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Abstract
In this paper, we study temporal multitask learning problem where we impose smoothness con-
straint on time-series weights. Besides, to select important features, group lasso is introduced.
Moreover, the regression loss in each time frame is non-squared to alleviate the influence of var-
ious scales of noise in each task, in addition to the nuclear norm for low-rank property. We first
formulate the objective as a max-min problem, where the dual variable can be optimized via ac-
celerated dual ascent method, while the primal variable can be solved via smoothed Fast Iterative
Shrinkage-Thresholding Algorithm (S-FISTA). We provide convergence analysis of the proposed
method and experiments demonstrate its effectiveness.

1. Multi-task Learning with Multiple Regularizers

Multi-task learning aims to improve the generalization performance by learning multiple related
tasks together and exploring the shared features among tasks. It has received a lot of interests and
has been successfully applied to lots of applications including gene data analysis [11], breast cancer
classification [22], and disease progression prediction [24, 25]. Most existing multi-task feature
learning models can be formulated as a regularized optimization problem and they usually focus on
how to design a good regularizer to capture the underlying shared features among tasks; examples
include group lasso multi-task feature learning [7–9, 15, 21], low rank constraint (including its
convex envelope nuclear minimization) [4, 12, 13, 16, 18], etc. In cases where spatio-temporal
structure is considered, weights in close region or time period should be similar [6, 23, 24]. Besides,
most existing multi-task feature learning models simply assume a common noise level for all tasks,
which may not hold in real applications [10, 14]. Moreover, theoretical analysis [15] shows that, to
achieve the optimal parameter estimation error bounds, the regularized parameter should be chosen
in proportion to the maximum standard deviations of the noise for all tasks. In practice, the standard
deviations of the noise are unknown or very difficult to estimate, which makes the parameter tuning
quite challenging [10]. In this paper, we impose various constraints on multitask learning to solve:

min
W∈Rd×m

J (W) =

m∑
i=1

‖Xiwi − yi‖2 + λ‖W‖2,1︸ ︷︷ ︸
h(W)

+
γ

2
‖W‖2F +

ζ

2

m−1∑
i=1

‖wi −wi+1‖22︸ ︷︷ ︸
f(W)

+ ρ‖W‖∗︸ ︷︷ ︸
g(W)

(1)
where Xi ∈ Rni×d,yi ∈ Rni , ‖W‖2,1 =

∑
i=1 ‖W(i, :)‖2, ‖X‖∗ =

∑
i=1 σi(W). ‖Xiwi−yi‖2

measures the robust loss in each time stamp due to the potential different noise levels of all tasks for
calibration (as we will discuss later, other non-squared norm, such as `1-norm also applies). ‖W‖2,1
is to select important features, enforcing row-wise sparsity, i.e., it encourages all-zero-value rows in
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W. ‖wi−wi+1‖22 is to introduce smoothness among each temporal task. A combination of ‖W‖∗
and ‖W‖2F follows the idea of elastic net [26] in least squares, which plays a role in imposing
low-rank constraint as ‖W‖2F =

∑
i=1 σ

2
i (W).

2. Smoothing

Sub-gradient descent method is applicable for Eq. (1) but known to suffer from slow convergence
which is non-monotonic. Therefore in this paper we turn to seek for methods with faster conver-
gence rate and guarantee. Inspired by [17], we can smooth both ‖Xiwi − yi‖2 and ‖W‖2,1 terms.

For sake of further analysis, we begin with the following definition:

Definition 1 (smoothable function) [1] A convex function h is called (α, β)-smoothable (α, β >
0) if for any µ > 0 there exists a convex differentiable function hµ such that the following holds:

• hµ(x) ≤ h(x) ≤ hµ(x) + βµ for any x.

• hµ(x) is α
µ -smooth.

The function hµ is called a 1
µ -smooth approximation of h with parameters (α, β).

Theorem 2 For h(x) = ‖x‖2, function

hµ(x) =

{
1

2µ‖x‖
2
2, ‖x‖2 ≤ µ,

‖x‖2 − µ
2 , ‖x‖2 > µ,

(2)

is a 1
µ -smooth approximation of h with parameters (1, 0.5) [1] 1.

