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ABSTRACT

Unsupervised anomaly detection plays a critical role in many real-world applica-
tions, from computer security to healthcare. A common approach based on deep
learning is to apply autoencoders to learn a feature representation of the normal
(non-anomalous) observations and use the reconstruction error of each observa-
tion to detect anomalies present in the data. However, due to the high complex-
ity brought upon by over-parameterization of the deep neural networks (DNNs),
the anomalies themselves may have small reconstruction errors, which degrades
the performance of these methods. To address this problem, we present a robust
framework for detecting anomalies using collaborative autoencoders. Unlike pre-
vious methods, our framework does not require supervised label information nor
access to clean (uncorrupted) examples during training. We investigate the the-
oretical properties of our framework and perform extensive experiments to com-
pare its performance against other DNN-based methods. Our experimental results
show the superior performance of the proposed framework as well as its robust-
ness to noise due to missing value imputation compared to the baseline methods.

1 INTRODUCTION

Anomaly detection (AD) is the task of identifying abnormal observations in the data. It has been
successfully applied to many applications, from malware detection to medical diagnosis (Chandola
et al., 2009). Driven by the success of deep learning, AD methods based on deep neural networks
(DNNs) (Zhou & Paffenroth, 2017; Aggarwal & Sathe, 2017; Ruff et al., 2018; Zong et al., 2018;
Hendrycks et al., 2018) have attracted increasing attention recently. Unfortunately, DNN meth-
ods have several known drawbacks when applied to AD problems. First, since many of them are
based on the supervised learning approach (Hendrycks et al., 2018), this requires labeled exam-
ples of anomalies, which are often expensive to acquire and may not be representative enough in
non-stationary environments. Supervised AD methods are also susceptible to the class imbalance
problem as anomalies are rare compared to normal observations. Some DNN methods rely on having
access to clean data to ensure that the feature representation learning is not contaminated by anoma-
lies during training (Zong et al., 2018; Ruff et al., 2018; Pidhorskyi et al., 2018; Fan et al., 2020).
This limits their applicability as acquiring a representative clean data itself is a tricky problem. Due
to these limitations, there have been concerted efforts to develop robust unsupervised DNN meth-
ods that do not assume the availability of supervised labels nor clean training data (Chandola et al.,
2009; Liu et al., 2019). Deep autoencoders are perhaps one of the most widely used unsupervised
AD methods (Sakurada & Yairi, 2014; Vincent et al., 2010). An autoencoder compresses the origi-
nal data by learning a latent representation that minimizes the reconstruction loss. It is based on the
working assumption that normal observations are easier to compress than anomalies. Unfortunately,
such an assumption may not hold in practice since DNNs are often over-parameterized and have the
capability to overfit the anomalies (Zhang et al., 2016), thus degrading their overall performance.

To improve their performance, the unsupervised DNN methods must consider the trade-off between
model capacity and overfitting to the anomalies. One way to control the model capacity is through
regularization. Many regularization methods for deep networks have been developed to control
model capacity, e.g., by constraining the norms of the model parameters or explicitly perturbing the
training process (Srivastava et al., 2014). However, these approaches do not prevent the networks
from being able to perfectly fit random data (Zhang et al., 2016). As a consequence, the regulariza-
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tion approaches cannot prevent the anomalies from being memorized, especially in an unsupervised
learning setting.

Our work is motivated by recent advances in supervised learning on the robustness of DNNs for
noisy labeled data by learning the weights of the training examples (Jiang et al., 2017; Han et al.,
2018). Unlike previous studies, our goal is to learn the weights in an unsupervised learning fash-
ion so that normal observations are assigned higher weights than the anomalies when calculating
reconstruction error. The weights help to reduce the influence of anomalies when learning a feature
representation of the data. Since existing approaches for weight learning are supervised, they are
inapplicable to unsupervised AD. Instead, we propose an unsupervised robust collaborative autoen-
coders (RCA) method that trains a pair of autoencoders in a collaborative fashion and jointly learns
their model parameters and sample weights. Each autoencoder selects a subset of samples with
lowest reconstruction errors from a mini-batch to learn their feature representation. By discarding
samples with high reconstruction errors, the algorithm is biased towards learning the representation
for clean data, thereby reducing its risk of memorizing anomalies. However, by selecting only easy-
to-fit samples in each iteration, this may lead to premature convergence of the algorithm without
sufficient exploration of the loss surface. Thus, instead of selecting the samples to update its own
model parameters, each autoencoder will shuffle its selected samples to the other autoencoder, who
will use the samples to update their model parameters. The sample selection procedure is illustrated
in Figure 1. During the testing phase, we apply the dropout mechanism used in training to produce
multiple output predictions for each test point by repeating the forward pass multiple times. These
ensemble of outputs are then aggregated to obtain a more robust estimate of the anomaly score.

The main contributions of this paper are as follows. First, we present a novel framework for unsuper-
vised AD using robust collaborative autoencoders (RCA). Second, we provide rigorous theoretical
analysis to understand the mechanism behind RCA. We also describe the convergence of RCA to the
solution obtained if it was trained on clean data only. We show that the worst-case scenario for RCA
is better than conventional autoencoders and analyze the conditions under which RCA is guaranteed
to find the anomalies. Finally, we empirically demonstrate that RCA outperforms state-of-the-art
unsupervised AD methods for the majority of the datasets used in this study, even in the presence of
noise due to missing value imputation.

2 RELATED WORK

There are numerous methods developed for anomaly detection, a survey of which can be found
in Chandola et al. (2009). Reconstruction-based methods, such as principal component analysis
(PCA) and autoencoders, are popular approaches, whereby the input data is projected to a lower-
dimensional space before it was transformed back to its original feature space. The distance between
the input and reconstructed data is used to determine the anomaly scores of the data points. More
advanced unsupervised AD methods have been developed recently. Zhou & Paffenroth (2017) com-
bined robust PCA with an autoencoder to decompose the data into a mixture of normal and anomaly
parts. Zong et al. (2018) jointly learned a low dimensional embedding and density of the data, us-
ing the density of each point as its anomaly score while Ruff et al. (2018) extended the traditional
one-class SVM approach to a deep learning setting. Wang et al. (2019) applied an end-to-end self-
supervised learning approach to the unsupervised AD problem. However, their approach is designed
for image data, requiring operations such as rotation and patch reshuffling.

Despite the recent progress on deep unsupervised AD, current methods do not explicitly prevent the
neural network from incorporating anomalies into their learned representation, thereby degrading the
model performance. One way to address the issue is by assigning a weight to each data point, giving
higher weights to the normal data to make the model more robust against anomalies. The idea of
learning a weight for each data point is not new in supervised learning. A classic example is boosting
(Freund et al., 1996), where hard to classify examples are assigned higher weights to encourage the
model to classify them more accurately. An opposite strategy is used in self-paced learning (Kumar
et al., 2010), where the algorithm assigns higher weights to easier-to-classify examples and lower
weights to harder ones. This strategy was also used by other methods for learning from noisy
labeled data, including Jiang et al. (2017) and Han et al. (2018). Furthermore, there are many
studies providing theoretical analysis on the benefits of choosing samples with smaller loss to drive
the optimization algorithm (Shen & Sanghavi, 2018; Shah et al., 2020).
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Figure 1: An illustration of the training phase for the proposed RCA framework.
3 METHODOLOGY

This section introduces the proposed robust collaborative autoencoder (RCA) framework and ana-
lyze its properties. Let X ∈ Rn×d denote the input data, where n is the number of observations and
d is the number of features. Our goal is to classify each data point xi ∈ X as an anomaly or a normal
observation. Let O ⊂ X denote the set of true anomalies in the data. We assume the anomaly ratio,
ε = |O|/n, is given1 or can be approximately estimated.

