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ABSTRACT

While large language models (LLMs) have shown exceptional capabilities in un-
derstanding complex queries and performing sophisticated tasks, their generaliza-
tion abilities are often deeply entangled with memorization, necessitating more
precise evaluation. To address this challenge, we introduce SCYLLA, a dynamic
evaluation framework that quantitatively measures the generalization abilities of
LLMs. SCYLLA disentangles generalization from memorization via assessing
model performance on both in-distribution (ID) and out-of-distribution (OOD)
data through 20 tasks across 5 levels of complexity. Through extensive exper-
iments, we uncover a non-monotonic relationship between task complexity and
the performance gap between ID and OOD data, which we term the generaliza-
tion valley. Specifically, this phenomenon reveals a critical threshold—referred
to as critical complexity—where reliance on non-generalizable behavior peaks,
indicating the upper bound of LLMs’ generalization capabilities. As model size
increases, the critical complexity shifts toward higher levels of task complexity,
suggesting that larger models can handle more complex reasoning tasks before
over-relying on memorization. Leveraging SCYLLA and the concept of critical
complexity, we benchmark 28 LLMs including both open-sourced models such
as LLaMA and Qwen families, and closed-sourced models like Claude and GPT,
providing a more robust evaluation and establishing a clearer understanding of
LLMs’ generalization capabilities.

1 INTRODUCTION

Large language models (LLMs) have revolutionized natural language processing by exhibiting ex-
ceptional abilities in understanding complex queries, generating human-like text, and performing a
variety of downstream tasks (OpenAI, 2023; Google, 2024; Bubeck et al., 2023; Hoffmann et al.,
2022). Beyond their impressive text-generation capabilities, these models also demonstrate emerg-
ing skills in reasoning (Wei et al., 2022b; Kojima et al., 2022). Through increased inference-time
computation (Chen et al., 2024b; Snell et al., 2024; Bansal et al., 2024; Qi et al., 2024; Wang et al.,
2024), LLMs have achieved or even surpassed human-level performance on benchmarks that re-
quire nontrivial reasoning abilities (Cobbe et al., 2021; Hendrycks et al., 2021; 2020; Chen et al.,
2021; Han et al., 2022). Despite these impressive advancements, research has also demonstrated that
LLMs face significant challenges when solving problems that involve terms, patterns, or concepts
that are less common in their training data (Razeghi et al., 2022; Kandpal et al., 2023; Chen et al.,
2024a; Antoniades et al., 2024). Additionally, concerns have been raised regarding data contam-
ination (Magar & Schwartz, 2022b; Carlini et al., 2022; Dong et al., 2024), as many benchmark
datasets are sourced from the web and may overlap with the training data, either directly or in-
directly, which undermines the reliability of results on such benchmarks. Consequently, there is
ongoing debate about whether LLMs truly possess human-like reasoning abilities or simply rely on
memorized patterns when solving problems (Kambhampati, 2024; Schwarzschild et al., 2024).

Several efforts have been made to explore the interplay between generalization and memorization
in LLMs’ reasoning behaviors (Wu et al., 2023; Lotfi et al., 2023; Zhu et al., 2023; Antoniades
et al., 2024; Dong et al., 2024). Lotfi et al. (2023) present the first non-vacuous generalization
bounds for LLMs, demonstrating their ability to discover patterns that generalize to unseen data.
Wu et al. (2023) suggest that generalization and memorization often exist on a continuum, as LLMs

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

exhibit above-random performance on counterfactual tasks, though with some degradation com-
pared to default tasks. Their study proposes that the seemingly “reasoning” behaviors of LLMs
may stem from a combination of: (1) generalization behaviors, such as abstract logic and learned
skills, and (2) memorization behaviors, including memorized input-output mappings and pattern
matching. Despite these recent insights, the relationship between task difficulty, model size, and
the balance between generalization and memorization remains poorly understood. Several factors
undermine the robustness of current findings. First, reliable methods for quantifying task difficulty
are still underdeveloped, and the distinction between problem length and intrinsic task complexity is
often overlooked. Additionally, evaluations are usually complicated by data contamination and the
entanglement with knowledge, introducing confounding factors to reasoning assessments.

In this work, we quantify the generalization ability of LLMs by aligning models with the intrin-
sic complexity of reasoning tasks. We address two specific research questions: 1) How does
task complexity affect the balance between generalizable (generalization) and non-generalizable
(memorization) behaviors? 2) How does model size influence this balance? We first de-
velop a novel evaluation framework, SCYLLA, that is scalable in task complexity, dynamic,
knowledge-light, and memorization-aware. We explain the necessity of each of these criteria
for understanding the working mechanism of generalization, and show that no existing eval-
uation methods fully meet them. SCYLLA enables the generation of in-distribution (ID) and
out-of-distribution (OOD) data of a given task, and the performance gap between them is con-
sidered an indicator of reliance on non-generalizable behaviors to solve the task. This al-
lows us to assess how well models generalize learned task skills beyond their training distri-
bution. We evaluate the performance of LLMs on both ID and OOD data across varying lev-
els of quantified task complexity. The results of our experiments lead to two key findings:
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Figure 1: An illustration of generalization valley,
where the reliance on non-generalizable behav-
iors first increases and then decreases; and criti-
cal complexity shift, where the peak of the valley
shifts rightward as model size increases.

1) Non-monotonic performance gap across
task complexity: the performance gap between
ID and OOD data initially widens as task com-
plexity increases, reaches a peak, and then nar-
rows as tasks become more complex—a phe-
nomenon we refer to as generalization valley.
As shown in Fig. 1, this non-monotonic rela-
tionship suggests that LMs are most vulnerable
to distribution shifts at certain intermediate task
complexity levels, where overfitting to training
data leads to a greater dependence on memo-
rization. and 2) Peak of generalization valley
shifts rightward with increasing model size:
as the model size increases, the peak of per-
formance gap, referred to as the critical com-
plexity, shifts to the right. As shown in Fig. 1,
this rightward shift indicates that larger mod-
els are better equipped to handle more complex
tasks without over-relying on memorization,
maintaining generalization capabilities across a
broader range of task difficulties.

The contributions of this paper are fourfold.
First, we present a novel, task-centric evalua-
tion framework that is scalable in task complexity, dynamic, knowledge-light, and memorization-
aware, specifically designed to overcome limitations found in existing evaluation methods. Second,
through a detailed analysis of performance across varying task complexities and model sizes, we
uncover insights into generalization behavior, revealing patterns that distinguish when models in-
creasingly rely on memorization versus generalization. And third, we highlight the impact of model
size on generalization, demonstrating that larger models experience a delayed over-reliance on mem-
orization, with peak performance discrepancies occurring at higher task difficulties than in smaller
models. Finally, leveraging our proposed framework and insights, we define a new metric that aims
to reward models with strong generalization to OOD data while penalizing those that exhibit overfit-
ting to ID data, and conduct a comprehensive benchmarking of 28 popular LLMs, focusing on their
genuine reasoning capabilities.
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2 RELATED WORK

2.1 GENERALIZATION & MEMORIZATION IN LLMS’ REASONING

The debate over whether LLMs can genuinely reason or simply rely on memorization remains cen-
tral to understand their true capabilities (Zhang et al., 2021; Tänzer et al., 2021; Zečević et al., 2023;
Tang et al., 2023; Yin et al., 2023; Biderman et al., 2024). Wu et al. (2023) argue that models like
GPT-4 perform well on default tasks but struggle significantly with counterfactual ones, implying
that much of their success comes from memorization of specific patterns. Similarly, Dong et al.
(2024) highlight how data contamination can inflate perceived generalization by enabling models to
rely on memorized data, while Antoniades et al. (2024) observe that even larger models, which gen-
erally show stronger generalization, still exhibit memorization behaviors, especially for frequently
encountered n-grams. Kambhampati (2024) assert that LLMs primarily perform “approximate re-
trieval” from large pretraining datasets rather than true reasoning. In contrast, Lotfi et al. (2023)
introduce the first non-vacuous generalization bounds for LLMs, providing a mathematical frame-
work that demonstrates LLMs’ capability to discover regularities and generalize beyond their train-
ing data, particularly as models scale up, and thus disprove that larger LLMs are simply better at
regurgitating training data. Together, these works highlight the ongoing tension between memoriza-
tion and generalization, and the need for more robust evaluations that differentiate between the two.

2.2 EVALUATION OF LLMS’ REASONING ABILITIES

Reasoning is recognized as a key component of both human cognition and AI development, driv-
ing research to evaluate the reasoning abilities of LLMs (Zhu et al., 2023). Recent research has
emphasized tasks requiring logic and deduction—such as those involving math, text, and code—as
benchmarks for reasoning across domains, generally divided into static and dynamic categories.
Specifically, static benchmarks, including MATH (Hendrycks et al., 2021), GSM8K (Cobbe et al.,
2021), BoardgameQA (Kazemi et al., 2023), and FOLIO (Han et al., 2022), use mathematical and
logical problems to assess reasoning performance. However, these benchmarks, which remain fixed
after publication, are vulnerable to data contamination (Magar & Schwartz, 2022a; Golchin & Sur-
deanu, 2023) and reasoning gap issues (Srivastava et al., 2024). To address these limitations, recent
benchmarks have adopted a dynamic approach, either by generating new problem instances at test
time or by regularly refreshing test data. CLRS-Text (Veličković et al., 2022), for instance, draws
on algorithms from Introduction to Algorithms (Cormen et al., 2009) and synthesizes algorithmic
reasoning problems in text form. Similarly, NPHardEval (Fan et al., 2023) is built upon algorithm
tasks. It organizes them by complexity class, defines difficulty levels by problem lengths, and re-
freshes data on a monthly basis to mitigate the risk of overfitting. LiveBench (White et al., 2024)
also frequently updates questions from the most recent information sources, but the task set tends
to be too knowledge-intensive to be a good testbed for reasoning. DyVal (Zhu et al., 2023) employs
a graph-informed algorithm to generate math, logic, and algorithm test cases, but faces challenges
in manually specifying problems as graphs and defining valid constraints. Despite these research
efforts, they barely disentangle reasoning and generalization from memorization or quantitatively
align the intrinsic task complexity and generalization ability.

