
Neural Action Policy Safety Verification: Applicablity Filtering

Primary Keywords: None

Abstract

Neural networks (NN) are an increasingly important repre-
sentation of action policies π. Applicability filtering is a com-
monly used practice in this context, restricting the action se-
lection in π to only applicable actions. Policy predicate ab-
straction (PPA) has recently been introduced to verify safety5

of neural π, through over-approximating the state space sub-
graph induced by π. Thus far however, PPA does not permit
applicability filtering, which is challenging due to the addi-
tional constraints that need to be taken into account. Here we
overcome that limitation, through a range of algorithmic en-10

hancements. In our experiments, our enhancements achieve
several orders of magnitude speed-up over a baseline imple-
mentation, bringing PPA with applicability filtering close to
the performance of PPA without such filtering.

1 Introduction15

Neural networks (NN) are an increasingly important repre-
sentation of action policies in many contexts, including AI
planning (Issakkimuthu, Fern, and Tadepalli 2018; Groshev
et al. 2018; Garg, Bajpai, and Mausam 2019). But how to
verify that such a policy π is safe? Given a start condition20

ϕ0 and an unsafety condition ϕu, how to verify whether a
unsafe state su |= ϕu is reachable from a start state s0 |= ϕ0
under π? Such verification is potentially very hard as it com-
pounds the state space explosion problem with the difficulty
of analyzing even single NN decision episodes. A promi-25

nent line of works addresses neural controllers of dynami-
cal systems, where the NN output forms input to a continu-
ous state-evolution function (Tran et al. 2019; Huang et al.
2019; Dutta, Chen, and Sankaranarayanan 2019; Ivanov
et al. 2021). A recent thread explores bounded-length ver-30

ification of neural controllers (Akintunde et al. 2018, 2019;
Amir, Schapira, and Katz 2021).

Here we follow up on work on policy predicate ab-
straction (PPA) by Vinzent et al. (2022; 2023) (henceforth:
VEA), which tackles neural policies π that take discrete ac-35

tion choices in non-deterministic state spaces. Like classi-
cal predicate abstraction (Graf and Saı̈di 1997), PPA builds
an over-approximating abstraction defined through a set P
of predicates, i.e., linear constraints over the state variables.
However, PPA abstracts not the full state space, but the sub-40

graph induced by π. To compute the abstract state space
Θπ

P , one must repeatedly solve the sub-problem of decid-

ing whether there is a transition from abstract state sP to
abstract state s′P under π. This abstract transition problem
is encoded into satisfiability modulo theories (SMT) (Barrett 45

and Tinelli 2018), and answered querying solvers tailored to
NN analysis (Katz et al. 2019). If there does does not exist a
path from ϕ0 to ϕu in Θπ

P , then π is safe. Counterexample-
guided abstraction refinement (CEGAR) (Clarke et al. 2003)
is deployed to iteratively refine P until either π is proven 50

safe or an unsafe counterexample is found.
VEA consider neural policies that may select any action

in any state, including inapplicable actions. This makes it
unnecessarily difficult to learn good policies. Instead an es-
tablished practice is to filter the selection of π with respect 55

to applicability (Toyer et al. 2020; Stahlberg, Bonet, and
Geffner 2022). On the verification side, however, applicabil-
ity filtering is challenging since it introduces additional dis-
junctive behavior into the abstract transition problem: π may
select action label l depending on whether another action 60

l′ is or is not applicable. Implemented straightforwardly,
PPA with applicability filtering suffers from a huge perfor-
mance loss. In our experiments on VEA’s benchmarks, it
runs of ouf time or memory on all but the smallest instances
– which, without applicability filtering, PPA tackles in a few 65

seconds. In this paper, we devise a range of algorithmic
enhancements that overcome this limitation. The enhance-
ments exploit SMT-solver-specific encoding strategies, and
simplify disjunctions in the SMT encoding of the applicabil-
ity filter based on entailment of sub-constraints. Empirically, 70

these methods achieve runtime improvements of up to three
orders of magnitude, and bring PPA with applicability filter-
ing close to the performance of PPA without such filtering.