The RCA framework trains a pair of autoencoders,A1 andA2, with different initializations. In each
iteration during training, the autoencoders will each apply a forward pass on a mini-batch randomly
sampled from the training data and compute the reconstruction error of each data point in the mini-
batch. The data points in the mini-batch are then sorted according to their reconstruction errors and
each mini-batch selects the points with lowest errors to be exchanged with the other autoencoder.
Each autoencoder subsequently performs a back-propagation step to update its model parameters
using the samples it receives from the other autoencoder. Upon convergence, the averaged recon-
struction error of each data point is used to determine the anomaly score. A pseudocode of the
training phase for RCA is given in Algorithm 1, while the testing phase is given in Algorithm 2.

Algorithm 1: Robust Collaborative Autoencoders (Training Phase)
input: training data Xtrn, test data Xtst, reconstruction loss function L, anomaly ratio ε, dropout rate r > 0, and maximum training

epochs: max epoch;
return trained autoencoders,A∗

1 andA∗
2 ;

Initialize autoencodersA1 andA2; sample selection rate β = 1 and best loss ξ∗ = +∞;
while epoch≤ max epoch do

for minibatch S in Xtrn do
Ŝ1 ← forward(A1,S, dropout = 0), Ŝ2 ← forward(A2,S, dropout = 0);
c1 ← sample selection(L(Ŝ1,S), β), c2 ← sample selection(L(Ŝ2,S), β) ;
Ŝ1 ← forward(A1,S[c2], dropout = r), Ŝ2 ← forward(A2,S[c1], dropout = r);
A1 ←backprop(Ŝ1,S[c2], dropout = r), A2 ← backprop(Ŝ2,S[c1], dropout = r) ;

end
X̂tst1 ← forward(A1,Xtst, dropout = 0), X̂tst2 ← forward(A2,Xtst, dropout = 0);
ξtest ← L(X̂tst1,Xtst) + L(X̂tst2,Xtst);
if ξtest < ξ∗ then ξ∗ = ξtest,A

∗
1 = A1,A∗

2 = A2 end;

β = max(β −
ε

max epoch
, 1− ε)

end

Algorithm 2: Robust Collaborative Autoencoders (Testing Phase)
input: test data Xtst, trained autoencodersA∗

1 ,A∗
2 , dropout rate r > 0, size of ensemble v;

return anomaly score ;
Initialize an empty set of reconstruction errors: ξ = {}.
for i = 1 to v do

ξ1= forward(A∗
1 ,Xtst, dropout = r), ξ2=forward(A∗

2 ,Xtst, dropout = r) ;
ξ = ξ ∪ (ξ1 + ξ2)/2

end
anomaly score = average(ξ);

RCA differs from conventional autoencoders in several ways. First, its autoencoders are trained
using only selected data points with small reconstruction errors. The selected points are then ex-
changed between the autoencoders to avoid premature convergence. Furthermore, in the testing
phase, each autoencoder applies a dropout mechanism to generate multiple predicted outputs. The
averaged ensemble output is used as the final anomaly score. Details of these steps are given next.

1In practice, users would typically specify the top-k anomalies to be examined and verified, where k = nε.
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3.1 SAMPLE SELECTION

Given a mini-batch, Xm ⊂ X, our sample selection procedure chooses a subset of points as “clean”
samples to update the parameters of an autoencoder by minimizing the following objective function:

minw,c

∑
xi∈Xm

cif(xi,w), s.t. ∀i : ci ∈ {0, 1}, cT1 = βn, (1)

where f(x,w) denotes the reconstruction loss of a data point x for an autoencoder with parameter
w. Although ci is binary-valued, as will be shown later, the probability that a data point is selected
to update an autoencoder depends on the probability it is chosen to be part of the mini-batch and the
probability it has among the lowest reconstruction errors within the mini-batch.

We use an alternating minimization approach to solve the objective function. By fixing c and op-
timizing w, this reduces to solving the standard autoencoder problem using the selected “clean”
samples (i.e., those with ci = 1) by applying an optimizer such as Adam (Kingma & Ba, 2014).
When w is fixed, the objective function reduces to a linear programming problem, which admits a
simple solution, where the data points are sorted based on their reconstruction loss, f(xi,w). We set
ci = 1 to (β×100)% of the points in the mini-batch with lowest reconstruction loss. This procedure
is denoted by the sample selection(·) function in Algorithm 1. A weight decay approach is applied
to β when selecting the “clean” samples. In the early stages of training, all the samples in the mini-
batch are selected to update the model, with gradually fewer points selected as training progresses.
The rationale for this approach is that we should not drop too many data points early, especially in
the first few epochs, when the autoencoders have not properly learn the feature representation. The
autoencoders start to overfit the anomalies when the number of training epochs is sufficiently large.
A linear decay function from β = 1 to β = 1− ε (see the second last line in Algorithm 1) was found
to work well in practice, so we use this setting in our experiments.

Next, we analyze the convergence properties of our sample selection procedure. Let k be the mini-
batch size and w be the current parameter of the autoencoder. Our algorithm selects (β × 100)%
of the data points with lowest errors in the mini-batch for updating the autoencoder. Let x(i) ∈ X

denote the data point with ith smallest reconstruction loss among all n points and pi(w) be the
probability that x(i) is chosen by the sample selection procedure to update the parameters of the
autoencoder. Assuming sampling without replacement, we consider two cases: i ≤ βk and i > βk.
In the first case (when i ≤ βk), x(i) is used to update the autoencoder as long as it is selected to
be part of the mini-batch. In the second case (when i > βk), x(i) is chosen only if it is part of the
mini-batch and has among the (βk)-th lowest errors among all data points in the mini-batch. Thus:

pi(w) =


(n−1
k−1)
(nk)

= k
n if i ≤ βk,∑βk−1

j=0 (i−1
j )( n−i

k−j−1)
(nk)

otherwise.
(2)

The corresponding probability pi(w) for sampling with replacement is also provided in the Ap-
pendix section. The objective function for our sample selection procedure (Equation 1) can be
stated as F̂ (w) =

∑
x(i)∈X pi(w)f(x(i),w). Let Ω(w∗sr) be the set of stationary points of

F̂ (w). Furthermore, let Ω(w∗) be the set of stationary points for the loss on clean data only, i.e.,
F (w) =

∑
xi /∈O fi(w), while Ω(w∗ns) be the set of stationary points for the loss on the entire data,

i.e.,
∑

xi∈X fi(w). For brevity, we have used fi(w) to denote f(xi,w). Furthermore, we denote
Ωi(w

∗) as the set of stationary points for the individual loss, fi(w). Our analysis on the convergence
properties of our sample selection approach is based on the following assumptions:

Assumption 1 (Gradient Regularity) maxi,w ‖∇fi(w)‖ ≤ G.

Assumption 2 (Bounded Clean Objective) Let F (w) =
∑

xi /∈O fi(w), There exists a constant
B > 0 such that the following inequality holds: maxi,j |(F (wi)− F (wj))| ≤ B.

Assumption 3 (Individual L-smooth) For every individual loss ft(w), the following inequality
holds: ∀i, j : ‖∇ft(wi)−∇ft(wj)‖ ≤ Li‖wi −wj‖.
Assumption 4 (Equal Minima) The minimum value of every individual loss is the same, i.e., ∀i, j :
minw fi(w) = minw fj(w).
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Assumption 5 (Individual Strong Convexity) For every individual loss ft(w), the following in-
equality holds: ∀i, j : ‖∇ft(wi)−∇ft(wj)‖ ≥ µi‖wi −wj‖.

