
Neighborhood Mixup Experience Replay:
Local Convex Interpolation for Improved Sample

Efficiency in Continuous Control Tasks

Ryan Sander∗
MIT CSAIL

rmsander@mit.edu

Wilko Schwarting
MIT CSAIL

wilkos@mit.edu

Tim Seyde
MIT CSAIL

tseyde@mit.edu

Igor Gilitschenski
MIT CSAIL

University of Toronto
gigor@mit.edu

Sertac Karaman
MIT LIDS

karaman@mit.edu

Daniela Rus
MIT CSAIL
rus@mit.edu

Abstract

Experience replay plays a crucial role in improving the sample efficiency of deep
reinforcement learning agents. Recent advances in experience replay propose
the use of Mixup [35] to further improve sample efficiency via synthetic sam-
ple generation. We build upon this idea with Neighborhood Mixup Experience
Replay (NMER), a modular replay buffer that interpolates transitions with their
closest neighbors in normalized state-action space. NMER preserves a locally
linear approximation of the transition manifold by only performing Mixup between
transitions with similar state-action features. Under NMER, a given transition’s
set of state-action neighbors is dynamic and episode agnostic, in turn encouraging
greater policy generalizability via cross-episode interpolation. We combine our
approach with recent off-policy deep reinforcement learning algorithms and evalu-
ate on several continuous control environments. We observe that NMER improves
sample efficiency by an average 87% (TD3) and 29% (SAC) over baseline replay
buffers, enabling agents to effectively recombine previous experiences and learn
from limited data.

1 Introduction

Learning robust and effective behavior from a limited set of examples is a hallmark of human
cognition [6]. The sample efficiency of our brain and neuronal circuits allows us to quickly learn
new skills, perform new tasks, and generalize the experience we observe to a variety of different
environments and settings. In many problem domains, human sample efficiency far outperforms that
of deep reinforcement learning algorithms [14]. Narrowing this gap is a critical milestone towards
effectively replicating intelligence in reinforcement learning settings.

Model-free (MF), off-policy deep reinforcement learning (DRL) algorithms provide significant
sample efficiency gains relative to their on-policy counterparts [8, 2]. Improved sample efficiency
is due in part to experience replay [18] techniques, which enable agents to continuously learn from
past experiences. The trial-and-error nature of reinforcement learning nonetheless still necessitates
the need to collect large volumes of training data [32, 33, 17]. While lower sample efficiency may
be acceptable for learning in simulation, it may significantly hinder an agent’s progress in many
real-world applications where samples are expensive to generate [32].

∗Correspondence to rmsander@mit.edu. GitHub: https://github.com/rmsander/interreplay.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

rmsander@mit.edu
https://github.com/rmsander/interreplay


Model-based (MB) DRL agents achieve improved sample efficiency by learning a model of the
environment [30, 9, 11] that can be used for offline planning and policy refinement [4, 24, 25]. For
reinforcement learning tasks with noisy and high-dimensional state and action spaces, however, an
agent’s learned environment models may suffer from estimation error and bias where little data is
available [17, 22]. Combined with model capacity limitations, this can result in model-based agents
converging to suboptimal policies.

We aim to combine the benefits of learning on true environment interactions in MF-DRL with the
sample efficiency benefits of MB-DRL. To this end, we propose Neighborhood Mixup Experience
Replay (NMER), a modular replay buffer that improves the sample efficiency of MF, off-policy DRL
agents by training on experiences sampled from convex, locally linear interpolated transitions of the
replay buffer. At a high level, NMER interpolates proximal pairs of transitions in the transition space
of the replay buffer using Mixup [35], a convex and stochastic linear interpolation technique. Despite
the computational and analytical simplicity of Mixup, which enables for runtime-efficient experience
replay, the use of Mixup in experience replay can enable better generalization and policy convergence
in MF, off-policy DRL agents through implicit regularization and expansion of the training support
of the agent’s function approximators. We empirically observe these beneficial effects of Mixup in
our continuous control experiments.

