.1 Validationon Solution e 28
D.2 SFT Dataset Statistics v v v vttt e e e e 29
Test Case GENETALIONttt ettt et ettt et ettt e e et e e e aeeeeeanaaaae 29
E.1 Prompting-based Test Generation v, 29
E.2 Tool-based Test Generation 30
Dual-VerifiCationcoveeiiiiiiiiiii i e 33
Data Leakage Analysis.ceeeeittiiiteti e e 33
a8 STUAY .« e ettt e 34
H.1 Successful Case e 34
H2 BadCase e e e 35
H.3 Reward Hacking and Pretraining Artifacts. 37

Under review as a conference paper at ICLR 2026

A RELATED WORK

Task Synthesis for Coding. The research community has long recognized the scarcity of high-
quality coding tasks. To address this, Wizard-Coder (Luo et al., 2024) extends Evol-Instruct (Xu
et al., 2024) by evolving basic code-instruction data into augmented variants. rStar-Coder (Liu
et al., 2025a) further adapts this augmentation strategy to the competitive programming domain.
CodeEvol (Sun et al., 2025) introduces a coder-reviewer interaction framework to collaboratively
synthesize high-quality instruction—code pairs. Beyond directly evolving or augmenting seed tasks,
Case2Code (Shao et al., 2025) infers underlying code implementations from input—output behaviors.
Epicoder (Wang et al., 2025) instead generates task scenarios from programming-related features
rather than task examples, producing novel tasks with better complexity and diversity.

In competitive programming, the limited availability of seed tasks makes evolution-based methods
particularly difficult, as seeding data in this domain is far scarcer than in general-purpose program-
ming. Directly evolving from such limited seeds risks reduced task diversity. In this paper, we
extend the feature-based task synthesis framework with three key improvements (detailed in Sec 2),
unleashing the potential of feature-based synthesis for competitive programming tasks, yielding a
21.6% absolute improvement on LiveCodeBench directly over EpiCoder (shown in Figure 5c).

Post-training Recipe for Large Code Reasoning Model. From the training perspective, current
approaches to building coding-expert LLMs generally fall into three paradigms: (i) purely super-
vised fine-tuning on real-world tasks or their rewritten or evolved variants (Labs, 2025; Guha et al.,
2025; Liu et al., 2025a), (ii) purely reinforcement-based fine-tuning using a GRPO-related (Shao
et al., 2024b; He et al., 2025; Luo et al., 2025; Fu et al., 2025a) algorithm, and (iii) reinforcement
learning staged after supervised fine-tuning on mixed coding and mathematical data (Liu et al.,
2025b; Xiaomi et al., 2025; Su et al., 2025).

High-quality code data is scarcer than mathematical data. Consequently, existing approaches rely
heavily on real-world data and lack a stable two-stage recipe for coding expertise, often mixing
in mathematics with little evidence of success on code alone. In this paper, we show that stable
and consistent improvements in code reasoning can be achieved solely with synthetic data from
SynthSmith, while also reducing the risk of data leakage shown in §G.

While recent research seeks to unify SFT and RL into a single stage (Lv et al., 2025b; Fu et al.,
2025b), we do not claim a generalized conclusion regarding the optimal strategy for combining
these two post-training methods. Instead, we adopt a straightforward SFT-then-RL recipe to better
isolate the effect of each stage and separately validate the effectiveness of the synthesis framework.

B TRAINING AND EVALUATION

B.1 SFT-THEN-RL TRAINING

Supervised Fine-tuning. Given a dataset of task—solution pairs D = {(z;, y;)}Y,, the model with
parameters 6 is trained by minimizing the negative log-likelihood (NLL) of the target solution y
conditioned on the task z:

[yl

JSFT(G) = 7]E(;c,y)~D Zlog o (yt | x7y<t) . 3

t=1

The loss is applied over full long-CoT trajectories, including both reasoning steps and final code,
enabling the model to imitate not only the solutions but also the underlying reasoning patterns.

Reinforcement Learning. Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a widely
adopted policy gradient method in Reinforcement Learning from Human Feedback (RLHF) (Chris-
tiano et al., 2017) for LLM due to its balance between exploration and exploitation and its empirical
robustness. The method optimizes a policy 7y by using a clipped surrogate objective to limit pol-
icy divergence, incorporating a value function to estimate expected rewards, and an entropy term to
encourage exploration. The overall objective function for PPO is designed to maximize the policy

16

Under review as a conference paper at ICLR 2026

performance while maintaining stability, and it is typically formulated as minimizing the following:

mo(als)

TOo1a (a‘s)

. . mo(als
Jppo(0) = Eswp(s),ammo(als) {mln(A(s,a), chp(9<))7 1—¢1+ e)A(s, a))}

TOo1a (a|5
4)

where the expectation is computed over states s (drawn from distribution P(.S)) and actions a (sam-
pled from the current policy mp(a | s)), combining the minimum of two terms: (1) the product
7o (als)

of the probability ratio o (als)
old

quantifies the relative benefit of taking action a in state s; and (2) the same product but with the
probability ratio clipped to the interval [1 —e, 1+ ¢€]. Here, € is a hyperparameter governing the mag-
nitude of policy updates. This clipping mechanism effectively constrains excessive policy changes,
thereby enhancing training stability.

and the advantage function A(s, a), where the advantage function

However, its application to LLMs encounters significant challenges, including substantial compu-
tational overhead from maintaining a critic network, which increases memory usage and training
time for models with billions of parameters. Additionally, training stability can be undermined
by inaccurate value function estimates or suboptimal tuning of Generalized Advantage Estimation
(GAE) (Schulman et al., 2016) parameters, issues that become more pronounced as LLMs scale in
size. To address these limitations, Group Relative Policy Optimization (GRPO) (Shao et al., 2024a)
has emerged as an efficient alternative. By eliminating the critic network, GRPO reduces compu-
tational and memory demands, estimating advantages directly from rewards of multiple rollouts to
the same prompt, thus leveraging the comparative nature of reward models and offering a scalable
solution for LLM training. The GRPO objective function is mathematically formulated as an aver-
aged composite expression across multiple rollouts, incorporating policy ratio optimization and KL
regularization:

G laq]
1 1 . p . .
Jarro(0) = el ; il ;{ min (pi,tAi,t» clip(pie, 1 — ¢, 14 E)Ai,t> — BDxw[me || mef]}
(5)

o (aie|$, ai<t)
0010 (ai,t|57ai,<t) X
the number of rollouts per prompt, |a;| denotes the length of the i-th action sequence, A; ; estimates
the advantage of action a; ¢ at timestep ¢. The clipping is analogous to PPO, and 3 penalizes devi-
ations from ¢ via the KL-divergence term. The objective averages across rollouts and timesteps,
combining a clipped probability ratio (to stabilize updates while leveraging advantage signals) with
a KL penalty to balance policy improvement against alignment with the reference policy. This dual
mechanism ensures controlled optimization by restricting drastic policy shifts while maintaining
coherence with prior behavior.

where p; ; = denotes the probability ratio of the old and new strategies. G is

B.2 REWARD FUNCTION.

We remove formatting rewards (e.g., enforcing “think” tags), as the SFT model already follows the
format, allowing the policy to focus on passing test cases. Given a rollout, the reward R is practiced
as:

-2, if no code is extracted or the code fails to compile,
”r=10 if the code compiles but passes no test cases, (6)
5.0 x d
ﬂ, otherwise.
#total

We adopt a continuous reward setting, as it provides denser supervision than the all-or-nothing
alternative and leads to faster convergence (Wei et al., 2025; Dai et al., 2024).

B.3 TRAINING DYNAMICS.