3 METHOD

3.1 MOTIVATION

To conduct reliable evaluations of the generalization capabilities of LLMs, we begin by discussing
several key features that are essential for an effective benchmark. While prior research has touched
upon the importance of scalable and dynamic evaluation (Zhu et al., 2023; Fan et al., 2023), we refine
these criteria with clearer definitions and emphasize two additional critical dimensions: knowledge-
light and memorization-aware.

Scalable inherent complexity. The difficulty of an ideal evaluation task should be both quantifi-
able and scalable (Zhu et al., 2023; Fan et al., 2023). There are two dimensions that influence the
difficulty of solving a task: (1) the intrinsic complexity of the task and (2) the length of an input
problem instance. The former refers to tasks that inherently require more sophisticated reasoning
and a greater number of intermediate steps, with the number of steps increasing as a function of the
length of the input instances. Consequently, when benchmarks increase task difficulty by both ex-
tending input lengths and introducing tasks of varying complexity, as seen in (Fan et al., 2023; Zhu
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et al., 2023), it becomes difficult to distinguish whether performance drops stem from the challenges
with longer inputs or the tasks’ intrinsic complexity. Plus, LLMs are known to struggle with length
generalization problem, exhibiting a sharp decline in performance (Anil et al., 2022) or becoming
unstable (Zhou et al., 2024) as input length increases. For these reasons, problem length is not an
ideal hyperparameter for adjusting task difficulty and should be controlled. In other words, task
difficulty should scale independently of input length.

Dynamic question generation. Optimal benchmark task instances should be generated dynamically
to minimize the risk of data contamination. Many widely adopted reasoning benchmarks, such as
those for mathematical reasoning (Cobbe et al., 2021; Hendrycks et al., 2021), are based on static
datasets. However, evaluations based on static data often encounter challenges such as the reasoning
gap problem (Srivastava et al., 2024) and data contamination (Magar & Schwartz, 2022a; Golchin
& Surdeanu, 2023) issues, reducing the robustness and reliability of these assessments.

Knowledge-light prerequisite. Ideal evaluation tasks for reasoning should require minimal back-
ground knowledge, containing only simple task descriptions and queries. By minimizing the reliance
on external information, we ensure that any performance differences is most likely attributable to
the models’ reasoning abilities rather than disparities in their knowledge bases, eliminating the am-
biguity of whether a model’s failure is due to a lack of necessary knowledge (Kandpal et al., 2023;
Srivastava et al., 2022; Suzgun et al., 2022) or an inherent limitation in reasoning ability.

Memorization-aware evaluation. The benchmark should explicitly differentiate between task in-
stances that are more likely to have been memorized and those that are less likely. This differentia-
tion helps us accurately attribute the model’s performance to either memorization or generalization.

3.2 SCYLLA BENCHMARK

Considering that none of the current benchmarks or evaluation frameworks meet all of the require-
ments defined above, we propose a new benchmark, SCYLLA, which distinguishes itself from exist-
ing benchmarks through the following key features:

• Scalable inherent Complexity: We utilize algorithmic complexity to quantify task complexity,
defining tasks as more complex when they require algorithms of higher complexity for their so-
lution. To ensure consistent complexity across tasks, we impose explicit constraints on problem
lengths, ensuring the variation remains within a stable range while keeping the upper bound man-
ageable, so that task complexity is minimally influenced by problem length. Our choice of tasks
and their corresponding complexity bounds are detailed in §3.2.1.

• DYnamic problem generation: All data are generated during the evaluation, ensuring that each
evaluation instance is unique and unaffected by pre-exposed data. Details of the data synthesis
methodology can be found in §3.2.2.

• KnowLedge-Light prerequisite: Tasks are designed to require no background knowledge, featur-
ing simple and clear descriptions and straightforward instructions. All the tasks are designed to
be solvable with basic skills such as additions and comparisons of non-negative integers.

• Memorization-Aware evaluation: Generalization and reasoning capabilities are more clearly dis-
entangled from memorization through explicit differentiation between in-distribution (ID) and
out-of-distribution (OOD) data. Performance on ID data reflects a combination of both general-
ization and memorization, as the model is familiar with both the length and patterns of the task
instances. Conversely, performance on OOD data primarily indicates generalization, as the model
is only familiar with the length of the task instances but not the specific patterns of the task el-
ements. Therefore, we propose to utilize the performance gap between ID and OOD data as an
estimation of the model’s reliance on memorization, allowing us to assess how well models gen-
eralize learned task skills beyond their familiar instances. Procedures for generating ID and OOD
data are detailed in §3.2.2.

Additionally, SCYLLA requires only black-box access to an LLM, enabling users to evaluate and
compare different models across platforms without delving into their internal workings. Its task-
centric design also ensures high adaptability and extensibility, allowing users to seamlessly cus-
tomize and expand it by incorporating new tasks and complexity levels to make the evaluation results
more precise and reliable. Further comparisons with existing benchmarks or evaluation frameworks
can be found in Appendix A.2.
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3.2.1 TASKS & COMPLEXITY LEVELS

To categorize and define the tasks in our benchmark, we adopt the notion of time com-
plexity, which measures the order of growth of an algorithm’s running time and pro-
vides a standardized framework for comparing the efficiency of different algorithms (Cor-
men et al., 2009). In this context, we re-purpose LLMs as algorithm executors, where
their ability to handle tasks is expected to depend on the underlying computational complex-
ity of those tasks. Our experiments, detailed later, validate this hypothesis by demonstrat-
ing that time complexity provides a meaningful and rigorous method for task classification.

Anchor Probe

LCS

LIS

LCE

𝑶( 𝑵log𝑵, 𝟐𝑵 )

FindMin
FindMax

FindMode
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3Sum 3SumMT
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SbsSumIR
𝑶(𝟐𝑵)

Figure 2: Left: Anchor tasks. These tasks form the core
of our benchmark, providing a structured set of challenges
across varying time complexities. Right: Probe tasks.
These tasks are used to evaluate the level of complexity that
LLMs adopt to solve them.

As shown in Fig. 2, we first intro-
duce anchor tasks that define the
intrinsic complexity levels in our
benchmark. Specifically, we uti-
lize six levels of time complex-
ity: O(N), O(N logN), O(N2),
O(N3), O(N4), and O(2N ) to de-
fine our complexity intervals. For a
specific task, we define its difficulty
using a complexity range, denoted as
O([C1, C2]), where C1 and C2 rep-
resent the lower and upper bounds
of the time complexity for algorithms
that solve the task. The anchor tasks
are selected based on two key cri-
teria. First, the time complexity of
the selected tasks should fall within
one or two adjacent complexity lev-
els to maintain consistency in diffi-
culty. This ensures that the tasks
within each group are comparable in terms of computational demands, preventing significant
changes in difficulty. It also avoids scenarios where models face both very simple and highly
complex tasks, which could lead to inconsistent performance measurements and obscure the un-
derlying reasoning capabilities we aim to evaluate. Second, the tasks must be simple and should
avoid reliance on advanced mathematical knowledge, common sense, or natural language under-
standing—factors outside the scope of the reasoning abilities we aim to evaluate. For instance,
matrix multiplication involves specific mathematical concepts, which are not aligned with our fo-
cus on reasoning capabilities. In contrast, tasks like “find max”, which only require basic number
ordering, provide a more appropriate measure of reasoning ability.

For anchor tasks, we propose three to four tasks for each complexity interval. The time complex-
ities of these tasks are illustrated in the left of Fig. 2, with complexity increasing in a clockwise
direction on the pie chart. Some task names are abbreviated in the figure, but detailed in Table 1.

Table 1: Anchor tasks for each complexity interval.

O(N) Find min, find max, find mode
O([N,N2)) Find top-k, two sum, sort numbers, remove duplicates
O([N2, N3)) 3-sum multiple ten, 3-sum in range, 3-sum
O([N3, N4)) 4-sum multiple ten, 4-sum in range, 4-sum
O(2N ) Subset sum multiple ten, subset sum in range, subset sum,

travelling salesman problem

To explore how LLMs handle tasks
with multiple solutions of varying
time complexities, we also introduce
a set of tasks termed probe tasks.
These tasks, including longest com-
mon subarray (LCS), longest increas-
ing sequence (LIS), and longest con-
secutive elements (LCE), allow us to
observe whether LLMs favor more efficient solutions as task complexity increases. The correspond-
ing time complexities of these tasks are shown in the graph on the right of Fig. 2. The behavior of
LLMs in choosing between multiple solutions for these tasks is further discussed in §4.5. For both
the anchor tasks and probe tasks, a detailed explanation of their time complexity, along with other
relevant information, can be found in Appendix D.