NMER can be applied to any continuous control reinforcement learning agent leveraging a replay
buffer. As a motivating example, consider a robotic humanoid learning to walk using MF, off-policy
DRL, given a limited set of experiences consisting of odometry and actuator sensor measurements.
With standard experience replay [18] approaches, the finite size of the agent’s experiences can hinder
the agent from learning robust policies, perhaps due to the agent not experiencing a crucial subset of
the transition space. With NMER, however, interpolated experiences can provide this DRL agent
with crucial training samples in regions of the transition space they previously did not experience,
thus improving the robustness and performance of the policies the agent learns.

Our contributions are summarized as follows:

1. Neighborhood Mixup Experience Replay (NMER): A replay buffer that improves sample
efficiency of off-policy DRL agents by training these agents on locally linear interpolated
combinations of neighboring transitions.

2. Local Mixup: A generalization of NMER, this algorithm considers the application of
Mixup between local points in any feature or vector space by only applying Mixup to nearest
neighbors measured using a given distance metric. In highly nonlinear features spaces, local
Mixup enables for learner generalization and regularization without interpolating too far
across highly different dynamic regions of the transition space.

3. Improved sample efficiency in continuous control: Our evaluation study demonstrates
that NMER substantially improves sample efficiency of MF, off-policy DRL algorithms
across several continuous control environments.

2 Related work

Experience replay, data augmentation, and interpolation approaches have been applied to RL and
other machine learning domains. NMER builds off of these techniques to improve sample efficiency.

Experience replay Prioritized Experience Replay (PER) [23] samples an agent’s experiences from
a replay buffer according to the “learnability” or “surprise” that each sample induces in the agent in
its current parameterization. PER uses absolute TD-error of a sample [23] as a heuristic measure of
“surprise”. In the stochastic prioritization variant of PER, transitions are sampled proportionally to
their learnability. While this technique improves the sample efficiency by selecting highly-relevant
samples, it does not improve the overall “learnability” of the samples themselves, and restricts training
to previously observed experience. Experience Replay Optimization (ERO) [34] parameterizes the
replay buffer directly as a learned priority score function. Rather than using heuristics such as TD-
error to determine a prioritization of samples, as is performed in PER [23], in ERO this prioritization
is learned directly via a policy gradient approach in which return is measured by the agent’s policy
improvement [34]. A REINFORCE-based [31] estimate of the policy gradient updates the learned
replay buffer in an alternating fashion with the policy being trained. Similarly to PER, while ERO

2



improves sample efficiency by selecting samples with high “learnability”, it does not improve the
overall “learnability” of the samples themselves, and also restricts training to the agent’s observed
experiences. Interpolated Rewards Replay [28] performs linear interpolation of experienced rewards.
In contrast, NMER interpolates entire transitions using stochastic, locally linear, convex interpolation,
thus allowing for richer interpolation of an agent’s experiences.

Data augmentation Data augmentation is another class of techniques used to improve the perfor-
mance of DRL agents. Reinforcement learning with Augmented Data (RAD) is a module designed for
improving agent performance in visual and propioceptive DRL tasks [12]. For continuous control
environments, such as the OpenAI Gym [3, 27] tasks considered in this paper, RAD leverages data
augmentation techniques such as random amplitude scaling. While this does allow for learning
beyond an agent’s observed set of experiences, augmentations such as randomized amplitude scaling
make no use of the other transitions stored in the replay buffer to determine amplitude scaling factors,
and do not combine the existing transitions that agents store. In Data-Regularized Q (DrQ) learning,
generalizable and image-invariant data augmentation mechanisms are applied to off-policy DRL
algorithms to improve sample efficiency in visual control tasks, providing off-policy agents with
sample efficiency comparable to state-of-the-art MB-DRL algorithms. Similarly to DrQ, NMER
improves sample efficiency via regularization through training agents on augmented samples.