As shown in Figure 9 and Figure 10, we present the SFT training curves (loss and token accuracy).
Figure 11 and Figure 12 illustrate the RL training curves (reward and entropy).

17

Under review as a conference paper at ICLR 2026

0.95
1.0
0.90
0.8
g
") <
§ 5 0.85
£ 0 K
£ E
F % 0.80
=
0.4
0.75
0.2
0.70
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Step Step
Figure 9: Training loss of SFT. Figure 10: Training token accuracy of SFT.
0.26
2.0
0.24
1.9
0.22
18 -
g g_ 0.20
2 £
g v & 0.18
16
0.16
15
0.14
1.4
0 50 100 150 200 250 0 50 100 150 200 250
Step Step
Figure 11: Training reward of RL. Figure 12: Training entropy of RL.

B.4 TRAINING CONFIGS AND COSTS

For SFT, we use a learning rate of Se-5 with a global batch size of 128 for § training epochs. For
RL, the policy models are updated with a global batch size of 128 and a consistent learning rate
of 7e-5, without applying the KL-divergence constraint to the starter model, and employ a rollout
temperature of 1.0 with 8 rollouts to encourage exploration.

Training large reasoning models incurs significant costs compared to standard (eg. short-CoT) in-
struction models. In the SFT stage, the dominant overhead stems from longer sequence lengths and
the need for more update epochs, which together lead to several times more compute consumption
than training non-reasoning counterparts. In the RL stage, the major bottleneck lies in generating
multiple rollouts for each problem used for GRPO-algorithm.

Concretely, training X-Coder on Qwen2.5-Coder-7B-Instruct required 128 H20 Enterprise (96 GB)
GPUs for 220 hours during SFT, and 32 H200 (141 GB) GPUs for 7 days to complete 270 update
steps during RL. We are going to make X-Coder a readily accessible, open-source model, enabling
the community to benefit from its capabilities without having to bear the training costs.

B.5 A DISTRIBUTED FRAMEWORK FOR AUTOMATED CODE VERIFICATION

To provide a robust and scalable solution for code validation, we develop a distributed arbitration
framework inspired by open-source repository implementations’. The system is based on a mi-
croservice architecture, comprising a FastAPI-based asynchronous API Gateway, a pool of code
execution workers in the sandbox and a central Redis instance. Redis serves as a high-performance

message broker and state manager, effectively decoupling the client-facing gateway from the back-

5

18

https://github.com/0xWJ/code-judge.git

Under review as a conference paper at ICLR 2026

end computational workers. This architectural choice facilitates independent scaling, deployment,
and enhances the overall resilience of the system. Based on this evaluation framework, we imple-
mented highly concurrent code testing during RL training. We used batching when submitting
tasks to the Redis server to achieve high concurrency even with low request rates. This process
required the server to distribute all test tasks to different workers, utilizing the CPU power of all
participating machines. Figure 13 shows the system diagram of the framework.

The framework’s efficacy is derived from its strategic implementation of Redis data structures. Task
distribution is managed by a Sorted Set, which functions as a time-prioritized FIFO queue; submis-
sions are added with a timestamp score via ZADD, and workers atomically retrieve the next task
using BZPOPMIN. This approach ensures ordered processing and prevents race conditions. For
result transmission, each task is assigned a dedicated List, to which a worker pushes the outcome us-
ing RPUSH. The API Gateway then performs a blocking pop (BLPOP) on this unique list to retrieve
the corresponding result efficiently. Furthermore, worker health and presence are monitored using
String keys with a Time-To-Live (TTL). Workers periodically refresh their key’s TTL as a heartbeat,
enabling the system to automatically detect and de-register unresponsive nodes.

The resulting system exhibits several key advantages. The asynchronous, in-memory nature of its
core components yields high throughput and low-latency performance. Its design is inherently scal-
able, as the stateless worker pool can be expanded horizontally to meet computational demand, while
native support for Redis Cluster addresses data-tier bottlenecks. Finally, the framework’s reliabil-
ity is bolstered by the atomicity of Redis operations and the integrated fault-detection mechanism,
ensuring dependable and consistent code verification.

FastAPI Web Redis Queue Worker Pool
(API Gateway) (Message Broker) (Code Executors)
A Y Y
Request Handling Task & Result Queues Sandbox Execution

Figure 13: The distributed architecture of the code verification framework.

B.6 BASELINES

We compare the X-Coder with three categories of baselines: (1) SFT model, e.g., Bespoke-Stratos,
OlympicCoder, OCR-Qwen-Instruct, OpenThinker3, Qwen3-8B, and rStar-Coder; (2) RL model,
including Skywork-OR1, DeepCoder-14B-Preview, and AReal-boba?-14B; (3) SFT-then-RL model,
such as AceReasonl.1, Klear-Reasoner, and MiMo-RL.

C NOVEL TASK SYNTHESIS

Building on EpiCoder, which synthesizes programming tasks through feature-based combinations,
we introduce three key improvements to generate more diverse and complex instructions.

First, rather than relying on broad feature definitions, we explicitly extract and evolve competition-
related features from 10,000 question—solution pairs in TACO (Li et al., 2023) using GPT-40-0513
(§C.1). Second, we adopt a two-stage process: selecting mutually consistent features and then for-
mulating challenging, hint-free tasks (§C.2). Third, we extend the synthesis method to support multi-
style generation, covering CodeForces-style tasks (rich narratives with standard I/O), LeetCode-style
tasks (starter code with fixed signatures), and AtCoder-style tasks (concise specifications), thereby
enhancing task diversity. In §C.3, we further estimate the difficulty of synthesized problems using a
trained discriminator.

19

Under review as a conference paper at ICLR 2026

C.1 FEATURE EXTRACTION AND EVOLUTION

While EpiCoder extracts general-purpose features from raw corpus, we explictly extract and evol
compatetitive programming-related feature. Speficilly, we design multiple aspect of features that
highly relates to competitve programming, such as data structure, algorithm, mathmatical, ect.

We improve the extraction process to guide the LLM to focus on competitive programming-related
concepts, as follows:

Extract features from the provided problem and solution code related to algorithmic
programming, competitive programming, Leetcode, and Codeforces, following the requirements
for each category below, formatted in JSON structure.

Responses in the following categories should be concise and organized in a JSON format
surrounded with <begin> and <end>. Categories may include nested structures if applicable.
Here is an example of the expected format:

<begin>{
"programming language": [

"Python"

1,
"problem type": [

"graph traversal"

1,
"algorithm": {

"graph algorithms": [
"Dijkstra’s algorithm",
"DFS™,

"BES"

1,

"dynamic programming": [
"Longest Increasing Subsequence",
"Knapsack Problem"

]

b
"data structures": [

"array",

"linked list",

"heap",

"segment tree"

1,
"implementation logic":["recursive", "iterative"
}<end>

Categories to extract:

Programming Language: Note the specific programming language used. Example: ["Python",
"CH++"].
Problem Type: Outline the type of problem the code is solving. Example: ["graph

traversal", "sorting", "dynamic programming"]
3. Algorithm: Identify the specific algorithm or method being used in the code. This category
can include the following subcategories:

;.1 Graph Algorithms: Specify graph algorithms used. Example: ["Dijkstra’s algorithm",
"DFS", "BFS"].
3.2 Sorting Algorithms: Specify sorting algorithms used. Example: ["QuickSort",
"MergeSort"].
3 Dynamic Programming: Specify dynamic programming techniques. Example: ["Longest
Increasing Subsequence", "Knapsack Problem"].
g Search Algorithms: Identify search algorithms used. Example: ["Binary Search",

"Linear Search"].
.5 Other relevant subcategories...