2 Preliminaries
We consider discrete non-deterministic transition systems 75

described by a tuple ⟨V,L,O⟩ where V is a finite set of
bounded-integer state variables, L is a finite set of action la-
bels and O is a finite set of operators. We denote by Exp the
set of linear expressions over V , i.e., of the form

∑
v∈V

dv ·v+c

with coefficients dv ∈ Z for each v ∈ V and c ∈ Z. Accord- 80

ingly, C denotes the set of linear constraints, of the form∑
v∈V

dv · v ≥ c, and Boolean combinations thereof. An op-

erator o ∈ O is a tuple (l, g, u) with label l ∈ L, guard

g ∈ C (a conjunction of linear constraints), and (linear) up-
date u : V → Exp.85

The state space of ⟨V,L,O⟩ is a labeled transition system
Θ = ⟨S,L, T ⟩. The set of states S is the finite set of all
complete variable assignments over V . The set of transitions
T ⊆ S ×L×S contains (s, l, s′) iff there exists an operator
o = (l, g, u) such that g is satisfied over s, also written s |=90

o, and s′(v) maps to the update u(v) evaluated over s for
each v ∈ V , formally s′ = {v 7→ u(v)(s) | v ∈ V}, also
abbreviated s′ = sJoK.

An action policy π is a function S → L. We consider
π represented by a neural network (NN). Specifically, we95

focus on feed-forward NN with rectified linear unit (ReLU)
activations ReLU (x) = max(x, 0). These NN consist of
an input layer, arbitrarily many hidden layers, and an output
layer with one neuron per label l ∈ L. A safety property is a
pair (ϕ0, ϕu), where ϕ0 ∈ C and ϕu ∈ C identify the set of100

start and unsafe states respectively. A policy π is unsafe with
respect to (ϕ0, ϕu) iff there exists a state path ⟨s0, . . . , sn⟩
such that s0 |= ϕ0, sn |= ϕu, and (si, π(si), si+1) ∈ T for
i ∈ {0, . . . , n− 1}. Otherwise π is safe.

Policy predicate abstraction (PPA) (Vinzent, Steinmetz,105

and Hoffmann 2022) is an extension of classical predicate
abstraction (Graf and Saı̈di 1997). Unlike its classical coun-
terpart, PPA abstracts not the full state space, but the sub-
graph induced by π. Assume a set of predicates P ⊆ C . An
abstract state sP is a complete truth value assignment over110

P . [sP] = {s ∈ S | ∀p ∈ P : p(s) = sP(p)} denotes the set
of concrete states represented by sP . The policy predicate
abstraction of Θ over P and π is the labeled transition sys-
tem Θπ

P = ⟨SP ,L, T π
P ⟩ where SP is the set of abstract states

over P and (sP , l, s
′
P) ∈ T π

P iff there exists (s, l, s′) ∈ T115

such that s ∈ [sP], s′ ∈ [s′P] and π(s) = l.
Analogously to safety in Θ, π is said to be unsafe in Θπ

P
iff there exists an abstract path ⟨s0P , l0, . . . , ln−1, snP⟩ such
that s0 |= ϕ0 for some s0 ∈ [s0P], s

n |= ϕu for some
sn ∈ [snP], and (siP , l

i, si+1
P) ∈ T π

P for i ∈ {0, . . . , n − 1}.120

Otherwise π is safe in Θπ
P , in which case it is safe in

Θ as well. An (unsafe) abstract path in Θπ
P may be spu-

rious, i.e., there does not exist a corresponding path in
Θ under π. Counterexample-guided abstraction refinement
(CEGAR) (Clarke et al. 2003) iteratively removes such spu-125

rious abstract paths by refining P , until either the abstrac-
tion is proven safe, or a non-spurious abstract path is found
proving π unsafe. VEA provide a CEGAR framework spe-
cialized to PPA (Vinzent, Sharma, and Hoffmann 2023).