Mixup sampling Mixup was originally applied to supervised and unsupervised machine learning
domains, and empirically improves the generalizability and out-of-sample predictive performance of
learners [35]. Several reinforcement learning methodologies make use of Mixup-interpolated experi-
ences for training reinforcement learning agents. In Continuous Transition [16], temporally-adjacent
transitions are interpolated with one another using Mixup, creating synthetic transitions between
any two consecutive transitions. In MixReg [29], interpolated transitions are formed using Mixup
on combinations of input and output signals. In S4RL [26], interpolated transitions are produced by
interpolating current and next states within an observed transition. While these approaches increase
the training domain via interpolation, they do not strictly enforce transition locality of the resulting
samples. Proximity between the points used for sampling is encoded temporally, as in [16, 26], but
not in the transition space of the agent’s experience. NMER employs a nearest neighbor heuristic
to encourage transition pairs for Mixup to be located approximately within the same dynamics
regimes in the transition manifold. Compared to Continuous Transition [16] and S4RL [26], samples
interpolated with NMER may better preserve the local dynamics of the environment and enable
further agent regularization through cross-episode interpolation between transitions and their dynamic
sets of nearest neighbors.

3 Preliminaries

Neighborhood Mixup Experience Replay (NMER) builds on experience replay for off-policy DRL,
Mixup, and nearest neighbor heuristics to encourage approximately on-manifold interpolation.

Off-policy DRL for continuous control tasks Off-policy DRL has successfully been applied to
continuous control tasks through the use of actor-critic methods such as Soft Actor-Critic (SAC), Deep
Deterministic Policy Gradients (DDPG), and Twin Delayed Deep Deterministic Policy Gradients
(TD3) [10, 15, 7]. In this off-policy, MF-DRL setting, agents are trained using transitions composed
of states, actions, rewards, and next states. The state (S), action (A), and reward (R) spaces in which
these transitions lie are continuous.

Experience replay. Experience replay [18] enables an agent to train on past observations. It can
be largely decoupled from the agent’s training algorithm - while the agent seeks to learn optimal
policies and value functions given observed training samples, regardless of the samples provided
to it, the experience replay buffer is tasked with providing the agent samples that offer the greatest
“learnability” for improving these policies and value functions. Current experience replay approaches
are discussed in Section 2.

Mixup. Mixup [35] is a novel stochastic data augmentation technique used to improve the gen-
eralizability of deep neural networks by training on convex linear combinations of existing points.
Intuitively, this linear interpolation mechanism invokes the Bayesian linear prior on the learner that

3



linear combinations of features result in the same linear combinations of targets [35], leading to
generalizable out-of-sample performance in accordance with Occam’s Razor [20]. Through another
lens, Mixup increases the generalizability of the model it is applied to by increasing the support of
the model through training on interpolated examples. Mixup performs interpolation by sampling
from the convex unit line connecting two samples [35] according to a beta distribution parameterized
by a hyperparameter α, which controls the spread of the distribution along this relative unit line. To
interpolate a new sample xinterpolated using two existing samples x1,x2 ∈ Rd, Mixup interpolates
according to:

xinterpolated = λx1 + (1− λ)x2, λ ∼ β(α, α) (1)

Where α > 0 is a hyperparameter controlling the spread of the beta distribution.

On-manifold interpolation. To measure the accuracy of interpolation in interpolated experience
replay approaches, we consider how “on-manifold” the interpolated transition is with respect to the
transition manifold mapping states and actions to rewards and next states.

More rigorously, we consider that the observed transitions of a replay buffer lie on a transition
manifold, which we denote by the space T . The space T is given by the Cartesian product of the
state (S), action (A), reward (R), and next state (S) spaces of the agent:

T : S ×A×R× S (2)

With NMER, the use of local Mixup (convex) interpolation between only nearest neighbors acts as a
heuristic to encourage interpolated samples to stay near the underlying transition manifold. Figure 1
depicts on and off-transition manifold interpolation when generating interpolated transitions using
Mixup. See our technical report for details on on-manifold assessment.

Figure 1: Examples of on and off-transition manifold interpolation using Mixup. On-manifold or
approximately on-manifold interpolation is crucial for successfully training DRL agents in continuous
control tasks.