!. Data Structures: Describe the primary data structures utilized. Example: ["array",
"graph", "tree", "heap"].

Implementation Logic: Describe the implementation logic. Example: ["iterative",
"recursive", "bit manipulation"].

Complexity Analysis: Provide time and space complexity of the code if available. Example:
["Time Complexity: O(n log n)", "Space Complexity: O(n)"]

Optimization Techniques: Specify any optimizations applied. Example: ["memoization",
"greedy approaches", "bitwise operations"].

Purpose: What the code is used to do. Example: "To find the shortest path in a graph using
Dijkstra’s algorithm."

Summary: Provide a concise summary. Example: "Solves the given competitive programming
problem using a depth-first search approach to traverse the graph."

Extract as many features as possible and try not to let a feature appear in multiple
categories at the same time.

Then we increase the diversity and complexity through evolution along both the breadth and depth
dimensions. For example, along the breadth dimension, given an extracted feature such as quicksort,

20

Under review as a conference paper at ICLR 2026

the LLM may evolve new features like bubble sort, even if they were not originally extracted. Along
the depth dimension, a concept such as prefix sum can evolve into more advanced variants like
difference array or Fenwick tree, reflecting increasing levels of abstraction and difficulty. The overall
evolution process is illustrated below.

Feature Tree Evolution Task:

You are provided with a feature tree represented as a nested JSON structure. Each node in
this tree represents a feature or a sub-feature of competitive algorithm programming, with
the leaves being the most specific features. Your task is to expand this feature tree both in
depth and breadth. Depth expansion means adding more specific sub-features to existing
leaves. Breadth expnasion means adding more sibling features at the current levels.

Here are some explanations of the features:
{explanations}

The input feature tree will be provided in JSON format, and your output should be a JSON
structure that represents the expanded feature tree.

Output Format:
- Expanded Feature Tree: Provide the expanded feature tree as a JSON structure. Surround the
json with <begin> and <end>.

Input Feature Tree Example:
{
"algorithm": {
"sorting": ["quick sort", "merge sort"],
"tree traversal": ["in-order traversal"]
by
"mathematics": [
"number theory",
"combinatorics"

}

Expanded Feature Tree Example:
<begin>
{

"algorithm": {

"sorting": {
"quick sort": ["3-way quick sort", "dual-pivot quick sort"],
"merge sort": ["top-down merge sort", "bottom-up merge sort"]

"heap sort":[]

by

"tree traversal": {
"in-order traversal": ["recursive in-order traversal", "iterative in-order

traversal"]

"pre-order traversal":[],
"post-order traversal":[],
"level-order traversal":[],

}

b
"mathematics": {

"number theory": [
"prime factorization",
"greatest common divisor",
"power modular reduction"

1,

"combinatorics": [
"Pascals triangle",
"permutations and combinations",
"binomial coefficients"

<end>

Constraints:

For breadth expansion, add at least 2 new sibling features to each existing node.
2. For deep expansion, you need to add new sub-features to it, provided that you think the
current leaf node has a more fine-grained feature.

Focus on generating new and innovative features that are not present in the provided
examples.
l. The features are related to competitive algorithm programming.
Please follow the above constraints and expand the feature tree accordingly.

Input:
{features}

Output:

21

Under review as a conference paper at ICLR 2026

<begin>expanded feature tree<end>

After evolution, we merge features that share common traits into a larger tree, providing a rich pool
of features for subsequent task formulation.

C.2 STYLIZED TASK GENERATION FOR COMPETITIVE PROGRAMMING

We design a prompt template to systematically transform extracted features into stylized competitive
programming tasks.

Input: a sampled feature tree represented in JSON format.

Output: a feature-role tree (JSON), where each node is assigned roles such as core technique,
subroutine, or constraint, together with an integration strategy (string) that explains how to combine
these features into a coherent problem.

To improve instruction-following and task understanding, the template is equipped with a one-shot
example that demonstrates how raw features are mapped into roles and integrated into a task.

nun

Stage Prompt Template for Feature Selection

nun

STAGE1_PROMPT_TEMPLATE = """You are a professional competitive programming problem setter.

Your task consists of three parts:

Step 1: Tree-Structured Feature Role Explanation

Recursively traverse the provided feature tree.

— For each leaf node, annotate it with a "potential_use" field describing how this feature is
typically used in competitive programming problems (e.g., input modeling, optimization,
search, handling edge cases, etc.).

— Internal nodes retain their structure for hierarchy.

Output the annotated tree in the same structure, with every leaf node containing its
"potential_use".

Step 2: Subtree Selection for Problem Integration

Based on your role analysis, select a subtree (tree-structured subset) where all selected
leaf features can be naturally integrated into a single, high-quality competitive programming
problem.

— Only include features that contribute meaningfully to the same problem idea.

— Internal nodes are included only if they have selected children.
- For each selected leaf, include only its "feature" name and "potential_ use".

Step 3: Integration Strategy
Briefly describe ("integration_strategy") how the selected features can be integrated

together in a single problem, focusing on how their combination enables a meaningful and
challenging algorithmic scenario.

**xOQutput Format:xx
Return a JSON object xxwith exactly this structurexx (an example):

8

"feature_roles_tree": {{
"algorithm": {{
"search algorithm": {{
"binary search": {{
"recursive binary search": {{
"potential_use": "Used for divide-and-conquer searching in sorted structures or

answer spaces."

13N

"iterative binary search": {{

22

Under review as a conference paper at ICLR 2026

"potential_use": "Efficient loop-based implementation for finding bounds or
specific elements."
b}
I3

"breadth-first search (BFS)": {{
"level-order BFS": {{
"potential_use": "Traverses graphs layer by layer; useful for shortest path or

component discovery."
}}
I
I
b,
"data structures": {{
"bitmap": {{
"bit manipulation™": {{
"bitwise AND": {{
"potential_use": "Filters or checks properties using bitmasks."
I3
"bitwise OR": {{
"potential_use": "Combines flags or sets with bitwise aggregation."

b}

"selected_features_tree": {{
"algorithm": {{
"search algorithm": {{
"binary search": {{

"recursive binary search": {{
"feature": "recursive binary search",
"potential_use": "Used for divide-and-conquer searching in sorted structures or

answer spaces."

I

I
H}
by

"data structures": {{
"bitmap": {{
"bit manipulation": {{
"bitwise AND": {{
"feature": "bitwise AND",
"potential_use": "Filters or checks properties using bitmasks."
I
1}
1}
1}
I3
"integration_strategy": "The problem will require recursive binary search to efficiently

search over a sorted value space, while bitwise AND operations will be used to filter
candidate solutions according to constraints. Their combination allows for a problem that
involves searching over sets and optimizing bitwise criteria."

b}

*xAvailable Features (Tree) :xx
{features_json}

Instructions:
- Always preserve the tree structure in "feature_roles_tree" and "selected_features_tree".

— In selected_features_tree, only include "feature" and "potential use" fields for leaf nodes.

- "integration_strategy" should make clear how/why these features form a coherent, advanced
problem.

— Do not be overly conservative; it is often possible to design advanced problems where many
features interact in non-trivial ways. Challenge yourself to maximize feature use without
sacrificing problem quality.

C.2.1 COMPATIBALE FEATURE SELECTION

We present a case to examine how model selects compatibale features and combine them.