Our time complexity-based approach contrasts with benchmarks such as CLRS (Veličković et al.,
2022; Markeeva et al., 2024) by not only grouping tasks by algorithm type, but also systemati-
cally representing the relationships between tasks of varying complexities. While approaches like
NPHardEval (Fan et al., 2023) and DyVal (Zhu et al., 2023) categorize tasks based on input length,
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task of TwoSum. 

Given a number list and 
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Task Description

[5, 7, 8], 

[1, 4, 9, 16], …

ID Instances

[4922, 6450, 4434], 

[7821, 8424, 8776, 7611], 

…

OOD Instances

ID Problem Lengths

[3, 4, …]

[5, 7, 8, 1, 4, 9, 16, …]

ID Elements

[4922, 6450, 4434, 7821, 

8424, 8776, 7611, …]

OOD Elements

Figure 3: Pipeline for generating ID and OOD dataset for a given task, tailored to each LLM.

they lack a clear connection between input length and task difficulty, and thus makes it difficult to
discern whether a lower performance stems from handling larger inputs or from the higher intrinsic
complexity of the task itself. In contrast, SCYLLA improves upon these approaches by following
more rigorous procedures of selecting tasks, defining complexities, and generating data, providing
more reliable evaluations of LLMs’ generalization abilities.

3.2.2 DATA SYNTHESIS PIPELINE

The entire pipeline for synthesizing data is illustrated in Fig. 3. For a given task, the first step is
to obtain the ID test data, consisting of instances that the LLM is already familiar with. However,
directly accessing the pre-training dataset of an LLM is often impractical, as the dataset composition
and pre-training mixtures are generally not publicly available. Moreover, the vast size of the text
corpora makes processing challenging. In addition, proprietary models like GPT-4 usually provide
only black-box APIs, limiting the ability to conduct in-depth analysis of the model itself.

To address these challenges, we propose a workaround to approximate the ID data by directly query-
ing the model about the distribution it is familiar with. Specifically, we first prompt the model to
generate a substantial amount of test inputs tailored to the task description (see Appendix D.6 for
prompt details). From these generated responses, we use regular expressions to extract test examples
and designate them as the ID test data. Additionally, the individual numbers within these examples
are identified as ID elements, with their lengths referred to as ID problem lengths. In our experi-
ments, we typically prompt models to generate no less than 10k instances and obtain around 100k ID
elements for each task. In Fig. 4, we show an example where we query Mistral 7B model on the task
of Find Longest Increasing Subsequence. Besides this task, we observe that for tasks in SCYLLA,
most of the ID elements fall within the range of (0, 100), and the example lengths are typically
between 4 and 16. For further validation of this approximate method, please refer to Appendix B.

Next, we sample OOD elements from the complement of the ID ele-
ments, i.e., the set of elements that do not overlap with the ID elements.

0 20 40 60 80 100
Value

0.00

0.02

0.04

0.06

Pr
ob

ab
ilit

y

Figure 4: An example of probability distribution of
ID elements collected by querying Mistral 7B v0.3
on the task of Find Longest Increasing Subsequence.
The histogram shows the most frequent values with
probabilities adding up to 90% (top-p=0.9).

This is implemented by sampling elements
from a universal set and excluding those that
overlap with the ID elements. To identify an
appropriate universal set, one can manually
check the distribution of the extracted ID el-
ements, as shown in Fig. 4. From our exper-
iments, a large and diverse range of numbers
like [0, 9,999] is sufficient for defining the
universal set for all the LLMs we have tested.
Note that the upper bound of the universal set
is also restricted to avoid too many extra to-
kenizations of large numbers. To control for
the length factor, we use the ID example sizes and OOD elements to construct OOD examples and
obtain the OOD test data. During the actual benchmark experiments, we notice that some generated
examples may be invalid or duplicated for both ID and OOD test data. To resolve this problem, we

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

O(N)
O([N, N2])

O([N2, N3])
O([N3, N4])

O(2N)

0.78 ± 0.12 0.8 ± 0.18 0.91 ± 0.07 0.95 ± 0.04 0.99 ± 0.02 0.95 ± 0.05 0.99 ± 0.01
0.45 ± 0.31 0.32 ± 0.2 0.53 ± 0.19 0.75 ± 0.23 0.83 ± 0.19 0.95 ± 0.05 0.96 ± 0.03
0.05 ± 0.03 0.11 ± 0.1 0.13 ± 0.07 0.19 ± 0.1 0.3 ± 0.05 0.26 ± 0.19 0.36 ± 0.03
0.03 ± 0.04 0.06 ± 0.06 0.1 ± 0.06 0.06 ± 0.04 0.21 ± 0.1 0.22 ± 0.14 0.36 ± 0.22
0.05 ± 0.08 0.05 ± 0.06 0.09 ± 0.15 0.05 ± 0.06 0.07 ± 0.04 0.06 ± 0.03 0.18 ± 0.12

Acc. on ID data (Mean ± Std. Dev.)
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O(N)
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O([N2, N3])
O([N3, N4])

O(2N)

0.66 ± 0.21 0.72 ± 0.13 0.91 ± 0.03 0.9 ± 0.07 0.98 ± 0.02 0.93 ± 0.07 0.98 ± 0.03
0.34 ± 0.19 0.26 ± 0.17 0.41 ± 0.21 0.67 ± 0.14 0.67 ± 0.35 0.89 ± 0.16 0.96 ± 0.03
0.05 ± 0.03 0.12 ± 0.04 0.16 ± 0.07 0.13 ± 0.09 0.22 ± 0.1 0.19 ± 0.11 0.25 ± 0.09
0.01 ± 0.0 0.07 ± 0.04 0.09 ± 0.03 0.04 ± 0.03 0.16 ± 0.11 0.09 ± 0.07 0.21 ± 0.02

0.03 ± 0.07 0.03 ± 0.03 0.07 ± 0.13 0.05 ± 0.06 0.06 ± 0.04 0.03 ± 0.01 0.1 ± 0.13

Acc. on OOD data (Mean ± Std. Dev.)

Figure 5: ID/OOD performance of Qwen 1.5 family across five complexity levels.
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Figure 6: ID and OOD accuracy and performance gap curves for Llama-3.2-3B, Llama-3-8B,
Gemma-2-9B, Claude-3-Sonnet, GPT-4o, and o1-mini. A significant drop in OOD accuracy is ob-
served at the models’ critical complexity, indicating a sudden decline in generalization ability.

apply a validation process, which filters out invalid examples and removes duplicates. Finally, 256
test samples are selected for each of the ID and OOD dataset.

4 EXPERIMENTS

In this section, we conduct extensive experiments using SCYLLA on a series of LLMs. Throughout
§4.1, §4.2 and §4.4, we use anchor tasks to conduct evaluations. In §4.5 we use probe tasks to
examine whether LLMs favor more efficient solutions when tasks can be solved with algorithms
with a wider range of time complexities. We used zero-shot chain-of-thought method (Kojima et al.,
2022) when prompting these models for solutions. Our choice to focus on zero-shot was deliberate,
as adding few-shot examples would introduce a confounding variable—the selection and structure of
the examples—which could bias the results and obscure the intrinsic effects of model generalization.

4.1 PERFORMANCE ON ID AND OOD DATASET

We begin by evaluating Qwen-1.5 models on their generated ID and OOD datasets, as shown in
Fig. 5. Accuracy on ID data consistently increases with model size. Smaller models (1.8B, 4B)
show lower and more variable performance, whereas larger models (32B, 72B, 110B) achieve nearly
perfect accuracy with reduced variance. OOD performance also improves with model size. How-
ever, the gap between ID and OOD accuracy persists, especially in smaller models. Larger models
(32B and above) demonstrate significant OOD gains but still show greater variance in performance
compared to ID tasks, highlighting the ongoing challenge of generalization.

4.2 THE GENERALIZATION VALLEY PHENOMENON

Building on our initial evaluation of ID and OOD performance across different model sizes, we
now specifically focus on the performance gap between ID and OOD data: max (0, AID −AOOD),
where AID and AOOD denote accuracy on ID and OOD data, respectively. The performance gap
between ID and OOD data provides deeper insights into the models’ reliance on memorization
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versus their ability to generalize. As shown in Fig. 6, results for Llama-3.2-3B, Llama-3-8B,
Gemma-2-9B, Claude-3-Sonnet, and GPT-4o reveal a non-monotonic relationship between task
complexity and the ID-OOD performance gap, which we refer to as generalization valley. Specif-
ically, as task complexity increases, the gap widens, reaching a peak where models rely most
on memorization, meaning that the model performs well on ID tasks but poorly on OOD tasks.
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Figure 7: Critical complexity shifts to the right as model
size increases for open-sourced LLMs, indicating enhanced
generalization capacity.

This peak marks the point of critical
complexity, at which models strug-
gle to generalize to unseen data, over-
relying on memorized patterns from
the training distribution. Fig. 6 also
shows how models exhibit a clear
drop in OOD accuracy as task reaches
the critical complexity, which signals
that models’ ability to generalize is
overwhelmed by the complexity of
the task, leading to a sharp increase
in the performance gap. Beyond this
peak, both ID and OOD accuracy
decline significantly, and the perfor-
mance gap stabilizes at a lower level, reflecting the model’s failure of relying on either memorization
or generalization, showing model’s diminished capacity to handle tasks of higher complexity.
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Figure 8: Critical complexity shifts for closed-
source models: Sonnet shows higher critical com-
plexity than Haiku, while GPT-4o-mini deviates
from this trend.