4 Neighborhood Mixup Experience Replay (NMER)

NMER trains off-policy DRL agents using locally linear convex combinations of an agent’s existing
experiences, in effect creating locally linear models centered around each transition of the replay
buffer. By only interpolating proximal transitions with one another, where proximity is measured by
the standardized Euclidean distance in the state-action space of the replay buffer, NMER interpolates
transitions that have similar state and action inputs, but potentially different reward and next state
outputs. In considering these nearest neighbors, NMER regularizes the off-policy reinforcement
learning agents it trains by allowing for cross-episodic interpolation between proximal transitions.
Furthermore, in the presence of stochasticity in the transition manifold, NMER can prevent RL agents
from overfitting to a particular (reward, next state) outcome by interpolating different (reward, next
state) outcomes for near-identical (state, action) inputs. With NMER, the agent learns to consider
not only one combination of (reward, next state) pairs given an input (state, action) pair, but rather
unbiased linear combinations of them, results in the agent learning the conditional expectation of
rewards and next states given states and actions. For MF, off-policy DRL agents and continuous
control tasks, the role of NMER can be visualized in Figure 2.

The steps of NMER are as follows:

4

https://rmsander.github.io/projects/nmer_tech_report.pdf


Figure 2: Neighborhood Mixup Experience Replay (NMER) applied to MF-DRL. Local convex
interpolation is performed between closest transitions. NMER’s computational simplicity allows for
modular, plug-and-play use across continuous control MF-DRL algorithms.

1. Update step: When a new environment interaction is added to the replay buffer, re-
standardize the states and actions of the stored transitions in the replay buffer, and update
the nearest neighbor data structures using Euclidean distances over the Z-score standardized,
concatenated state-action features of the replay buffer. Similarity search is thus measured
over the input state and action spaces; however, we emphasize that NMER can admit other
distance functions and representations of similarity as well. See our technical report for
further details.

2. Sampling Step: First, we sample a batch of “sample transitions” uniformly from the replay
buffer. Next, we query the nearest neighbors of each sampled transition in this sampled
batch. Following this, for each set of neighbors in the sampled training batch, we sample a
neighbor transition uniformly from this set of neighbors. Finally, for each transition in the
training batch, we apply Mixup to linearly interpolate the selected samples and neighbors
(xsample,i and xneighbor,i, respectively) using local Mixup:

xinterpolated,i = λxsample,i + (1− λ)xneighbor, i, λ ∼ β(α, α), α > 0 (3)

These steps are given in Algorithm 1. For run time efficiency, we implement this in a batched,
vectorized fashion over the training batches. NMER introduces minimal computational overhead
compared to vanilla experience replay - the only additional operations required are standardization,
nearest neighbor querying, and local Mixup. This minimal overhead positions NMER as a viable
experience replay buffer for continuous control environments of any complexity and dimensionality.

Agent regularization via linear interpolation. Through the lens of Occam’s Razor [20], NMER
improves the generalizability of the policy and value function approximators of the agent by invoking
the prior that linear combinations of state-action pairs result in the same linear combinations of
corresponding reward-next state pairs. This prior, although strong in some continuous control
settings, improves generalizability in tasks where this linearity assumption approximately holds.
Since the spaces of an agent in continuous control tasks are continuous, interpolating continuous,
linear combinations of transitions can still yield interpolated samples that lie on, or approximately on,
the underlying transition manifold T .

Furthermore, if the transition manifold T is convex, NMER guarantees on-manifold interpolation,
since this technique generates strictly convex combinations of transitions. Crucially, synthetically-
generated on-manifold transitions are indistinguishable from transitions generated at the same point
using the underlying environment dynamics. However, for many applications, particularly high-
dimensional, real-world continuous control tasks, the underlying transition manifold will generally
be non-convex.

Neighborhood Mixup as a heuristic to encourage on-manifold interpolation. Non-convexity
and nonlinearity in continuous control environments provide motivation for our neighborhood-based
interpolation mechanism, which addresses issues with non-convexity of the transition manifold by
only considering interpolation between transitions in the same “neighborhood”, i.e. transitions with

5

https://rmsander.github.io/projects/nmer_tech_report.pdf


Algorithm 1 Neighborhood Mixup Experience Replay (NMER)
Input: Replay buffer B, Mixup α > 0, Batch Size T
Output: Interpolated Training batch Btrain

B = {(st, at, rt, s′t)}Tt=1
iid∼ U(B) // Sample Batch Uniformly From Replay Buffer

Btrain ← Array[· · · ]
for t in T do
(ss, as, rs, s

′
s)← B[t] // Sample Transition to Interpolate With

[s̃s, ãs]
T ← ZScore([ss, as]

