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ABSTRACT

Although Neural Radiance Fields (NeRF) has achieved impressive 3D reconstruc-
tion with dense views, its performance degrades significantly when the training
views are sparse. We observe that under the sparse view setting, it is important
to learn the correspondence of pixels among different views, i.e., the 3D consis-
tency, to improve the reconstruction quality. To achieve this, we first propose the
Hard-Mask that utilizes the depth information to locate pixels with correspondence
relationship and then assigns higher loss weights on these pixels. The key idea is to
achieve pixel-wise differentiated optimization of NeRF based on the 3D consistency
among target views and source views instead of treating each pixel equally. This
optimization strategy helps NeRF-based algorithms to learn fine-grained object
details with limited data. To deal with the absence of accurate depth information,
the Degenerated Hard-Mask is proposed to estimate the correspondence relation-
ship based on the trend of training losses. Our proposed method can serve as a
plug-in component for existing NeRF-based view-synthesis models. Extensive
experiments on recent representative works, including NeRF (Mildenhall et al.,
2020), IBRNet (Wang et al., 2021) and MVSNeRF (Chen et al., 2021), show that
our method can significantly improve the model performance under sparse view
conditions (e.g., up to 70% improvement in PSNR on DTU dataset).

1 INTRODUCTION
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Figure 1: Performance (PSNR↑, SSIM↑, LPIPS↓)
comparison of NeRF with different levels of cor-
respondence information. Using more correspon-
dence leads to better model performance.

Novel view synthesis is a long-standing problem
in computer vision and graphics, which aims to
render photo-realistic images of unseen point-
views. Recently, with the success of coordinate-
based representation learning in 3D vision, the
field of novel view synthesis has gained increas-
ing popularity (Jang & Agapito, 2021; Li et al.,
2021; Liu et al., 2021; Rematas et al., 2021). In
particular, one representative work, Neural Ra-
diance Fields (NeRF) (Mildenhall et al., 2020),
produces realistic results through training an
coordinate-based neural network with the help
of dense nearby views for each static scenario.
The key factor of high quality NeRF (Huang
et al., 2022) is in the requirement of dense views,
where it explicitly learns the correspondences of pixels, i.e., 3D consistency, in different views with
supervision from the multi-view images. In contrast, it is difficult for a NeRF model to learn such
correspondence relationship in the sparse view setting (as few as three views) as limited supervision
information is available, which leads to significantly performance degradation and thus limits the
ability to extend NeRF-based models to real-world scenarios.

To alleviate the limitation of NeRF in the sparse view setting, two lines of works have been proposed.
The first line of works pre-trains NeRF on large-scale data sets consisting of many scenes and
fine-tune the model with sparse view data (Chen et al., 2021; Chibane et al., 2021; Jang & Agapito,
2021; Li et al., 2021; Liu et al., 2021; Rematas et al., 2021; Trevithick & Yang, 2021; Wang et al.,
2021; Yu et al., 2021). The other line of works introduces extra regularization into the optimization
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Figure 2: The demonstration of proposed masks. We utilize the depth correspondence (or training
loss) among different views to mask pixels satisfying 3D correspondence (the red point) or not (the
green point) and construct the loss L based on the mask information.

of NeRF in the sparse view setting, such as the "free" depth supervision (Deng et al., 2021; Jain
et al., 2021; Roessle et al., 2021; Niemeyer et al., 2021; Wei et al., 2021; Kim et al., 2022). These
works usually focus on the optimization of pixel-level color and depth within a single view, but
ignore the 3D consistency relationship of pixels among different views. However, 3D consistency
is important especially in appearance and geometry information reconstruction tasks under sparse
view setting, such as monocular adjacent view synthesis (Rockwell et al., 2021) and monocular depth
estimation (Godard et al., 2019; Zhou et al., 2022).

The 3D consistency, i.e., the 3D correspondence between source and target views, refers to the
relationship of a set of pixels that are obtained by projecting the same 3D scene point into different
views (one pixel in one view). For pixels satisfying the correspondence relationship, the predicted
color must look similar and the predicted depth must satisfy the homography warping relationship.
As shown in Fig. 1, we observe consistent performance improvements when we gradually increase the
amount of 3D correspondence information in the optimization of NeRF under the sparse view setting.
This evaluation validates the importance of 3D consistency (see more details in Sec. 3.2). However,
how to explicitly incorporate the 3D consistency into the optimization process of NeRF remains
as a challenging problem. Consequently, we propose to explicitly incorporate the correspondence
relationship between source and target views into the optimization process of NeRF to improve the
performance in sparse views setting.