In Fig. 7 and Fig. 8, we compute the perfor-
mance gap between ID and OOD test data, and
compare open-sourced and close-sourced mod-
els across various sizes. We observe a right-
ward shift of the critical complexity as models
scale up in size. As shown in Fig. 7, larger mod-
els, such as Llama-3.1-405B, handle more com-
plex tasks before reaching their peak reliance
on memorization. This suggests that increas-
ing model size enhances the model’s general-
ization capacity, enabling better performance
on harder tasks before overfitting to ID data be-
comes a dominant factor. However, even the
largest models eventually reach critical complexity at very high task difficulties, suggesting that
while scaling delays the reliance on memorization, it does not entirely eliminate it. We also notice
that GPT-4o-mini, despite having a smaller size than GPT-4o, exhibits a higher critical complexity
(bottom-left in Fig. 8). We hypothesize that GPT-4o-mini might have undergone more aggressive or
sophisticated training on a high-quality dataset based on GPT-4o, leading to enhanced generalization
capabilities at higher task complexities.

4.3 GENERALIZATION SCORE

Based on performance on ID and OOD data, we propose a new metric termed the Generalization
Score (S). This metric is designed to reward models that perform well on OOD data while penalizing
those that overfit to ID data. The generalization score is defined as:

S = AOOD −max (0, AID −AOOD) ,

where AID represents the accuracy on ID data, and AOOD denotes the accuracy on OOD data. The
score S ranges from −1 to 1, inclusive. The rationale behind this metric is twofold: 1) encouraging
high OOD performance, where a higher AOOD indicates that the model can generalize learned skills
to new, unseen data distributions, reflecting genuine reasoning abilities rather than mere memoriza-
tion. And 2) penalizing over-reliance on memorization: the term max (0, AID −AOOD) measures
the performance gap between ID and OOD data. If the model performs significantly better on ID
data than on OOD data, this suggests reliance on memorized patterns specific to the training dis-
tribution. An ideal LLM reasoner should achieve high accuracy on OOD data (AOOD close to 1)
and exhibit a minimal performance gap between ID and OOD data (AID − AOOD close to 0). This
results in a generalization score S approaching 1. Conversely, a model that performs well on ID
data but poorly on OOD data—indicating heavy reliance on memorization—would have a larger
performance gap, leading to a lower or even negative S.
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4.4 BENCHMARK RESULTS

We evaluate 28 models across different families, versions, sizes, and expertise, including Qwen fam-
ily (Qwen-1.5-1.8B/4B/7B/14B/32B/72B/110B, Qwen-2-7B, Qwen-2.5-3B/7B, Qwen-2.5-Coder-
7B, and Qwen-2.5-Math-7B), LLaMA family (LLaMA-2-7B, LLaMA-3-8B/70B, LLaMA-3.1-
8B/70B/405B, and LLaMA-3.2-3B), Gemma family (Gemma-2-2B/9B/27B), GPT family (GPT-4o,
GPT-4o-mini, GPT-o1-mini), Claude family (Claude-3-Sonnet/Haiku), and Mistral-7B-v0.3. Unless
otherwise specified, all tested models are instruction-tuned models. We test each LLM and report
their generalization scores in Table 2.

The results demonstrate that closed-sourced models generally exhibit stronger generalization abili-
ties and achieve higher critical complexity than their open-sourced counterparts. Notably, GPT-4o-
mini and o1-mini are the only models that reach the critical complexity of O(2N ), indicating their
ability to handle a broad range of highly complex tasks. The o1-mini model, in particular, outper-
forms all other models across every complexity class, achieving a perfect generalization score of 1
on O(N) tasks and maintaining superior performance even in the most challenging O(2N ) category.
Revisiting Fig. 6, the performance gap curve for o1-mini remains almost flat when compared on the
same scale as other models, indicating its exceptional generalization abilities across task complex-
ities, with minimal dependence on memorization. More discussions and examples of how o1-mini
reasons on SCYLLA’s tasks can be found in Appendix F.

Among open-sourced models, Llama-3.1-405B stands out with the strongest performance, achieving
near-perfect generalization scores of 0.997 and 0.996 on O(N) and O([N,N2]) tasks, respectively,
and exhibiting robust generalization up to O([N3, N4]) complexity. This suggests that scaling open-
source models, such as Llama, can significantly improve their generalization capabilities, approach-
ing the performance of proprietary models at the higher end of the task complexity spectrum. Within
7B-9B models, Qwen-2.5-7B emerges as the top performer, with generalization scores of 0.617 and
0.632 for O(N) and O([N,N2]), respectively, and maintaining strong performance at higher com-
plexity levels, with scores of 0.514 and 0.136 for tasks in the O([N2, N3]) and O([N3, N4]) ranges.
This positions Qwen-2.5-7B as a leading contender for medium-scale open-sourced models capable
of handling diverse levels of task complexity.

We also compare models fine-tuned for specific domains, such as math and code, against their base
versions. Qwen2.5-Math-7B and Qwen2.5-Coder-7B outperform the base Qwen2.5-7B on tasks of
lower complexity (O(N) and O([N,N2])), but do not necessarily show improved results on tasks of
higher complexity. This suggests that domain-specific fine-tuning enhances a model’s generalization
within the complexity range it was originally effective in, but offers limited gains for tasks that
exceed this range.

4.5 WHICH COMPLEXITY DOES AN LLM PREFER TO SOLVE A TASK?
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Figure 9: Illustration of correlations be-
tween task complexity and OOD accu-
racy for three probe tasks.

To further explore our benchmark, we designed a set of
probe tasks to analyze the time complexity that different
LLMs employ to solve these tasks. First, we constructed a
mapping that correlates time complexity with OOD accu-
racy. For this analysis, we used Llama-3-8B and Mistral-
7B as examples. Initially, we plotted the mapping, rep-
resented by the black line in the graph. Next, we tested
the accuracy of these two models on three probe tasks:
longest common subarray (LCS), longest increasing sub-
sequence (LIS), and longest consecutive elements (LCE).
The results are shown in Fig. 9, where green, yellow, and
purple lines represent the accuracy for each task. By iden-
tifying the intersection points between the accuracy re-
sults and the mapping curves, we can infer the time com-
plexity of the algorithms used by each LLM based on the
corresponding x-coordinate of the intersection points.

Interestingly, the yellow and purple lines are nearly identical, indicating that both models use al-
gorithms with similar time complexities. However, these two LLMs apply different time complex-
ities when solving these two tasks. Mistral-7B uses a less efficient algorithm than Llama-3-8B,
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Table 2: Generalization scores and critical complexities of 28 LLMs. The highest scores within each
complexity range are highlighted in bold, and the second-highest scores are underlined.

Model O(N) O([N,N2]) O([N2, N3]) O([N3, N4]) O(2N ) Critical Complexity
Open-sourced Models

Qwen1.5-1.8B 0.547 0.226 0.042 -0.009 0.018 O(N)
Qwen1.5-4B 0.631 0.173 0.094 0.061 0.007 O(N)
Qwen1.5-7B 0.887 0.268 0.152 0.063 0.056 O([N,N2])
Qwen1.5-14B 0.849 0.568 0.075 0.025 0.037 O([N,N2])
Qwen1.5-32B 0.969 0.521 0.137 0.102 0.045 O([N,N2])
Qwen1.5-72B 0.911 0.825 0.115 -0.027 0.01 O([N3, N4])
Qwen1.5-110B 0.965 0.95 0.129 0.044 0.01 O([N3, N4])
Qwen2-7B 0.986 0.824 0.065 0.081 0.019 O([N2, N3])
Qwen2.5-3B 0.934 0.81 0.251 0.181 0.079 O([N2, N3])
Qwen2.5-7B 0.617 0.632 0.514 0.122 0.136 O([N3, N4])
Qwen2.5-Math-7B 0.971 0.874 0.591 0.135 0.044 O([N3, N4])
Qwen2.5-Coder-7B 0.969 0.832 0.205 -0.021 0.054 O([N3, N4])
Llama-2-7b 0.699 0.295 0.001 0.042 -0.051 O([N,N2])
Llama-3-8B 0.801 0.392 0.214 -0.005 0.044 O([N,N2])
Llama-3-70B 0.9 0.882 -0.109 -0.218 -0.05 O([N3, N4])
Llama-3.1-8B 0.667 0.603 0.047 0.025 -0.003 O([N,N2])
Llama-3.1-70B 0.982 0.89 -0.087 -0.233 -0.015 O([N2, N3])
Llama-3.1-405B 0.997 0.996 0.847 0.516 0.262 O([N3, N4])
Llama-3.2-3B 0.827 0.247 -0.127 -0.079 0.051 O([N,N2])
Gemma-2-2b 0.788 0.469 -0.094 0.021 0.05 O([N2, N3])
Gemma-2-9b 0.948 0.601 -0.124 -0.026 -0.065 O([N2, N3])
Gemma-2-27b 0.99 0.869 -0.1 -0.164 0.022 O([N3, N4])
Mistral-7B-v0.3 0.949 0.558 -0.029 0.078 0.012 O([N2, N3])

Closed-sourced Models

Claude-3-haiku 0.984 0.844 0.019 0 -0.021 O([N2, N3])
Claude-3-sonnet 0.997 0.804 0.159 -0.056 0.07 O([N3, N4])
GPT-4o 0.997 0.992 0.787 0.457 0.238 O([N3, N4])
GPT-4o-mini 0.974 0.989 0.768 0.517 -0.008 O(2N )
o1-mini 1 0.998 0.979 0.949 0.68 O(2N )

which is expected given Llama-3-8B’s overall superior performance in our benchmark (O(N2) vs.
O([N2, N3])). For the “Longest Common Subarray” task, although the accuracy differs, the time
complexity of the algorithms used by both models is relatively similar, around O([N,N2]). This
suggests that either Mistral-7B is performing better than its average, or Llama-3-8B is performing
worse than expected.