To compute Θπ
P , one must solve the abstract transition130

problem for every possible abstract transition: (sP , l, s′P) ∈
T π
P iff for some l-labeled operator o ∈ O there exists a

concrete state s ∈ [sP] such that s |= o, sJoK ∈ [s′P] and
π(s) = l. In the classical setting where no policy is consid-
ered and thus condition π(s) = l is not needed, such abstract135

transition problems are routinely encoded into satisfiability
modulo theories (SMT) (e.g. (Barrett and Tinelli 2018)). For
PPA however, the policy condition π(s) = l introduces a
key new source of complexity as the SMT sub-formula rep-
resenting the neural network π contains one non-linear con-140

straint for every ReLU activation. VEA show how this can
be dealt with through approximate SMT checks. In particu-

lar, they use continuous relaxations of the bounded-integer
state variables, which can be dispatched to Marabou (Katz
et al. 2019), an SMT solver tailored to NN analysis. 145

3 Applicability Filtering
VEA consider neural action policies that are obtained by ap-
plying argmax to the output of the NN. Let πl(s) be the
NN output for label l ∈ L given input state s ∈ S , then
π(s) = argmax

l∈L
πl(s). Such π may select any label in any 150

state, even if it is not applicable, i.e., there does not exist
s′ ∈ S such that (s, l, s′) ∈ T , or equivalently, there does
not exist an l-labeled operator o with s |= o.

From a learning perspective, allowing π to select inap-
plicable actions is unnecessarily difficult, as π must learn
which actions are applicable in which state. A simple com-
monplace technique to avoid this is to filter the selection of
π with respect to applicability (e.g. (Toyer et al. 2020)). For-
mally, the policy under applicability filtering is defined

π(s) = argmax
{l∈L|∃o∈Ol : s|=o}

πl(s)

where Ol = {(l, g, u) ∈ O} is the sef of l-labeled operators.
From a verification perspective, applicability filtering also 155

is desirable because, without such filtering, a policy run may
be safe simply because of stalling, selecting an inapplicable
action which ends the run.

However, applicability filtering adds an additional source
of complexity to the abstract transition problem, specifically 160

to the policy condition π(s) = l. In what follows, we focus
on the SMT encoding of this sub-problem. The encoding of
the neural network itself remains unaffected; we provide a
full specification of the SMT encoding in the appendix.

Let πl denote the SMT variable representing the NN out- 165

put of label l. Without filtering, the policy selection condi-
tion is a simple conjunction

∧
l′∈L\{l}

πl > πl′ . Under ap-

plicability filtering however, each conjunct here becomes a
disjunction

∧
l′∈L\{l}

(πl > πl′ ∨¬
∨

o∈Ol′

go) where go denotes

the guard of operator o. In words: either the output value of l 170

is greater than that of l′, or l′ is not applicable. Since each go
is a conjunction of linear constraints, the selection condition
expands to

∧
l′∈L\{l}

πl > πl′ ∨ ¬
∨

o∈Ol′

∧
i∈{1,...,m}

gio


where sub-guard gio denotes the i-th linear constraint of
guard conjunction go and m is the guard size.1 175

4 Enhancements
Applicability filtering extends the SMT encoding of the ab-
stract transition problem by a layer of convoluted disjunc-
tions. To tackle this new source of complexity, we devise a

1To simplify notation, we assume m constant over all guards.
One can extend any guard to some maximal m by adding trivially-
true constraints.

range of encoding enhancements that target disjunctions in180

general and the applicability filter in particular.

Per-operator disjunctions. One type of enhancements
exploits the way disjunctions are encoded in Marabou,
the NN-tailored SMT solver underlying VEA’s algorithm.
Marabou supports disjunctions in disjunctive normal form
(DNF), i.e.,

∨
i

∧
j ϕ

j
i with linear constraints ϕji . Naively

rewriting the top-disjunction πl > πl′ ∨¬
∨

o∈Ol′

∧
i g

i
o into

DNF one obtains πl > πl′ ∨
∧

o∈Ol′

∨
i ¬gio and then

πl > πl′ ∨
∨

f∈(Ol′→{1,...,m})

∧
o∈Ol′

¬gf(o)o

where Ol′ → {1, . . . ,m} is the set of sub-guard combina-
tions over Ol′ , Since there are m|Ol′ | combinations in total,
this encoding is prone to result in a blow-up in size. We over-
come this scalability issues by an alternative encoding that
splits the top-disjunction into smaller disjunctions

πl > πl′ ∨
∨

i∈{1,...,m}

¬gio

one for each operator o ∈ Ol′ (PER-OP-DISJ).