Specifically, we propose Masked Neural Radiance Fields (MaskNeRF), an efficient component
that regularizes the optimization of NeRF through masks for sparse view synthesis (as shown in
Fig. 2). Instead of treating all pixels equally in target views, we propose the Hard-Mask to enforce
the optimization of NeRF optimization to focus more on pixels that satisfy the correspondence
relationship. Our Hard-Mask first selects pixels satisfying 3D correspondence between target views
and source views based on the geometry information derived from depth and then assign higher loss
weights on these pixels during the training process. However, accurate depth information may not be
available for some scenarios. To deal with this situation, the Degenerated Hard-Mask is proposed
to predict the correspondence relationship based on the trend of the training loss information. Our
proposed method serves as a plug-in component for existing NeRF-based view-synthesis methods.
Experiments show that our proposed methods can improve the performance of representative NeRF
methods, e.g., NeRF (Mildenhall et al., 2020), IBRNet (Wang et al., 2021) and MVSNeRF (Chen
et al., 2021) by up to 70% in PSNR, 60% in SSIM and 26% in LPIPS on various datasets.

2 RELATED WORKS

To deal with sparse-view scenarios, two lines of research have been proposed to improve the general-
izability of NeRF. The first line of research focuses on incorporating prior knowledge, while the other
line introduces additional ground-truth information during the training process.
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View Synthesis with Prior Knowledge. This line of research takes prior knowledge into account
by pre-training neural network with large amount of data, and decreases the need of dense views
for rendering novel 3D scenarios. SRF (Chibane et al., 2021), GRF (Trevithick & Yang, 2021),
Point-NeRF (Xu et al., 2022) IBRNET (Wang et al., 2021) and PixelNeRF (Yu et al., 2021) make
use of pre-trained model to extract feature maps of source views, which are then adopted to form
appearance and geometry features for points in target views. Inspired by multi-view depth estimation
tasks (Yang et al., 2020), Neural rays (Liu et al., 2022) and MVSNeRF (Chen et al., 2021) exploit
pre-trained model to construct a geometry-aware cost volume during the inference process, which are
then exploited by a decoder to reconstruct RGB images. Through the use of prior knowledge, these
algorithms can effectively deal with the lack of information under sparse views setting. However,
an evident performance decrement on the training scenarios with dense views and that on the
testing scenarios with sparse views can still be observed. The proposed MaskNeRF incorporates
correspondence relationship to regularize the optimization process. In this way, MaskNeRF improves
the performance of models under sparse view setting without increasing computational request.

View Synthesis with Additional Information. To deal with limited information provided by sparse
views, this line of research introduces additional information to assist view synthesis process. DS-
NeRF (Deng et al., 2021) and GeoNeRF (Johari et al., 2022) introduces geometry constrain to the
optimization of NeRF with the help of the ground truth depth information or "free" depth extracted
from Structure-From-Motion (SFM) solvers like COLMAP (Schonberger & Frahm, 2016). The
"free" depth loss can also be constructed with dense depth priors estimated from ScanNet (Roessle
et al., 2021). CodeNeRF (Jang & Agapito, 2021), DoubleField (Shao et al., 2022), ShaRF Rematas
et al. (2021) and Improving (Darmon et al., 2022) focus on object-centric scenarios with ground
truth shape information. They jointly optimize appearance information and shape information,
which helps to build better correspondence among views under sparse view setting. Meanwhile,
DietNeRF (Jain et al., 2021) proposes to use CLIP (Dosovitskiy et al., 2020) to extract semantic
information as the additional supervision. While, the semantic information can only be obtained
from low-resolution images and thus can provide high-level information only. In addition, RegNeRF
(Niemeyer et al., 2021) and RapNeRF (Zhang et al., 2022) also introduce regularization to further
improve the performance of NeRF-based model, while none of them have utilized the across view 3D
consistency in their regularization and our proposed strategies could be easily combined with their
methods. Even though these algorithms achieve impressive performance under certain conditions, the
requirement of additional accurate information is not always feasible for most of the datasets, e.g., on
LLFF NeRF Real dataset (Mildenhall et al., 2019) where ground truth depth, shape and semantic
information are not provided. To deal with this problem, in addition to the Hard-Mask which requires
estimated depth information, we also introduce the Degenerated Hard-Mask which can be directly
used without the need of any additional information during the optimization of NeRF-based models.

3 METHOD

3.1 BACKGROUND

Neural Radiance Fields. The Radiance Field learns a continuous function which takes as input the
3D location x and unit direction d of each point and predicts the volume density σ ∈ [0,∞) and color
value c ∈ [0, 1]3. In NeRF (Mildenhall et al., 2020), this continuous function is parameterized by a
multi-layer perception (MLP) network Fθ : (γ(x), γ(d)) → (c, σ), where the weight parameters θ
are optimized to generate the volume density σ and directional emitted color c, γ is the predefined
positional embedding applied to x and d, which maps the inputs to a higher dimensional space.

Volume Rendering. Given the Neural Radiance Field (NeRF), the color of any pixel is rendered
with principles from classical volume rendering (Kajiya & Von Herzen, 1984) the ray r(t) = o+ td
cast from the camera origin o through the pixel along the unit direction d. In volume rendering,
the volume density σ(x) can be interpreted as the probability density at an infinitesimal distance
at location x. With the near and far bounds tn and tf , the expected color Ĉθ(r) of camera ray
r(t) = o+ td is defined as

Ĉθ(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, where T (t) = exp(−
∫ t

tn

σ(r(s))ds), (1)
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where T (t) denotes the accumulated transmittance along the direction d from tn to t. In practice,
the continuous integral is approximated by using the quadrature rule (Max, 1995) and reduced to
the traditional alpha compositing. The neural radiance field is then optimized by constructing the
photometric loss L between the rendered pixel color Ĉθ(r) and ground truth color C(r):

L =
1

|R|
∑
r∈R

||Ĉθ(r)− C(r)||22, (2)

where R denotes the set of rays, and |R| is the number of rays in R.