To simplify the notation, we define Lmax = maxi(Li), Lmin = mini(Li), µmax = maxi(µi),
and µmin = mini(µi). Since F (w) is the sum over the loss for clean data, it is easy to see that
Assumption 3 implies F (w) is n(1 − ε)Lmax smoothness, while Assumption 5 implies that F (w)
is n(1− ε)µmin convex. We thus define M = n(1− ε)Lmax, and m = n(1− ε)µmin.

Note that Assumptions 1-3 are common for non-convex optimization. Assumption 4 is reasonable in
an over-parameterized DNN setting (Zhang et al., 2016). Although Assumption 5 is the strongest as-
sumption, it is only used to discuss correctness of our algorithm in Theorem 3, but not for Theorems
1 and 2. A similar assumption has been used in Shah et al. (2020) in their proof of correctness.

We define the constants δ > 0 and φ ≥ 1 as follows:

∀xi /∈ O, ∀xj ∈ O : maxv∈Ωi(w∗),y∈Ω(w∗) ‖v − y‖ ≤ δ ≤ minz∈Ωj(w∗),y∈Ω(w∗) ‖z− y‖,
∀xj ∈ O : maxz∈Ωj(w∗),y∈Ω(w∗) ‖z− y‖ ≤ φδ (3)

If the loss is convex, then Ωi(w
∗) = {w∗i } and Ω(w∗) = {w∗}. The above equation can be

simplified to: ‖w∗i −w∗‖ ≤ δ ≤ ‖w∗j −w∗‖ ≤ φδ, ∀xi /∈ O, ∀xj ∈ O. The constants δ and φ
thus provide bounds on the distance between w∗j of an anomaly point and w∗ for clean data.

We first consider a non-convex setting. Our goal is to determine whether the parameters learned
from the samples chosen by our procedure, which optimizes F̂ (w), converges to w∗, the solution
obtained by minimizing the loss for clean data, F (w) =

∑
xi /∈O fi(w).

Theorem 1 Let F (w) =
∑

xi /∈O fi(w) be a twice-differentiable function. Consider the
sequence {w(t)} generated by optimizing F̂ (w) =

∑
i pi(w)f(x(i),w), i.e., w(t+1) =

w(t) − η(t)
∑
i pi(w

(t))∇f(x(i)). Let maxw(t) ‖∇F (w(t)) −
∑
i pi(w

(t))∇f(i)(w
(t))‖2 = C.

Based on Assumptions 1-3, if η(t) satisfies
∑∞
t=1 η

(t) = ∞ and
∑∞
t=1 η

(t)2 ≤ ∞, then
mint=0,1,··· ,T ‖∇F (w(t))‖2→ C when T→∞.

Remark 1 The preceding theorem shows the convergence property of optimizing F̂ (w) to a C-
approximated stationary point of the loss function for clean data, where C depends on the sample
selection approach. For example, if pi(w) = 1,∀xi /∈ O and pi(w) = 0, ∀xi ∈ O, then C = 0. In
this ideal situation, the solution for optimizing F̂ (w) reduces to that for vanilla SGD on clean data.

Next, we compare the stationary point of F̂ (w) against the stationary point of the loss function for
the entire data (without sample selection).

Theorem 2 Let F (w) =
∑

xi /∈O fi(w) be a twice-differentiable function and C is defined in The-
orem 1. Consider the sequence {wsr} generated by optimizing F̂ (w) =

∑
i pi(w)f(x(i),w),

i.e., w(t+1) = w(t) − η(t)
∑
i pi(w

(t))∇f(x(i)) and the sequence {wns} generated by stan-
dard SGD on the entire data, w(t+1) = w(t) − η(t)∇f(xi). Based on Assumptions 1- 3 and
C ≤ (min(nεG,Mδ))2, if η(t) satisfies

∑∞
t=1 η

(t) = ∞ and
∑∞
t=1 η

(t)2 ≤ ∞, then there exists a
large enough T and w̃ ∈ Ω(w∗ns) such that mint=0,1,...,T ‖∇F (w

(t)
sr )‖ ≤ ‖∇F (w̃)‖.

Remark 2 This theorem is analogous to the result given in Shah et al. (2020), which has a convex
assumption on their loss function, whereas our theorem is applicable even for the non-convex case.
Although the theorem is for worst case analysis, our experiments show that, on average, our method
easily outperforms other DNN methods that use all the data.

Theorem 2 suggests that, as long as C is smaller than a threshold, sample selection gives a better
convergence to the stationary points for clean data, compared to using all the data. As the anomaly
ratio increases or the distance to nearest outlier increases, sample selection will improve the conver-
gence to stationary points for clean data in the worst case scenario compared to no sample selection.

Below we give a sufficient condition for guaranteeing correctness when the objective is restricted to
a convex setting. We assume that ∀xi /∈ O : fi(w

∗) = 0 and ∀xj ∈ O : fj(w
∗) > 0. Assuming

f(w) is convex and its gradient is upper bounded, there exists a ball of radius r > 0 around w∗

5



Under review as a conference paper at ICLR 2021

defined as follows:

Br (w∗) = {w | fi(w) < fj(w),∀xi /∈ O,xj ∈ O, ‖w −w∗‖ ≤ r} .

The above definition describes a ball around the optimal point, in which the normal observations
have a smaller loss than the anomalies. Based on this definition, the following theorem describes the
sufficient condition for our algorithm to converge to a solution within the ball.

Theorem 3 Let F (w) =
∑

xi /∈O fi(w) be a twice-differentiable function and Lcmax =

maxxi /∈O(Li) be the maximum Lipschitz smoothness for the clean data and µomin = minxj∈O(µj)

be the minimum convexity for anomalies. Consider the sequence {wsr} generated by w(t+1) =
w(t)− η(t)

∑
i pi(w

(t))∇f(xi) and maxw(t) ‖∇F (w(t)) −
∑
i pi(w

(t))∇fi(w(t))‖2 = C. Define

κ =
√

Lcmax

µomin
and suppose Assumptions 1-5 hold. If η(t) satisfy

∑∞
t=1 η

(t) = ∞,
∑∞
t=1 η

(t)2 ≤ ∞,

and C ≤
(

δ
(1+κ)m

)2

= O
(
δ
κ

)2
, then there exists r > 0 such that w∗sr ∈ Br (w∗).

The proof is given in the Appendix section. The convergence guarantee depends on having a small
enough value of C, which is related to δ, the distance between the nearest anomalies and the normal
points, and the landscape of the loss surface κ. A small κ suggests that the loss surface is very sharp
for anomalies (large µomin) but flat for normal data (small Lcmax). In this case, most areas of the
loss surface will have a smaller loss for normal observations but larger loss for anomalies (assuming
equal minima among all the points). Due to their larger loss, the anomalies have smaller probability
to be selected as “clean” sample by the proposed RCA algorithm.

The analysis above shows that sample selection benefits convergence of our method to the stationary
points for clean data. However, our ultimate goal is to improve generalization performance, not just
converging to good stationary points of the training data. When sample selection is applied to
just one autoencoder, the algorithm may converge too quickly as we use only samples with low
reconstruction loss to compute the gradient, making it susceptible to overfitting (Zhang et al., 2016).
Thus, instead of using only the self-selected samples for model update, we train two autoencoders
collaboratively and shuffle the selected samples between them to avoid overfitting. Similar ideas
have been found to be effective in supervised learning for data with noisy labels (Han et al., 2018).