5 CONCLUSION

In this work, we quantitatively study the generalization abilities of LLMs through the development
and use of a novel evaluation framework, SCYLLA, which provides a scalable and dynamic eval-
uation method to disentangle generalization from memorization, allowing us to assess model per-
formance across both ID and OOD data. Our findings highlight a non-monotonic performance gap
between ID and OOD data as task complexity increases, a phenomenon we refer to as the general-
ization valley. This behavior is indicative of the balance between memorization and generalization,
which peaks at the critical complexity. As model size increases, the peak of this generalization
valley shifts towards higher task complexity, demonstrating that larger models exhibit enhanced
generalization capabilities before over-relying on memorization. Leveraging the insights provided
by SCYLLA, we conducted an extensive benchmarking of 28 LLMs, both open-sourced and propri-
etary, and more clearly show that larger models still face challenges with more complex tasks.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

We affirm our commitment to responsible and ethical conduct throughout the study. No human
subjects were involved, and the datasets used were either publicly available or generated without
personally identifiable information, avoid any kind of privacy invasion. All models we used are
either open-sourced or accessible through APIs. We aim to minimize any negative social impact,
including biases in model predictions. All methodologies followed best practices for transparency
and reproducibility, adhering to standards of research integrity and legal compliance.

REFERENCES

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Antonis Antoniades, Xinyi Wang, Yanai Elazar, Alfonso Amayuelas, Alon Albalak, Kexun Zhang,
and William Yang Wang. Generalization vs memorization: Tracing language models’ capabilities
back to pretraining data. arXiv preprint arXiv:2407.14985, 2024.

Hritik Bansal, Arian Hosseini, Rishabh Agarwal, Vinh Q Tran, and Mehran Kazemi. Smaller,
weaker, yet better: Training llm reasoners via compute-optimal sampling. arXiv preprint
arXiv:2408.16737, 2024.

Stella Biderman, Usvsn Prashanth, Lintang Sutawika, Hailey Schoelkopf, Quentin Anthony, Shivan-
shu Purohit, and Edward Raff. Emergent and predictable memorization in large language models.
Advances in Neural Information Processing Systems, 36, 2024.
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APPENDIX

A ADDITIONAL RELATED WORK

A.1 SCALING LAWS FOR LLMS

Scaling laws for LLMs have shown predictable improvements in performance as models grow in
size, data, and compute. Kaplan et al. (2020) established that model performance scales smoothly
with these factors, following power-law relationships. Larger models are more efficient and require
fewer samples to reach the same performance level, emphasizing the importance of scaling model
size, data, and compute in tandem. Hoffmann et al. (2022) extended this by showing that many mod-
els are undertrained relative to their size and should scale model size and data equally to optimize
compute. They introduced Chinchilla, a smaller, compute-efficient model that outperformed larger
models like GPT-3 on downstream tasks. Additionally, Wei et al. (2022a) explored the emergence of
new abilities at larger scales, showing that some capabilities appear only after models surpass cer-
tain thresholds. Isik et al. (2024) focused on downstream performance, such as translation, showing
that scaling laws apply to transfer learning tasks but are highly sensitive to the alignment between
pretraining and downstream datasets.

A.2 BENCHMARK COMPARISON

We compare SCYLLA with existing dynamic benchmarks for LLM reasoning across several key
dimensions: 1) Scalability, 2) Knowledge Dependency, 3) Memorization Awareness, and 4) the
Number of Tasks.

• CLRS-text (Markeeva et al., 2024) demonstrates partial scalability, as it does not explicitly orga-
nize tasks by increasing complexity. Additionally, it evaluates LMs for ID and OOD performance
by training them on traces of algorithm execution, a method that is often impractical for large-scale
assessments.

• DyVal (Zhu et al., 2023) and NPHardEval (Fan et al., 2023) increase task difficulty by extending
problem length, introducing confounding factors. While NPHardEval explicitly categorizes tasks
by complexity classes, both benchmarks offer limited insights into how LLMs handle varying
levels of complexity with generalization abilities.

• LiveBench (White et al., 2024) is designed primarily for comprehensive evaluation of LLM capa-
bilities, featuring many knowledge-intensive tasks such as competition-level math problems and
language comprehension tasks. As a result, it is not well-suited for testing reasoning abilities
alone.

• Wu et al. (2023) introduce tasks along with corresponding counterfactual tasks, enabling explicit
evaluation of in-distribution (ID) and out-of-distribution (OOD) performance. However, their
framework does not address scalability in difficulty, and some tasks require significant domain
knowledge to solve.

Table 3: Comparison of SCYLLA with existing dynamic benchmarks for LLM reasoning.

Benchmark Scalability Knowledge Dependency Memorization Awareness Number of Tasks
CLRS-text half low half 30
DyVal half low zero 7
NPHardEval half low zero 9
LiveBench zero high zero 18
Wu et al. (2023) zero medium full 9

Scylla (Ours) full low full 20

B VALIDATION OF ID/OOD DATA GENERATION

To demonstrate that our approximation of ID/OOD data is both reasonable and meaningful, we use
OLMo-7B-Instruct as an example to examine how the ID/OOD data we obtained overlaps with the
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training data (i.e., genuine ID data). OLMo is an open-sourced LM trained on the Dolma and Tulu
datasets. With the tool WIMBD (What’s In My Big Data) (Elazar et al., 2023), we were able to count
the occurrences of each ID and OOD example within the two training datasets of OLMo. We ran
the data generation pipeline using OLMo and counted the ID and OOD examples obtained in Dolma
and Tulu across our 17 anchor tasks. We then calculated the average occurrences of examples for
each task, and the results are presented in the table below.

Task # ID in Dolma # ID in Tulu # ID in Dolma + Tulu # OOD in Dolma # OOD in Tulu # OOD in Dolma + Tulu

FindMode 5214.58 5.8375 5220.4175 0 0 0

TSP 154.5773 1.3801 155.9574 0 0 0

TwoSum 31609.2667 19.1446 31628.4113 0 0 0

FourSumMultipleTen 128.3333 9.1145 137.4479 0 6.52e-05 6.52e-05

RemoveDuplicateNumbers 53715.7647 74.2690 53790.0337 1.8235 0.0106 1.8342

FindTopk 4293.4 8.3762 4301.7762 0 0 0

ThreeSum 515.1 6.5652 521.6652 0 0 0

FourSum 5 14.5031 19.5031 0 0 0

FindMinimum 299740.0811 26.8876 299766.9687 0 0 0

SubsetSum 30.266 6.4953 36.7613 0 0 0

ThreeSumInRange 293.4615 6.8534 300.3149 0 0 0

FourSumInRange 3453.44 50.0364 3503.4764 0 0 0

SortNumbers 79879.9512 32.2212 79912.1724 0 0 0

ThreeSumMultipleTen 1300.4286 2.0465 1302.4751 0 0 0

SubsetSumInRange 32342.39 9.9770 32352.3670 0 0 0

FindMaximum 311014.89 27.1039 311041.9939 0 0 0

SubsetSumMultipleTen 44.5 0.3118 44.8118 0 0 0

Avg 48455.0253 17.7131 48472.7385 0.1073 0.0006 0.1079

Table 4: Summary of ID and OOD statistics for tasks across Dolma and Tulu datasets.

From the results, it is evident that for each of the 17 anchor tasks and across both training datasets
(Dolma and Tulu), the occurrence of ID examples far exceeds that of OOD examples. Specifically,
nearly all OOD example occurrences are zero, except for the tasks “FourSumMultipleTen” and
“RemoveDuplicateNumbers”. In contrast, the occurrence of ID examples ranges from thousands to
tens of thousands, highlighting a substantial disparity in the overlap of examples with the training
data. These findings support the validity and meaningfulness of our method for formulating ID and
OOD examples.

C IMPLEMENTATION DETAILS

C.1 TASK TITLES, DESCRIPTIONS, AND ANSWER FORMATS

In Table 5, we detail the 20 tasks in SCYLLA, including their titles, descriptions, and example
inputs. This information will be used to construct prompts to evaluate LLMs (more details in the
next section, §C.2).
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Task Title Description Example Input

Find Minimum finding minimum Given a list of numbers separated by spaces, find
the smallest number.

48 2 64 29 85 7 41

Find Maximum finding maximum Given a list of numbers separated by spaces, find
the largest number.

74 29 63 40 88

Find Mode finding mode Given a list of numbers separated by spaces, find
the mode of the numbers.

9 17 25 9 25 9 17

Find TopK finding top k Given a list of numbers l separated by spaces and
a positive integer k, find the kth largest number.

l = 100 90 80 70 60 50, k = 3

Two Sum finding two numbers adding up to
a specific sum

Given a list of numbers l separated by spaces and
a target value k, find two numbers in the list that
add up to the target value.

l = 73 41 29 12 55 4, k = 41

Sort Numbers sorting numbers Given a list of numbers separated by spaces, sort
the numbers in ascending order.

58 31 74 15 47 3

Remove Duplicate Num-
bers

removing duplicate numbers Given a list of numbers separated by spaces, re-
move duplicate numbers so that every number ap-
pears only once, and output the remaining num-
bers in their original order.