Based on Theorem 2, we can smooth ‖W‖2,1 by each row and the smoothed term ‖W‖µ2,1 is (1, d2)-
smoothable. Moreover, the following theorem provides an exact approximation for ‖Xiwi − yi‖2:

Theorem 3 Let A be a linear transformation and h be a convex function and define:

q(x) = h(A(x) + b), (3)

Assume hµ is a 1
µ -smooth approximation of h with parameters (α, β), then qµ(x) = hµ(A(x) + b)

is a 1
µ -smooth approximation of q with parameters (α‖A‖22, β).

Thus, by smoothing ‖Xiwi − yi‖2 and Theorem 2, ‖Xiwi − yi‖
µ
2 is (‖Xi‖22, 1

2)-smoothable.

Based on the analysis aforementioned, hµ :=
∑m

i=1 ‖Xiwi − yi‖
µ
2 + λ‖W‖µ2,1 is a 1

µ -smooth ap-
proximation of h =

∑m
i=1 ‖Xiwi − yi‖2 + λ‖W‖2,1 with parameters (λ+ maxi ‖Xi‖22, m+λd

2 ).

We can write the smoothing function of J in Eq. (1) as:

Jµ(W) = hµ(W) + f(W)︸ ︷︷ ︸
Fµ(W)

+g(W), (4)

1. One can verify that this can be derived from Moreau Envelope which can get the tightest bound on β. Other options
say hµ(x) =

√
‖x‖22 + µ2 − µ also works with parameters (1, 1).
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where Fµ is a smooth function and g is non-smooth but convex. Therefore, we can follow the well-
known FISTA [1] to update 4. Obviously, from h(W) − (m+λd)µ

2 ≤ hµ(W) ≤ h(W) we have
h(W) − h∗ ≤ hµ(W) − h∗µ + (m+λd)µ

2 . To achieve h(W) − h∗ ≤ δ, we need hµ(W) − h∗µ ≤
δ− (m+λd)µ

2 , thus µ should be no more than 2δ
m+λd . In case we require high precision solution where

δ is small, µ therefore should be set sufficiently small, but as later analysis in Theorem 5 indicates,
it would be very time consuming (L is inversely proportional to µ).

Therefore, we propose a new method for acceleration from the perspective of duality.

3. Dual Accelerated Method

Let zi = Xiwi − yi, Eq. (1) can be formulated as a Lagrange function as:

L(W, z, θ) =
m∑
i=1

‖zi‖2 + λ‖W‖2,1 + f(W) + g(W) +
m∑
i=1

〈θi,Xiwi − yi − zi〉, (5)

where θi ∈ Rni . By minimizing L(W, z, θ) w.r.t W and z, we obtain the dual problem by:

D̃(θ) = min
W

{
λ‖W‖2,1 + f(W) + g(W) +

m∑
i=1

〈θi,Xiwi − yi〉
}

+
m∑
i=1

min
zi

{
‖zi‖2 − 〈θi, zi〉

}
.

(6)
By making use of the fact that

min
zi

{
‖zi‖2 − 〈θi, zi〉

}
=

{
0, ‖θi‖2 ≤ 1,

−∞, otherwise,
(7)

we obtain the dual problem as: max
θ
D(θ), s.t. ‖θi‖2 ≤ 1 where

D(θ) = min
W
J (W; θ) = min

W

{
λ‖W‖2,1 + f(W) + g(W) +

m∑
i=1

〈θi,Xiwi − yi〉
}
. (8)

It is worth noting that if we change the l2 norm to general lp norm in the ‖Xiwi − yi‖2 term in Eq.
(1), then with minor revision, Eq. (7) still holds:

min
zi

{
‖zi‖p − 〈θi, zi〉

}
=

{
0, ‖θi‖q ≤ 1,

−∞, otherwise,
(9)

where ‖ · ‖q is the dual norm of ‖ · ‖p satisfying 1
p + 1

q = 1. The generalized dual problem becomes
max
θ
D(θ), s.t. ‖θi‖q ≤ 1, where D(θ) is still the same defined in Eq. (8).