3.2 PRELIMINARY: PIXEL-WISE 3D CORRESPONDENCE

In this section, we demonstrate the importance of considering the correspondence, i.e., 3D consistency,
in the optimization process. With no loss of generality, we define M to be the set containing pixels
satisfying correspondence relationship and T to be the correspondence relationship between pixel
(i, j) and (m,n) := T ((i, j)). The 3D appearance consistency is defined in Definition 3.1. Similarly,
we also define the 3D geometry consistency and details are shown in Appendix. B. By involving
the proposed mask in Sec. 3.3, we select and assign larger loss weights to pixels that satisfy the
homography warping relationship between source views and target views, i.e., the correspondence
relationship. We compare the performance (PSNR↑, SSIM↑, LPIPS↓) of assigning larger weights to
different portions (30%, 60%, 100%) of pixels satisfying the correspondence relationship in the DTU
data set. The baseline is the original NeRF model that treats all pixels equally during the optimization
process. As shown in Fig. 1, assigning large weights to more pixels satisfying correspondence leads
to better model performance. More details can be found in Appendix C.

Definition 3.1 (Appearance Consistency) The appearance consistency refers to the color difference
between the pixel (i, j) ∈ M (in the left view of Fig. 3) and its corresponding pixel (m,n) :=
T ((i, j)) (in the right view of Fig. 3) should be smaller than a threshold value ϵc, i.e.:

||Cθ(rij)− Cθ(rmn)||22 ≤ ϵc, (3)

where Cθ(rij) and Cθ(rmn) are color labels of pixel (i, j) and (m,n).

3.3 REGULARIZING NEURAL RADIANCE FIELDS THROUGH MASKS

Based on the importance of 3D correspondence, we propose two forms of masks to enforce NeRF-
based algorithms to focus on the 3D correspondence relationship.

Hard-Mask. Given a series of images for the specific scenario, MaskNeRF derives the Hard-Mask
which masks pixels satisfying 3D correspondence relationship between source views and target views.
With no loss of generality, we show the derivation of Hard-Mask in two views. As shown in Fig. 3,
MaskNeRF samples a bunch of pixels {(i, j)} with coordinates {xlp

ij = [i, j, 1]T } in the left camera
coordinate, where l denotes the left camera view and p denotes the pixel coordinate. For each pixel
(i, j), one camera ray is cast from the camera origin o along with the ray direction d. With the
estimated depth slij of pixel (i, j) in the left camera view, the world coordinate of the intersection
point xlw

ij can be derived as
xlw
ij = (Rl)−1K−1 · (slij · x

lp
ij), (4)

where Rl is the world-to-camera transformation matrix of the left camera view, K is the camera
intrinsic matrix.

To get the pixel coordinate of the intersection point xlw
ij in the right view, the estimated world

coordinate xlw
ij is transformed into the image plane of the right camera view with the world-to-camera

transformation matrix Rr and camera intrinsic matrix K as follows:

s
′

mn · xrc
mn = KRrxlw

ij , (5)

where xrc
mn = (m,n, 1) is the pixel coordinate by projecting the intersection point xlw

ij onto the right
camera image plane, s

′

mn is the estimated depth of the intersection point xlw
ij in the right camera.

Pixels (i, j) and (m,n) are masked as pixels with 3D correspondence relationship when 1) the pixel
(m,n) is not out of the boundary of the right image plane and 2) the transformed depth s

′

mn and
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Figure 3: Illustration of deriving Depth-based Hard-Mask. We first derive the world coordinate xlw
ij of

pixel (i, j) in the left view and then project the world coordinate xlw
ij into the right view, which leads

to pixel (m,n). If the difference of projected depth s
′

mn and depth label srmn is less than a threshold
α, the pixel (i, j) and (m,n) are marked as pixels satisfying 3D correspondence. By convention,
depth is defined as the coordinate value along z axis in the corresponding camera coordinate system.

depth srmn of pixel (m,n) are sufficiently close. Pixel (i, j) is regarded as a pixel that does not satisfy
3D correspondence under the sparse view setting and is excluded from Hard-Mask when it cannot
find a pixel that satisfies the above condition in all training views. Following the above derivation, we
set a threshold α to mask pixels with 3D correspondence relationship as follows:

|srmn − s
′

mn| < α → pixel (i, j) ∈ M, T ((i, j)) = ((m,n)). (6)

where M is defined to be the set containing masked pixels and T defines the correspondence
relationship between pixel (i, j) and (m,n) := T ((i, j)).