T
) // Standardize States and Actions

ks ← NN
(
[s̃s, ãs]

T
,B

)
// Standardized Nearest Neighbors of Sample Point

(sn, an, rn, s
′
n) ∼ U(ks) // Sample Uniformly From Local Neighborhood

xs ← [ss, as, rs, s
′
s]

T // Sample Transition Features
xn ← [sn, an, rn, s

′
n]

T // Neighbor Transition Features
λ ∼ β(α, α) // Sample Mixup Coefficient Using Hyperparameter α
xi = λxs + (1− λ)xn // Interpolate Sample and Neighbor Transitions Using Mixup
Btrain[t]← xi // Add Interpolated Sample to Training Batch

end for
return Btrain

similar state-action pairs. If the transition manifold is locally Euclidean, linearly interpolating two
transitions is a suitable, approximately on-manifold mechanism for interpolating between spatially
proximal transitions.

5 Continuous control evaluation

To rigorously evaluate and quantify the improvement in sample efficiency with NMER, we compare
NMER to other state-of-the-art replay buffers by applying these replay buffers to continuous control
tasks and MF, off-policy DRL algorithms.

Testing environment and configuration. We consider continuous control environments from the
OpenAI Gym MuJoCo [3, 27] suite, namely: (i) Ant, (ii) HalfCheetah, (iii) Hopper, (iv) Swimmer,
and (v) Walker2d. Since we are principally interested in evaluating the sample efficiency of replay
buffers, we treat the MF, off-policy DRL algorithms used for these evaluations (SAC [10] and TD3
[7]) as part of the experimental configuration. For each replay buffer variant, including NMER, we
train agents using replay ratios (ratio of gradient steps to environment interactions) of 1, 5, and 20,
and report the best results for each replay buffer variant. Additionally, for SAC [10], to stabilize the
policy, we add a small L2 regularizer to the actor network for all SAC evaluations. Implementation
details and ablation studies for each replay buffer variant are provided in the technical report. We
measure replay buffer sample efficiency using the evaluation reward of the reinforcement learning
agent after 200K environment interactions have been sampled, as in [16, 13]. Rewards are smoothed
using an averaging window of 11, as in [1].

Baselines. We compare NMER to the following baselines: (i) Uniform, Vanilla Replay (U) [18, 5],
where transitions are sampled i.i.d. uniformly from the replay buffer, (ii) Prioritized Experience
Replay (PER) [23] with stochastic prioritization, (iii) Continuous Transition (CT) [16]. Since the main
comparison between NMER and CT is how samples are selected for interpolation, we make two
modifications to the original CT baseline: (a) We remove the automatic Mixup α parameter tuning
mechanism, and (b) If a terminal state is encountered in either the sample or neighbor transition, no
interpolation occurs, and the sampled transition is simply used for training the agent. In Continuous
Transition, terminal transitions in an episode can be interpolated with their previous, non-terminal
transitions, resulting in non-binary termination signals. In order to make the fairest comparison
possible between NMER and CT, we adopt the same interpolation rules we use for NMER in CT.
(iv) SUNRISE Baselines. Additionally, we compare the performance of NMER and the baselines
we implement to SUNRISE [13] and other baselines tested using the same continuous control
environments and 200K environment interaction evaluation [13]. Results for these baselines are

6

https://rmsander.github.io/projects/nmer_tech_report.pdf


provided in Table 2. Relative comparisons of NMER to these and additional baselines (see technical
report) can be found in Table 3.

Learning curves for TD3 and SAC agents and NMER, U, PER, and CT baselines are depicted in Figures
3 and 4 (SUNRISE and other baselines evaluated in [13] are depicted with dashed horizontal lines
indicating mean evaluation reward at 200K environment interactions), and comparative tabular results
after 200K environment interactions are provided in Table 1. Each result is averaged over four runs.
Note the following abbreviations in Table 1: (i) U = Uniform Replay, (ii) PER = Prioritized Experience
Replay, (iii) CT = Continuous Transition, (iv) NMER = Neighborhood Mixup Experience Replay. Best
results for each off-policy algorithm (TD3, SAC) are bolded.