3.2 ENSEMBLE EVALUATION

Unsupervised anomaly detection using an ensemble of model outputs have been shown to be highly
effective in previous studies (Liu et al., 2008; Zhao et al., 2019; Emmott et al., 2015; Aggarwal &
Sathe, 2017). However, incorporating ensemble method to deep learning is a challenging problem
as it is expensive to train a large number of DNNs. In this paper, we use the dropout mechanism
(Srivastava et al., 2014) to emulate the ensemble process. Dropouts are typically used during the
training phase only. In RCA, we employ the dropout mechanism during testing as well. Specifically,
we use the networks of perturbed structures to perform multiple forward passes over the data in order
to obtain a set of reconstruction losses for each test point. The final anomaly score is computed by
averaging the reconstruction losses. Although dropout may increase the overall reconstruction loss,
we expect a more robust estimation of the anomaly score using this procedure.

4 EXPERIMENTS

We have performed extensive experiments on both synthetic and real-world data to compare the
performance of RCA against other baseline methods and to investigate its robustness to noise due to
missing value imputation. The code is attached in the supplementary materials in submission.

4.1 RESULTS ON SYNTHETIC DATA

To better understand how RCA overcomes the limitations of conventional autoencoders (AE) on
datasets with anomalies, we experimented with a synthetic 2-dimensional dataset. The dataset con-
tains a pair of crescent-shaped moons with Gaussian noise (Pedregosa et al., 2011) representing the
normal observations and anomalies generated from a 2-dimensional uniform distribution. In this
experiment, we vary the proportion of anomalies from 10% to 40% while fixing the sample size
to be 10,000. Samples with the top-[(1 − ε)n] highest anomaly scores are classified as anomalies,
where ε is the anomaly ratio.
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Figure 2: The first and second rows are results for 10% and 40% anomaly ratio, respectively. The
last column shows the fraction of points with highest reconstruction loss that are true anomalies.
We show the results for 10% (top row) and 40% (bottom row) anomaly ratio2 in Figure 2. Observe
that the performance of both methods decreases with increasing anomaly ratio. However, results for
RCA (third column) are more robust than AE (second column). In particular, when the anomaly
ratio is 40%, AE fails to capture the true manifold of the normal data, unlike RCA. The result is
consistent with Theorem 2, which states that, when anomaly ratio increases, using the subset of data
selected by our algorithm is better than using all the data.

4.2 RESULTS ON REAL-WORLD DATA

For performance comparison, we use 18 benchmark datasets obtained from the Stony Brook ODDS
library (Rayana, 2016). A summary description of the data is given in Table 2 in appendix. We
reserve 60% of the data for training and the remaining 40% for testing. The performance of the
competing methods are evaluated based on their Area under ROC curve (AUC) scores. We also
performed experiments on the CIFAR10 dataset, for which the results are given in the Appendix.

We compared RCA against the following baseline methods: SVDD (deep one-class SVM) (Ruff
et al., 2018), VAE (Variational autoencoder) (An & Cho, 2015; Kingma & Welling, 2013), DAGMM
(deep gaussian mixture model) (Zong et al., 2018), SO-GAAL (Single-Objective Generative Ad-
versarial Active Learning) (Liu et al., 2019), OCSVM (one-class SVM) (Chen et al., 2001), and IF
(isolation forest) (Liu et al., 2008). Note that SVDD and DAGMM are two recent deep unsupervised
AD methods while OCSVM and IF are two state-of-the-art AD methods. In addition, we also per-
form an ablation study to compare RCA against its four variants: AE (standard autoencoders without
collaborative networks) and RCA-E (RCA without ensemble evaluation), and RCA-SS (RCA with-
out sample selection). Since the methods are unsupervised, to ensure fair comparison, we maintain
similar hyperparameter settings for all the competing DNN-based approaches to the best that we can
(details can be found in the supplementary materials). Experimental results are reported based on
their average AUC scores across 10 random initializations.

Figure 3a summarize the results of our experiments. The full table can be found in the Appendix.
Note that RCA outperforms the deep unsupervised AD methods (SO-GAAL, DAGMM, SVDD) in
17 out of 18 datasets. These results suggest that the strategies employed by RCA are more effective
at detecting anomalies compared to the ones used by the baseline deep unsupervised AD methods.
Surprisingly, some of the more complex DNN baselines such as SO-GAAL, DAGMM, and SVDD
perform poorly on the datasets. Their poor performance can be explained as follows. First, most of
these baseline methods assume the availability of clean training data, whereas in our experiments,
the training data was contaminated with anomalies to reflect more realistic settings. Second, we use
the same network architecture on every datasets for all the methods (including RCA), since there is
no guidance for tuning the network structure given that it is an unsupervised AD task. Finally, as
will be discussed in Section 4.3, the performance of conventional unsupervised AD methods such as
OCSVM and IF degrade significantly as the amount of missing values in the data increases, unlike
the proposed RCA framework.

4.3 RESULTS FOR ABLATION STUDY AND ANOMALY DETECTION WITH MISSING VALUES

As real-world datasets are often imperfect, we compare the performance of RCA and other baseline
methods in terms of their robustness to missing values. Mean imputation is a common approach
to deal with missing values. In this experiment, we add missing values randomly in the features of

2More results for 20% and 30% can be found in the appendix
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Figure 3: Experimental results on 18 benchmark datasets from ODDS repository.

Missing Ratio RCA-E RCA-SS VAE SO-GAAL AE DAGMM SVDD OCSVM IF
0.0 11-2-5 16-0-2 14-0-4 17-0-1 15-0-3 18-0-0 18-0-0 10-1-7 10-0-8
0.1 12-1-5 14-1-3 16-1-1 16-0-2 14-0-4 17-0-1 18-0-0 13-1-4 12-0-6
0.2 11-1-6 13-3-2 14-2-2 17-0-1 13-0-5 18-0-0 18-0-0 15-0-3 9-0-9
0.3 9-3-6 13-1-4 15-0-3 17-1-0 13-0-5 18-0-0 18-0-0 16-0-2 14-1-3
0.4 10-0-8 12-2-4 14-0-4 15-0-3 12-0-6 17-0-1 18-0-0 16-0-2 15-0-3
0.5 8-3-7 10-1-7 11-1-6 14-0-4 9-0-9 15-0-3 17-0-1 14-1-3 13-0-5

Table 1: Comparison of RCA against various competing methods in terms of (#win-#draw-#loss)
on 18 benchmark datasets with different missing ratios. RCA-E (no ensemble), RCA-SS (no sample
selection), AE (no ensemble and no sample selection) are used for ablation study of our method.

each benchmark dataset and apply mean imputation to replace the missing values. Such imputation
process will likely introduce noise into the data. We vary the percentage of missing values from 10%
to 50% and compare the average AUC scores of the competing methods. The results are summarized
in Table 1, which shows the number of wins, draws, and losses of RCA compared to each baseline
method on the 18 benchmark datasets. We also include results from ablation study to investigate
the effectiveness of using sample selection and ensemble evaluation. Specifically, we compare RCA
against its variants, RCA-E, RCA-SS, and AE. The results show that our framework is better than
the baselines on the majority of the datasets in almost all settings. In particular, RCA consistently
outperforms both DAGMM and SVDD by more than 80%, demonstrating the robustness of our
algorithm compared to other deep unsupervised AD methods when training data is contaminated.
Additionally, as the missing ratio increases to more than 30%, it outperforms IF and OCSVM by
more than 70% on the datasets. On the other hand, the advantage of RCA over its variants, AE, RCA-
SS, and RCA-E, is significant when the missing ratio is less than 40%, but becomes less significant
at higher missing ratios. Finally, since the true anomaly ratio ε is often unknown in practice, we
conducted experiments to evaluate the robustness of RCA when ε is overestimated by 5%, 10%, or
20% from their true values on all the datasets. Fig. 3b shows the AUC scores for RCA do not change
significantly even when ε was highly overestimated on most of the datasets.

