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ABSTRACT

Long-context extrapolation aims to extend the contextual window of large lan-
guage models to process more contextual information, which is widely adopted
in industrial applications. Current mainstream solutions involve increasing the
rotation base of RoPE |Su et al,| (2024) to varying degrees or introducing opti-
mization strategies such as “low-frequency extrapolation and high-frequency in-
terpolation”, in order to enhance the model’s extrapolation capabilities for long
context. Actually, these methods alter the representation distribution of positional
information by adjusting the rotation frequency of positional encoding, resulting
in inevitably disrupt the attention distribution within the original training length
range. In this paper, we analyze this phenomenon from a theoretical perspective
and propose a long-context extrapolation strategy that preserves the known dis-
tribution via periodic extension of high-dimensional positional encoding. Based
on this strategy, we design two methods, namely Extra-PE and Extra-MPE, to
significantly enhance the models’ long-context extrapolation capabilities without
disrupting the positional encoding distribution within the original training length.
Through extensive experimental results, it is found that the long-context extrap-
olation method based on periodic extension can enhance the model’s capability
in extrapolating long-contexts. Specifically, a model fine-tuned on 32k tokens
can extrapolate beyond 80k tokens, surpassing the performance of the NTK-32k
model and approaching that of the YaRN-64k model. Furthermore, this method
demonstrates significantly superior performance in extrapolating extremely long-
contexts compared to other methods. Notably, a model fine-tuned on 8k tokens
still does not exhibit perplexity explosion when extrapolating to 80k tokens. Ad-
ditionally, during the fine-tuning process, our approach achieves optimal perfor-
mance using only one-fourth of the fine-tuning steps (100 steps) compared to the
YaRN [Peng et al.| (2023)) method. Secondly, in our comparative experiments, we
found that the period in which the model learns a sufficient number of positional
encoding has a significant impact on long-context extrapolation capability. Fi-
nally, through attention analysis, we discovered that our method can still maintain
a stable level of attention at ultra-long distances, with the mean attention value
exceeding O at these distances.

1 INTRODUCTION

Inrecent years, large language models (LLMs) based on the Transformer|Vaswani| (2017) has rapidly
developed, demonstrating a powerful reasoning ability that has played a very significant role in the
fields of natural language processing (NLP). Long-context extrapolation is a fundamental research
area in the field of LLMs, referring to the capability of processing and generating text based on an
extended context length.

In order to expand the LLMs’ context window, it is necessary to increase the positional encoding
to enhance the model’s ability to understand longer contexts. Currently, Rotary Position Embed-
ding (RoPE) [Su et al| (2024) has become the mainstream positional encoding method for large
language models, e.g., LLaMA [Touvron et al.| (2023). However, when the context length exceeds
the training text length, directly extrapolating with RoPE does not achieve the expected results Press
et al.|(2021). With the deepening of research, some research efforts have been proposed for Long-
context extrapolation based on RoPE, such as positional interpolation |Chen et al.| (2023), NTK-
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Aware Scaled RoPE Peng & Quesnelle| (2023), and the improved methods based on NTK-Aware
like Dynamic NTK |[Emozillal (2023)), NTK-by-parts Bloc97| (2023), and YaRN [Peng et al.| (2023)).
NTK-series methods are widely adopted in long-context extension ( [Young et al.|(2024)), Touvron
et al.|(2023), [Liu et al.| (2024))).These methods seek to expand the positional encoding window by
increasing the base value. Another method Liu et al.|(2023) involves continuously reducing the base
value, which significantly shortens the rotation period of the positional encoding. This allows the
positional encoding in high-dimensional space to cover the entire rotation period within a limited
training length as much as possible, and this approach performs well in terms of Perplexity (PPL).
However, Men et al.| (2024)) indicates that drastically lowering the base value also has some nega-
tive impacts on the model’s attention mechanism, specifically by disrupting the long-context decay
property of the attention mechanism. By observing how attention scores vary with relative distance
within both high-frequency and low-frequency spaces, this paper finds that the low-frequency space
of positional encoding is of crucial importance for capturing long-distance attenuation. The specific
process is detailed in Appendix A.1. In addition, some work also focuses on achieving Long-context
extrapolation by adjusting the attention mechanism|Chiang & Cholak] (2022); |Suf(2023)).

