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Abstract
We establish new generalisation bounds for multiclass classification by abstracting to a more gen-
eral setting of discretised error types. Extending the PAC-Bayes theory, we are hence able to
provide fine-grained bounds on performance for multiclass classification, as well as applications
to other learning problems including discretisation of regression losses. Tractable training objec-
tives are derived from the bounds. The bounds are uniform over all weightings of the discretised
error types and thus can be used to bound weightings not foreseen at training, including the full
confusion matrix in the multiclass classification case.
Keywords: Statistical Learning Theory, PAC-Bayes theory, Classification, Generalisation Bounds.

1. Introduction

Generalisation bounds are a core component of the theoretical understanding of machine learning
algorithms. For over two decades now, the PAC-Bayesian theory has been at the core of studies
on generalisation abilities of machine learning algorithms. PAC-Bayes originates in the seminal
work of McAllester (1998, 1999) and was further developed by Catoni (2003, 2004, 2007), among
other authors—we refer to the recent surveys Guedj (2019) and Alquier (2021) for an introduction
to the field. The outstanding empirical successes of deep neural networks in the past decade call
for better theoretical understanding of deep learning, and PAC-Bayes emerged as one of the few
frameworks allowing the derivation of meaningful (and non-vacuous) generalisation bounds for
neural networks: the pioneering work of Dziugaite and Roy (2017) has been followed by a number
of contributions, including Neyshabur et al. (2018), Zhou et al. (2019), Letarte et al. (2019), Perez-
Ortiz et al. (2021a,b) and Biggs and Guedj (2021, 2022a,b), to name but a few.

Much of the PAC-Bayes literature focuses on the case of binary classification, or of multiclass
classification where one only distinguishes whether each classification is correct or incorrect. This
is in stark contrast to the complexity of contemporary real-world learning problems. This work
aims to bridge this gap via generalisation bounds that provide information rich measures of perfor-
mance at test time by controlling the probabilities of errors of any finite number of types, bounding
combinations of these probabilities uniformly over all weightings.

Previous results. We believe our framework of discretised error types to be novel. In the particular
case of multiclass classification, little is known from a theoretical perspective and, to the best of our
knowledge, only a handful of relevant strategies or generalisation bounds can be compared to the
present paper. The closest is the work of Morvant et al. (2012) on a PAC-Bayes generalisation bound
on the operator norm of the confusion matrix, to train a Gibbs classifier. We focus on a different
performance metric, in the broader setting of discretised error types. Koço and Capponi (2013)
suggest to minimise the confusion matrix norm with a focus on the imbalance between classes;
their treatment is not done through PAC-Bayes. Laviolette et al. (2017) extend the celebrated C-
bound in PAC-Bayes to weighted majority votes of classifiers, to perform multiclass classification.
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Benabbou and Lang (2017) present a streamlined version of some of the results from Morvant et al.
(2012) in the case where some examples are voluntarily not classified (e.g., in the case of too large
uncertainty). More recently, Feofanov et al. (2019) derive bounds for a majority vote classifier
where the confusion matrix serves as an error indicator: they conduct a study of the Bayes classifier.

From binary to multiclass classification. A number of PAC-Bayesian bounds have been unified
by a single general bound, found in Bégin et al. (2016). Stated as Theorem 1 below, it applies to
binary classification. We use it as a basis to prove our Theorem 3, a more general bound that can
be applied to, amongst other things, multiclass classification and discretised regression. While the
proof of Theorem 3 follows similar lines to that given in Bégin et al. (2016), our generalisation
to ‘soft’ hypotheses incurring any finite number of error types requires a non-trivial extension of
a result found in Maurer (2004). This extension (Lemma 5), along with its corollary (Corollary
6) may be of independent interest. The generalisation bound in Maurer (2004), stated below as
Corollary 2, is shown in Bégin et al. (2016) to be a corollary of their bound. In a similar manner,
we derive Corollary 7 from Theorem 3. Obtaining this corollary is significantly more involved than
the analogous derivation in Bégin et al. (2016) or the original proof in Maurer (2004), requiring a
number of technical results found in Appendix B.