8 12 45 78 90 23 45 78

Three Sum MultipleTen finding three numbers adding up
to be multiple of 10

Given a list of numbers separated by spaces, find
three numbers in the list that add up to be a multi-
ple of 10.

7 13 17 24 28 7 37 43

Three Sum In Range finding three numbers adding up
to be in a specific range

Given a list of numbers l separated by spaces and
two numbers a and b, find three numbers in the
list that add up to a value that is in the range
(a, b).

l = 7 12 17 22 27 32, a = 71, b =
81

Three Sum finding three numbers adding up
to a specific sum

Given a list of numbers l separated by spaces and
a target value k, find three numbers in the list that
add up to the target value.

l = 75 30 60 45 90 15, k = 105

Four Sum Multiple Ten finding four numbers adding up
to be multiple of 10

Given a list of numbers separated by spaces, find
four numbers in the list that add up to be a multiple
of 10.

1 9 14 16 25 27

Four Sum In Range finding four numbers adding up
to be in a specific range

Given a list of numbers l separated by spaces and
two numbers a and b, find four numbers in the list
that add up to a value that is in the range (a, b).

l = 15 30 45 60 75 90 105 120, a
= 330, b = 360

Four Sum finding four numbers adding up
to a specific sum

Given a list of numbers l separated by spaces and
a target value k, find four numbers in the list that
add up to the target value.

l = 4 9 16 23 28 33, k = 62

Subset Sum Multiple
Ten

finding a subset adding up to be
multiple of 10

Given a list of numbers separated by spaces, find
a subset in the list that adds up to be a multiple of
10.

2 8 18 28 38 48

Subset Sum In Range finding a subset adding up to be
in a specific range

Given a list of numbers l separated by spaces and
two numbers a and b, find a subset in the list that
adds up to a value that is in the range (a, b).

l = 3 7 11 15 19 23 27 31 35 39
43 47 51, a = 52, b = 56

Subset Sum finding the subset of numbers
adding up to a specific sum

Given a list of numbers l separated by spaces and
a target value k, find a set of numbers in the list
that add up to the target value.

l = 8 14 20 26 32 38 44 50 56, k
= 240

TSP Traveling Salesman Problem
(TSP)

Given a list of cities and the distances between
each pair of cities, your goal is to find the shortest
path that visits every city once and returns to the
starting city. The inputs include 1) n: the num-
ber of cities; 2) D: an adjacency matrix of size
n× n where Dij is the distance between city i
and city j. The output should be a list of integers
representing the order of cities to visit. The cities
are indexed from 0 to n− 1. City 0 is always the
starting city.

n = 5, D = [[0, 12, 25, 18,
30],12, 0, 15, 22, 20],[25, 15, 0,
28, 35],[18, 22, 28, 0, 17],[30,
20, 35, 17, 0]]

Longest Consecutive El-
ements

finding the longest consecutive
elements

Given a list of numbers separated by spaces, re-
turn the longest consecutive number sequence in
ascending order. A consecutive sequence is a se-
quence of numbers where each number is exactly
1 greater than the previous number.

45 12 46 13 14 15 47 48

Longest Increasing Sub-
sequence

finding the longest increasing
subsequence

Given a list of numbers separated by spaces, re-
turn the longest strictly increasing subsequence.
A subsequence is a list that can be derived from
another list by deleting some or no elements with-
out changing the order of the remaining elements.

2 4 3 5 1 7 6 8 0

Longest Common Sub-
array

finding the longest common sub-
array

Given two integer arrays l1 and l2 , return the
longest common subarray that appears in both ar-
rays. A subarray is a contiguous sequence of num-
bers within an array.

l1 = 7 14 21 28, l2 = 14 21 28
35

Table 5: More details of tasks: Titles, descriptions, and example inputs.
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C.2 PROMPTS

For the first part of the data synthesis pipeline, we prompt the LLM to generate test inputs for a
given task. We use the following prompt templates for each task type:

Prompt Template 1. Generate Number Lists

Randomly generate number lists as test inputs for testing a program written for the task of
{task title}. The task description is: {task description}. Enclose each number list by square
brackets, e.g. [x1, x2, x3, x4]. Do not generate the corresponding output. Do not use or generate
any code. Make sure that the number elements are non-negative integers. Make sure that the
number lists are not empty and not too long. Now please generate as many such number lists as
possible:

Prompt Template 2. Generate Number List Pairs

Randomly generate pairs of number lists as test inputs for testing a program written for the task
of {task title}. The task description is: {task description}. Enclose each of the two number list
by square brackets and put them in another list, e.g. [[x1, x2], [x3, x4]]. Do not generate the
corresponding output. Do not use or generate any code. Make sure that the number elements
are non-negative integers. Make sure that the number lists are not empty and not too long. Now
please generate as many such pairs of number lists as possible:

Prompt Template 3. Generate Matrices

Randomly generate some adjacency matrices as test inputs for testing a program written for the
task of solving the task of {task title}. The task description is: {task description}. Enclose
each adjacency matrix by square brackets. Make sure the matrix is symmetric, and each element
should be a non-negative integer. For example, [[0, x1, x2, x3], [x1, 0, x4, x5], [x2, x4, 0, x6],
[x3, x5, x6, 0]] is a valid adjacency matrix. Do not generate the corresponding output. Do not
use or generate any code. Make sure that the adjacency matrices have length larger than 3 but not
too large. Now please generate as many such adjacency matrices as possible:

To ask for LLMs’ solutions, we use the following prompt template (Kojima et al., 2022):

Prompt Template 4. Zero-shot Chain-of-Thought Prompting

Here is a task: {instruction}. Solve the task with the following input: {input}. IM-
PORTANT: End your response with “The answer is <ANSWER>” where you should fill
<ANSWER> with your final answer and must format the final answer obeying the following
rules: {answer format requirements}. Your response: Let’s think step by step.

D DETAILS OF DIFFERENT COMPLEXITY TASKS

The anchor tasks are selected for the formulation of our benchmark. Therefore, they would have only
one solution of two solutions with adjacent time complexities. The following is detailed information
about these tasks, arranged by their time complexity.

D.1 O(N)

• Find Minimum. The task Find Minimum is to find the minimum in the given list of numbers. It
requires looping over all the numbers in the list. To be specific, we can set a flag number when
looping over it. It is set as the first number at the very beginning. Once a number is smaller than
the flag number, it would be replaced. Then the final flag number after looping over the entire list
would be the result.Therefore, the time complexity would be O(N).

• Find Maximum. The task Find Maximum is to find the maximum in the given list of numbers.
The solution would be similar to the previous task. The difference is when conducting the re-
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placement of the flag number, the current number should be bigger than the flag number.The time
complexity would be O(N).

• Find Mode. The task Find Mode is to find the mode in the given list of numbers. The solution
requires looping over the numbers. It requires a dictionary when looping over the numbers. When
it loops through a number, the count of the number would be added by one. After looping, it takes
O(1) time to conduct the search to find the mode.The time complexity would be O(N).

D.2 O([N,N2])

• Find Topk. The task Find Topk is to find the kth largest number in the given list of unsorted
numbers. The method with the worst time complexity would be first conducting sorting. The
time complexity would vary between O(N2) and O(N) based on the time complexity of the
sorting algorithm. Then it would take O(1) time to look up the kth largest number in the sorted
list.The time complexity would be O(N2). The method with the best time complexity is to use the
quickselect algorithm. It partitions the array around a pivot recursively. Numbers that are smaller
than the pivot go to one side, and elements larger go to the other. If the pivot number is the kth
largest number, the recursion ends, and we get the output. The time complexity of this method is
O(N).

• Sort Numbers. The task Sort Numbers is to sort the given list of numbers. It is one of the most
popular tasks among all the coding tasks. The time complexity varies from O(N) to O(N2) based
on the algorithm. For example, bubble sort would have time complexity as O(N2). Merge sort
would have time complexity as O(N logN). Counting sort would have time complexity of O(N).

• Two Sum. The task Two Sum is to find two numbers that add up to be a given number. The worst
solution is to conduct all the permutations. In other words, it would require two loops to loop over
all the possible outputs. Therefore, the worst time complexity of this task is O(N2). Besides, the
solution with the best time complexity would be using a hash table to look up and find the last
number of the solution. Specifically, we will create a hash table (or dictionary) to store numbers
in the list, which takes O(N) time. Then by conducting permutations with one loop, we would
get all the possible answers without the last number, in other words, the complement as target-the
one number. Since it takes only O(1) time to check the dictionary, the time complexity would be
O(N).

• Remove Duplicate Numbers. The task Remove Duplicate Number is to remove the duplicate
numbers in the given list of numbers. The time complexity would range from O(N) to O(N2).
The method with the worst time complexity is to conduct the brute-force approach. It involves
checking each element of the list against every other element to see if a duplicate exists. This
leads to O(N2) time complexity since it requires two nested loops. The method with the best time
complexity is to use hash table.To remove duplicates efficiently, iterate through the list, adding
each element to a set, which automatically discards duplicates. Then, convert the set back to a
list.The time complexity would be O(N).

D.3 O([N2, N3])

• Three Sum Multiple Ten. The task Three Sum Multiple Ten is to find three numbers whose
sum is a multiple of ten. The worst solution is to conduct all the permutations. In other words,
it would require three loops to loop over all the possible outputs and test whether their sum is
in the given range. Therefore, the worst time complexity of this task is O(N3). The best time
complexity solution is realized by building the hash table (dictionary), conducting permutations
with two loop, and referring to the hash table. Specifically, we would conduct the hash table based
on the remainder of these numbers when divided by ten. Therefore, it would have the same time
complexity as O(N2).