Previous work has demonstrated good performance in achieving long-context extrapolation, but the
current mainstream methods mainly adjust the rotation base (base) or m of ROPE. However, the
drawback of this approach is that it alters the distribution of positional encoding within the original
training length range of the model, which in turn has a certain impact on the attention distribution
within that range. In this paper, firstly, based on the aforementioned issues, we attempt to en-
hance the long-context extrapolation capability without disrupting the positional encoding distribu-
tion within the original training length range of the model. Therefore, we propose a new theoretical
perspective for analyzing long-context extrapolation capabilities, and from this perspective, we offer
a novel viewpoint on the out-of-distribution (OOD) problem and the classification of current main-
stream long-context extrapolation methods. Secondly, from our new theoretical perspective, we pro-
pose two long-context extrapolation methods based on periodic extension: Extra-PE (Long-context
Extrapolation based on Periodic Extension) and Extra-MPE (Long-context Extrapolation based on
Mirrored Periodic Extension). These are currently the first effective out-of-domain long-context ex-
trapolation methods. The core idea of this method is “direct extrapolation for high frequencies and
periodic extension for low frequencies,” which differs from the “high-frequency extrapolation and
low-frequency interpolation” approach proposed by "NTK-aware.” Finally, we conducted extensive
experiments to verify the effectiveness of the long-context extrapolation methods based on periodic
extension. In summary, the main contributions of this paper are as follows:

1. This paper proposes a new theoretical perspective for analyzing long-context extrapolation capa-
bilities.

2. Based on this new theoretical perspective, this paper introduces two long-context extrapolation
methods using periodic extension. These methods not only achieve effective extrapolation capabili-
ties but also offer higher training efficiency. Specifically, they are capable of sufficient extrapolation
to over twice the original length after only 50 fine-tuning steps. When fine-tuned for 100 steps, the
model fine-tuned on 16k tokens achieves optimal extrapolation performance, demonstrating a four-

fold improvement in fine-tuning efficiency compared to the current best long-context extrapolation
method, YaRN [Peng et al.[(2023).

3. In terms of extrapolation capabilities, the larger the context window of the fine-tuning data,
the more significant the improvement in extrapolation capabilities(Figure [I)). The two long-context
extrapolation methods based on periodic extension designed in this paper excel at extrapolation
on ultra-long-context windows. The model fine-tuned on 32k tokens can effectively extrapolate
beyond 80k, with extrapolation performance far surpassing the NTK-32k model and approaching
the YaRN-64k model. Moreover, after fine-tuning the model using the Extra-PE method and data
of 8k length, the model still does not show significant perplexity explosion at a text length of 80k.
Additionally, for models trained with the same specification of fine-tuning data (greater than 16k
tokens), the Extra-MPE method demonstrates significantly better extrapolation capabilities on ultra-
long-context windows compared to the Extra-PE method, but the Extra-PE method performs slightly
better on short-distance text windows.

4. This paper finds that the OOD problem is not the only important factor affecting a model’s extrap-
olation capabilities; simultaneously, the model’s learning of the periodic distribution of positional
encoding is also crucial.
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Figure 1: The fine-tuned model with different extrapolation methods exhibits varying PPL (Perplex-
ity) change curves on long-distance context windows.

5. In Appendix A.1 of this paper, various analyses are conducted on the trend of attention scores for
the same token as the relative distance increases. It is found that the high-frequency information of
positional encoding exhibits significant attenuation at short distances, while the low-frequency in-
formation exhibits significant attenuation at long distances. This demonstrates that the long-distance
attenuation of attention distribution in ROPE is primarily due to low-frequency positional encoding.

6. The long-context extrapolation method based on periodic extension designed in this paper exhibits
significantly different attention score performance compared to other methods (Figure [2). Firstly, it
maintains consistency with the original model within the context window of the pre-trained model,
enabling the model to prioritize attention on closer similar tokens in short-distance perception. Sec-
ondly, this method retains a certain level of attention at ultra-long distances; when the average atten-
tion score of other methods at ultra-long distances is 0, the average attention score of this method
at ultra-long distances is greater than 0, thus enabling the model to have better ultra-long-distance
extrapolation capabilities.

2 BACKGROUND AND RELATED WORK

2.1 PRELIMINARY

ROoPE |Su et al.| (2024) serves as the theoretical foundation for current long-context extrapolation,
which is an improved positional encoding method that has been widely adopted in large language
models. RoPE improves upon traditional absolute positional encoding, e.g., sinusoidal positional
encoding |Vaswani| (2017)), by aiming to better capture relative position information while avoiding
direct modifications to the input vectors. Unlike traditional sinusoidal positional encoding, RoPE
does not directly add positional information to the input vectors. Instead, it embeds positional
information into the vectors g and k, which are the results of transforming the input vector = through
the query matrix @) and the key matrix K during the attention mechanism computation. This design
preserves the original information of the input vectors, as well as effectively incorporates relative
positional information, significantly enhancing the model’s performance and robustness.
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Figure 2: The curves of attention scores for similar tokens, as they increase with relative distance,
under different extrapolation methods.

Formally, the transformation process of RoPE in high-dimensional space is represented as:

R(mO) =
cos(mby) —sin(mby) 0 0 0 0
sin(mfy)  cos(mbyp) 0 0 0 0
0 0 cos(mb1) —sin(mb;) 0 0
0 0 sin(mby)  cos(mb) 0 0
: : : : : 0 0
0 0 . . oo cos(mbgjo_y)  —sin(mbga_1)
0 0 e e oo sin(mbga_q)  cos(mbga_1)

where R(m©)qy, is the process of encoding positional information, © = (0o, 01, ...,0q/2-1)) rep-
resents the rotation frequencies in each two-dimensional subspace. The magnitude of these rotation
frequencies is related to the dimension ¢ as follows:

1
i = —
base’®

(@)

where d is the total dimension of the positional encoding vector.