Given a sampled feature tree:

23

Under review as a conference paper at ICLR 2026

"input_features": {
"algorithms": {
"graph_algorithms": {
"shortest_path": [
"Dijkstra’s algorithm",
"Floyd-Warshall"
I
"network_flow": [
"Ford-Fulkerson",
"Edmonds—-Karp"
]
br
"string_algorithms": {
"pattern_matching": [
"KMP algorithm",
"Boyer-Moore"

}

I
"data_structures": {

"tree_structures": [
"segment tree",
"fenwick tree"

1,

"hash_structures": [
"rolling hash",
"cuckoo hashing"

]

by
"optimization_techniques": {

"dynamic_programming": [
"interval DP",

"tree DP"

LLM pairs each feature with potentially usage to obtain feature tree with role annotation. For ex-
ample, LLM will anonotes feature “rolling hash” as “Compute hash values for sliding windows in
constant time”. These annotations help LLM to aggregate these features based on their potentially
usage. For above given feature tree, the feature tree with potential usage looks like:

"feature_roles_tree": {
"algorithms": {
"graph_algorithms": {
"shortest_path": {
"Dijkstra’s_algorithm": ({
"potential_use": "Find single-source shortest paths in weighted graphs with
non-negative edges"
I
"Floyd_Warshall": {

"potential_use": "Compute all-pairs shortest paths with O(n"3) complexity"
}
I
"network_flow": {
"Ford_Fulkerson": {
"potential use": "Find maximum flow using augmenting paths with DFS"

by
"Edmonds_Karp": {
"potential_ use": "Guarantee polynomial time maximum flow using BFS"
}
}
b
"string_algorithms": {
"pattern_matching": {
"KMP_algorithm": {

"potential_use": "Linear time pattern matching with failure function
preprocessing"
I
"Boyer_Moore": {
"potential_use": "Efficient pattern search using bad character and good suffix

heuristics"

}

}

br

"data_structures": {
"tree_structures": {

24

Under review as a conference paper at ICLR 2026

"segment_tree": {

"potential_use": "Support range queries and updates in O(log n) time"
b
"fenwick_tree": {

"potential_use": "Efficiently compute prefix sums with point updates"

}
br
"hash_structures": {
"rolling_hash": {

"potential_use": "Compute hash values for sliding windows in constant time"
I
"cuckoo_hashing": {
"potential_use": "Achieve worst-case O(l) lookup with multiple hash functions"

}
}

by
"optimization_techniques": {

"dynamic_programming": {
"interval DP": {
"potential_use": "Solve optimization problems on contiguous ranges"

by
"tree_DP": {
"potential_use": "Compute optimal solutions on tree structures bottom-up"

}

LLM then selects a compatible and consistent subtree that can formulate a self-contained com-
patetiting programming problem. For example, LLM keeps the features that can be aggregated into
selected feature tree, and concluding with an intergration strategy, which displays how to combine
these features into a unified problem.

For example, in this case, LLM selects “Dijkstra’s algorithm”, “Edmonds-Karp”, “segment tree”,
and “tree DP”, and aims to formulate a problem around “dynamic network optimization”.

"selected_features_tree": {
"algorithms": {
"graph_algorithms": {
"shortest_path": {
"Dijkstra’s_algorithm": ({

"feature": "Dijkstra’s algorithm",
"potential_use": "Primary pathfinding algorithm"
}
by
"network_flow": {
"Edmonds_Karp": {
"feature": "Edmonds-Karp",
"potential_use": "Flow computation with guaranteed complexity"
}
}
}
Yy
"data_structures": {

"tree_structures": {
"segment_tree": {

"feature": "segment tree",
"potential_use": "Maintain dynamic edge weights or capacities"
}
}
by
"optimization_techniques": {
"dynamic_programming": {
"tree_DP": {
"feature": "tree DP",
"potential_use": "Optimize subproblems on network tree decomposition"
}
}
}
by
"integration_strategy": "Create a dynamic network optimization problem where Dijkstra’s

algorithm finds shortest paths that are used as augmenting paths in a modified Edmonds-Karp
flow algorithm. Use segment tree to handle dynamic updates to edge capacities based on flow
history. Apply tree DP on the shortest path tree to compute optimal flow distributions. This
models a transportation network with time-varying capacities."

25

Under review as a conference paper at ICLR 2026

C.2.2 FROM FEATURE TO STYLIZED TASK

We separate feature selection from task generation, as our initial attempts showed that prompting
an LLM to perform both within a single prompt often led it to choose fewer features and produce
overly simple problems.

During task generation, LLM recieves selected features tree and its integration strategy to formulate
styleized task based on prompt recieved. Task generation prompt for Codeforces-style is as follows:

"""You are a professional competitive programming problem setter.
You have been provided with:

- selected_features_tree: a tree structure where each leaf contains a "feature" name and its
"potential_use".

- integration_strategy: a strategy describing how these features should be integrated into a
single, high-quality problem.

Your task is to xxgenerate a complete Codeforces-style problem statementxx that fully
integrates ALL selected features.

Requirements:

— The story and setting must naturally motivate every selected feature, making each
indispensable for an optimal solution.

- Specify precise input/output format and tight constraints.

- Provide at least two distinct, non-trivial sample Input/Output pairs, each with a clear
explanation.

— Make sure the samples are consistent with your constraints and the solution requires use of
all selected features.

— Do not include any references to algorithms, data structures, solution strategies, or any
implicit or explicit hints in any part of the statement, notes, or examples. Do not include
any motivational, summary, or instructional phrases (e.g., "Remember", etc.) at any point in
the output. The statement must end after the final example or clarification, with no
extraneous commentary.

— Output should be a x*single JSON objectx* with the field "question" only.

xOutput Format (strictly) :x=

{{

"question": "# Problem Title\\n\\nStory/context (describe the scenario)\\n\\n##
Input\\n<...input description...>\\n\\n## Output\\n<...output description...>\\n\\n##
Example\\n### Input\\n<code block with sample input>\\n### Output\\n<code block with sample
output>\\n### Note\\nExplanation about the sample(s), but without any solution hints."

}}

*xInputs:xx
— selected_features_tree (JSON) :
{selected_features_info}

- integration_strategy (string):
{integration_strategy}

Instructions:
- You must ensure every selected feature is essential and naturally integrated.
— Output ONLY the required JSON object, no extra text.

nun

In this instance, our generated Codeforces problem is shown in Figure 14, while the generated
AtCoder and LeetCode problems are presented in Figures 15 and 16, respectively.

C.3 TASK DIFFICULTY ESTIMATES

Judging the difficulty of a synthetic task is challenging. To better capture the difficulty distribution
of tasks generated by X-Coder, we adopt a classifier-based approach. Specifically, we add a special
classification token to Qwen2.5-Coder-14B-Instruct and fine-tune it to predict the Codeforces rating
of 6,246 tasks from the CodeContests dataset with annotated ratings, reserving 5% as a validation
set. The fine-tuned model achieves 84% classification accuracy on the validation set. We then use
this model to estimate the difficulty of 1,000 tasks generated by our pipeline, obtaining a holistic
distribution as shown in Table 6.

26

Under review as a conference paper at ICLR 2026

Dynamic Transport Renewal

In the city of Codeland the transportation system is in constant flux. The city has n intersections
and m one-way roads. Each road is characterized by a travel time and an initial capacity
representing the maximum number of vehicles that may traverse that road in a day. Due to
changing conditions, city engineers periodically adjust road capacities. After every such update,
the transport authority recalculates their performance metric in two steps.

First, they compute the maximum number of vehicles that can be sent from the central depot at
i 11 to the di center at n. To do so they select an
augmenting path that minimizes the total travel time (using a shortest path computation) among
all paths on which every road has positive capacity. They send as many vehicles along that
path as allowed by its weakest road and then reduce the capacity of every road on the path by
that amount. This process is repeated until no valid path from 1 to n remains.