• Three Sum In Range. The task category Three Sum In Range is to find three numbers whose
sum is in a specific range. The worst solution is to conduct all the permutations. In other words,
it would require three loops to loop over all the possible outputs and test whether their sum is
in the given range. Therefore, the worst time complexity of this task is O(N3). The best time
complexity algorithm is realized by building the hash table (dictionary), conducting permutations
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with N-1 loop, and referring to the hash table. Therefore, it would have the same time complexity
as O(N2).

• Three Sum. The task Three Sum is to find three numbers that add up to be a given number. The
worst solution is to conduct all the permutations. In other words, it would require three loops to
loop over all the possible outputs. Therefore, the worst time complexity of this task is O(N3).
Besides, the solution with the best time complexity would be using a hash table to look up and find
the last number of the solution. Specifically, we will create a hash table (or dictionary) to store
numbers in the list, which takes O(N2) time. Then by conducting permutations with one loop,
we would get all the possible answers without the last number, in other words, the complement as
target-the one number. Since it takes only O(1) time to check the dictionary, the time complexity
would be O(N2).

D.4 O([N3, N4])

• Four Sum Multiple Ten. The task Four Sum Multiple Ten is to find four numbers whose sum is
a multiple of ten. The worst solution is to conduct all the permutations. In other words, it would
require four loops to loop over all the possible outputs and test whether their sum is in the given
range. Therefore, the worst time complexity of this task is O(N4). It is realized by building the
hash table (dictionary), conducting permutations with three loops, and referring to the hash table.
Specifically, we would conduct the hash table based on the remainder of these numbers when
divided by ten. Therefore, it would have the same time complexity as O(N3).

• Four Sum In Range. The task Four Sum In Range is to find four numbers whose sum is in a
specific range. The worst solution is to conduct all the permutations. In other words, it would
require four loops to loop over all the possible outputs and test whether their sum is in the given
range. Therefore, the worst time complexity of this task is O(N4). The best time complexity
algorithm is realized by building the hash table (dictionary), conducting permutations with three
loop, and referring to the hash table. Therefore, it would have the same time complexity as O(N3).

• Four Sum. The task Four Sum is to find four numbers that add up to be a given number. The
worst solution is to conduct all the permutations. In other words, it would require four loops to
loop over all the possible outputs. Therefore, the worst time complexity of this task is O(N4).
Besides, the solution with the best time complexity would be using a hash table to look up and find
the last number of the solution. Specifically, we will create a hash table (or dictionary) to store
numbers in the list, which takes O(N3) time. Then by conducting permutations with one loop,
we would get all the possible answers without the last number, in other words, the complement as
target-the one number. Since it takes only O(1) time to check the dictionary, the time complexity
would be O(N3).

D.5 O(2N )

• Subset Sum Multiple Ten. The task Subset Sum Multiple Ten is to find a subset whose sum is a
multiple of ten. The solution is to conduct all the permutations. In other words, it would require
iterating through all the subsets and check whether its sum is multiple of ten.Therefore, the time
complexity is O(2N ).

• Subset Sum In Range. The task Subset Sum In range is to find a subset whose sum is the
given range. The solution is to conduct all the permutations. In other words, it would require
iterating through all the subsets and check whether its sum is in the target range.Therefore, the
time complexity is O(2N ).

• Subset Sum. The task Subset Sum is to find a subset whose sum is the target sum.The solution is
to conduct all the permutations. In other words, it would require iterating through all the subsets
and check whether its sum is the target sum.Therefore, the time complexity is O(2N ).

• TSP. The task TSP is the famous NP-hard task. The task is to find the shortest route for a salesman
to visit each city exactly once and return to the starting city, given n vertices and n*(n-1) /2
distances between each two of them. The time complexity of this task is O(2N ). The method is to
generate all the possible routes that cross all the cities and count the distance of these routes. By
comparing them, we get the final answers.The time complexity would be O(2N ).
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D.6 PROBE TASKS

As discussed in section 4.5, we set some probing tasks that have several different methods with
different time complexities.

Longest Increasing Subsequence. The task Longest Increasing Subsequence is to find the longest
contiguous increasing subarrays given a list of numbers. The time complexity of these methods
ranges from O(N logN) to O(2N ). The worst time complexity approach is a brute-force approach.
It involves checking all possible subsequences of the lists. Indeed, it is checking all the subsets of
the list. Therefore, the time complexity would be O(2N ). The best time complexity approach is
realized by using Binary Search with Dynamic Programming (DP). We first use a dynamic array
to store the smallest possible tail of increasing subsequences of different lengths. Additionally, we
create an array prev of size n, initialized to -1, to store predecessor indices. For each element
nums[i], we use binary search to find the appropriate position in dp where this element should
go. If the element is larger than any element in dp, it will be appended. If it can replace an element
in dp, replace the smallest element that is greater than or equal to it. Update the prev array. If
nums[i] extends a subsequence, record the predecessor in prev. After processing all elements,
the length of dp gives the length of the LIS. Trace back the sequence using the prev array, starting
from the last element of the LIS. Reverse the sequence, as it is reconstructed from the end to the
beginning. For each binary search, it takes O(logN) time and there are N elements in the array.
Therefore, the overall time complexity would be O(N logN).

Longest Common Subarrays. The task Longest Common Subarrays is to find the longest contigu-
ous subarrays of two given arrays. The time complexity would range from O(N2) to O(2N ). The
worst time complexity is realized by the brute-force approach. It is done by checking all possible
subarrays of the two given arrays. For each array, it has 2N subarrays if the LLM cannot distinguish
whether it is contiguous. Therefore, the time complexity of matching these subarrays one by one
requires O(2N ) time.

The best time complexity approach is using dynamic programming. We define a 2D array dp with
dimensions (m + 1) × (n + 1), where each entry dp[i][j] represents the ”LCS” length be-
tween the prefixes text1[0] and text2[0]. We set dp[0][j] = 0 for all 0 ≤ j ≤ n and
dp[i][0] = 0 for all 0 ≤ i ≤ m. For the remaining cases where i > 0 and j > 0, we use the
following recurrence relations: If the characters at the current positions match, i.e., text1[i-1]
= text2[j-1], the LCS length is dp[i-1][j-1] + 1, as we include this matching character
in the subsequence. If the characters do not match, i.e., text1[i-1] ̸= text2[j-1], we take
the maximum LCS length by either excluding the character from text1 or text2, so dp[i][j]
= max(dp[i-1][j], dp[i][j-1]). After filling the table, the value dp[m][n] will con-
tain the length of the LCS.Therefore, the time complexity would be O(N2) because it loops through
the whole 2D array, which has a size of N2.

Longest Consecutive Elements. The task Longest Consecutive Elements is to find the longest
consecutive sequence in the given array. The time complexity ranges from O(N) to O(2N ). The
approach with the worst time complexity would be the brute-force method, where we find all subsets
of the array and identify the longest consecutive subsequence. Its time complexity is O(2N ). The
approach with the best time complexity uses a hashing function. It checks whether N+1, N+2, and
so on, exist in the array for all the numbers in the array. By optimizing the search to avoid checking
starting points where N-1 exists, the algorithm ensures each number is processed once, resulting in
an overall time complexity of O(N).

E ADDITIONAL RESULTS: FEWSHOT PROMPTING

We conducted additional experiments to explore whether using fewshot-cot prompting affects our
findings. We use Gemma-2-2B-Instruct as the testee LLM, and use 3-shot CoT examples that are
obtained from Gemma’s correct solutions and are excluded from the test set. Each task has its unique
3 shot examples. The results are summarized in the table below.

Key insights include:
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Metric O(N) O([N−N2]) O([N2 −N3]) O([N3 −N4]) O(2N)

zeroshot-cot ID acc 0.928385 0.699227 0.313481 0.120916 0.094084
fewshot-cot ID acc 0.989583 0.688128 0.376901 0.169025 0.112932

zeroshot-cot OOD acc 0.858073 0.601736 0.116127 0.050155 0.072648
fewshot-cot OOD acc 0.927083 0.595475 0.214492 0.060678 0.086146

zeroshot-cot acc gap 0.070312 0.132647 0.209727 0.070761 0.022633
fewshot-cot acc gap 0.065104 0.092773 0.162409 0.108347 0.026786

Table 6: Performance metrics across complexity classes for zeroshot and fewshot chain-of-thought
(cot) using Gemma-2-2B-Instruct.

1. Fewshot-cot prompting does improve performance across both ID and OOD datasets com-
pared to zeroshot-cot prompting. This is especially evident in lower-complexity tasks (e.g.,
O(N) and O([N −N2])).

2. While fewshot-cot generally reduces the accuracy gap between ID and OOD tests, the peak
performance gap remains significant, particularly for intermediate complexity tasks (e.g.,
O([N2 −N3])).

3. Even with fewshot prompting, the generalization valley phenomenon persists, and the criti-
cal complexity still remains at the same complexity level compared to zeroshot prompting.

These additional experiments show that few-shot cot prompting can enhance performance, partic-
ularly for ID datasets, but the core phenomena observed in our study—such as the generalization
valley and critical complexity—remain robust. Therefore, while prompt techniques like fewshot can
modulate performance, they do not fundamentally alter the underlying generalization patterns of the
models, as revealed by SCYLLA.