ROPE divides the high-dimensional positional encoding vector into g subspaces, each consisting
of a pair of dimensions. The process of relative positional encoding involves rotating the high-
dimensional vectors ¢ and k within these subspaces. The rotation frequency 6; for each subspace
decreases as the dimension ¢ increases (base > 1). The base in Equation 2| which initially is
10000, is treated as a hyperparameter to improve long-context extrapolation. This value is referred
to as the rotation base in this paper. Additionally, it is evident from Equation [2] that the high-
dimensional space of positional encoding corresponds to a low-frequency space. Conversely, the
low-dimensional space is equivalent to a high-frequency space. In this paper, we use the terms
high-dimensional and low-dimensional for relevant descriptions.
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After the RoPE transformation, the process of obtaining the attention scores for vectors ¢ and k can
be expressed as:

score,, n = (R(mO)gym)" (R(mO)k,,) = ¢F Ry—m(0)ky, 3)

From Equation[3] it can be seen that RoPE achieves the effect of relative positional encoding through
absolute positional encoding. The position indices and the base value directly influence the attention
scores between the vectors g and k. Additionally, these two parameters are also important subjects
of current research in long-context extrapolation.

In this paper, we define the maximum context length during the model training process as Lyrin
and the maximum context length during the model inference stage as Liys. The ratio of these two
lengths is given by s = % When s > 1, the long-context extrapolation problem arises. To
address this task, a straightforward manner, namely PI (Positional Interpolation) |Chen et al.| (2023)),
is to implement linear interpolation to compresses the positional index m of RoPE proportionally
based on the ratio of the input length during inference to the original maximum context length. By
reducing the distance between adjacent tokens, it achieves a certain level of extrapolation. Due to
the problem of subpar performance in real-world scenarios of PI, recent researchers have extended
the RoPE mechanism to expand the context length. Most of these methods achieve the extension
of positional encoding by modifying the base value in Equation [2]and can be categorized into two
approaches: increasing the base value and decreasing the base value.

2.2 LARGER ROTARY base METHODS

NTK-series method is a set of non-linear interpolation methods. Instead of directly modifying the
value of m in Equation [2} these methods achieve the interpolation by increasing the base value in
#. The typical one like NTK-aware Scaled RoPE [Peng & Quesnelle| (2023)), is implemented to let

O;m = ﬁ, and take ﬁ = 2=, which gives k = st Clearly, if k takes the corresponding

value in each dimension, it is equivalent to the PI method. This method sets & as a quantity related
2
only to s, i.e., leti = % — 1, then k = s7-2. The purpose of this is to make the highest dimension

of the positional encoding exactly equivalent to the interpolation. However, the disadvantage of this
approach is that when we take the second-highest dimension ¢ = % — 2, there exists: —%— <
(Bsd=2)s
7— - This means that with this value of k, some dimensions of the positional encoding cannot be
2

s
fully interpolated.

Therefore, researchers have made several improvements to the NTK method, including NTK-by-
part/Bloc97|(2023), Dynamic NTK |Emozilla|(2023), and YaRN Peng et al.[(2023)). YaRN Peng et al.
(2023) also introduces an attention correction factor to mitigate the disruption caused by positional
interpolation on attention.

2.3 SMALLER ROTARY base METHODS

Increasing the base value is equivalent to interpolation, but decreasing the base value is entirely
different. By reducing the base, the period of the positional encoding becomes shorter, allowing the
model to learn a more diverse distribution of positional encoding during the training phase. |Liu et al.
(2023) conducted an in-depth study on the process of scaling the base and found that decreasing the
base also achieves good extrapolation results. However, in Men et al.| (2024), further analysis from
the perspective of the attention mechanism was performed on the method of decreasing the base.
The study found that the process of reducing the base has a certain impact on the attention scores
and identified an absolute lower bound for the base value.

Adjusting the base value undoubtedly modifies the original positional encoding distribution. Al-
though this can address the out-of-distribution (OOD) problem for new positional encoding, it can
lead to the forgetting of the originally learned positional encoding. Different from the above meth-
ods, this paper proposes a method for long-context extrapolation that differs from the aforemen-
tioned approaches. It addresses the OOD problem for new positional encoding without altering the
original positional encoding distribution.



Under review as a conference paper at ICLR 2025

Location index sequence

The complete region of the location code distribution

The visible region of the location code distribution
Location index within training range

Location index out of training range

The encoded value of the position in the training range

The encoded value of the position outside the training range

Periodic extension
/\

o eo e OWp

0-0=0-0=Cr

Position interpolation

Figure 3: Schematic of positional encoding distribution in a high-dimensional subspace

3 THEORY PERSPECTIVE

The OOD problem is widely regarded as a key factor limiting the Long-context extrapolation ca-
pabilities of LLMs Ruoss et al. (2023). To address this, many researchers have proposed various
positional interpolation methods to confine token position indices within a limited window |Chen
et al.[(2023)). This paper presents a new perspective for analyzing Long-context extrapolation capa-
bilities.