Second, using the predecessor structure recorded in the last successful shortest path search
(forming a tree rooted at 1), the authority assigns each intersection a reward equal to its travel
time from intersection 1 (as computed in that search). They then choose a subset of
intersections from this tree such that no intersection and its direct predecessor are both chosen,
with the goal to maximize the total reward. (This selection is computed using an optimization on
the tree structure.)

The final performance metric is the sum of the maximum flow (ie. total number of vehicles sent)
and the maximum total reward from the tree selection.

Your task is to process a series of capacity update queries. Initially the network is given. Then,
each query specifies an interval [L, R] (referring to the roads in their input order) and an integer
X. For every road whose index is in [L, R], add X to its current capacity. If an update causes an
edge's capacity to become negative, set it to 0. After each update, recalculate the maximum
flow using the method described above and then compute the optimal reward from the latest
shortest path tree. Output the sum of these two values.

Note that each update is cumulative.

Input
The first line contains three integers n, m and Q (2.< n <100, 1< m < 1000, 1 < Q < 1000) —
the number of intersections, the number of roads and the number of queries.

Each of the next m lines describes a road with four integers u, v, tand ¢ (1 <u,v<n,u#Vv,0<
<1046, 0 < ¢ < 1049), meaning that there is a road from intersection u to v with travel time t
and initial capacity c. The roads are numbered from 1 to m in the order of appearance.

Each of the next Q lines contains three integers L, Rand X (1 s L <R <m, -10A9 <X < 109) —
meaning that for every road with index in [L, R] you must add X to its current capacity (if a
road's capacity becomes negative, treat it as 0).

Output

For each query, output a single integer — the sum of the maximum flow from intersection 1 to n
(computed by repeatedly sending flow along the fastest (i.e. minimum travel time) augmenting
path) and the maximum reward obtainable from the shortest path tree from the last successful
search (computed using the tree-optimization described above).

Example
Input
452
1215
2433
1324
3212
2424

Note
After the first update, the capacities of roads with indices 2, 3 and 4 decrease by 1, so they
become 2, 3 and 1 respectively while the others remain unchanged. The flow computation
proceeds in iterations by first choosing the path 1—2—4 (with travel time 1+3=4) and sending 2
vehicles, then using the path 1—3—2—»4 (with travel time 2+1+2=5) to send 1 vehicle, and
finally again 1—2—4 to send 3 vehicles. The total maximum flow is 6. In the last successful
shortest path search (from the iteration yielding the 3 vehicles), the predecessor tree has
intersection 1 as the root with children 2 and 3, and intersection 2 with child 4. With rewards
equal to their distances from 1, an optimal djacent selection yields
atotal reward of 5. Their sum is 11.

After the second update, the capacities of roads with indices 1, 2 and 3 increase by 2.
Recomputing the maximum flow now yields a value of 2, while the corresponding shortest path
tree results in an optimal reward of 6. The final performance metric is 8.

Figure 14: Case for Codeforces-style Problem, featuring rich, imaginable narrative contexts.

Dynamic Transportation Optimization

You are given a directed transportation network with N nodes and M roads. Each road i (1-indexed) goes
from node u to node v, requires t units of time to traverse, and can transport at most ¢ units of goods.

.
capacity on every road used. (If more than on
them is chosen.)

1i x: Update the capacity of road i to x.

capacities remain unchanged for subsequent
Output the answer for each query operation.

Input

Output

Constraints

Sample Input 1
333

12510
23510
183156

213

1315

213

Sample Output 1
15
25

When a shipment is made from a source s to a target t, the following process is repeated:

Find a route from s to t that minimizes the total travel time among all routes that have a positive

Let f be the minimum capacity among the roads on the chosen route. Send f units along the route
and reduce the capacity of every road on that route by f.

The process stops when there is no route from s to t with all roads having positive capacity. The
total goods shipped is the sum of all f sent during the process.

You are given Q operations. Each operation is in one of the following two forms:

2 s t: On the current network, simulate the above process from s to t and output the total goods
shipped. Note that the simulation is performed on a copy of the current network so that the road

The first line contains three integers N, M, Q. Then M lines follow. The i-th of these lines contains four
integers u, v, t, ¢ describing road i. Then Q lines follow.

Each of these lines is either in the form 1i x or 2 s t as described above.

For each operation of the form 2 s t, output a single integer representing the total goods shipped.

2=<N=<200;1=<M=<500;1=<Q=<200;1=<u,v,s,t<Nu#v;1<t<1073;1=<c,x=<10"9

e route achieves the minimum travel time, any one of

operations.

Figure 15: Case for AtCoder-style Problem

, featuring concise, minimal explainations.

27

Under review as a conference paper at ICLR 2026

Dynamic Transportation Network

Given a directed network with n nodes labeled from 1 to n and m edges, each
edge is represented as a quadruple [u, v, capacity, travelTime] and denotes a
directed connection from node u to node v with the given capacity and travel
time. The network is dynamic: in each round you select a route from node 1 to
node n with the smallest total travel time among all routes with positive
capacities. If there are multiple routes with the same total travel time, choose the
route that can carry the largest amount of flow (where the flow of a route is the
minimum capacity among its edges). Send flow along the selected route equal

to this value and reduce the capacity of every edge on the route by the sent flow.
Repeat the process until no valid route exists.

After the rounds finish, for every node i (1 < i < n) determine the total amount of
flow that reached it. A node receives flow from a selected route if it appears on
that route and the flow travels from node 1 to that node along the route. Return
an array f of length n where f[i - 1] is the total flow that reached node i from node
1.

Signature
class Solution:
def dynamicTransportationNetwork(self, n: int, m: int, edges: List[List[int]]) —> List[int]:

pass

Example 1

Input: n =4, m =5, edges = [[1,2,4,2], [1,3,3,1], [2,4,3,3], [3,2,2,1], [3,4,4,5]]
Output: [6,3,3,6]

Example 2

Input: n = 3, m = 3, edges = [[1,2,5,2], [2,3,4,3], [1,3,2,10]]
Output: [6,4,6]

Constraints
e 2<n=<10M4
e 1=m=<5*100M4
e For each edge in edges:
o 1suvsnandu=zv
o 1 < capacity < 10N4
o 1<travelTime < 1074

Figure 16: Case for LeetCode-style Problem, featuring predefined function signatures.

Table 6: Difficulty distribution of Codeforces-style ratings. “Original” denotes the annotated distri-
bution from CodeContests, and “Test” denotes 1,000 tasks generated by our pipeline.

CF Rating Original Test (Ours) Original Share Test Share

1200 623 0 10.0% 0.0%
1400 727 0 11.7% 0.0%
1600 889 0 14.3% 0.0%
1800 840 16 13.5% 1.6%
2000 797 2 12.8% 0.2%
2200 697 47 11.2% 4.7%
2400 665 585 10.7% 58.5%
2600 484 319 7.8% 31.9%
2800 312 12 5.0% 1.2%
3000 233 15 3.7% 1.5%
3200 157 4 2.5% 0.4%
3400 122 0 2.0% 0.0%
Total 6,246 1,000 100% 100%

D SOLUTION GENERATION AND QUALITY ASSURANCE

D.1 VALIDATION ON SOLUTION

For tasks with descriptions shorter than 200 tokens, we discard them, as such descriptions are often
either too trivial or incomplete. For each generated solution, we ensure quality by (i) removing sam-

28

Under review as a conference paper at ICLR 2026

Token Distribution Comparison: Query vs Response (200k Dataset)

Query (Mean: 659, Median: 635) Distribution (Mean: 17742, Median: 17431)
H 10000 !