With the derived Hard-Mask, the loss function is defined as

Lh =
1

|R|

{ ∑
r∈R∩M

||Ĉθ(r)− C(r)||22 + λ
∑

r/∈R∩M

||Ĉθ(r)− C(r)||22

}
, (7)

where R denotes the set of rays, the coefficient λ ≪ 1 controls the loss ratio of emphasizing the
pixels satisfying the correspondence relationship.

As shown in Proposition 1, the above loss function, which focuses on the pixels selected by the
Hard-Mask, implicitly emphasizes the appearance consistency in the optimization of NeRF. The
proof is provided in Appendix A. We also show that it emphasizes the geometry consistency in the
optimization of NeRF (see Appendix B for more details).

Definition 3.2 (Consistency of Estimated Appearance) The consistency of estimated appearance
refers to the predicted color difference between pixel (i, j) ∈ M and pixel (m,n) := T ((i, j)) (in
the left/right view of Fig. 3) should be smaller than a threshold value ϵc, i.e.:

||Ĉθ(rij)− Ĉθ(rmn)||22 ≤ ϵc, (8)

where Ĉθ(rij) and Ĉθ(rmn) are predicted color of pixel (i, j) and (m,n).

Proposition 1 (Appearance Consistency Regularization) Directly minimizing appearance consis-
tency in Definition 3.2 leads to trivial solution Ĉθ(rij) = Ĉθ(rmn) = 0. Focusing on minimizing the
errors between predict color values and their ground truth for pixels included by the Hard-Mask as
in Eqn. (7) would help to emphasize the appearance consistency:

||Ĉθ(rij)− C(rij)||22 + ||Ĉθ(rmn)− C(rmn)||22 ≥ 1

4
||Ĉθ(rij)− Ĉθ(rmn)||22 − ϵc/2. (9)

The above estimated Hard-Mask locates pixels satisfying 3D correspondence relationship, which
enforces NeRF to focus on the optimization of 3D consistency. However, the quality of the estimated
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Hard-Mask depends on the precision of the estimated depth. In absense of accurate depth information,
we propose a Degenerated Hard-Mask which is directly extracted from the NeRF’s training loss.

Degenerated Hard-Mask (DH-Mask). The Degenerated Hard-Mask is proposed based on the
observation that pixels satisfying 3D correspondence (masked by Hard-Mask) tend to have a larger
loss in the optimization. As shown in Fig. 4, we compare the loss of pixels masked by Hard-Mask,
i.e., pixels with correspondence, and the loss of those without correspondence. As can be seen, pixels
masked by Hard-Mask have a significantly larger loss (Fig. 4 (d)). Based on the above observation,
we extract the DH-Mask by masking pixels with the largest top-K loss values at the beginning of
the training stage (e.g., when the number of iteration is 500). The resulting DH-Mask has a large
overlapping part when compared with the Hard-Mask. One example of Degenerated Hard-Mask is
illustrated in Fig. 4 (c) by setting K to be 30% of the total number of pixels. Experimental results
suggest that DH-Mask has competitive performance in comparison with Hard-Mask with accurate
depth information.

(a) Image (b) H-Mask (c) DH-Mask
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(d) Loss Curve
Figure 4: (a) Original image. (b) Hard-Mask. (c) Degenerated Hard-Mask. (d) Loss curve for pixels
with correspondence relationship and that of pixels without correspondence relationship.

4 EXPERIMENTS

Datasets. We evaluate our proposed methods on the real-world multi-view DTU dataset (Jensen
et al., 2014), Forward-Facing LLFF dataset (Mildenhall et al., 2019) and Realistic Synthetic NeRF
dataset (Mildenhall et al., 2020). For DTU, we follow PixelNeRF (Yu et al., 2021) to split the data
into 88 training scenes and 16 testing scenes. The 88 DTU training scenes are used to pre-train the
IBRNet (Wang et al., 2021) and MVSNeRF (Chen et al., 2021) models. For each testing scene in
three data sets, we select 3/6 views from 20 nearby views as training views and randomly select 4
views as validation and testing views. Similar to MVSNeRF (Chen et al., 2021), we evaluate all
methods on the DTU dataset with the object masks applied to the rendered and ground truth images.

Evaluation Metrics: For performance comparison, we report the mean of peak signal-to-noise ratio
(PSNR) (Sara et al., 2019), structural similarity index (SSIM) (Wang et al., 2004) and Learned
Perceptual Image Patch Similarity (LPIPS) perceptual metric (Zhang et al., 2018).