Theorem 4 The optimization problem in Eq. (8) has a unique solution W(θ) due to it is strongly
convex w.r.t W. Moreover,D(θ) is continuously differentiable and L-Lipschitz continuous gradient.
Specifically, the gradient of D(θ) is

∇D(θ) = [X1w1(θ)− y1;X2w2(θ)− y2; . . . ;Xmwm(θ)− ym], (10)

3
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where wi(θ) is the i-th column of W(θ) and Lipschitz continuous gradient is given by

LD =
maxi ‖Xi‖22

γ
. (11)

Due to the benign property of objective function in Eq. (1), strong duality holds and to find optimal
W, one can turn to optimize:

max
θ
D(θ), s.t. ‖θi‖2 ≤ 1, i ∈ [m], (12)

by utilizing FISTA (either constant stepsize 1
LD

or backtracking). Notice that the dual problem for
max
θ
D(θ), s.t. ‖θi‖2 ≤ 1 is a maximization problem. Therefore, the gradient projection step and

the line search criterion are modified accordingly. We present the pseudo codes in Algorithm 1:

Algorithm 1: Accelerated Dual Ascent with Backtracking
Data: Xi,yi, λ, γ, ε, ρ
Result: Optimal θ,W to Eq. (5)
initialization θ1 = θ0, η0 > 0, τ > 1, t1 = t0 = 1;
for k = 1, 2, . . . do

αk =
tk−1−1
tk

;
νk = θk + αk(θ

k − θk−1);
while true do

ν̃k = [ν̃k1 ; ν̃k2 ; . . . ; ν̃km] = νk + 1
ηk
∇D(νk);

θk = [
ν̃k1

max(1,‖ν̃k1 ‖)
;

ν̃k2
max(1,‖ν̃k2 ‖)

; . . . ; ν̃km
max(1,‖ν̃km‖)

];

% Project into feasible domain ‖θi‖ ≤ 1
if D(θk) ≥ D(νk) + 〈∇D(νk), θk − νk〉 − ηk

2 ‖θ
k − νk‖2 then

break;
else

ηk = τ · ηk;
end

end
Solve W(θk) in Eq. (8) via Algorithm 2;

tk+1 =
1+
√

1+4t2k
2 ;

end

Here we discuss the step of projecting θk into the feasible domain ‖θi‖ ≤ 1. If we are to use general
lp norm instead of l2 norm for the first term in Eq. (1), θk should be projected into the unit ball
endowed with the dual (lq) norm . For a couple of specific p and q settings, there exists simple
solutions to the projection. For example, the p = q = 2 case in Algorithm 1. Another often seen
case is when p = 1, while q =∞, it is straightforward to verify:

θki (j) =
ν̃ki (j)

max(1, |ν̃ki (j)|)
,

4
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where θki (j), ν̃ki (j) denote the j-th entry of the i-th section of θ, ν̃ in k-th iteration. Though a closed-
form solution is not available for p = ∞, q = 1, [5] gives a fast algorithm with O(N) observed
complexity, while several other algorithms have similar result as well.
For other cases, the projection problem

min
x∈Rd

1

2
‖x− y‖22, s.t. ‖x‖q≤1 (13)

can be reformulated into
min
x∈Rd

f0(x), s.t.
1

q
(‖x‖qq − 1) ≤ 0, (14)

where f0(x) = 1
2‖x− y‖22. The Lagrange dual of Eq. (14) is

max
µ≥0

g(µ) , inf
x∈Rd

Lq(x, µ), where Lq(x, µ) = f0(x) +
µ

q

(
d∑
i=1

|xi|q − 1

)
. (15)

If q > 1, Eq. (15) is a convex optimization problem and readily solvable by using algorithms like
Newton’s method. In the non-convex cases where 0 < q < 1, it can be solved with bisection
methods [3, 19] or iterative re-weighted l1-ball projection (IRBP) algorithms [19, 20].

Theorem 5 (Theorem 4.4 [2]) Let {θk} be the sequence generated by Algorithm 1 and θ∗ be an
optimal solution for the problem in Eq. (8). Then for all k ≥ 1, we have

D(θ∗)−D(θk) ≤ 2τLD‖θ∗ − θ0‖2

(k + 1)2
, (16)

where θ0 and τ is defined in Algorithm 1, LD is determined in Eq. (11).