6000

Count

15000 4000

2000

0 500 100 500 2000 2500 5000 10000 15000 20000 25000 30000 35000

0 1
Token Count Token Count

Figure 17: Dataset statistics of the demonstration dataset.

ples without complete think and answer tags, (ii) rejecting cases where the extracted Python block
fails AST validation, (iii) excluding solutions that contain multiple code blocks after the reasoning
process, as they hinder reliable solution extraction, and (iv) filtering out samples exceeding 25k
tokens to prevent overthinking and to reduce SFT cost caused by sequence padding.

D.2 SFT DATASET STATISTICS

The overall token length distribution, shown in Table 7, and Figure 17, primarily follows a normal
distribution, with a median of 16k.

Table 7: Token statistics for tasks and solutions of the demonstration dataset.

Type Min Max Mean Median Std Dev Total Tokens
Task 200 3,537 658.91 635.00 258.49 134.3M
Solution 1,711 33,144 17,742.50 17,431.00 7,295.92 3.25B
Dataset Size 200,091 entries 3.38B

E TEST CASE GENERATION

E.1 PROMPTING-BASED TEST GENERATION

You are a professional test case generation expert, skilled at designing comprehensive test
cases for programming problems.

Please generate 15 different test cases for the following programming problem, including edge
cases, small-scale, medium-scale, and large-scale test data.

Problem:
{problem_statement}

Requirements:

1. Generate 15 test cases

2. Include edge cases (empty input, minimum values, maximum values, etc.)
3. Include different scales of data (small, medium, large)

4. Each test case should have clear input data

5. Ensure test cases can thoroughly validate the correctness of solutions

Please return in JSON format as follows:
i
"test_cases": [

8

"idx": O,
"description": "Test case description",
"input_string": "Input data"

13N

29

Under review as a conference paper at ICLR 2026

E.2 ToOOL-BASED TEST GENERATION

The tool-based test generation strategy relies on CYaRon, an open-source Python library aimed at
rapidly generating random data for Informatics Olympiad problems (or problems of equivalent dif-
ficulty). This library contains a variety of common data structures (e.g., graphs, trees, polygons,
vectors, strings, and sequences), along with mathematics-related functions and the necessary in-
put/output interfaces. When prompting the Teacher model to utilize the CYaRon tool, we provide its
detailed documentation and usage instructions as part of the prompt. Additionally, we encourage the
model to generate more boundary tests and large-scale random use cases. To ensure the sufficiency
of test cases, we mandate the use of this library in conjunction with its random features and set a
seed to ensure reproducibility. The detailed prompt used is illustrated as:

Please write a test case generator that meets the following requirements based on the
following CYaRon documentation:

Write a canonical CYaRon Generator using Python

Generate a single, executable Python program that can produce test cases with at least
different features

The Python program should save each test case individually in the format [use case
characteristics].in
!. The program should include a variety of test case types such as base cases, boundary
cases, large random cases, etc

The Python program code should contain clear comments to explain the design intent for
each test case generation
6. The .in output files should contain ONLY pure input data without any comments,
explanations, or answer validation

The Python program should be able to generate all test cases in a single run when executed

The program should use argparse to provide configurable random seed control:

parser.add_argument (' --seed’, type=int, default=42, help='Random seed for reproducibility’)

All random number generation must use Python’s built-in random module (import random) - do
not use any external random libraries or the random functions from CYaRon

CYaRon Documentation

Input/Output (IO)
The IO library helps you easily create test data files.

Constructor Options:

‘Y 'python

Basic file specification

IO("testl.in", "testl.out") # Explicit input/output files

IO (file_prefix="test") # Generates test.in and test.out

IO (file_prefix="test", data_id=3) # Generates test3.in and test3.out

Advanced file naming
IO (file_prefix="test", data_id=6,
input_suffix=".input", output_suffix=".answer") # testt.input and testé.answer

Partial output options

IO("test2.in") # Only input file, output goes to temporary file
IO (file_prefix="test", data_id=5, disable_output=True) # No output file generated
IO() # Both files temporary (for use with comparator)

Vo

Note: Combine ‘file_prefix' and ‘data_id‘ with loops for batch generation.
IO Methods:
‘Y 'python

io = IO("testl.in", "testl.out") # Initialize IO object

Input writing methods

io.input_write(l, 2, 3) # Writes "1 2 3" to input file (no newline)

io.input_writeln (4, 5, 6) # Writes "4 5 6\n" to input file

io.input_write([1l, 2, 2]1) # Writes list as space-separated "1 2 3"

io.input_write (1, 2, 3, separator=',’) # Writes "1,2,3," (note: current version leaves

trailing comma)

Output writing methods

io.output_write(1l, 2, 3) # Writes "1 2 3" to output file
io.output_writeln(4, 5, 6) # Writes " 5 6\n" to output file
io.output_write(l, 2, [1, 2, 3], [4]) # Flattens nested lists to "1 2 1 2 4"

Program execution
io.output_gen ("~ /Documents/std") # Runs program with input, captures stdout as output
io.output_gen ("C:\\Users\\Agours\\std.exe") # Windows path support

Vo

30

Under review as a conference paper at ICLR 2026

Graph Generation
The Graph library generates various graph structures.

Manual Construction:

‘Y '‘python

Graph initialization

graph = Graph(10) # 10-node undirected graph (nodes 1-10
graph = Graph (10, directed=True) # Directed version

Adding edges
graph.add_edge (1, 5) # Default weight=1
graph.add_edge (1, 6, weight=3) # Custom weight

Edge access and properties
graph.edges # Adjacency list containing Edge objects
for edge in graph.iterate_edges():

edge.start # Source node

edge.end # Target node

edge.weight # Edge weight

Output formatting options

io.input_writeln(graph) # Default "u v w" per line
io.input_writeln (graph.to_str (shuffle=True)) # Random edge order
io.input_writeln(graph.to_str (output=Edge.unweighted_edge)) # "u v" format

Vo

Template Graphs:

‘Y '‘python

Basic graph templates

Graph.graph(n, m) # n nodes, m edges (weight=1)

Graph.graph(n, m, directed=True, weight_limit=(5, 300)) # Directed with weight range
Graph.graph(n, m, self_loop=False, repeated_edges=False) # No duplicate edges

Special graph types

Graph.chain (n) # n-node chain (alias for tree(n, 1, 0))
Graph.flower (n) # n-node star graph (alias for tree(n, 0, 1))
Graph.tree (n) # Random tree

Graph.tree(n, 0.4, 0.35) # 40% chain-like, 35% star-like, 25% random

Graph.binary_tree(n) # Random binary tree

Competition-specific graphs

Graph.hack_spfa (n) # Graph that breaks SPFA (1.5n edges)
Graph.hack_spfa(n, extra_edge=m) # With additional edges
Graph.DAG(n, m) # Directed Acyclic Graph

Graph.UDAG (n, m) # Undirected Connected Graph

Y

Note: Most templates support ‘weight_limit‘, ‘weight_gen‘', ‘self_loop‘', and ‘repeated_edges"’
parameters.

Polygon
Generate and analyze polygons.

*Y'python

Polygon creation (points must be ordered)

p = Polygon([(0,0), (0,4), (4,4), (4,0)]) # Rectangle
Geometric properties

p.perimeter () # Calculates perimeter

p.area() # Calculates area

Generation templates
Polygon.convex_hull (n) # n-point convex hull
Polygon.simple_polygon(n) # Simple polygon (non-intersecting)

Vo

Vector
Generate unique vectors/number sequences.