Implementation Details. We compare our methods with state-of-the-art NeRF (Mildenhall et al.,
2020), IBRNet (Wang et al., 2021) and MVSNeRF (Chen et al., 2021). We also consider NeRF with
depth serving as supervision (Deng et al., 2021) for a fair comparison. For all NeRF (Mildenhall
et al., 2020) based methods which do not require pre-training, we directly train the model from
scratch for each target scene. In our experiments, we use the depth extracted from a pre-trained
MVSNeRF (Chen et al., 2021) to derive the Hard-Mask. For a fair comparison, both NeRF and our
method use this depth as the supervision. All mentioned methods (NeRF, NeRF† (NeRF with depth),
NeRF + DH-Mask, NeRF + H-Mask) were trained with 50000 iterations. For H-Mask, the threshold
α is set to be 0.1 and λ is set to be 0.1 on DTU, LLFF and NeRF Synthetic data set. In DH-Mask, the
portion top-K is set as top-50%. For methods that require pre-training, we directly use the released
code and checkpoint of MVSNeRF and retrain IBRNet on the DTU data. Then we conduct a test-time
optimization on DTU, LLFF and NeRF Synthetic testing scenes. We run each method with four
random seeds and report the mean results. More implementation details are provided in Appendix D.

Initialization for Stable Optimization. During our experiments, we observe that NeRF is prone
to a catastrophic failure at the initialization stage in which MLP emits negative values before the
ReLU activation. In this case, all predicted σ values are zero and gradients back-propagated from
the loss function to MLP parameters are zero and thus leads to the failure of the optimization. To
address the above failure, Mip-NeRF (Barron et al., 2021) proposed to use a softplus function to yield
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Figure 5: Novel View Synthesis Results on DTU, LLFF and NeRF Synthetic data sets with 3 views as
input. We observe that the baselines suffer from blur results, while our Hard-Mask and Degenerated
Hard-Mask can produce sharp results with fine-grained details.
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Figure 6: Novel View Synthesis Results on DTU, LLFF and NeRF Synthetic data sets with 6 views
as input. With Depth supervision, NeRF† can render 3D object with the correct geometry, but it
suffers from rendering sharp details. In contrast, our approach renders both correct geometry and
sharp details.

a stable optimization. However, we observe that NeRF overfits to training views by using the softplus
function in the sparse view setting. In this paper, we propose to modify the initialization of bias
parameters in the MLP to guarantee both stable optimization and good generalization ability. During
our experiments, we find initializing the value of bias parameters in MLP using a uniform distribution
between 0 and 1 leads to acceptable results. The comparison results are reported in Appendix E.

4.1 VIEW SYNTHESIS RESULTS IN THE SPARSE VIEW SETTING

In this experiment, we first evaluate the performance achieved by the original version of above-
mentioned models with sparse view settings and then compare it with their improved version using
proposed DH-Mask and H-Mask. Quantitative results are shown in Tab. 1. Several conclusions are
drawn as follows. (1) For 3 input view settings, our proposed H-Mask could largely improve the
performance of the original NeRF, e.g., 70% relative PSNR improvement is achieved on the DTU
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Table 1: Performance (PSNR, SSIM and LPIPS) comparison among state-of-the-art NeRF methods
on DTU, NeRF Synthetic and Forward-Facing data sets. ↑ means the larger is better; ↓ means the
smaller is better.

Method Setting Real Data (DTU) Synthetic Data (NeRF) Forward-Facing (LLFF)
PSNR↑SSIM↑LPIPS↓ PSNR↑SSIM↑LPIPS↓ PSNR↑SSIM↑ LPIPS↓

NeRF (Mildenhall et al., 2020)

3-view

11.40 0.50 0.49 14.59 0.82 0.29 12.52 0.34 0.60
NeRF† (Deng et al., 2021) 11.80 0.52 0.49 15.13 0.82 0.30 13.10 0.35 0.62

NeRF + DH-Mask 18.90 0.77 0.38 20.71 0.86 0.31 21.19 0.74 0.40
NeRF + H-Mask 19.44 0.80 0.36 20.94 0.87 0.29 21.44 0.74 0.40

IBRNet (Wang et al., 2021) 19.22 0.83 0.29 14.20 0.75 0.38 21.32 0.77 0.30
IBRNet + DH-Mask 20.17 0.84 0.28 14.98 0.78 0.34 21.72 0.78 0.30
IBRNet + H-Mask 20.59 0.85 0.28 15.16 0.79 0.34 22.05 0.79 0.29

MVSNeRF (Chen et al., 2021) 19.17 0.80 0.34 15.12 0.82 0.29 18.99 0.68 0.41
MVSNeRF + DH-Mask 22.96 0.89 0.22 21.21 0.86 0.25 21.68 0.79 0.30
MVSNeRF + H-Mask 23.27 0.87 0.25 21.77 0.87 0.23 21.88 0.79 0.29

NeRF (Mildenhall et al., 2020)

6-view

13.77 0.55 0.46 17.35 0.85 0.25 13.71 0.38 0.57
NeRF† (Deng et al., 2021) 14.17 0.56 0.45 17.95 0.87 0.25 14.29 0.39 0.56

NeRF + DH-Mask 21.73 0.83 0.35 23.40 0.91 0.25 22.34 0.76 0.39
NeRF + H-Mask 22.25 0.84 0.34 23.80 0.91 0.24 22.74 0.78 0.38

IBRNet (Wang et al., 2021) 24.51 0.92 0.18 16.54 0.81 0.32 23.45 0.83 0.22
IBRNet + DH-Mask 25.19 0.91 0.19 17.73 0.84 0.28 23.66 0.83 0.23
IBRNet + H-Mask 25.36 0.93 0.18 17.78 0.84 0.28 23.67 0.83 0.22