Reusing slack variables. Marabou transforms every dis-
junction ϕ to only contain bound tightenings v ≥ c. Specif-
ically, every non-bound constraint

∑
v∈V

dv · v ≥ c in ϕ is185

transformed to an equation
∑
v∈V

dv · v + a = c where a is a

fresh slack variable. This transformed equation is added to
the global encoding in a conjunctive manner. The constraint
in ϕ is replaced by a bound tightening a ≤ 0.

We optimize this transformation in that we check for mul-190

tiple occurrences of constraints (identical up to variable re-
ordering) over all disjunctions (OPT-SLACK-VAR). For each
re-occurring constraint, we introduce only a single slack
variable and add the transformed equation only once to the
global encoding. In particular, this pertains to PER-OP-DISJ195

where πl > πl′ occurs multiple times.

Entailed sub-constraints. Another type of enhancements
exploits entailment to simplify the encoding. Given con-
straints ϕ, ψ ∈ C , we say ϕ entails ψ, written ϕ ⊢ ψ, iff
for every assignment s ∈ S such that s |= ϕ it also holds200

s |= ψ. Let
∨

i

∧
j ϕ

j
i be a disjunction contained in ϕ. If, for

some i and j, ϕ ⊢ ϕji , then ϕji can be removed. If, for some
i, ϕ ⊢ ϕji for every j, then ϕ entails disjunct i and so the en-
tire disjunction, which can be removed from ϕ. If ϕ ⊢ ¬ϕji ,
then the entire disjunct i is infeasible and can be removed.205

If all disjuncts i are infeasible, then the entire disjunction is
infeasible and so is ϕ. We apply entailment information to
optimize the encoding of disjunctions on two levels.

Firstly, on a per operator level (ENTAIL-OP). For each op-
erator o, VEA’s algorithm to compute Θπ

P runs an applica-210

bility test ∃s ∈ [sP] : s |= o. If this test fails then the guard
conjunction go is entailed to be infeasible in abstract state
sP . Say o is l′-labeled. We can use this entailment informa-
tion to simplify the policy condition for any label l ̸= l′.

Secondly, on a generic linear level (ENTAIL-GEN) with 215

entailed ψ in the form of a linear constraint
∑
v∈V

dv · v ≥ c.

Let lov(ϕ) and upv(ϕ) denote a lower and upper bound
for v entailed by ϕ respectively. Then ϕ entails ψ if∑

v∈V+

dv · lov(ϕ) +
∑
v∈V−

dv · upv(ϕ) ≥ c

where V+ = {v ∈ V | d > 0} denotes the variable set
with positive coefficients, and V− = {v ∈ V | d < 0}
the variable set with negative coefficients. Analogously, ϕ
entails ¬ψ, we also say ψ is infeasible, if∑

v∈V+

dv · upv(ϕ) +
∑
v∈V−

dv · lov(ϕ) < c.

ϕ in the form of the abstract transition problem syntacti-
cally entails variable bounds in that many predicates in P
are bound constraints v ≥ c and, thereby, the conditions
s ∈ [sP] and sJoK ∈ [s′P] involve bound tightenings. In ad- 220

dition, Marabou deploys techniques to derive tight bounds
on the NN outputs (e.g., (Singh et al. 2019)).

5 Experiments
We implemented our approach on top of VEA’s C++ code
base. The enhancements are mostly implemented directly 225

into Marabou, in particular OPT-SLACK-VAR and ENTAIL-
GEN (which is a contribution to improve Marabou’s perfor-
mance on disjunctions in general).2 All experiments were
run on machines with Intel Xenon E5-2650 processors at
2.2 GHz, with time and memory limits of 12 h and 4 GB. 230

Benchmarks. We use VEA’s benchmarks. These are non-
deterministic variants of the planning domains Blocksworld,
SlidingTiles and Transport encoded in JANI (Budde et al.
2017). For each domain instance, there are three NN policies
trained by VEA using Q-learning (Mnih et al. 2015), each 235

with two hidden layers of size 16, 32 and 64 respectively,
and with ReLU activation nodes. There are policies that do,
and ones that do not, take move costs into account.