Algorithm 2: Accelerated Gradient Descent Algorithm for Eq. (8)
Data: Xi,yi, λ, γ, ε, ρ, µ, θ
Result: Optimal W to Eq. (8)
initialization V1 = W0, L = 4ζ + γ + λ

µ , t1 = 1;
for k = 1, 2, . . . do

Wk = SV T (Vk − 1
L∇Jµ(Vk; θ),

ρ
L); % SVT is for ‘Singular Value Thresholding’

tk+1 =
1+
√

1+4t2k
2 ;

αk = tk−1
tk+1

;

Vk+1 = Wk + αk(Wk −Wk−1);
end

It boils down to solve Eq. (8) given certain θ. As we discussed earlier, it contains two non-
smooth tern `2,1-norm and nuclear norm. For sake of simplicity, we smooth `2,1-norm. Apparently
Jµ(W; θ) := λ‖W‖µ2,1 + f(W) + g(W) +

∑m
i=1〈θi,Xiwi − yi〉 is L := 4ζ + γ + λ

µ strongly
smooth function, where ‖W‖µ2,1 denotes the smoothing function of ‖W‖2,1 for each row in W.
The above analysis suggests we can make use of constant stepsize ( 1

L ) FISTA to obtain the solution
which is almost of the same time consumption compared with backtracking line search.
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Theorem 6 Let {Wk} be the sequences generated by Algorithm 1, and let W∗ be any optimal
solutions for the problems in Eq. (1). Then for all k ≥ 1, we have:

‖Wk −W∗‖F ≤

√
4τLD‖θ∗ − θ0‖2

γ(k + 1)2
+
dλµ

γ
. (17)

The dual method, though it also entails smoothing to solve Eq. (8) where µ ≤ 2δ
λd , still it is signif-

icantly larger than pure smoothing method where µ ≤ 2δ
λd+m . Thus the time consumption burden

can be alleviated where high precision δ is required. For multitask problem where the number of
tasks (m) is very large, dual accelerated method will be superior to the counterpart.
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Figure 1: We compare dual vs. pure smoothing methods in terms of objective change with iteration
(left) and time consumption (right) on two various settings. Duality method needs very
few iterations to converge, and takes less time for high precision solution.

Theorem 7 Assume J (W; θ) has bounded level sets, let ε ∈ (0, ε̄) for some fixed ε̄ > 0 and
{Wk(θ)} be the sequences generated by Algorithm 2 given certain θ with smoothing parameter

µ =

√
2

d

ε
√
αβ +

√
αβ + Lf ε

,

where Lf = γ + 4ζ, α = λ, β = dλ
2 . Then for any k satisfying

k ≥
2λ
√
dΓ +

√
2LfΓε

ε
,

where Γ = (‖W0(θ)‖F +RJ (W0;θ)+ ε̄
2
)2, it holds that J (Wk; θ)− J (W∗; θ) ≤ ε.

4. Conclusion

We study the robust multitask learning by adding various constraints to impose low-rank prop-
erty and smoothness. We derive a dual optimization problem with a piecewise sphere constraint,
which enables us to develop fast dual optimization algorithms. We also provide a detailed con-
vergence analysis for the proposed dual optimization algorithm. Empirical studies demonstrate the
dual method quickly converges and it is more efficient than the primal optimization algorithm.
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Appendix A. Proof of Theorem 3

Since hµ is α
µ -smooth, we have

‖∇hµ(x)−∇hµ(y)‖2 ≤
α

µ
‖x− y‖2. (18)

Then

‖∇qµ(x)−∇qµ(y)‖2 =‖∇hµ(ATA(x) + b)−AT∇hµ(A(y) + b)‖2
≤‖AT ‖2‖∇hµ(A(x) + b)−∇hµ(A(y) + b)‖2
≤‖A‖2 ·

α

µ
‖(A(x) + b)− (A(y) + b)‖2

≤α‖A‖
2
2

µ
‖x− y‖2.

(19)

Note that qµ(x) = hµ(A(x) + b) ≤ h(A(x) + b) = q(x) ≤ hµ(A(x) + b) + βµ = qµ(x) + βµ,
so qµ is a 1

µ -smooth approximation of q with parameters (α‖A‖22, β).