MVSNeRF (Chen et al., 2021) 24.48 0.90 0.21 23.19 0.90 0.19 22.65 0.81 0.28
MVSNeRF + DH-Mask 24.61 0.89 0.21 23.93 0.90 0.20 23.07 0.81 0.28
MVSNeRF + H-Mask 24.95 0.90 0.20 24.18 0.90 0.13 23.84 0.84 0.23

GT MVSNeRF MVSNeRF + DH-Mask MVSNeRF + H-Mask

Figure 7: Novel View Synthesis Results produced by MVSNeRF and our methods. MVSNeRF
produces results with poor lighting when the testing view is far from the training view while our
methods can render images with better lighting effects by utilizing the 3D correspondence between
source and target views.

data set. Besides, when compared with NeRF† which directly introduces depth constrain, our Mask
could bring larger performance improvement through emphasizing the optimization of pixels with
3D correspondence relationship. (2) By deriving mask information from the trend of training loss,
DH-Mask achieves competitive (only a bit worse) results when compared with H-Mask. Both of
DH-Mask and H-Mask bring obvious performance improvement for 3-view experiments with variants
of NeRF. (3) When given more views (6 views) as input, though overall good rendering results are
achieved by baseline methods, our approaches can still produce consistent improvements among
three data sets. As shown in Fig. 5 and Fig. 6, our methods can render images with both correct
geometry and fine-grained details which is close to the ground truth, while NeRF suffers from blur
effects around edges, as blur parts tend to have a large loss and our proposed masks emphasize the
optimization of this part to render sharp details.

We also investigate the performance of DH-Mask and H-Mask with IBRNet (Wang et al., 2021)
and MVSNeRF (Chen et al., 2021), which require the pre-training and per-scene optimization. As
shown in Tab. 1, IBRNet and MVSNeRF produce better results than the vanilla NeRF in the 3/6 view
setting. However, we still observe some inconsistent results when the testing view is far from the
training views. For example, as shown in Fig. 7, MVSNeRF produces images with poor lighting,
while our proposed MaskNeRF can predict the correct lighting effect of the pixels in the target view
using the correspondence of pixels with similar lighting effect in source views. Instead of directly
predicting the pixel-wise color value like NeRF, MaskNeRF aims to learn better 3D correspondence
among the source views and the target views and then employ the 3D correspondence to predict target
pixel information during the inference stage. On the other hand, our method not only provides better
PSNR, SSIM, and LPIPS but also renders images with better lighting conditions without additional
computational cost.
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Table 2: Performance (PSNR, SSIM and
LPIPS) comparison among different λ val-
ues used in Hard-Mask on the DTU dataset
with 3 training views as input.

λ
Real Data (DTU)

PSNR↑ SSIM↑ LPIPS↓
0.20 19.18 0.76 0.39
0.10 19.44 0.80 0.36
0.05 18.71 0.76 0.40
0.00 18.29 0.75 0.41

Table 3: Performance (PSNR, SSIM and
LPIPS) comparison among different Top-K
values used in Degenerated Hard-Mask on the
DTU dataset with 3 training views as input.

K Real Data (DTU)
PSNR↑ SSIM↑ LPIPS↓

80% 18.20 0.75 0.39
50% 18.90 0.77 0.38
30% 18.04 0.74 0.41
10% 17.58 0.72 0.43

4.2 ABLATION STUDY

Ablation of λ in H-Mask. As shown in Tab. 2, we investigate the performance of different λ values
(0, 0.05, 0.1, 0.2) in Hard-Mask on the DTU data set with 3 training views as input. Our experimental
results suggest that λ = 0.1 leads to the best performance. From the table, we could learn that either
enlarging or decreasing λ values would influence the performance of H-Mask. The main reason could
be that enlarging λ equals to alleviate the emphasis on pixels learned by proposed Masks. Meanwhile,
decreasing λ means ignoring more pixels not satisfying the 3D correspondence, while, these pixels
may play an important role in the accuracy computation, e.g., the black background in DTU dataset
as in Fig. 7.

Ablation of top-K Ratio in DH-Mask. In DH-Mask, top-K Ratio controls the portion of pixels
masked by Degenerated Hard-Mask according to the trend of training loss. We compare the NeRF
performance by selecting different portion (10%, 30%, 50%, 80%) of pixels and observe that masking
top-50% pixels leads to the best performance, which is used in our main experiments. The reason for
this phenomenon is similar to that of performance about different λ in Hard-Mask.

(a) GT (b) Reconstructed view

Figure 8: Mask-based unseen view recon-
struction compared with ground truth.

Additional Supervision on Unseen Views using
Hard-Mask. With the the proposed Hard-Mask, we
can locate pixels satisfying 3D correspondence rela-
tionship between unseen views and seen views. This
can further allow us to reconstruct the color and depth
information in unseen views with the help of the
homography warping relationship between unseen
views and seen views. One example of the recon-
structed image is shown in Fig. 8(b). It could serve
as an additional supervision for the optimization pro-
cess and improve the performance, e.g., 1.06 absolute
PSNR improvement on the DTU data set. More details are provided in Appendix F.