Figure [3| represents the distribution of positional encoding in a certain high-dimensional subspace.
It is divided into three regions (A, B and C) and four types of data distribution points with different
colors. Region A represents the linearly increasing position indices during the encoding process. Re-
gions B and C both show the positional encoding distributions after the ROPE operation, but region
B includes the full range of encoding (even beyond the training length), while region C represents
the encoding learned within the training length. The areas within B but outside C represent unknown
or OOD regions. Differently colored dots illustrate the data distribution across these regions. The
reason for describing a high-dimensional subspace is that in a low-dimensional subspace, region C
would be infinitely close to region B. In contrast, the high-dimensional subspace is the focus for
Long-context extrapolation. When the inference text length exceeds the training text length, the
corresponding positional encoding are likely to fall into the unknown areas of region B, leading to
the OOD problem.

Below, we use the Figure [3|to categorize and describe the existing mainstream methods for Long-
context extrapolation. These methods can be broadly classified into three categories: positional
index interpolation within region A, outward expansion from the visible area C of the positional en-
coding distribution, and inward convergence towards the complete area B of the positional encoding
distribution. With this theoretical perspective, direct extrapolation involves making no adjustments
for positions that exceed the training text length, relying solely on the good extrapolation properties
of ROPE. The result is that a large number of positional encoding fall within the unknown areas
of region B in the high-dimensional subspace, leading to very poor extrapolation performance. To
address this, there are three main approaches to mitigate this issue as follows.

Position Interpolation. PI|Chen et al.|(2023) involves compressing and adjusting the positions that
exceed the training text length within region A. This is done by reducing the spacing between posi-
tion indices within the training length range and directly inserting the excess position indices into the
training length, thereby keeping the positional encoding distribution within the visible area C. Fur-
ther, researchers have proposed various strategies to adjust the base of RoPE, including NTK|Peng &
Quesnelle| (2023), NTK-by-part Bloc97|(2023), dynamic NTK , and Yarn |Peng et al.| (2023). These
methods are essentially improved versions of PI, using nonlinear interpolation based on different
dimensions of the positional encoding.

Outward Expansion of the Visible Area of positional encoding Distribution. Randomized po-
sitional encoding |Ruoss et al.| (2023)) achieves the expansion of area C by performing random sam-
pling over longer sequences within region A, thereby reducing the likelihood of positional encoding



Under review as a conference paper at ICLR 2025

falling into unknown regions. Similarly, the method of reducing the base involves compressing the
rotation periods across all dimensions, allowing the model to learn the positional encoding distri-
bution more thoroughly during the training phase. This effectively expands the visible area of the
positional encoding distribution.

Inward Convergence of the Complete Area of positional encoding Distribution. The advantage
of this approach is that it does not disrupt the visible area C of the model’s positional encoding
distribution, ensuring that the attention distribution within the training length remains intact. To
the best of our knowledge, no such methods currently exist. Analysis of Figure [3|reveals that this
approach aims to converge the unknown regions in Area B into the visible region C. To achieve
this, we truncate the unknown distributions that have not appeared within the training length in
a high-dimensional space, retaining only the unknown code distributions that have been learned
within the training length. Based on this, we propose a periodic extension method for long-context
extrapolation.

4 METHODS

When the dimension of the positional encoding d > d¢z¢rq, it is considered that the positional
encoding distribution within that dimensional subspace is incomplete, meaning there are unknown
regions as shown in Figure 3]

Motivated by the following two points, this paper designs two long-context extrapolation methods
based on periodic extension:

1. Analyze the impact of non-persistent positional encoding strategies on the model training process.

2. Through comparative analysis, verify the primary effects of the two methods on long-context
extrapolation capability and long-distance attention distribution.

In this case, we propose two methods via periodic extension shown in Figure[d] i.e., Long-context ex-
trapolation based on periodic extension of the positional encoding distribution (Extra-PE for short)
and Long-context extrapolation based on mirrored periodic extension of the positional encoding
distribution (Extra-MPE for short). By periodically extending the learned positional encoding dis-
tribution from the training process to intervals beyond the L;,.4;y, We effectively erase the positional
encoding distribution in the unknown regions.

Positional Encoding based on PE (Periodic Extension) Positional Encoding based on MPE (Mirrored Periodic Extension)
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Figure 4: Long-context extrapolation via periodic extension and mirrored periodic extension

4.1 EXTRA-PE

Based on the preceding analysis, we only need to apply special handling to dimensions higher than
deqtra, While direct extrapolation can be used for the lower-dimensional subspaces. Therefore, our
research focus is on the high-dimensional subspaces greater than d...,. We take a high-dimensional
subspace ¢ as the subject of our study and define the extrapolation period as T¢,¢¢,, the dimension
is dim, and the length of the input text is seq;.,,. The rotational transformation at position m can be

represented as R’ (m#;):
, . . i, > Jextra _
R (mb;) = R((m *6;) mod.Temten)7 seq-len > Lirqin and dim > %= 1
R(m#;), otherwise

4)
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where Te:rten = Ltrainei-

Based on Equation 4] we can achieve the effect shown in the left figure of Figure 4| within the
high-dimensional positional encoding space. Although this operation causes periodic overlapping
of the positional encoding in the high-dimensional space, it does not perform periodic replication
across the entire dimensional space, thus preserving the distinguishability property of the positional
encoding.