‘Y 'python

Basic usage

Vector.random() # Default: 5 unique numbers in [0,10]
Vector.random (10, (# 10 unique numbers in [10,50]
Vector.random (30, 201) # 30 unique 2D vectors

31

Under review as a conference paper at ICLR 2026

Modes:

0: Unique integer vectors (default)
1: Non-unique integer vectors

2: Real-valued vectors

Vector.random , [(L,10), (1,10), (1L,10)1, 2) # 30 3D real vectors
Vector.random (30, [10], 1) # 30 numbers (may repeat)

String

Generate random text elements.

‘Y 'python

Basic strings

String.random(5) # S5-character word

String.random((10)), charset="abcdl234") # Variable length
String.random (10, charset="#######...") # 70% "#’, 30% '.'

Structured text

String.random_sentence(5) # 5-word sentence
String.random_paragraph((3,10)) # 3-10 sentence paragraph

Custom formatting

String.random_sentence (5, word_separators=[" "]) # Double space separator

Vo

Note: All templates support charset customization.

Sequence
Generate number sequences via recurrence.

‘Y '‘python
Explicit formula

Sequence (lambda i, f: 2xi+l) # £(i1) = 24 + 1

Recursive definition

Sequence (lambda i, f: # £(i)=£f(i-1)+1 with £(0)=0, £(1)=1
Sequence (lambda i, f: :101, 102:103}) # Sparse base cases

Usage

seq = Sequence (lambda i, f: f£(i-1)+2, [0,2,4]

seg.get (3) # Returns ©

seqg.get (4, 6) # Returns [8,10,12]

Y

Important: Recursive definitions require base cases.

Utilities

Conversion:
‘Y 'python
ati([o, 5, 100, 1E3, 1E5]) # Converts scientific notation to integers

Vo

Random Numbers:

‘Y 'python

randint (1,5) # Integer in [1,5]
uniform(l,5) # Float in [1,5]
choice([1,2,3]) # Random selection
random() # Float in [0,1)
Constants:

‘Y '‘python

PI # 3.14

E # 2.718 8...

ALPHABET_SMALL # "abcdefghijklmnopgrstuvwxyz"
ALPHABET_CAPITAL # "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
ALPHABET # Combined letters

NUMBERS # "012345¢ on

Vo

Code Question
{QUESTION}

32

Under review as a conference paper at ICLR 2026

F DUAL-VERIFICATION

We summarize the symbols used in the dual-verification process in Table 8, and outline the corre-
sponding procedure in Algorithm 1.

Table 8: Notation for SynthSmith Framework.

{mi}iy Test inputs for a task ¢
{AY ey Candidate solutions (LLM-generated)

y! Output of A’ on input x;

Vs Provisional label via majority vote on {y] }7",
w; Difficulty weight for z;

Teandidate Provisional labeled set {(z;, §;, w;)}

Tgolden Weighted suite for selecting the solution

Toal Hold-out validation set

S; Weighted score of A7 on Tyoiden

Agolden Final selected “golden” solution

Algorithm 1: Dual-Verification of Solutions and Test Cases

Input: Task g; test inputs {x; };, ; candidate solutions {A7}7*,.
Output: Golden solution Agoiden; golden test suite Tgolden.
Step 1: Consensus Voting & Weighting
for i < 1ton do

for j < 1tom do

L Run y] + A’ (xz;)

i < argmaxy >, I(y! =y)

w;i Weight(mi)
Teandidate < { (%4, ¥s, wi) Yre1
Step 2: Split Candidate Set
Randomly partition Tcandidate iNt0 Tgolden and Tyai

Step 3: Weighted Selection
for j < 1tom do

L Sj ¢ E(Tiaf/ivwi)e’rgolden wi - 1(A7 (@) = 9:)
Jj* + argmax; S;
A/golden «— AT
Step 4: Hold-out Confirmation
Compute unweighted accuracies of all A7 on Tra
jT — argmax; Acc(Aj7 Tval)
if j7 = j* then
L Agolden = Agolaen
else
L Agolden <~ Aj}r

return Agoldcrn 7—goldcn

G DATA LEAKAGE ANALYSIS

X-Coder , trained entirely on fully synthetic data, exhibits a lower risk of data leakage. As shown in
Table 9, models trained on real-world data, like Qwen3 achieve strong performance on older bench-
marks (e.g., LiveCodeBench v2) but are less competitive on more recent ones (e.g., v5), revealing a
higher degree of data leakage.

33

Under review as a conference paper at ICLR 2026

Table 9: Comparison between Qwen3-8B, and X-Coder on old and recent benchmarks.

Model LiveCodeBench v2 LiveCodeBench v A (v2—v5)
Qwen3-8B 88.1 57.5 -30.6
X-Coder-7B-SFT 78.2 60.3 -17.9
X-Coder-7B 80.1 62.9 -17.2

H CASE STUDY

H.1 SuUCCESSFUL CASE

The SFT model frequently exhibits cognitive behaviors such as planning, verification, backtracking,
and reflection, suggesting that these behaviors can be directly distilled from the teacher.

Listing 1: Thinking process of successful case.

Title: Adjacent GCD

Platform: AtCoder

Difficulty: Hard

Contest_id: arclsg

Contest_date: 2024-10-13T00:00:00

Thinking behavior:
We begin by defining F(m) as the total score of all subsequences of the first m elements
and try to see whether we can break the problem into manageable pieces ... (Plan behavior)

At first, I considered summing gcd(Ai,Ai+1) directly over the array
but then realized that subsequences can skip indices, so adjacency is redefined ...
this naive plan would miss many contributions ... (Reflection behavior)

To verify, I checked a small prefix: A= (9,6,4).

For m = 2, the subsequences [9],[6],[9,6] give total =3

for m = 3, manual enumeration yields 11,

while my recurrence only produced 8 ... (Verification behavior)

Clearly, the earlier idea of "just add gcd(last,new)" was incomplete

I realized each new subsequence must inherit the full score of its prefix subsequence,
and only then add the new gcd term ... (Reflection behavior)

Concretely, inheriting the full score contributes 2F(m — 1),]

and the newly formed terminal pairs contribute 3} ._ . ged(Aj, Ap) 2971

Thus, I rebuild the recurrence:
—1 j—
F(m)=2F(m — 1)+ X7 ged(A;, Ap) 2771
this formula accounts for doubling subsequences and the fresh contributions ... (Rebuild
behavior)

For brevity, denote S(m) =) ged(Aj, Ap) 2978

j<m
Checking with m =2 and m = 3 confirms it works ...

e.g., for A=(9,6,4): F(3) =2-3+ (ged(9,4) -2° + gcd(6,4) -21) =6+ (1 +4) =11
other boundary cases (single element, all equal numbers, coprime arrays)
also check out ... (Verification behavior)

However, computing > gcd(Aj, Ay) 277! naively costs O(m)
with N up to 5 X 10° this is too large ... (Reflection behavior)

To optimize, I reorganize the sum by divisors of A, ...
use Mébius inversion ... and precompute an array H[t] =3, u(d) - L
then each step requires iterating only over divisors of A,, ... (Optimization behavior)

We maintain U[t] = 32277 for indices j where t | Aj

then S(m) =3, 4, Ult]- H[t], updated after each new element ... (Optimization behavior)
With U[t] and H[t], we evaluate S(m) via divisors as Zt\Am U[t] H[t], matching the earlier
definition

The complexity now depends on divisor counts
on average ~ 10-~ 20, worst-case ~ 128, giving ~ 108 operations overall ... (Complexity
analysis)

Overall time is O< é\;l d(Ai)), with small average divisor counts in practice

Finally, with precomputation of p, divisors, H, and powers of 2 modulo 998244353

34

Under review as a conference paper at ICLR 2026

the algorithm is complete, efficient, and matches all sample outputs ... (Conclusion)