Appendix B. Proof of Theorem 4

Using the following notations:

θ = [θ1; · · · ; θm],

y = [y1; · · · ;ym],

U(θ) = [XT
1 θ1, · · · ,XT

mθm],

F(W) = λ‖W‖2,1 + f(W) + g(W),

(20)

we can rewrite J in Eq. (8) as

J (W; θ) = F(W) + 〈W, U(θ)〉 − θTy, (21)

thus for Eq. (8), we have

D(θ) = min
W
J (W; θ) = min

W
{F(W) + 〈W, U(θ)〉 − θTy}

=−max
W
{−〈W, U(θ)〉 − F(W)} − θTy

=−F∗(−U(θ)))− θTy,

(22)

where F∗ is the conjugate function of F . Since F is strongly convex with parameter γ, F∗ is
strongly smooth and thus has an L-Lipschitz continuous gradient with parameter 1

γ .

Assume W(θ) is the optimal solution for the above equation, then:

W(θ) = arg max
W
−〈W, U(θ)〉 − F(W), (23)

therefore −U(θ) ∈ ∂F(W(θ)). Due to the fact that F is convex, we know:

W(θ) = ∇F∗(−U(θ)). (24)

9
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Recall D(θ) = min
W

{
λ‖W‖2,1 + f(W) + g(W) +

∑m
i=1〈θi,Xiwi − yi〉

}
, we have:

∇D(θ) = [X1w1(θ)− y1;X2w2(θ)− y2; . . . ;Xmwm(θ)− ym] = Xs(θ)− y, (25)

where X =

X1

. . .
Xm

 and s(θ) =

∇F
∗
1 (−U(θ))

...
∇F∗m(−U(θ))

.

As discussed earlier that∇F∗ is 1
γ -Lipschitz continuous, therefore:

‖∇D(θ)−∇D(φ)‖ = ‖X(s(θ)− s(φ))‖
≤ ‖X‖2‖s(θ)− s(φ)‖
= ‖X‖2‖∇F∗(−U(θ))−∇F∗(−U(φ))‖F

≤ ‖X‖2
γ
‖U(θ)− U(φ)‖F

=
‖X‖2
γ
‖XT (θ − φ)‖

≤ ‖X‖
2
2

γ
‖θ − φ‖

=
maxi ‖Xi‖22

γ
‖θ − φ‖.

(26)

Appendix C. Proof of Theorem 6

LetH(z, θ) =
∑m

i=1(‖zi‖2 − θTi zi). The Lagrange function in Eq. (5) can be written as

L(W, z, θ) = H(z, θ) + J (W; θ). (27)

Using Algorithm 2, Wk is a minimizer of Jµ(W; θ). Then

0 ∈ ∂

∂W
Jµ(Wk; θ), (28)

where ∂
∂WJµ(Wk; θ) denotes the sub-gradient of Jµ(W; θ) w.r.t W at Wk. Note that Jµ(W; θ)

is strongly convex with parameter γ, and Jµ(W; θ) is a smooth approximation with parameters
(γ + 4ε+ λ

µ ,dλ2 ). For any W ∈ Rd×m, we have

γ

2
‖W −Wk‖2F ≤Jµ(W; θ)− Jµ(Wk; θ)

≤J (W; θ) + βµ− J (Wk; θ).
(29)

Let zk = arg minzH(z, θk). ∀z ∈ R
∑m
i=1 ni ,

H(z, θk)−H(zk, θk) ≥ 0. (30)

Combining Eqs (29) and (30) with (27), we have

γ

2
‖W −Wk‖2F ≤ L(W, z, θk)− L(Wk, zk, θk) + βµ. (31)

10
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From Eq. (8), we know thatH(zk, θk) = 0. Therefore

D(θk) = min
W
J (W; θk) = J (Wk; θk) = L(Wk, zk, θk). (32)

Let W∗, z∗ and θ∗ denote a minimizer of Eq. (5). The equality constraint in (5) implies that
z∗i = Xiw

∗
i − yi. Then we have

D(θ∗) = L(W∗, z∗, θ∗) =
m∑
i=1

‖z∗i ‖2 + λ‖W∗‖2,1 + f(W∗) + g(W∗) = L(W∗, z∗, θk). (33)

By combining Eqs (31)-(33) and Theorem 5, we get

γ

2
‖Wk −W∗‖2F ≤ D(θ∗)−D(θk) + βµ ≤ 2τL‖θ∗ − θ0‖2

(k + 1)2
+ βµ, (34)

where by placing β = dλ
2 , we obtain:

‖Wk −W∗‖F ≤

√
4τL‖θ∗ − θ0‖2
γ(k + 1)2

+
dλµ

γ
. (35)