The results of this continuous control evaluation study indicate that NMER frequently achieves
comparatively better sample efficiency than the baseline replay buffers used in this study across SAC
and TD3, as well as other baseline DRL algorithms evaluated in [13].

Table 1: Continuous control experiments results, 200K env. interactions.

RL Agent Environment U PER CT NMER

TD3

Ant 2005 ± 399 2317 ± 756 2834 ± 875 4347 ± 908
HalfCheetah 6467 ± 658 6447 ± 693 8097 ± 358 9340 ± 1678
Hopper 3252 ± 157 3213 ± 511 3156 ± 351 3393 ± 220
Swimmer 131 ± 20 138 ± 8 134 ± 10 122 ± 10
Walker2d 2236 ± 686 1452 ± 1057 3087 ± 1058 4611 ± 441
∆ NMER (%) -26.6% -27.7% -15.7% 0%

SAC

Ant 1188 ± 692 800 ± 160 1594 ± 717 2721 ± 1685
HalfCheetah 4918 ± 1928 6880 ± 886 6120 ± 525 8168 ± 1585
Hopper 1692 ± 1160 2801 ± 827 1115 ± 897 1875 ± 900
Swimmer 110 ± 29 121 ± 42 106 ± 46 140 ± 10
Walker2d 4303 ± 636 3466 ± 784 4696 ± 1194 4429 ± 819
∆ NMER (%) -26.0% -14.4% -25.1% 0%

Table 2: Baselines from SUNRISE [13] vs TD3 + NMER, 200K env. interactions.

Environment METRPO PETS POPLIN-A POPLIN-P SUNRISE NMER+TD3
Ant 282±18 1166±227 1148±438 2330±321 1627±293 4347±908
HalfCheetah 2284±900 2288±1019 1563±1137 4235±1133 5371±483 9340±1678
Hopper 1273±501 115±621 203±963 2055±614 2602±307 3393±220
Walker2d -1609±658 283±502 -105±250 597±479 1926±695 4611±441
∆ NMER (%) -82.8% -84.8% -87.7% -56.9% -46.7% 0%

Table 3: Additional baseline comparison study with TD3, 200K env. interactions.
Environment 1NN-Mixup Mixup S4RL N (0, σ2) NMER
Ant 2651 ± 828 2361 ± 616 769 ± 270 1709 ± 350 4347 ± 908
HalfCheetah 7255 ± 1014 6743 ± 657 6032 ± 187 3733 ± 540 9340 ± 1678
Hopper 3360 ± 217 2917 ± 523 960 ± 151 1287 ± 593 3393 ± 220
Swimmer 111 ± 22 43 ± 5 44 ± 7 39 ± 1 122 ± 10
Walker2d 3372 ± 833 3340 ± 293 514 ± 169 516 ± 157 4611 ± 441
∆ NMER (%) -22.9% -36.0% -68.4% -67.9% 0%

6 Discussion

These evaluation studies demonstrate that agents trained using NMER can learn robust policies using
fewer environment interactions compared to agents trained using state-of-the-art replay buffers for
continuous control. We consider the implications of NMER and its extensions to DRL.

Limitations. Despite the observed empirical success, NMER exhibits several limitations. NMER
assumes the underlying transition dynamics are locally linear, which may be a naive approximation

7

https://rmsander.github.io/projects/nmer_tech_report.pdf
https://rmsander.github.io/projects/nmer_tech_report.pdf


Figure 3: Learning curves for TD3 agents trained on NMER and baselines. Each replay buffer is run
with four random seeds, and we plot mean performance with ±1σ intervals.

Figure 4: Learning curves for SAC agents trained on NMER and baselines. Each replay buffer is run
with four random seeds, and we plot mean performance with ±1σ intervals.

for continuous control tasks with nonlinear underlying dynamics. Additionally, although NMER’s
use of nearest neighbors serves as a viable heuristic to steer the replay buffer toward on-manifold
interpolation, on-manifold interpolation is not analytically guaranteed. The sections below aim to put
these limitations into context by suggesting viable generalizations and considerations for future work.

Generalizing Synthetic Training. Since NMER uses convex interpolation to generate transitions
for training, as more samples are added to the replay buffer, the interpolated transitions will become
more accurate. Furthermore, NMER can be extended to modulate the ratio of real to synthetic training
samples over time, enabling a variety of flexible training schemes for different replay buffer densities.