5 LIMITATION

Similar as most NeRF based methods, our proposed mask based optimization can not render images
with high quality when the target view is far from source views as 3D correspondence relationship is
hard to utilize in this case. In addition, relighting in novel view synthesis is a challenging problem
that needs further investigation.

6 CONCLUSION

In this paper, we address the challenging sparse view synthesis problem and propose MaskNeRF, an
efficient plug-in component for NeRF-based methods in the sparse view setting. With correspondence
built among pixels based on depths, we propose that Hard-Mask locates the pixels with 3D consis-
tency, rather than treating all pixels equally in the training objective. Moreover, we observe that the
pixels with 3D consistency are usually accompanied with smaller loss decreasing rate. Therefore, we
propose to extract DH-Mask based on the trend of training loss without using the depth information.
Experiment results show that our proposed methods significantly improve the performance of repre-
sentative NeRF methods with sparse view settings and could bring larger performance improvement
than previous depth-based methods. These promising results suggest that mask-based NeRF is an
important direction to render images with both correct geometry and fine-grained details. A potential
future direction is how to sample pixels with different losses during the optimization of NeRF.
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APPENDIX

A PROOF FOR PROPOSITION 1

Definition A.1 (Consistency of Estimated Appearance) The consistency of estimated appearance
refers to the predicted color difference between pixel (i, j) ∈ M and pixel (m,n) := T ((i, j)) (in
the left/right view of Fig. 3) should be smaller than a threshold value ϵc, i.e.:

||Ĉθ(rij)− Ĉθ(rmn)||22 ≤ ϵc, (10)

where Ĉθ(rij) and Ĉθ(rmn) are predicted color of pixel (i, j) and (m,n).

Proposition 2 (Appearance Consistency Regularization) Directly minimizing appearance consis-
tency in Definition A.1 leads to trivial solution Ĉθ(rij) = Ĉθ(rmn) = 0. Focusing on minimizing the
errors between predict color values and their ground truth for pixels included by the Hard-Mask as
in Eqn. (7) would help to emphasize the appearance consistency:

||Ĉθ(rij)− C(rij)||22 + ||Ĉθ(rmn)− C(rmn)||22 ≥ 1

4
||Ĉθ(rij)− Ĉθ(rmn)||22 − ϵc/2.

Proof:

2||Ĉθ(rij)− C(rij)||22 + 2||Ĉθ(rmn)− C(rmn)||22
≥∥(Ĉθ(rij)− Ĉθ(rmn)) + (C(rmn)− C(rij))∥22

≥1

2
∥Ĉθ(rij)− Ĉθ(rmn)∥22 − ∥C(rmn)− C(rij)∥22

The first inequality follows from the fact that for two vectors a,b,

2∥a∥22 + 2∥b∥22 − ∥a+ b∥22 = ∥a− b∥22 ≥ 0.

The second inequality is due to the fact that

2∥a+ b∥22 − (∥a∥22 − 2∥b∥22) = ∥a+ 2b∥22 ≥ 0.

B GEOMETRY CONSISTENCY

Definition B.1 (Geometry Consistency) The geometry consistency refers to the depth difference
between the depth of pixel (m,n) ∈ M in right camera view and the depth generated by warping its
corresponding pixel (i, j) := T ((m,n)) from left camera to right camera should be smaller than a
threshold value ϵs, i.e.:

||srmn − s
′

mn||22 ≤ ϵs, (11)

where srmn is the depth for pixel (m,n) and s
′

mn is the projected depth from left camera pixel (i, j).

Definition B.2 (Consistency of Estimated Geometry) The consistency of estimated geometry
refers to the predicted depth difference between the depth of pixel (m,n) ∈ M in right cam-
era view and the predicted depth generated by warping its corresponding pixel (i, j) := T ((m,n))
from left camera to right camera should be smaller than a threshold value ϵs, i.e.:

||ŝθ(rmn)− ŝ
′

θ(rmn)||22 ≤ ϵs, (12)

where ŝθ(rmn) is the predicted depth for pixel (m,n) and ŝ
′

θ(rmn) is the projected depth from left
camera pixel (i, j).

Proposition 3 (Geometry Consistency Regularization) Similar to Appearance Consistency Regu-
larization, focusing on optimizing the error between predicted depth value and its ground truth for
pixels included by Hard-Mask as in Eqn. (7) would help to emphasize the geometry consistency:

||ŝθ(rmn)− srmn||22 + ||ŝ
′

θ(rmn)− s
′

mn||22 ≥ 1

4
||ŝθ(rmn)− ŝ

′

θ(rmn)||22 − ϵs/2, (13)
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Proof:

2||ŝθ(rmn)− srmn||22 + 2||ŝ
′

θ(rmn)− s
′

mn||22
≥∥(ŝθ(rmn)− ŝ

′

θ(rmn)) + (srmn − s
′

mn)∥22

≥1

2
∥ŝθ(rmn)− ŝ

′

θ(rmn)∥22 − ∥srmn − s
′

mn∥22
The first inequality follows from the fact that for two vectors a,b,

2∥a∥22 + 2∥b∥22 − ∥a+ b∥22 = ∥a− b∥22 ≥ 0.