Appendix D. Proof of Theorem 7

For sake of simplicity, let’s denote W(θ) as W since it won’t cause any confusion. So is J (W)
for J (W; θ). As Jµ is Lf + λ

µ = 4ζ + γ + λ
µ -smooth, by Theorem 5 we have:

Jµ(Wk)− J ∗µ ≤ 2(Lf +
λ

µ
)
‖W0 −W∗

µ‖2F
(k + 1)2

. (36)

By making use of Definition 1:

Jµ(W) ≤ J (W) ≤ Jµ(W) + βµ. (37)

Specifically, we have J ∗ = J (W∗) ≥ Jµ(W∗) ≥ J ∗µ . Combining the above equations we have:

J (Wk)− J ∗ ≤ Jµ(Wk) + βµ− J ∗µ

≤ 2Lf
‖W0 −W∗

µ‖2F
k2

+
2λ

k2µ
‖W0 −W∗

µ‖2F + βµ
(38)

Thus, for a certain K > 0, for any k ≥ K:

J (Wk)− J ∗ ≤ 2Lf
‖W0 −W∗

µ‖2F
K2

+
2λ

K2µ
‖W0 −W∗

µ‖2F + βµ (39)

By minimizing the right-hand side regarding µ, we obtain:

J (Wk)− J ∗ ≤ 2Lf
‖W0 −W∗

µ‖2F
K2

+ 2
√

2λβ
‖W0 −W∗

µ‖F
K

, (40)

11
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where µ∗ =
√

2λ‖W0−W∗
µ‖F

K
√
β

. Therefore, as long as 2Lf
‖W0−W∗

µ‖2F
K2 + 2

√
2λβ

‖W0−W∗
µ‖F

K ≤ ε, we
can guarantee Wk is an ε-optimal solution for k ≥ K.

Denoting t =
√

2‖W0 −W∗
µ‖F /K, the above inequality reduces to:

Lf t
2 + 2

√
λβt− ε ≤ 0, (41)

by the fact that t > 0, we have:
√

2‖W0 −W∗
µ‖F

K
= t ≤

−
√
λβ +

√
λβ + Lf ε

Lf
=

ε
√
λβ +

√
λβ + Lf ε

, (42)

by which we conclude K ≥
√

2‖W0−W∗
µ‖F (

√
λβ+
√
λβ+Lf ε)

ε .

If we choose K = K1 :=
√

2‖W0−W∗
µ‖F (

√
λβ+
√
λβ+Lf ε)

ε then we have

µ∗ =

√
2λ‖W0 −W∗

µ‖F
K
√
β

=

√
λ

β

ε
√
λβ +

√
λβ + Lf ε

=

√
2

d

ε
√
αβ +

√
αβ + Lf ε

,

(43)

given α = λ. Then for any k ≥ K1, J (Wk)− J ∗ ≤ ε.

On the other hands:
J (W∗

µ)− βµ ≤ Jµ(W∗
µ) ≤ J ∗ ≤ J (W0), (44)

which along with

µ∗ =

√
λ

β

ε
√
λβ +

√
λβ + Lf ε

≤

√
λ

β

ε√
λβ +

√
λβ
≤ ε̄

2β
(45)

implies J (W∗
µ) ≤ J (W0) + ε̄

2 . Since J has bounded level sets, therefore ‖W∗
µ‖F ≤ Rδ where

δ = J (W0) + ε̄
2 . Thus ‖W∗

µ −W0‖2F ≤ (‖W∗
µ‖F + ‖W0‖F )2 ≤ (Rδ + ‖W0‖F )2 = Γ and

K1 =

√
2‖W0 −W∗

µ‖F (
√
λβ +

√
λβ + Lf ε)

ε

≤
√

2‖W0 −W∗
µ‖F (2

√
λβ +

√
Lf ε)

ε

≤
2
√

2λβΓ +
√

2LfΓε

ε

=
2λ
√
dΓ +

√
2LfΓε

ε
:= K2,

(46)

where we make use of the fact that β = dλ
2 ,
√
γ + δ ≤ √γ +

√
δ and ‖W0 −W∗

µ‖F ≤
√

Γ.

Therefore, for k ≥ K2, we have J (Wk; θ)− J (W∗; θ) ≤ ε.
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