5 CONCLUSION

This paper introduces RCA, a robust collaborative autoencoder framework for unsupervised AD.
The framework is designed to overcome limitations of existing deep unsupervised AD methods
due to over-parameterization of the DNNs, which hampers their effectiveness. We theoretically
show the effectiveness of our algorithm to prevent model overfitting due to anomalies. In addition,
we empirically show that RCA outperforms various state-of-the-art unsupervised AD algorithms in
most experimental settings. We also found RCA to be more robust to noise introduced by missing
value imputation compared to other baseline methods. In the future, we aim to extend the proposed
framework to incorporate more than two autoencoders. We will also investigate whether it is possible
to relax some of the assumptions behind our theoretical bounds to more realistic scenarios.

8



Under review as a conference paper at ICLR 2021

REFERENCES

Charu C Aggarwal and Saket Sathe. Outlier ensembles: An introduction. Springer, 2017.

Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using reconstruc-
tion probability. Special Lecture on IE, 2(1):1–18, 2015.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM com-
puting surveys (CSUR), 41(3):1–58, 2009.

Yunqiang Chen, Xiang Sean Zhou, and Thomas S Huang. One-class svm for learning in im-
age retrieval. In Proceedings 2001 International Conference on Image Processing (Cat. No.
01CH37205), volume 1, pp. 34–37. IEEE, 2001.

Andrew Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and Weng-Keen Wong. A meta-
analysis of the anomaly detection problem. arXiv preprint arXiv:1503.01158, 2015.

Jinan Fan, Qianru Zhang, Jialei Zhu, Meng Zhang, Zhou Yang, and Hanxiang Cao. Robust deep
auto-encoding gaussian process regression for unsupervised anomaly detection. Neurocomputing,
376:180–190, 2020.

Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm. In icml,
volume 96, pp. 148–156. Citeseer, 1996.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
Advances in neural information processing systems, pp. 8527–8537, 2018.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. arXiv preprint arXiv:1812.04606, 2018.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted labels. arXiv preprint
arXiv:1712.05055, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. In Advances in Neural Information Processing Systems, pp. 1189–1197, 2010.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth IEEE Interna-
tional Conference on Data Mining, pp. 413–422. IEEE, 2008.

Yezheng Liu, Zhe Li, Chong Zhou, Yuanchun Jiang, Jianshan Sun, Meng Wang, and Xiangnan He.
Generative adversarial active learning for unsupervised outlier detection. IEEE Transactions on
Knowledge and Data Engineering, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Stanislav Pidhorskyi, Ranya Almohsen, and Gianfranco Doretto. Generative probabilistic novelty
detection with adversarial autoencoders. In Advances in neural information processing systems,
pp. 6822–6833, 2018.

Shebuti Rayana. ODDS library. Stony Brook University, Department of Computer Sciences, http:
//odds.cs.stonybrook.edu, 2016.

9

http://odds.cs.stonybrook.edu
http://odds.cs.stonybrook.edu


Under review as a conference paper at ICLR 2021

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
der Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In International
conference on machine learning, pp. 4393–4402, 2018.

Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders with nonlinear dimen-
sionality reduction. In Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for
Sensory Data Analysis, pp. 4–11, 2014.

Vatsal Shah, Xiaoxia Wu, and Sujay Sanghavi. Choosing the sample with lowest loss makes sgd
robust. arXiv preprint arXiv:2001.03316, 2020.

Yanyao Shen and Sujay Sanghavi. Learning with bad training data via iterative trimmed loss mini-
mization. arXiv preprint arXiv:1810.11874, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol.
Stacked denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of machine learning research, 11(Dec):3371–3408, 2010.

Siqi Wang, Yijie Zeng, Xinwang Liu, En Zhu, Jianping Yin, Chuanfu Xu, and Marius Kloft. Effec-
tive End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network. In
Advances in Neural Information Processing Systems, pp. 5960–5973, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scalable outlier detection.
arXiv preprint arXiv:1901.01588, 2019.

Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep autoencoders. In Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 665–674, 2017.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. 2018.

A APPENDIX

A.1 DATA STATISTICS

The data statistics are in table 2.

A.2 FULL TABLE RESULTS ON ODDS

See table 3.

A.3 DISCUSSION ABOUT SVDD AND DAGMM

The reason why SVDD and DAGMM performs bad in ODDS might have several reasons. First, the
results reported in the SVDD paper assume training data has no contamination. For the DAGMM
paper, it has only 2 datasets that overlaps with our experiments (thyroid,arrhythmia), for
which the results reported are also for clean data. In contrast, the training data used in our ex-
periments are contaminated with anomalies. Also, the DAGMM paper acknowledges that their
performance degrades when the amount of contamination increases. Furthermore, unlike our exper-
iments, the results reported in the DAGMM paper use different network structure for each dataset
to obtain good performance, this is because that they have clean dataset, which makes it possible to
tuning the network structure and hyperparameters. However, choosing the right network structure is
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impractical for unsupervised anomaly detection without ground truth labels available. In our exper-
iments, all baselines and our method use the same network structure across different datasets. Since
there is no official code of DAGMM from the authors, our implementation of DAGMM are highly
depends on these two open source implementations 3. Another question people may ask is that why
complexed deep methods such as DAGMM, SVDD, SO-GAAL cannot beat shallow methods such
as OCSVM and Isolation Forest. According to our best knowledge, there is no evidence SVDD,
SO-GAAL and DAGMM performed better than OCSVM and IF on datasets beyond the benchmark
image data (CIFAR-10). In fact, the SO-GAAL, OCSVM and IF results reported in our paper for
ODDS dataset are consistent with the numbers reported in PyOD 4, a Python toolkit for outlier de-
tection. Also, Reference [8] compared DAGMM, SVDD (denoted as E2E), against OCSVM. The
results shown in Table 1 of the paper are similar to ours. In order to make sure that our algorithm is
better than SVDD or there is nothing wrong in our implementation about SVDD, we also conduct
experiments on CIFAR10. Since our methods are not specifically designed for the image data, we
process the CIFAR10 results in following way:

We use pytorch official implmentation of vgg19 (pretrained on ImageNet) to extract 4096 dimen-
sional feature representation of CIFAR10 to perform the anomaly detection for each class (10 sub-
datasets). Each sub-datasets consists 5000 normal class and 5% anomalies, which are random sam-
pled from other class. The training, testing data consists 80% and 20% of data (i.e. training data
has (5000 + 250) * 0.8 = 4200 samples, testing data has 1050 samples). All results are averaged
over 5 random seeds. The results are in the figure 4. For RCA, DAGMM, SVDD, we use the same
network structure in our paper. For SVDD Original, we directly borrow the number from original
SVDD paper (Ruff et al., 2018).