The policies by VEA are trained without applicability fil-
tering. In our evaluation, we verify these same policies with 240

and without applicability filtering, to allow direct compari-
son of verification performance.

Configurations. We compare a range of algorithmic con-
figurations combining different applicability filter enhance-
ments for abstract transition computation as part of VEA’s 245

verification algorithm.
• NoOpt disables and AllOpts enables all enhancements.
• OnlyPerOp, OnlySlack, OnlyOp, OnlyGen only enables

PER-OP-DISJ, OPT-SLACK-VAR, ENTAIL-OP, ENTAIL-
GEN respectively. 250

• NoPerOp, NoSlack, NoOp, NoGen enables all enhance-
ments except PER-OP-DISJ, OPT-SLACK-VAR, ENTAIL-
OP, ENTAIL-GEN respectively.

• NoApp verifies the policy without applicability filtering,
as done by VEA. 255

2All our source code (tool and experiments) will be made pub-
licly available upon publication.

Benchmark NN Safe Time NoApp
NoOpt OnlyPerOp OnlySlack OnlyOp OnlyGen NoPerOp NoSlack NoOp NoGen AllOpts Safe Time

16 ✓ 8797 31 8712 32 24 23 21 22 24 22 ✓ 6
4 Blocks 32 ✓ 18889 115 16850 108 49 54 40 40 79 38 ✓ 10
(cost-ign) 64 ✓ 29275 1618 28595 1296 259 255 235 221 1241 228 ✓ 16

16 ✓ - - - - - - 27350 30929 28358 27457 ✓ 124
6 Blocks 32 ✓ - 29866 - - - - 9817 9059 12272 9037 ✓ 81
(cost-ign) 64 ? - - - - - - - - - - ✓ 631

16 ? - - - - - - - - - - ✓ 9593
8 Blocks 32 ? - - - - - - - - - - ? -
(cost-ign) 64 ? - - - - - - - - - - ? -

16 × - 129 1387 - 246 116 103 80 87 77 × 44
8-puzzle 32 × - 14385 - - 16674 13963 13356 13024 13012 12610 ✓ 16727
(cost-ign) 64 × - 17417 - - 17542 15056 16151 11729 11638 11453 ? -

16 ✓ - 159 41442 126 58 53 52 53 94 49 ✓ 36
4 Blocks 32 ✓ - 4188 - 3171 483 454 491 449 2500 454 ✓ 329
(cost-awa) 64 ? - - - - - - - - - - ✓ 36214

16 ✓ - - - - - - 29842 30083 36635 28262 ✓ 8992
6 Blocks 32 ? - - - - - - - - - - ✓ 27215
(cost-awa) 64 ? - - - - - - - - - - ? -

16 × - 1460 - - - - 909 866 929 915 × 295
8 Blocks 32 ? - - - - - - - - - - ? -
(cost-awa) 64 ? - - - - - - - - - - ? -

16 × - 2806 - - 6143 2697 2420 2049 2010 1977 × 2881
8-puzzle 32 × - 12908 - - 13698 11931 11478 11458 11267 10917 ? -
(cost-awa) 64 × - - - - 39354 35643 35922 30522 33109 29331 ? -

16 × 23 0.4 23 23 12 10 0.4 0.5 0.4 0.5 × 0.3
Transport 32 × 37 0.5 494 36 12 12 0.5 1 1 1 × 0.4

64 × 28 1 53 28 19 17 1 1 1 1 × 1

Table 1: Runtime results in seconds for the evaluated configurations of enhancements for applicability filtering over different
benchmarks and NN policies. - indicates runs that exceed the resource limit of 12h time and 4 GB memory.

With vs. without enhancements. Table 1 shows our re-
sults. AllOpts clearly dominates NoOpt. The latter only ter-
minates on the smallest problem instances, with a runtime
offset of up to three orders of magnitude.