The second inequality is due to the fact that

2∥a+ b∥22 − (∥a∥22 − 2∥b∥22) = ∥a+ 2b∥22 ≥ 0.

C PRELIMINARY STUDY

By utilizing homography warping relationship, we locate pixels satisfying 3D correspondence
relationship. Based on the masked pixels among training views, we find the respective 3D points and
randomly sample different portions (30%, 60%, 100%) of 3D points for the purpose of emphasizing
the 3D correspondence. We conduct each experiment using 4 random seeds and report the mean
results.

D IMPLEMENTATION DETAILS

All our models are trained on the NVIDIA Tesla V100 Volta GPU cards. The NeRF based models are
implemented based on the code from (Yen-Chen, 2020). For IBRNet, we pre-train the model on the
DTU data for 120,000 iterations and then conduct the per-scene optimization for 20,000 iterations.
For MVSNet, we follow the released code and checkpoint to pre-train and finetune the models. For
Hard-Mask introduced in Sec. 3.3, we generate the mask information for each training image based
on the correspondence among pixels in all training views. For Degenerated Hard-Mask introduced in
Sec. 3.3, we generate the mask information for each training image based on the trend of training
loss.

E SOLUTIONS TO AVOID DEGENERATE RESULTS IN NERF

As mentioned in Sec. 3.3, NeRF is prone to a catastrophic failure at the initialization stage in which
MLP emits negative values before the ReLU activation. To address this issue, Mip-NeRF (Barron
et al., 2021) proposed to use a softplus function to yield a stable optimization. However, we observe
that NeRF overfits to training views by using the softplus function in the sparse view setting. One
possible reason could be that the predicted alpha value of sampled points should be sparse and
dropping small values with ReLU activation could effectively improve the generalization ability.
Based on the above consideration, we instead propose to modify the initialization of bias parameters
in the MLP to guarantee both stable optimization and good generalization ability. As shown in Tab. 4,
our proposed initilization effectively improve the performance of NeRF and avoid the degenerate
results when compared with SoftPlus activation and the original NeRF setting.

F ADDITIONAL SUPERVISION ON UNSEEN VIEWS USING HARD-MASK

With the the proposed Hard-Mask, we can locate pixels satisfying 3D correspondence relationship
between unseen views and seen views. This can further allow us reconstruct the color and depth
information in unseen views with the help of the homography warping relationship between unseen
views and seen views. One example of the reconstructed image is shown in Fig. 8(b). Although the
reconstructed image labels (Fig. 8 (b)) miss some information in the unseen area of training views,
the overall geometry and sharp details are clear when compared with the ground truth label (Fig. 8
(a)). As shown in Tab. 5, it could serve as an additional supervision for the optimization process and
improve the performance, e.g., 1.06 absolute PSNR improvement on the DTU data set.
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Table 4: Performance (PSNR, SSIM and LPIPS) comparison between SoftPlus and our proposed
stable initialization to avoid degenerate results in NeRF on the DTU data set with 3 training views as
input. ↑ means the larger is better; ↓ means the smaller is better.

Method Real Data (DTU)
PSNR↑ SSIM↑ LPIPS↓

ReLU 11.40 0.50 0.49
SoftPlus 14.26 0.68 0.45

Stable Initialization 16.91 0.73 0.41

Table 5: Performance (PSNR, SSIM and LPIPS) comparison of applying Mask-Based data augmen-
tation on the DTU data set with 3 training views as input. For performance (PSNR, SSIM and LPIPS)
comparison, ↑ means the larger is better; ↓ means the smaller is better.

Additional Supervision Real Data (DTU)
PSNR↑ SSIM↑ LPIPS↓

✗ 19.44 0.80 0.36
✓ 20.50 0.80 0.38

G COMPARISON WITH SEGMENTATION MASK

For scenes with simple background like NeRF synthetic data set, segmentation method can be used
to segment the object and background. We compare the performance between the Mask R-CNN He
et al. (2017) segmentation method and our proposed mask methods on the NeRF synthetic data set.
As shown in Tab. 6, our proposed DH-Mask and H-Mask outperform the segmentation method by
emphasizing the learning of 3D consistency. For DTU and LLFF data sets with complex scenes,
segmentation method cannot be used to effectively select pixels satisfying the 3D correspondence
relationship.

Table 6: Performance (PSNR, SSIM and LPIPS) comparison between our proposed masks and
segmentation mask on the NeRF Synthetic data set with 3 training views as input.

Method Real Data (DTU)
PSNR↑ SSIM↑ LPIPS↓

Segmentation 19.92 0.85 0.33
DH-Mask 20.71 0.86 0.31
H-Mask 20.94 0.87 0.29
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