A.4 PROOF OF THEOREM 1

denote M = n(1 − ε)Lmax to be the smoothness of function F =
∑
i/∈O fi(w), denote the up-

date rule w(t+1) = w(t) − η(t)
∑
i p

(t)
i ∇fi(w). For the normal stochastic gradient descent, by

smoothness, we have:

F (w(t+1))− F (w(t)) ≤ 〈∇F (w(t)),w(t+1) −w(t)〉+
M

2
‖w(t) −w(t+1)‖2

≤ −η(t)〈∇F (w(t)),∇fi(w(t))〉+
η(t)2M

2
‖∇fi(w(t))‖22 (4)

3https://github.com/danieltan07/dagmm, https://github.com/tnakae/DAGMM
4We use the pyod implmentation (https://github.com/yzhao062/pyod) of SO-GAAL, VAE, IF, OCSVM
Table 2: Summary of benchmark data, where N is sample size and d is number of features.

Dataset N d Anomaly ratio
vowels 1456 12 3.4%
pima 768 8 35%
optdigits 5216 64 3%
sensor 58509 48 9.1%
letter 1600 32 6.25%
cardio 1831 21 9.6%
arrhythmia 452 274 15%
breastw 683 9 35%
musk 3062 166 3.2%
mnist 7603 100 9.2%
satimage-2 5803 36 1.2%
satellite 6435 36 32%
mammography 11183 6 2.32%
thyroid 3772 6 2.5%
annthyroid 7200 6 7.42%
ionosphere 351 33 36%
pendigits 6870 16 2.27%
shuttle 49097 9 7%
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Table 3: Performance comparison of RCA against various baseline methods in terms of average
AUC scores and its standard deviation across 10 random seeds.

Dataset RCA VAE SO-GAAL AE DAGMM SVDD OCSVM IF
vowels 0.857±0.03 0.50±0.043 0.637±0.20 0.879±0.02 0.340±0.10 0.206±0.04 0.765±0.04 0.768±0.01
pima 0.709±0.01 0.651±0.02 0.613±0.05 0.669±0.01 0.531±0.03 0.395±0.03 0.594±0.03 0.662±0.02
optdigits 0.914±0.02 0.768±0.01 0.487±0.14 0.907±0.01 0.290±0.04 0.506±0.02 0.558±0.01 0.706±0.04
sensor 0.996±0.01 0.918±0.00 0.557±0.22 0.866±0.05 0.924±0.08 0.614±0.07 0.939±0.00 0.948±0.00
letter 0.795±0.05 0.517±0.04 0.601±0.06 0.829±0.03 0.433±0.03 0.465±0.04 0.557±0.04 0.643±0.04
cardio 0.946±0.01 0.945±0.01 0.473±0.08 0.867±0.02 0.862±0.03 0.505±0.06 0.936±0.00 0.927±0.01
arrhythmia 0.807±0.05 0.798±0.04 0.538±0.04 0.802±0.04 0.603±0.09 0.635±0.06 0.782±0.03 0.802±0.02
breastw 0.986±0.01 0.953±0.01 0.980±0.01 0.973±0.00 0.976±0.00 0.406±0.04 0.955±0.01 0.983±0.01
musk 1.000±0.00 0.764±0.01 0.234±0.19 0.998±0.00 0.903±0.13 0.829±0.05 1.000±0.00 0.995±0.01
mnist 0.827±0.02 0.847±0.00 0.795±0.02 0.802±0.01 0.652±0.08 0.538±0.05 0.835±0.01 0.800±0.01
satimage-2 0.995±0.00 0.962±0.01 0.789±0.18 0.818±0.07 0.853±0.11 0.739±0.09 0.998±0.00 0.996±0.00
satellite 0.69±0.01 0.603±0.01 0.640±0.07 0.575±0.07 0.667±0.19 0.631±0.02 0.650±0.01 0.700±0.03
mammography 0.859±0.01 0.863±0.01 0.204±0.03 0.853±0.02 0.834±0.00 0.272±0.01 0.881±0.02 0.873±0.02
thyroid 0.941±0.01 0.836±0.01 0.984±0.01 0.928±0.02 0.582±0.09 0.704±0.03 0.960±0.01 0.980±0.01
annthyroid 0.684±0.02 0.583±0.02 0.679±0.02 0.675±0.02 0.506±0.02 0.591±0.01 0.599±0.01 0.824±0.01
ionosphere 0.796±0.01 0.760±0.01 0.783±0.08 0.821±0.01 0.467±0.08 0.735±0.05 0.812±0.04 0.843±0.02
pendigits 0.903±0.02 0.931±0.00 0.257±0.05 0.685±0.07 0.872±0.07 0.613±0.07 0.935±0.00 0.941±0.01
shuttle 0.942±0.01 0.988±0.00 0.571±0.32 0.921±0.01 0.890±0.11 0.531±0.29 0.985±0.00 0.997±0.00
glass 0.625±0.13 0.595±0.14 0.420±0.11 0.570±0.15 0.852±0.08 0.756±0.11 0.522±0.21 0.706±0.06

Table 4: Sensitivity Analysis about ε, the first number is averaged auc score and the second number
is the standard deviation. All experiments are repeated for 10 random seeds.

Dataset ε ε+ 0.05 ε+ 0.1 ε+ 0.2
vowels 0.857±0.03 0.858±0.03 0.855±0.03 0.842±0.03
pima 0.709±0.01 0.715±0.01 0.721±0.01 0.728±0.01
optdigits 0.914±0.02 0.926±0.01 0.927±0.01 0.932±0.01
sensor 0.996±0.01 1.000±0.00 1.000±0.00 1.000±0.00
letter 0.795±0.05 0.698±0.04 0.697±0.04 0.691±0.05
cardio 0.946±0.01 0.951±0.01 0.953±0.01 0.954±0.00
arrhythmia 0.807±0.05 0.807±0.05 0.807±0.05 0.807±0.05
breastw 0.986±0.01 0.992±0.00 0.992±0.00 0.991±0.00
musk 1.000±0.00 1.000±0.00 1.000±0.00 1.000±0.00
mnist 0.827±0.02 0.799±0.02 0.789±0.02 0.765±0.01
satimage-2 0.995±0.00 0.998±0.00 0.998±0.00 0.998±0.00
satellite 0.69±0.01 0.687±0.00 0.678±0.01 0.675±0.03
mammography 0.859±0.01 0.844±0.01 0.811±0.01 0.804±0.01
thyroid 0.941±0.01 0.939±0.01 0.938±0.01 0.935±0.01
annthyroid 0.684±0.02 0.661±0.01 0.663±0.02 0.654±0.01
ionosphere 0.796±0.01 0.794±0.01 0.796±0.01 0.801±0.01
pendigits 0.903±0.02 0.903±0.03 0.905±0.03 0.971±0.01
shuttle 0.942±0.01 0.958±0.03 0.994±0.00 0.994±0.00
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Figure 4: Results on CIFAR10 for SVDD, DAGMM, and our method. x-axis are the normal class
while y-axis is the auc score. SVDD are our implementation on contaminated data described above.
The SVDD-Original is the number reported in SVDD original paper (where they use clean training
data). We could see that even use contaminated data, our model still outperforms deep svdd in most
settings, and SVDD performs bad when training data has contamination. (i.e. SVDD performs much
worse than SVDD Original)
Take expectation on ∇fi(w(t)) by our sampling probability and applying triangle inequality on the
last term with inequality

∑
p2
i ≤

∑
pi, we have

EF (wt+1)− F (w(t)) ≤ −η(t)〈∇F (w(t)),
∑
i

pi(w
(t))∇fi(w(t))〉+

∑
i

pi(w
(t))

η(t)2M

2
‖∇fi(w(t))‖2

≤ −η(t)〈∇F (w(t)),
∑
i

pi(w
(t))∇fi(w(t))−∇F (w)〉 − η(t)‖∇F (w)‖2 + η(t)2MG2

2

complete the square and let F̂ (w(t)) =
∑
i

pi(w
(t))∇fi(w(t)), we have

≤ η(t)