4.2 EXTRA-MPE

Following the above definitions, we continue to derive the process of mirrored periodic extension
for the positional encoding distribution in high-dimensional space.

First, we complete the mirroring process of the positional encoding distribution:

R(m@l), m € [0, Ltrain)

G(mel) B {R(Texten - m91)7 m E [Ltraina 2Ltrain) (5)

where T,pten = 2L4trqint;. Then, the process based on mirrored periodic extension is represented
as:

R(m0; mod Tegten), | —2—] € {2n | n € N}
H ) — Lirain
(m8:) {R((Temn —mb;) mod Tegten), |g—] €{2n+1|n €N} ©

Equation [6]can be combined as:

H(mb;) = (LLt : | mod 2)R((Texten — mb;) mod Tezten)

m (7

+(1—] ] mod 2)R(m#; mod Tepen)

Ltrain

Therefore, the final formula for Extra-MPE can be expressed as:
' H 07‘ en Lrain ddi >M_1
{ (m )7 Ste > t ans 2Mm > o (8)

Rt (méi) = R(m#;), otherwise

Through Equations [7] and [8] we can achieve the effect shown in the right sub-figure of Figure f]
within the high-dimensional positional encoding space.

The Extra-MPE method addresses the issue of discontinuity in the positional encoding strategy
present in the Extra-PE method, albeit with an increase in computational cost. Additionally, the
extrapolation period of Extra-MPE is longer than that of Extra-PE, which means that when using
the same length of fine-tuning data, the Extra-PE method can learn more periodic information.

Our method, which involves periodic extension of high-dimensional positional encoding distribu-
tions, has the following advantages: it only intervenes when the input text length exceeds Liyqin
and the dimension is higher than d.,,,, thus preserving the positional encoding distribution within
the training length L;,..;, and avoiding the attention field resolution issues caused by the compres-
sion of distances between adjacent positions in positional interpolation methods. Additionally, by
converging the full positional encoding distribution in high-dimensional subspaces, it addresses the
OOD problem. Compared to extending the learning range of high-dimensional positional encod-
ing by reducing the base, this approach theoretically has a higher potential for achieving infinite
extrapolation.

5 EXPERIMENTS

Based on the above analysis, this paper designs relevant experimental sections. Through experimen-
tal testing, it verifies the feasibility of the periodic extension approach in long-context extrapolation
capability and its strong extrapolation performance in ultra-long distance windows. Additionally, in
various comprehensive ability evaluations, these two methods demonstrate excellent performance,
especially in long-context summarization and QA tasks, where they show significant advantages.
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5.1 TRAINING

For detailed information on model training, please refer to Appendix B, Section 1.1.

5.2 EVALUATIONS

In order to better analyze the performance and compare the advantages and disadvantages of the
two periodic extension methods mentioned in this paper, specifically in terms of Long-context ex-
trapolation and overall model capability, we need to conduct detailed experimental comparisons and
theoretical analyses.

For specific experimental content and analysis results, please refer to Appendix B, Section 1.

6 CONCLUSION

This paper proposes a new perspective for analyzing the extrapolation capability of long-context,
and based on this perspective, introduces a novel approach and specific implementation for solv-
ing Out-of-Distribution (OOD) problems. We achieve the purpose of long-context extrapolation by
periodically extending the positional encoding beyond the length of the pre-training data in high-
dimensional space. Additionally, this paper proposes two methods of periodic extension: peri-
odic extension of high-dimensional positional encoding and mirrored periodic extension of high-
dimensional positional encoding. Corresponding comparative experiments are conducted for both
methods to further verify the effectiveness and advantages of this approach. The specific advantages
of this method are summarized as follows:

1.In terms of fine-tuning efficiency, the long-text extrapolation method based on periodic extension
designed in this paper is four times as efficient as the YaRN method. That is, we can achieve very
good extrapolation results with just a few fine-tuning steps (100 steps).

2.In terms of attention distribution, the long-context extrapolation method designed in this paper
does not alter the attention distribution within the pre-training length range of the model, meaning
it maintains the model’s attention to adjacent tokens at short distances. Additionally, the long-
context extrapolation method based on periodic extension demonstrates stronger ultra-long-context
extrapolation capabilities. This experimental result corresponds to the conclusion that this method
enables the model’s attention at ultra-long distances not to decay to zero.

3.Through experimental validation, this paper finds that, besides the OOD problem, the model’s
ability to learn sufficient periodic positional encoding is also an important factor affecting its long-
context extrapolation capability.