Generalizing neighborhoods. NMER computes nearest neighbors using standardized Euclidean
norms over concatenated state-action space, which allows for Mixup-based interpolation of transitions
with proximal state-action vectors, regardless of the rewards and next states in these transitions.
However, this notion of proximity between transitions can be generalized to any measure of distance
in the transition space of a replay buffer. Generalizing this notion of proximity between stored
environment interactions can be invoked via different distance metrics, e.g. Mahalanobis distance, as
well as the use of composite product norms over different features in the transition space. For instance,
the use of a composite product norm over states × actions results in nearest neighbors having similar
(state, action) pairs. The efficacy of different proximity representations for neighborhood-based
interpolated experience replay remains an open research question.

Generalizing interpolation. NMER also invokes the implicit prior that linear combinations of
states and actions result in the same linear combination of rewards and next states through the use of
Mixup. However, under some dynamics regimes and continuous control environments, local linear
interpolation via local Mixup may result in interpolated samples far from the underlying transition
manifold. For interpolating on-manifold samples in locally nonlinear neighborhoods, off-policy DRL
agents may benefit from the use of more sophisticated neighborhood-based interpolation mechanisms,
such as Gaussian Process Regression [19, 21] or Graph Neural Networks [36].

7 Conclusion

We propose Neighborhood Mixup Experience Replay (NMER), an experience replay module that
improves the sample efficiency of off-policy DRL agents through synthetic sample generation. We

8



empirically demonstrate that training agents on experiences generated via local Mixup in the transition
space of a replay buffer facilitates learning robust policies using fewer environment interactions.
NMER combines the benefits of learning from locally linear approximations of the underlying
environment model with the sample efficiency benefits of learning from synthetic samples, thus
expanding the possibilities for tractable DRL in real-world continuous control settings.

Acknowledgements: This research was supported by the Toyota Research Institute (TRI). This article
solely reflects the opinions and conclusions of its authors and not TRI, Toyota, or any other entity.
We thank TRI for their support. The authors thank the MIT SuperCloud and Lincoln Laboratory
Supercomputing Center for providing HPC and consultation resources that have contributed to the
research results reported within this publication.

References
[1] J. Achiam. Spinning up in deep reinforcement learning. 2018. 6

[2] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. A brief survey of deep
reinforcement learning. arXiv preprint arXiv:1708.05866, 2017. 1

[3] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016. 3, 6

[4] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in games, 4(1):1–43, 2012. 2

[5] Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with gaussian processes. In
Proceedings of the 22nd International Conference on Machine Learning, ICML ’05, page
201–208, New York, NY, USA, 2005. Association for Computing Machinery. ISBN 1595931805.
doi: 10.1145/1102351.1102377. 6

[6] R. C. Fong, W. J. Scheirer, and D. D. Cox. Using human brain activity to guide machine
learning. Scientific reports, 8(1):1–10, 2018. 1

[7] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In International Conference on Machine Learning, pages 1587–1596. PMLR, 2018.
3, 6

[8] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipula-
tion with asynchronous off-policy updates. In 2017 IEEE international conference on robotics
and automation (ICRA), pages 3389–3396. IEEE, 2017. 1

[9] D. Ha and J. Schmidhuber. Recurrent world models facilitate policy evolution. In S. Bengio,
H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
2455–2467, 2018. 2

[10] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In J. Dy and A. Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 1861–1870. PMLR, 7 2018. 3, 6

[11] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. In International Conference on Learning Representations, 2020. 2

[12] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learning
with augmented data. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 19884–19895.
Curran Associates, Inc., 2020. 3

[13] K. Lee, M. Laskin, A. Srinivas, and P. Abbeel. Sunrise: A simple unified framework for
ensemble learning in deep reinforcement learning. arXiv preprint arXiv:2007.04938, 2020. 6, 7

9



[14] S. Y. Lee, C. Sungik, and S.-Y. Chung. Sample-efficient deep reinforcement learning via
episodic backward update. In Advances in Neural Information Processing Systems, pages
2112–2121, 2019. 1