2
‖∇F (w(t))‖2 +

η(t)

2
‖∇F (w(t))−∇F̂ (w(t))‖2 − η(t)‖∇F (w(t))‖2 +

η(t)2MG2

2

≤ η(t)

2
‖∇F (w(t))−∇F̂ (w(t))‖2 − η(t)

2
‖∇F (w(t))‖2 +

η(t)2MG2

2

Move the gradient norm to the left, and take total expectation, we have

η(t)E‖∇F (w(t))‖2 ≤ 2
(
EF (w(t))− EF (w(t+1))

)
+ η(t)E‖∇F (w(t))−∇F̂ (w(t))‖2 + η(t)2MG2

Sum it from t = 0 to t = T , we have:
T∑
t=0

η(t)E‖∇F (w(t))‖2 ≤ 2
(
EF (w(0))− EF (w(T+1))

)
+

T∑
t=0

η(t)E‖∇F (w(t))−∇F̂ (w(t))‖2 + η(t)2MG2

≤ 2B +

T∑
t=0

η(t)C +

T∑
t=0

η(t)2MG2

min
t=0,1,2,...,T

E‖∇F (w(t))‖2 ≤ E‖∇F (w(t))‖2 ≤ 2B∑
η(t)

+MG2

∑
η(t)2∑
η(t)

+ C (5)

By using the assumption of learning rate (
∑
η(t) = ∞,

∑
η(t)2 ≤ ∞), the first two term can

be ignored when T goes to infinity. We can get the convergence in theorem 1 (The convergence
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rate log(T ) is get by assume learning rate is η(t) = 1/t, which satisfy the above learning rate
assumption).

We also provided a better convergence rate compared to submitted manuscript with a stricter learning
rate setting. Start from equation 4, we have:

EF (wt+1)− F (w(t)) ≤ −η(t)〈∇F (w(t)),
∑
i

pi(w
(t))∇fi(w(t))〉+

∑
i

pi(w
(t))

η(t)2M

2
‖∇fi(w(t))‖2

≤ −η(t)〈∇F (w(t)),
∑
i

pi(w
(t))∇fi(w(t))−∇F (w)〉 − η(t)‖∇F (w)‖2 + η(t)2MG2

2

complete square in a different way and let F̂ (w(t)) =
∑
i

pi(w
(t))∇fi(w(t)), we have

≤ η(t) 1

2

(
η(t)‖∇F (w(t))‖2 +

1

η(t)
‖∇F (w(t))−∇F̂ (w(t))‖2

)
− η(t)‖∇F (w(t))‖2 +

η(t)2MG2

2

≤ η(t)2

2
‖∇F (w(t))‖2 +

1

2
‖∇F (w(t))−∇F̂ (w(t))‖2 − η(t)‖∇F (w(t))‖2 +

η(t)2MG2

2

≤ 1

2
‖∇F (w(t))−∇F̂ (w(t))‖2 − η(t)‖∇F (w(t))‖2 +

η(t)2(M + 1)G2

2

Move the gradient norm to the left, and take total expectation, we have

η(t)E‖∇F (w(t))‖2 ≤ EF (w(t))− EF (w(t+1)) +
1

2
E‖∇F (w(t))−∇F̂ (w(t))‖2 +

η(t)2(M + 1)G2

2

Sum it from t = 0 to t = T , we have:
T∑
t=0

η(t)E‖∇F (w(t))‖2 ≤ EF (w(0))− EF (w(T+1))

+

T∑
t=0

1

2
E‖∇F (w(t))−∇F̂ (w(t))‖2 +

T∑
t=0

η2
t (M + 1)G2

2

≤ B +
TC

2
+

T∑
t=0

η(t)2(M + 1)G2

2

min
t=0,1,2,...,T

E‖∇F (w(t))‖2 ≤ B∑
η(t)

+
(M + 1)G2

2

∑
η(t)2∑
η(t)

+
TC∑
η(t)

By assume the learning rate is constant, we write the RHS as a function of learning rate

f(η) =
B

Tη
+

(M + 1)G2η

2
+
TC

Tη

=
B

Tη
+

(M + 1)G2η

2
+
C

η

Let (M + 1)G2 = H , we have

=
B

Tη
+
Hη

2
+
C

η

We study the minima of function:

f(x) =
a

x
+ bx

x∗ =
√

(a/b), f(x∗) = 2(
√
ab)

14



Under review as a conference paper at ICLR 2021

Thus, to minimize the bound in RHS, we have the optimal learning rate η∗ =

√
2B

HT
+

2C

H
by

letting a =
B

T
+ C, b =

H

2
. Then, the optimal value of RHS is:

f(η∗) = 2(

√
(
B

T
+ C)(

H

2
)) =

√
2BH

T
+ 2CH ≤

√
2BH

T
+
√

2CH = O(
1√
T

) + O(
√
C)

. Thus we can conclude that mint=0,1,2,...,T E‖∇F (w(t))‖2 → O(
1√
T

) + O(
√
C).

This is even a better results compared to theorem 1 in our paper, since we could achieve the con-

vergence rate of

√
1

T
compared to log(T ), while the error term is dependent on

√
C instead of C.

However, to achieve this rate, we need stricter condition on learning rate.

A.5 PROOF OF THEOREM 2

We analysis the stationary point of using all data. Let w∗ns denotes the stationary point by using the
entire data, w∗ denotes the stationary point by using the clean data, by the stationary condition of
w∗ns, we have
p∑

i/∈O

∇fi(w∗ns) = −
q∑

j∈O
∇fj(w∗ns)

‖
p∑

i/∈O

∇fi(w∗ns)‖ = ‖
q∑

j∈O
∇fj(w∗ns)‖

Upper bound for LHS

‖
p∑

i/∈O

∇fi(w∗ns)‖ = ‖
p∑

i/∈O

∇fi(w∗ns)−
p∑

i/∈O

∇fi(w∗)‖ ≤
p∑

i/∈O

‖∇fi(w∗ns)−∇fi(w∗)‖ ≤
p∑

i/∈O

Li‖w∗nsi −w∗‖

= (1− ε)nLmax max
i
‖w∗nsi −w∗‖

≤Mδ (δ is defined in equation 3 in the submitted manuscript)
Another upper bound for LHS from RHS

‖
p∑

i/∈O

∇fi(w∗ns)‖ = ‖
q∑

j∈O
∇fj(w∗ns)‖ ≤ nεG

Thus, we have
‖∇F (w∗ns)‖ ≤ min(nεG,Mδ) (6)

From theorem 1, by setting η∗ =

√
2B

HT
+

2C

H
, it is trivial to get

min
t=0,1,2,...,T

E‖∇F (w(t))‖2 ≤
√

2BH

T
+ 2CH

Or by assumption of
∑
η(t) =∞,

∑
η(t) ≤ ∞, from equation 5 we can get

min
t=0,1,2,...,T

E‖∇F (w(t))‖2 ≤ E‖∇F (w(t))‖2 ≤ O(
1∑
η(t)

) + O(

∑
η(t)2∑
η(t)

) + C

We would like to study the worst case, when the upper bound of our algorithm is better than the
upper bound without sample selection.

Thus, we want the following holds when t goes to infinity√
2BH

T
+ 2CH ≤ min(nεG,Mδ)2

15
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When t goes to infinity, by the assumption we have for learning rate, we have:
√
C ≤

√
1/2H(min(nεG,Mδ))2(fixed optimal lr)

Or similarly, in deminishing learning rate setting, we have

C ≤ (min(nεG,Mδ))2(
∑

η(t) =∞,
∑

η(t)2 ≤ ∞)

Thus both LHS and RHS are the upper bound, thus we could get the conclusion that in worst cases,
our solution is better than algorithm without sample selection, which gets our conclusion of exis-
tence.