4. When comparing the two extrapolation methods designed in this paper, Extra-PE performs better
on short-distance context windows and can learn more periodic characteristics with the same length
of fine-tuning data. On the other hand, the Extra-MPE method demonstrates stronger ultra-long-
context extrapolation capabilities after learning positional encoding information for at least four
periodic lengths.
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APPENDIX

A.1 PERSPECTIVE OF ATTENTION DISTRIBUTION

In this paper, by analyzing the changes in attention scores between two identical tokens as the
relative distance increases, we theoretically investigate the following two questions:

1. Whether adjusting the base and the Long-context extrapolation method based on periodic exten-
sion produce different effects on the attention distribution at short and long distances.

2. Whether the long-distance attenuation observed in the attention distribution when using the ROPE
(Rotary Position Embedding) positional encoding method is primarily attributed to the influence of
low-frequency spatial positional encoding.

A.1.1 THE INFLUENCE OF THE BASE ON THE ATTENTION DISTRIBUTION

The changes in attention scores for the same tokens as the relative distance increases, when the base
is set to 10000, 500, and 100000, are shown in Figure@ The experimental results indicate that:

1. Within a short-distance window, adjusting the base will cause significant changes in attention.
Increasing the base will enhance the attention between adjacent tokens, while decreasing the base
will reduce it.

2. Within an ultra-long-distance window, adjusting the base results in an attention distribution that
is consistent with the original base. The attention ultimately oscillates around the mean value of 0.

A.1.2 THE INFLUENCE OF THE EXTRA-PE AND EXTRA-MPE METHODS ON THE ATTENTION
DISTRIBUTION

By comparing the impact of the Extra-PE and Extra-MPE methods on the attention scores as the
relative distance increases, as shown in Figure|/| the experimental results indicate that:

1.When using the method based on periodic extension for long-context extrapolation within the
pretraining data window of the model, no changes occur in the attention. This performance allows
the model to maintain its original ability when processing nearby tokens.

2.When the length of the inference data exceeds the size of the pretraining data window, both the
Extra-PE and Extra-MPE methods cause a certain degree of increase in the attention distribution.
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Figure 5: The curve of attention scores between identical tokens as the relative distance increases,
when the base takes different values.

Additionally, when the length of the inference data exceeds the length of the pretraining data, the
Extra-PE method results in a sudden change in attention.

3.Within ultra-long-distance windows, the method based on periodic extension causes the mean
value of the attention to eventually converge to a value greater than 0. This performance enables the
model to have better extrapolation performance when extrapolating to longer distances.

A.1.3 THE IMPACT OF DIFFERENT FREQUENCY SPACES ON THE LONG-DISTANCE
ATTENUATION OF ATTENTION

With the base set to 10000, we observe the trend of attention distribution changes in both high-
frequency and low-frequency spaces, and further analyze the impact of different frequency spaces
on the long-distance attenuation of attention. In this paper, we dissect the 128-dimensional positional
encoding and select the first 36 dimensions and the last 36 dimensions of the positional encoding
vectors respectively for attention score calculation. At this point, the changes in attention scores for
the same tokens as the relative distance increases are shown in Figure 9. The experimental results
indicate that:

1. Within a short-distance context window, the positional encoding in the high-frequency space is
highly sensitive to the distance between tokens, demonstrating a clear ’short-distance attenuation’
effect on attention. whereas, the positional encoding in the low-frequency space is relatively insen-
sitive to distance.

2.In the long-distance context window, the positional encoding in the high-frequency space becomes
insensitive to the distance between tokens, and the attention distribution exhibits continuous and
non-decaying oscillations. In contrast, the positional encoding in the low-frequency space shows
a significant attenuation as the relative distance increases. Therefore, the positional encoding in
the low-frequency space is an important factor contributing to the ’long-distance attenuation’ of
attention within the entire encoding space.
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Figure 6: The curve of attention scores between identical tokens as the relative distance increases
when implementing Long-context extrapolation using the Extra-PE and Extra-MPE methods.
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Figure 7: The variation curve of attention scores within high-frequency and low-frequency spatial
domains.

3.Within an ultra-long-distance context window, regardless of whether it is the positional encoding in
the high-frequency space or the low-frequency space, the attention exhibits oscillating behavior with
a mean value of 0 and without continuous attenuation. However, the amplitude of the oscillations in
the low-frequency space is smaller than that in the high-frequency space.
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B.1 EXPERIMENTAL CONTENT
B.1.1 TRAINING