[15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In Y. Bengio and Y. LeCun, editors,
ICLR, 2016. 3

[16] J. Lin, Z. Huang, K. Wang, X. Liang, W. Chen, and L. Lin. Continuous transition: Improving
sample efficiency for continuous control problems via mixup. arXiv preprint arXiv:2011.14487,
2020. 3, 6

[17] D. J. Mankowitz, G. Dulac-Arnold, and T. Hester. Challenges of real-world reinforcement
learning. 2019. 1, 2

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. 1, 2, 3,
6

[19] C. E. Rasmussen. Gaussian processes in machine learning. In Summer school on machine
learning, pages 63–71. Springer, 2003. 8

[20] C. E. Rasmussen and Z. Ghahramani. Occam’s razor. 2001. 4, 5

[21] C. E. Rasmussen and M. Kuss. Gaussian processes in reinforcement learning. Advances in
Neural Information Processing Systems, pages 751–759, 2004. 8

[22] E. Renaudo, B. Girard, R. Chatila, and M. Khamassi. Respective advantages and disadvantages
of model-based and model-free reinforcement learning in a robotics neuro-inspired cognitive
architecture. Procedia Computer Science, 71:178–184, 2015. ISSN 1877-0509. doi: https:
//doi.org/10.1016/j.procs.2015.12.194. 6th Annual International Conference on Biologically
Inspired Cognitive Architectures, BICA 2015, 6-8 November Lyon, France. 2

[23] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. In ICLR (Poster),
2016. 2, 6

[24] W. Schwarting, T. Seyde, I. Gilitschenski, L. Liebenwein, R. Sander, S. Karaman, and D. Rus.
Deep latent competition: Learning to race using visual control policies in latent space. Proceed-
ings of the 2020 Conference on Robot Learning, PMLR 155:1855-1870, 2021. 2

[25] T. Seyde, W. Schwarting, S. Karaman, and D. Rus. Learning to plan via deep optimistic value
exploration. In A. M. Bayen, A. Jadbabaie, G. Pappas, P. A. Parrilo, B. Recht, C. Tomlin,
and M. Zeilinger, editors, Proceedings of the 2nd Conference on Learning for Dynamics and
Control, volume 120 of Proceedings of Machine Learning Research, pages 815–825, The Cloud,
6 2020. PMLR. 2

[26] S. Sinha, A. Mandlekar, and A. Garg. S4RL: Surprisingly simple self-supervision for offline
reinforcement learning in robotics. In 5th Annual Conference on Robot Learning, 2021. 3

[27] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012. 3, 6

[28] W. B. P. von Pilchau, A. Stein, and J. Hähner. Bootstrapping a dqn replay memory with synthetic
experiences. arXiv preprint arXiv:2002.01370, 2020. 3

[29] K. Wang, B. Kang, J. Shao, and J. Feng. Improving generalization in reinforcement learning
with mixture regularization. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 7968–7978.
Curran Associates, Inc., 2020. 3

[30] T. Weyand, I. Kostrikov, and J. Philbin. Planet-photo geolocation with convolutional neural
networks. In European Conference on Computer Vision, pages 37–55. Springer, 2016. 2

10



[31] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992. 2

[32] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani. Data efficient rein-
forcement learning for legged robots. In L. P. Kaelbling, D. Kragic, and K. Sugiura, editors,
Proceedings of the Conference on Robot Learning, volume 100 of Proceedings of Machine
Learning Research, pages 1–10. PMLR, 11 2020. 1

[33] Y. Yu. Towards sample efficient reinforcement learning. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pages 5739–
5743. International Joint Conferences on Artificial Intelligence Organization, 7 2018. doi:
10.24963/ijcai.2018/820. 1

[34] D. Zha, K.-H. Lai, K. Zhou, and X. Hu. Experience replay optimization. In Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages
4243–4249. International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi:
10.24963/ijcai.2019/589. 2

[35] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk mini-
mization. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. 1,
2, 3, 4

[36] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph neural
networks: A review of methods and applications. AI Open, 1:57–81, 2020. 8

11


	Introduction
	Related work
	Preliminaries
	Neighborhood Mixup Experience Replay (NMER)
	Continuous control evaluation
	Discussion
	Conclusion