F A GLIMPSE OF HOW O1-MINI DOES REASONING

Given the strong performance of o1-mini, we are interested to see how o1-mini manages to solve
hard tasks even with OOD data. In this section, we look into the outputs of o1-mini when given hard
problems.

In comparing how o1-mini and Llama-3.1-405B solve the problem of finding the longest increasing
subsequence (Fig. 10), o1-mini exhibits a more streamlined and intuitive approach. o1-mini starts
by checking each number sequentially, quickly forming a subsequence, and then making necessary
adjustments when the increasing order is broken. Its solution process is straightforward and efficient,
leading to the correct result with minimal overhead. On the other hand, Llama-3.1 applies a dynamic
programming algorithm, constructing arrays to track subsequence lengths and then backtracking
to identify the correct sequence, which is correct but unnecessary for such a simple input. While
both models produce the correct answer, o1-mini’s method demonstrates stronger generalization and
efficiency, solving the problem without requiring the more detailed intermediate steps employed by
Llama-3.1. This highlights o1-mini’s superior ability to handle the task with fewer computational
resources and reduced reliance on more structured, algorithmic approaches.

One notable feature of the o1-mini (OpenAI, 2024) is its ability to perform implicit complex rea-
soning through what can be termed “reasoning tokens”. We test o1-mini on the task of Subsetsum
and TSP (Fig. 11). From its output, we observe two types of implicit reasoning. Type 1: o1-mini
directly generates correct answers with minimal explanation or intermediate steps. For example,
in the Subset Sum task, o1-mini is able to quickly identify subsets that satisfy the target sum with
no explicit reasoning chain provided. Type 2: o1-mini produces more elaborate reasoning steps,
but leaves out important intermediate steps. In TSP, o1-mini provides a clearer explanation of its
thought process, including steps like evaluating possible routes, but the most critical parts of the
reasoning—such as how it prioritizes routes or recognizes patterns—still occur implicitly, without
being explicitly outlined in the output.

Since o1-mini conceals its reasoning process, it is difficult to observe exactly how it arrives at so-
lutions. We hypothesize that its strong generalization ability stems from an advanced training tech-
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Llama-3.1-405B

- Input: 7015 2930 9379 2135 4033 7591
- Output: To solve this task, we can use dynamic programming. The idea is to maintain an array where each element represents the length of the longest 
increasing subsequence ending at that position.\n\nHere's a step-by-step solution:\n\n1. Initialize an array `dp` of the same length as the input list, with all 
elements set to 1. This is because a single element is always an increasing subsequence of length 1.\n\n2. Initialize an array `prev` to keep track of the 
previous element in the longest increasing subsequence ending at each position.\n\n3. Iterate over the input list. For each element, compare it with all 
previous elements. If the current element is greater than a previous element, it can potentially extend the increasing subsequence ending at that previous 
element.\n\n4. If the current element can extend the increasing subsequence ending at a previous element, and the length of the resulting subsequence is 
greater than the current longest increasing subsequence ending at the current position, update `dp` and `prev` accordingly.\n\n5. After iterating over the 
entire list, find the position with the maximum value in `dp`. This is the end of the longest increasing subsequence.\n\n6. Use the `prev` array to 
reconstruct the longest increasing subsequence by backtracking from the position with the maximum value in `dp`.\n\nNow, let's apply this algorithm to 
the given input:\n\nInput: 7015 2930 9379 2135 4033 7591\n\nAfter applying the algorithm, we get:\n\ndp: [1, 1, 2, 2, 3, 4]\nprev: [-1, -1, 1, 1, 3, 4]\n\nThe 
maximum value in `dp` is 4, which is at the last position. Backtracking from this position using `prev`, we get:\n\n7591 -> 4033 -> 2135 -> 2930\n\nSo, the 
longest strictly increasing subsequence is [2930, 2135 is not valid as 2135 < 2930, so 2930 -> 4033 -> 7591 and also 7015 -> 9379 is another increasing 
subsequence, but the longest one is the first one].\n\nThe answer is [2930, 4033, 7591]. (correct)

o1-mini

Task Description of LongestIncreasingSubsequence: Given a list of numbers separated by spaces, return the longest 
strictly increasing subsequence. A subsequence is a list that can be derived from another list by deleting some or no 
elements without changing the order of the remaining elements.

- Input: 9722 3098 7007 4981 1976 5899 6356
- Output: Given the list of numbers: 9722, 3098, 7007, 4981, 1976, 5899, 6356, we need to find the longest strictly increasing subsequence.\n\n1. **Start 
with the first number:** 9722\n  - Next number is 3098, which is less than 9722. So, we can't include 3098 in the increasing subsequence starting with 
9722.\n\n2. **Start with the second number:** 3098\n  - Next number is 7007, which is greater than 3098. So, we include 7007.\n  - Next number is 4981, 
which is less than 7007. So, we can't include 4981.\n  - Next number is 1976, which is less than 7007.\n  - Next number is 5899, which is greater than 7007. 
So, we include 5899.\n  - Next number is 6356, which is greater than 5899. So, we include 6356.\n  \n  The subsequence here is: 3098, 7007, 5899, 
6356\n\n3. **However, notice that 5899 is less than 7007, which breaks the increasing order.** Therefore, we need to adjust our subsequence.\n  \n  - 
Starting again from 3098:\n   - 3098 -> 4981 -> 5899 -> 6356\n\n  This sequence is strictly increasing.\n\n4. **Check if there's a longer subsequence:**\n  - 
Starting with 1976: 1976, 5899, 6356\n  - This is shorter than the previous subsequence.\n\nTherefore, the longest strictly increasing subsequence is [3098, 
4981, 5899, 6356].\n\n**The answer is [3098, 4981, 5899, 6356]**. (correct)

Figure 10: Comparison between o1-mini and Llama-3.1-405B in solving the longest increasing
subsequence problem. o1-mini demonstrates a more direct and efficient approach, adjusting the
sequence dynamically with minimal steps, while Llama-3.1 employs a complex dynamic program-
ming method involving array tracking and backtracking to reach the solution.

[Implicit Reasoning Type 1] (~35 out of 256 instances)

- Input: $l$ = 4331 7679 6499 6300 1993 4301 7760, $k$ = 18304
- Output: The answer is [7679, 4331, 4301, 1993]. (correct)

[Implicit Reasoning Type 2] (~15 out of 256 instances)

Task Description of SubsetSum: Given a list of numbers $l$ separated by spaces and a target value $k$, find a set of 
numbers in the list that add up to the target value.

- Input: $l$ = 3516 9902 8014 3841 3917 5729, $k$ = 21100
- Output: We need to find a subset of the numbers `[3516, 9902, 8014, 3841, 3917, 5729]` that sums up to 
`21100`.\n\nAfter evaluating different combinations, the following set adds up to the target value:\n\n- **3516**\n- 
**8014**\n- **3841**\n- **5729**\n\n**Calculation:**\n\\[ 3516 + 8014 + 3841 + 5729 = 21100 \\]\n\nThe answer is 
[3516, 8014, 3841, 5729]. (correct)

[Implicit Reasoning Type 1] (~25 out of 256 instances)
- Input: $n$ = 5, $D$ =\n\\[\n\\begin{bmatrix}\n0 & 586 & 248 & 306 & 529 \\\\\n586 & 0 & 981 & 717 & 464 \\\\\n248 & 981 & 0 & 993 & 393 \\\\\n306 & 717 
& 993 & 0 & 399 \\\\\n529 & 464 & 393 & 399 & 0\n\\end{bmatrix}\n\\]
- Output: The answer is [0, 2, 4, 1, 3, 0]. (correct)

[Implicit Reasoning Type 2] (~50 out of 256 instances)

Task Description of TSP: Given a list of cities and the distances between each pair of cities, your task is to find the shortest path that 
visits every city once and returns to the starting city. The inputs include 1) $n$: the number of cities; 2) $D$: an adjacency matrix of size 
$n \\times n$ where $D_{ij}$ is the distance between city $i$ and city $j$. 

- Input: $n$ = 5, $D$ =\n\\[\n\\begin{bmatrix}\n0 & 994 & 139 & 786 & 469 \\\\\n994 & 0 & 736 & 983 & 471 \\\\\n139 & 736 & 0 & 453 & 247 \\\\\n786 & 983 
& 453 & 0 & 712 \\\\\n469 & 471 & 247 & 712 & 0\n\\end{bmatrix}\n\\]
- Output: To solve the Traveling Salesman Problem (TSP) for the given input with 5 cities, we evaluate all possible routes that start and 
end at city 0. By calculating the total distance for each permutation of the other cities (1, 2, 3, 4), we identify the route with the shortest 
distance.\n\nAfter evaluating all 24 possible permutations, the shortest routes found are:\n\n1. **Route**: [0, 2, 3, 1, 4, 0] \n  **Total 
Distance**: 2515\n\n2. **Route**: [0, 4, 1, 3, 2, 0] \n  **Total Distance**: 2515\n\nBoth routes have the same minimal total distance of 
2515. For consistency, we'll present the first route found.\n\nThe answer is [0, 2, 3, 1, 4, 0]. (correct)

Figure 11: Evaluation of o1-mini on OOD data for SubsetSum and TSP tasks. The model exhibits
two distinct types of implicit reasoning, each occurring in a significant portion of cases.

nique that allows the model to allocate a large number of extra tokens for complex reasoning before
producing the final response.
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