The base model for this method is Llama2-7b [Touvron et al.| (2023)), with a data context window
size of 4k during its training phase. The model training process is completed based on the YaRN
Peng et al.[(2023) training framework. Additionally, in terms of model structure, only the strategy
for implementing positional encoding was adjusted accordingly, without modifying other aspects
of the model structure or introducing attention adjustment factors in the process of calculating the
attention score. To test the impact of the number of model training steps and the context length
of the model fine-tuning data on the model’s extrapolation performance, the model training was
conducted based on two dimensions: firstly, the number of training steps was set to 50, 100, 200,
and 400, respectively; secondly, the context length of the model fine-tuning data was set to 8k,
16k, and 32k, respectively. All experiments are conducted on a machine equipped with 8 NVIDIA
A100 GPUs, each with 40GB of memory. In terms of hyperparameters, we fixed the learning rate
at 2e-5, used the Adam optimizer, set the global batch size for model training to 64. Additionally,
we leveraged the deepspeed framework [Rasley et al.| (2020) to achieve efficient model training,
and utilized PyTorch |Paszke et al.| (2019) with Fully Sharded Data Parallelism [Zhao et al.| (2023)
and Flash Attention 2 Dao| (2023)), where the zero_optimization adopts ZeRO3 strategies Jackson
et al.| (2010). In terms of the dataset, we adopted the same training set as the YaRN |Peng et al.
(2023)) method. Specifically, the model was fine-tuned based on the PG19 dataset Rae et al.|(2019).
During the model training process, we validated Motivation 1 in Section 4 and found that the use of
non-contiguous positional encoding did not lead to failure in the model training process.

B.1.2 PERPLEXITY EVALUATIONS

During the model PPL (Perplexity) evaluation phase, we utilize the Proof-pile |Azerbayev et al.
(2022) dataset, which comprises numerous long sequence samples. From this dataset, we have se-
lected 10 samples as the test set for perplexity evaluation, with each sample containing at least 100K
tokens in length. For the perplexity evaluation, we employ the sliding window method introduced
by |Press et al.|(2021). However, to more accurately assess the model’s perplexity on long sequence
texts, this paper does not set a specific size for the sliding window or a sliding step. Instead, we
adopt a truncation method, where the perplexity calculation is performed in one go within the entire
truncated text window, i.e., truncate=True.

Firstly, we tested the model’s perplexity performance within a context window of 16k tokens as the
window size increases. We truncated the data samples sequentially from 2k tokens to 16k tokens,
with a step size of 2k tokens each time.

In order to better analyze the performance and advantages/disadvantages of the two periodic ex-
tension methods mentioned in this paper in terms of long-context extrapolation and overall model
capability, we need to conduct detailed experimental comparisons and theoretical analyses. The
specific evaluation content mainly includes three aspects: Perplexity Evaluations, The long-context
Retrieval Capability, and The Long Context Understanding Capability.

Figure [§] presents a comparison of the PPL results for the Llama2-7B model extrapolated using
Extra-PE, Extra-MPE, "NTK-aware” |Peng & Quesnelle| (2023), and YaRN methods [Peng et al.
(2023), respectively. The results indicate:

1.Without fine-tuning on new data, directly using the Extra-PE or Extra-MPE methods yields rel-
atively poor results. This implies that merely addressing the OOD (Out-of-Distribution) problem
does not directly lead to a comprehensive improvement in Long-context extrapolation.

2.During the fine-tuning stage, the model must learn positional encoding for at least 4 cycles (i.e.,
the context length of the fine-tuning data should be at least 4 times the maximum length of the pre-
training data) for there to be a significant improvement in extrapolation capability. This suggests
that enabling the model to learn the periodicity of the positional encoding distribution is crucial for
significantly enhancing its long-context extrapolation ability.

3.Within short-distance context windows, the perplexity performance of the Extra-PE method is
superior to that of the Extra-MPE method.
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Figure 8: The fine-tuned model with different extrapolation methods exhibits varying PPL (Perplex-
ity) change curves on short-distance context windows.

Secondly, we further tested the model’s perplexity performance within a long-context window of 80k
tokens as the window size increased. We truncated the data samples in increments of 10k tokens,
ranging from 20k tokens to 80k tokens. The results are shown in Figure[T] The experimental results
indicate that:

1.Long-context extrapolation methods based on periodic extension excel at ultra-long-context ex-
trapolations.Specifically, the model fine-tuned using the 8k context and the Extra-PE method does
not experience a significant perplexity explosion when extrapolated to 80k tokens. Moreover, the
model fine-tuned using the 32k context outperforms the NTK-32k Peng & Quesnelle (2023) model
by a wide margin and approaches the performance of the YaRN-64k |Peng et al.|(2023)model.

2.When using the same size of fine-tuning data window, the Extra-MPE method performs better in
ultra-long-context extrapolation compared to the Extra-PE method.

Finally, we conducted comparative tests to evaluate the extrapolation capabilities of models based
on both the Extra-PE and Extra-MPE methods when different numbers of fine-tuning steps were
employed. The results are shown in Figure 6, and we found that:

1.After 50 fine-tuning steps, the model already possesses certain extrapolation capabilities, allowing
it to extrapolate to more than twice its original context length.

2.The long-context extrapolation capabilities of the models do not improve with an increase in the
number of fine-tuning steps. Both the Extra-PE and Extra-MPE models achieve optimal perfor-
mance at 100 fine-tuning steps. In terms of fine-tuning efficiency, they significantly outperform the
YaRN |Peng et al.| (2023) method, which requires 400 fine-tuning steps.