A.6 PROOF OF THEOREM 3

Now, we try to prove the correctness of the algorithm. We assume w∗ satisfy fi(w
∗) <

fj(w
∗),∀xi /∈ O,xj ∈ O.

Without loss of generality, we could define δ, φ ≥ 1 as below:

δ ≤ ‖w∗j −w∗‖ ≤ φδ, ∀j ∈ O (7)

Now, we try to answer the first question, under what conditions, our solution is perfect. We define
some neighbors around the optimal point. According to our anomaly detection setting, we with
those anomalies should have higher loss compared to the normal data point:

Br (w∗) =

{
w|fi(w) < fj(w),∀i /∈ O, j ∈ O,
‖w −w∗‖ ≤ r

}
. (8)

We knew that such ball with radius r must be existed since the loss function above is both strongly
smooth.

In order to better describe Br (w∗), we would like to analysis the boundary of the ball.

Denote the set of intersection between the loss surface of the normal data and the loss surface of the
abnormal data as:

Ωw =
{
wij

∣∣fxi /∈O(w) = fxj∈O(w)
}

(9)

Then, we can write the boundary point of the ball as:

wB = arg min
w∈Ωw

‖wB −w∗‖ (10)

At wB , by using smoothness and convexity, we have

fi(wB) ≤ fi(w∗) + 〈wB −w∗,∇fi(w∗)〉+
Li
2
‖wB −w∗‖2

fj(wB) ≥ fj(w∗j ) + 〈wB −w∗j ,∇fj(w∗)〉+
µj
2
‖wB −w∗j‖2

By the definition of wB and equal minimum assumption, without loss of generality, we could assume
the minimum is 0, which does not affect the results. Then, we have

fi(wB) ≤ Li
2
‖wB −w∗‖2

− fj(wB) ≤ −µj
2
‖wB −w∗j‖2

Adding two inequality, we have:

‖wB −w∗‖2 ≥ µj
Li
‖wB −w∗j‖2

By triangle inequality, we have

‖wB −w∗‖+ ‖wB −w∗j‖ ≥ ‖w∗j −w∗‖

16
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Combining above two inequalities, we have

‖wB −w∗‖ ≥
√
µj
Li

(‖w∗j −w∗‖ − ‖wB −w∗‖)

(1 +

√
µj
Li

)‖wB −w∗‖ ≥
√
µj
Li
δ

let κ =

√
Lcmax
µomin

‖wB −w∗‖ ≥ 1

1 +

√
Li
µj

δ ≥ 1

1 + κ
δ

, where Lcmax denotes the maximum lipschitz smoothness in clean data and µomin denotes the mini-
mum convexity in anomalies.

Define F (w) =
∑

xi /∈O fi(w), we have that function F (w) satisfy m = n(1 − ε)µmin convexity.
Similarly, we know that F (w) also satisfy M = n(1− ε)Lmax smoothness. Then, we can have:

‖w∗sr −w∗‖ ≤ m‖∇F (w∗sr)−∇F (w∗)‖
= m‖∇F (w∗sr)‖

‖w∗sr −w∗‖2 ≤ m2‖∇F (w∗sr)‖2

Now, our goal is trying to upper bound the term ‖∇F (w∗sr)‖. According to theorem 1 for fixed
optimal learning rate, we have

min
t=0,1,2,...,T

E‖∇F (w(t))‖2 ≤ E‖∇F (w(t))‖2 ≤
√

2BH

T
+ 2CH

Now, we have:

‖w∗sr −w∗‖2 ≤ m2

√
2BH

T
+ 2CH

‖wB −w∗‖2 ≥ (
1

1 + κ
δ)2

Thus, we could get the sufficient condition for ‖w∗sr −w∗‖2 ≤ ‖wB −w∗‖2 as

m2

√
2BH

T
+ 2CH ≤ (

1

1 + κ
δ)2

by using the optimal fixed learning rate and assume T is sufficiently large, rearrange the term, we
have:

√
C ≤ 1√

2H
(

δ

(1 + κ)m
)2 = O(

δ

κ
)2

C ≤ O(
δ

κ
)4

Similarly, from the theorem 1 for the diminishing learning rate condition
∑
η(t) =∞,

∑
η(t) ≤ ∞,

we have

C ≤ (
δ

(1 + κ)m
)2 = O(

δ

κ
)2

We can conclude that as long as the above inequality holds, we can guarantee that our algorithm
returns the correct answer.
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Figure 5: Illustration of the effect of κ in theorem 3. The left figure means we have small Lcmax and
large µomin, which leads large κ. According to our bound, large κ is not good in terms of correctness
guarantee. As we shall see in the left figure, in this case, the dangerous zone is very large compared
to the right figure, where we have large Lcmax, small µomin, and a small κ. In the right figure, we
could see that the orange curve will be dropped since the probability of the orange curve is sampled
is very small in our method.
B PROBABILITY OF SAMPLING WITH REPLACEMENT

In submitted manuscript, we only show the probability of sampling without replacement due to limit
of the space. In here, we show the probability of sampling with replacement:

pi(w) =

{
nk−(n−1)k

nk
if i ≤ βk;∑βk−1

j=0 (kj)(i−1)j [(n−i+1)k−j−(n−i)k−j ]
nk

otherwise
(11)

C SUPPLEMENTARY EXPERIMENTAL RESULTS

In this section, we show the supplementary experiment results, which are omitted in submitted
manuscript due to the limit of space.

C.1 NETWORK HYPERPARAMETER FOR TWO-MOON DATA

The network structure for both autoencoders and our method is the same for a fair comparison. The
network has one layer encoder and two layer decoder. In the hidden layer, we have a 0.5 dropout
ratio, the number of hidden nodes for all layers are set to be 128. All activation function is chosen
to be the tanh function. The maximum training epochs are 200. The stopping criterion is the loss
of testing data. The ensemble number is set to be 1000 for our method. Training ratio is 60% and
testing ratio is 40%. We use Adam optimizer for both method and the initial learning rate is set to
be 3e-4. Batchsize for both methods are 128.

C.2 NETWORK HYPERPARAMETER FOR BENCHMARK DATA

Specifically, we use a 6-layer fully connected autoencoder with 128 hidden nodes in every layer
except for the bottleneck layer, which has 10 hidden nodes. We also set the dropout rate to 0.5
for every hidden layer. The deep neural networks are trained using ADAM, with learning rate
initialized to 3e-4 and a batchsize of 128. The maximum epochs is set to be 100 with a stopping
criterion determined from the minimum reconstruction loss of the test data. The reconstruction loss
function for the opt-digits dataset is cross entropy loss since the feature of this data are all discrete.
The rest data reconstruction loss are all mean square error loss. The activation function is chose to
be LeakyReLU with α = 0.1. For the SVDD, we pretrain the autoencoder for 50 epochs, and use
the encoder as the initialization of SVDD except the last layer.
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Figure 6: The rows are the results for 10%,20%,30% and 40% anomaly ratio from top to bottom,
respectively. The last column shows the fraction of points with highest reconstruction loss that are
true anomalies.
C.3 RESULTS FOR TWO MOON

In submitted manuscript, due to the limit of the space, we only show the results for 10% and 40%
anomaly ratio. In this section, we provide the results for 10%, 20%, 30%, and 40% in Figure 6.
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