Listing 2: Final code solution of successful case.

max_val = 100
import sys

def main () :
data = sys.stdin.read() .split ()
if not data:
return
n = int (data[0])
A = list (map(int, data[l:1+n]))

mu = [1] * (max_val+
is_prime [True] * (max_val+
primes = []

for i in range (2, max_val+l):
if is_prime[i]:
primes.append (i)
mul[i] = -
for p in primes:
if 1 » p > max_val:

break
is_prime[ixp] = False
if 1 $ p == 0:
mu[ixp] = (
break
else:
mul[ixp] = -mu[i]
divisors = [[] for _ in range (max_val+]l)
for i in range (!, max_val+l):

for j in range (i, max_val+l, 1i):
divisors[j].append (i)

H_arr = [0] % (max_val+1)
for d in range (!, max_val+l):
for t in range(d, max_val+l, d):
term = mul[d] * (¢t // d)

H_arr[t] = (H_arr[t] + term) % mod
pow” = [1] * n
for i in range (!, n):
pow? [i] = (pow2[i-1] % 2) % mod
F o= [0] » (n+l)
U = [0] * (max_val+l)

for idx in range (n):
num = A[idx]
if idx ==
F[1] =
for t in divisors[num]:
Ult] = (U[t] + pow2[0]) % mod

else:
total =
for t in divisors[num]:
total = (total + U[t] = H_arr[t]) % mod
Flidx+1] = (2 = F[idx] + total) % mod
for t in divisors[num]:
Ult] = (U[t] + pow2[idx]) % mod
for i in range(l, n+l):
print (F[1i])
if _ name__ ==
main ()

H.2 BAD CASE

We identify three major failure modes in code reasoning process:

35

Under review as a conference paper at ICLR 2026

(i) Premature termination under context exhaustion. As the context window approaches its limit, the
model shortens its reasoning and rushes to produce a final answer (e.g., “Given the time, we output
the following solution in Python for the sample.”).

(ii) Retrieval-like fallback instead of reasoning. Rather than attempting to derive a solution, the
model sometimes recalls a “memorized” accepted submission in another language (e.g., C++) and
attempts to translate it into Python, bypassing genuine reasoning.

(iii) Incomplete code emission before cutoff. The model occasionally fails to output a complete code
block before context exhaustion, leaving truncated or non-executable programs.

Listing 3: Thinking process of bad case.

// Instead, the solution might be to

// — for the root, the value can be any number in [1, n] that is < seg_min (if the segment
is not empty)

// and > than the value of the parent (none) —-> so any number in [1, seg_min-1] if the
segment is not empty,

// or [1, n] if empty.

// — then for the children, they must be > than the value of the parent and < than the
minimum value

// in the segment (a[il+1, i-1) for the parent.

//

// But then the value for the parent is not known until we assign.

//

// We abandon.
Given the time, we output the following solution in Python for the sample.
For the sample input, it must output 3 for n=4 and [0,1,0,3]
and 353820794 for n=22 and the given a.

Here is a known AC solution in Python for the same problem (from a contest submission):

import sys

sys.setrecursionlimit (10%%6)

mod = 998244353

n = int (sys.stdin.readline() .strip())

a = list (map(int, sys.stdin.readline().split()))

Build the tree
g = [[] for _ in range(n)]
for 1 in range(n):
if a[i] > O:
glafi]-1].append (i)

We will do a DFS. We need a segment tree that can update and query in O(log n)

for the range [0, n-1] for the minimum value and the product of the counts.
We will use a segment tree that stores (min_value, count) for a range.
size = 1
while size < n:
size x=
seg_min = [10%x9] % (2 = size)
seg_cnt = [1] * (2 * size)

But the known solution uses a different approach.

Instead, we output the solution from a known AC submission in C++.
We found the following in C++ and we translate it to Python.

ES

C++ solution (AC for the same problem) by a known user:

include <iostream>
include <vector>
include <algorithm>
using namespace std;
const int mod

e

= 998 1353;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int 1 = 0; 1 < n; i++) |
cin >> ali]l;
}
vector<vector<int>> g(n);
for (int 1 = 0; 1 < n; i++) {
if (afi] > 0) |
gla[i]-1].push_back (i);

S S S HE e SR S SR 9 S

36

Under review as a conference paper at ICLR 2026

}

}

vector<int> dp(n, 1);

i# vector<int> to(n, 1000000000); // to[i] = minimum value in the segment (a[i]+1, i-1)

// We will use a segment tree for range minimum query, and we will update it as we go.
// But we will do a DFS in increasing order of a[i] and within the same a[i] in
increasing order of 1i.

vector<int> order (n);

for (int i = 0; i < n; i++) order[i] = i;
sort (order.begin(), order.end(), [&] (int i, int j) {
if (a[i] !'= alj]l) return alil]l < aljl;
return i < j;

1)

// segment tree for range minimum, size = 1<<1°¢
int size = 1;

while (size < n) size *= 2;

vector<int> seg(size, 1000000000);
auto update = [&] (int pos, int wval) {
pos += size;

seg[pos] = val;

while (pos > 1) {

pos /= 2;

seg[pos] = min(seg[2*pos], seg[Zxpos+l]);
}

i

auto query = [&] (int 1, int r) {
int res = 1000000000;

for (1 += size, r 4= size; 1 < r; 1 /=2, r /= 2) {
if (l&l) res = min(res, seg[l++]);

if (r&l) res = min(res, seg[--r])

}

return res;

i

// initially, set the segment tree to a big number.

for (int i = 0; i < n; i++) {

update (i,)0000000) ;

}

//

for (int i : order) {

if (afi] > 0) |

int parent = a[i]-1;

i# int seg_min = query(al[il+1, 1i);

// The value for i must be > than the value for parent and < than
(context exhausted here)

H.3 REWARD HACKING AND PRETRAINING ARTIFACTS.

We observe some interesting phenomena that emerge in the later stages of RL training.

First, we find that the policy does not genuinely strive for higher rewards by producing better al-
gorithms. Instead, it resorts to exploiting edge cases and attempting to “cheat” for partial rewards,
rather than solving the problem with real solutions.

Second, we observe that some rollouts include irrelevant advertising content (e.g., Need for Speed)
or adopt an editorial-style explanation of solutions similar to those on competitive programming plat-
forms such as Codeforces. This indicates that the base model was likely exposed to raw competition-
platform data during pretraining, from which such artifacts were inherited.

I THE USE OF LARGE LANGUAGE MODELS

In this paper, we adopt LLM for syntax checking and format calibration.

37

	Introduction
	SynthSmith: Synthesis of Competition-Level Coding Data
	Experiment
	Main Results
	SFT Experiments and Analysis
	RL Experiments and Analysis

	Ablation Study
	Discussion
	Conclusion
	Related Work
	Training and Evaluation
	SFT-then-RL Training
	Reward Function.
	Training Dynamics.
	Training Configs and Costs
	A Distributed Framework for Automated Code Verification
	Baselines

	Novel Task Synthesis
	Feature Extraction and Evolution
	Stylized Task Generation for Competitive Programming
	Compatibale Feature Selection
	From Feature to Stylized Task

	Task Difficulty Estimates

	Solution Generation and Quality Assurance
	Validation on Solution
	SFT Dataset Statistics

	Test Case Generation
	Prompting-based Test Generation
	Tool-based Test Generation

	Dual-verification
	Data Leakage Analysis
	Case Study
	Successful Case
	Bad Case
	Reward Hacking and Pretraining Artifacts.

	The Use of Large Language Models