When using the Extra-MPE method, the context window of the fine-tuning data must be at least 16k
or more; otherwise, the model’s extrapolation performance will be relatively poor. This is because
within a context window of 8k, the model can only learn a low-frequency positional distribution for
one cycle.

B.1.3 THE LONG-CONTEXT RETRIEVAL CAPABILITY

In terms of the model’s long-context retrieval capability, we choose the Long-eval benchmark from
Dacheng Li* & Zhang| (2023)) for evaluation. This paper primarily conducts comparative exper-
iments on various models focusing on the lines task, observing and analyzing the trend of how
Accuracy changes as the text length increases.

Table |I|presents the evaluation results of the long-eval benchmark, which indicate:
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Figure 9: On a context length of 16k, we fine-tune the Llama2-7B model using the Extra-PE and
Extra-MPE methods, and plot the PPL (Perplexity) curves based on different numbers of fine-tuning
steps.

After fine-tuning with either the Extra-PE or Extra-MPE method, the model exhibits significant
improvement in long-context retrieval tasks. Among the models fine-tuned with 8k contexts, the
Extra-PE method outperforms the YaRN-8k Peng et al.|(2023) model and also surpasses the Extra-
MPE-8k model. This demonstrates that the periodic extension method has certain advantages in
long-text retrieval tasks, while also indirectly indicating that the model’s ability to learn sufficient
low-frequency positional encoding periods is equally important for long-text retrieval capabilities.

The experimental results show that the Extra-MPE method performs better in distant-range retrieval
compared to near-range retrieval, while the Extra-PE method excels in near-range retrieval. Fur-
thermore, this conclusion reinforces the notion that the Extra-MPE method is more suitable for
distant-range tasks compared to the Extra-PE method.

B.1.4 THE LONG-CONTEXT UNDERSTANDING CAPABILITY

This paper continues to conduct evaluations on tasks related to long-context understanding using a
multitask approach based on the Long Bench |Bai et al.|(2023). The benchmark includes five types of
tasks: Single-Doc QA, Multi-Doc QA, Summarization, Few-shot Learning, and Code Completion.
The corresponding test datasets for these tasks are, in order: multifieldqa_en [Fabbri et al.|(2019),
2wikimqa|Ho et al.[(2020), multi_news |[Fabbri et al.| (2019), Trec|Li & Roth|(2002), samsum |Gliwa;
et al.[(2019).

Table 2 presents the test results of the Long Bench, which indicate that the model fine-tuned using the
periodic extension method performs well across the overall tasks, particularly exhibiting significant
advantages over the NTK [Peng & Quesnelle| (2023)) and YaRN [Peng et al.| (2023)) methods in the
multi-document QA task involving long-contexts and the summarization task.
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Table 1: The evaluation results of the long-eval benchmark.

Model 5300 | 7600 | 10000 | 12000 | 14500 | 16400
llama-2-7b 0 0 0 0 0 0
llama-2-7b-extra_pe-8k 0.14 | 0.18 0 0 0 0
llama-2-7b-extra_pe-16k 0.12 | 0.14 | 0.06 0 0.02 0
llama-2-7b-extra_pe-32k 0.16 | 0.06 | 0.06 0.04 0.04 0.02
llama-2-7b-extra_mpe-8k 0.08 | 0.08 0 0 0 0
llama-2-7b-extra_mpe-16k 0.14 | 0.08 | 0.16 0.02 0 0
llama-2-7b-extra_mpe-32k 0.14 | 0.02 | 0.06 0.14 0.12 0
llama-2-7b-NTK-8k [Peng & Quesnelle[(2023) | 0.06 0 0.04 0.06 0.06 0.1
llama-2-7b-Yarn-8k [Peng et al.[(2023) 0.1 0.1 0 0 0 0
llama-2-7b-Yarn-64k [Peng et al.[(2023) 024 | 022 | 0.14 0.22 0.14 0.04
Table 2: The evaluation results of the long-bench benchmark.
Model Avg mvultiﬁeldqa,en 2wjkimqa multi_news Trec samsum
~ (Single-Doc QA) | (Multi-Doc QA) (Summ.) (Few-shot) (Code)
Yarn-8k [Peng et al.|(2023) 31.348 29.38 9.38 9.56 64.5 43.92
Yarn-64k Peng et al.|(2023) | 32.662 26.76 9.36 14.2 68.67 44.32
Extra-PE-8k 33.132 23.27 11.82 22.81 65 42.76
Extra-PE-16k 32.866 27.56 12.67 18.71 64.42 40.97
Extra-PE-32k 31.664 24.71 10.9 15.93 66.03 40.75
Extra-MPE-8k 30.692 25.59 12.24 20.95 55.94 38.74
Extra-MPE-16k 28.762 24.61 11.01 18.91 61.49 27.79
Extra-MPE-32k 27.688 23.33 9.96 12.97 56.25 56.25
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