Ablation study. OnlyPerOp covers 9 additional instances260

compared to NoOpt. This indicates that the choice of en-
coding (PER-OP-DISJ or not) is a crucial factor for effi-
ciency. That said, also the other configurations with a sin-
gle enhancement, especially OnlyGen, increase coverage
compared to NoOpt. Moreover, AllOpts outperforms every265

single-enhancement configuration and always covers addi-
tional instances. This shows that also the combination of en-
hancements is crucial.

NoPerOp performs competitive on smaller Blocksworld
instances, but fails on larger ones similar to NoOpt. On 8-270

puzzle and Transport it performs consistently slower than
AllOpts. Again, this demonstrates the relevance of PER-OP-
DISJ. NoOp tends to be more efficient than NoGen. This
indicates that ENTAIL-GEN is more crucial than ENTAIL-
OP. NoSlack performs particularly good on Blocksworld but275

particularly bad on some 8-puzzle problem instances. On the
former domain operator guards contain many bound con-
straints. This shows that OPT-SLACK-VAR becomes more
relevant when operator guards are more complex.

Applicability-Filtering vs. No-Filtering. Clearly, the ad-280

ditional complexity of applicability filtering in SMT can in-

crease verification time. On Blocksworld, AllOpts is worse
than NoApp, covering four instances less. On 8-puzzle, on
the other hand, AllOpts covers three more instances than
NoApp and is competitive on the remaining ones. This is 285

presumably due to the actual verification results – on NN 32
(cost-ign), the policy is safe without applicability filtering,
but is unsafe with applicability filtering. This exemplifies
that, without applicability filtering, a policy may be safe due
to stalling. This questionable form of safety is no longer pos- 290

sible under applicability filtering. Presumably, the same is-
sue occurs in the 8-puzzle instances not covered by NoApp.
On Blocksworld and Transport, there are no such verifica-
tion result differences. In particular, on the former all poli-
cies are safe with and without applicability filtering. 295

6 Conclusion
The verification of neural action policies is important. Here
we contribute enhancements for PPA with applicability fil-
tering, getting rid of much of the additional complexity suf-
fered by a baseline implementation. 300

Important future directions for PPA include liveness prop-
erties, in particular the guarantee that a policy will even-
tually reach the goal; partial safety verification, continuing
CEGAR on instances already proved to be unsafe, in order
to identify safe regions of the state space; and the extension 305

to probabilistic and/or continuous-state transition systems.
Our enhancements are orthogonal to all these extension.

References
Akintunde, M.; Lomuscio, A.; Maganti, L.; and Pirovano, E.
2018. Reachability Analysis for Neural Agent-Environment310

Systems. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Sixteenth International Con-
ference, KR 2018, Tempe, Arizona 30 October - 2 November
2018, 184–193. AAAI Press.

Akintunde, M. E.; Kevorchian, A.; Lomuscio, A.; and315

Pirovano, E. 2019. Verification of RNN-Based Neural
Agent-Environment Systems. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Ed-320

ucational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii USA, January 27 - February 1, 2019,
6006–6013. AAAI Press.

Amir, G.; Schapira, M.; and Katz, G. 2021. Towards Scal-
able Verification of Deep Reinforcement Learning. In For-325

mal Methods in Computer Aided Design, FMCAD 2021,
New Haven, CT, USA, October 19-22, 2021, 193–203. IEEE.

Barrett, C. W.; and Tinelli, C. 2018. Satisfiability Mod-
ulo Theories. In Handbook of Model Checking, 305–343.
Springer.330

Budde, C. E.; Dehnert, C.; Hahn, E. M.; Hartmanns, A.;
Junges, S.; and Turrini, A. 2017. JANI: Quantitative Model
and Tool Interaction. In Tools and Algorithms for the Con-
struction and Analysis of Systems - 23rd International Con-
ference, TACAS 2017, Held as Part of the European Joint335

Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings,
Part II, volume 10206 of LNCS, 151–168.

Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H. 2003.
Counterexample-guided abstraction refinement for symbolic340

model checking. JACM, 50(5): 752–794.

Dutta, S.; Chen, X.; and Sankaranarayanan, S. 2019. Reach-
ability analysis for neural feedback systems using regressive
polynomial rule inference. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation345

and Control, HSCC 2019, Montreal, QC, Canada, April 16-
18, 2019, 157–168. ACM.

Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In Proceedings of the
Twenty-Ninth International Conference on Automated Plan-350

ning and Scheduling, ICAPS 2018, Berkeley, CA, USA, July
11-15 2019, 631–636. AAAI Press.

Graf, S.; and Saı̈di, H. 1997. Construction of Abstract State
Graphs with PVS. In Computer Aided Verification, 9th In-
ternational Conference, CAV ’97, Haifa, Israel, June 22-25,355

1997, Proceedings, volume 1254 of LNCS, 72–83. Springer.

Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Policies
Using Deep Neural Networks. In Proceedings of the Twenty-
Eighth International Conference on Automated Planning360

and Scheduling, ICAPS 2018, Delft, The Netherlands, June
24-29, 2018, 408–416. AAAI Press.

Huang, S.; Fan, J.; Li, W.; Chen, X.; and Zhu, Q. 2019.
ReachNN: Reachability analysis of neural-network con-
trolled systems. ACM Trans. Embed. Comput. Syst., 18(5s): 365

106:1–106:22.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training
Deep Reactive Policies for Probabilistic Planning Problems.
In Proceedings of the Twenty-Eighth International Confer-
ence on Automated Planning and Scheduling, ICAPS 2018, 370

Delft, The Netherlands, June 24-29, 2018, 422–430. AAAI
Press.
Ivanov, R.; Carpenter, T. J.; Weimer, J.; Alur, R.; Pappas,
G. J.; and Lee, I. 2021. Verifying the Safety of Autonomous
Systems with Neural Network Controllers. ACM Trans. Em- 375

bed. Comput. Syst., 20(1): 7:1–7:26.
Katz, G.; Huang, D. A.; Ibeling, D.; Julian, K.; Lazarus,
C.; Lim, R.; Shah, P.; Thakoor, S.; Wu, H.; Zeljic, A.; Dill,
D. L.; Kochenderfer, M.; and Barrett, C. 2019. The Marabou
Framework for Verification and Analysis of Deep Neural 380

Networks. In Computer Aided Verification - 31st Interna-
tional Conference, CAV 2019, New York City, NY, USA, July
15-18, 2019, Proceedings, Part I, volume 11561 of LNCS,
443–452. Springer.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, 385

J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nat., 518(7540): 529–533. 390

Singh, G.; Gehr, T.; Püschel, M.; and Vechev, M. T. 2019.
An abstract domain for certifying neural networks. Proc.
ACM Program. Lang., 3(POPL): 41:1–41:30.
Stahlberg, S.; Bonet, B.; and Geffner, H. 2022. Learning
General Optimal Policies with Graph Neural Networks: Ex- 395

pressive Power, Transparency, and Limits. In Proceedings of
the Thirty-Second International Conference on Automated
Planning and Scheduling, ICAPS 2022, Singapore (virtual),
June 13-24 2022, 629–637. AAAI Press.
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020. 400

ASNets: Deep Learning for Generalised Planning. JAIR, 68:
1–68.
Tran, H.; Cai, F.; Lopez, D. M.; Musau, P.; Johnson, T. T.;
and Koutsoukos, X. D. 2019. Safety Verification of Cyber-
Physical Systems with Reinforcement Learning Control. 405

ACM Trans. Embed. Comput. Syst., 18(5s): 105:1–105:22.
Vinzent, M.; Sharma, S.; and Hoffmann, J. 2023. Neural
Policy Safety Verification via Predicate Abstraction: CE-
GAR. In Thirty-Seventh AAAI Conference on Artificial In-
telligence, AAAI 2023, Thirty-Fifth Conference on Innova- 410

tive Applications of Artificial Intelligence, IAAI 2023, Thir-
teenth Symposium on Educational Advances in Artificial In-
telligence, EAAI 2023, Washington, DC, USA, February 7-
14, 2023, 15188–15196. AAAI Press.
Vinzent, M.; Steinmetz, M.; and Hoffmann, J. 2022. Neu- 415

ral Network Action Policy Verification via Predicate Ab-
straction. In Proceedings of the Thirty-Second International
Conference on Automated Planning and Scheduling, ICAPS
2022, Singapore (virtual), June 13-24 2022. AAAI Press.