Briefly, the results in Bégin et al. (2016) and Maurer (2004) consider an arbitrary input set X ,
output set Y = {−1, 1}, hypothesis space H ⊆ YX and i.i.d. sample S ∈ (X × Y)m. They
then establish high probability bounds on the discrepancy between the risk (probability of error
an a new datapoint) of any stochastic classifier Q (namely, a distribution on H) and its empirical
counterpart (the fraction of the sample Q misclassifies). The bounds hold uniformly over all Q
and contain a complexity term involving the Kullback-Leibler (KL) divergence between Q and a
reference distribution P onH (often referred to as a prior by analogy with Bayesian inference—see
the discussion in Guedj, 2019).

There are two ways in which the results in Bégin et al. (2016) and Maurer (2004) can be de-
scribed as binary. First, asY contains two elements, this is obviously an instance of binary classifica-
tion. But a more interesting and subtle way to look at this is that only two cases are distinguished—
correct classification and incorrect classification. Specifically, since the two different directions in
which misclassification can be made are counted together, the bound gives no information on which
direction is more likely.

More generally, the aforementioned bounds can be applied in the context of multiclass classi-
fication provided one maintains the second binary characteristic by only distinguishing correct and
incorrect classifications rather than considering the entire confusion matrix. However, note that
these bounds will not give information on the relative likelihood of the different errors. In contrast,
our new results can consider the entire confusion matrix, bounding how far the true (read “expected
over the data-generating distribution”) confusion matrix differs from the empirical one, according
to some metric. In fact, our results extend to the case of arbitrary label set Y , provided the number
of different errors one distinguishes is finite.

Formally, we let
⋃M

j=1Ej be a user-specified disjoint partition of Y2 into a finite number of M
error types1, where we say that a hypothesis h ∈ H makes an error of type j on datapoint (x, y) if
(h(x), y) ∈ Ej . It should be stressed that some Ej need not correspond to mislabellings—indeed,
some of the Ej may distinguish different correct labellings. We then count up the number of errors
of each type that a hypothesis makes on a sample, and bound how far this empirical distribution of

1. By convention, every pair (ŷ, y) ∈ Y2 is interpreted as a predicted value ŷ followed by a true value y, in that order.
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CONTROLLING CONFUSION VIA GENERALISATION BOUNDS

errors is from the expected distribution under the data-generating distribution (Theorem 3). Thus,
in our generalisation, the (scalar) risk and empirical risk (RD(Q) and RS(Q), defined in the next
section) are replaced by M -dimensional vectors (RD(Q) and RS(Q)), and our discrepancy mea-
sure d is a divergence between discrete distributions on M elements. Our generalisation therefore
allows us to bound how far the true distribution of errors can be from the observed distribution of
errors. If we then associate a loss value ℓj ∈ [0,∞) to each Ej we can derive a bound on the total
risk, defined as the sum of the true error probabilities weighted by the loss values. In fact, the total
risk is bounded with high probability uniformly over all such weightings. The loss values need not
be distinct; we may wish to understand the distribution of error types even across error types that
incur the same loss.

For example, in the case of binary classification with Y = {−1, 1}, we can take the usual
partition into E1 = {(−1,−1), (1, 1)} and E2 = {(−1, 1), (1,−1)} and loss values ℓ1 = 0, ℓ2 = 1,
or the fine-grained partition Y2 = {(0, 0)} ∪ {(1, 1)} ∪ {(0, 1)} ∪ {(1, 0)} and the loss values
ℓ1 = ℓ2 = 0, ℓ3 = 1, ℓ4 = 2. More generally, for multiclass classification with N classes and
Y = [N ], one may take the usual coarse partition into E1 = {(ŷ, y) ∈ Y2 : ŷ = y} and E2 =
{(ŷ, y) ∈ Y2 : ŷ ̸= y} (with ℓ1 = 0 and ℓ2 = 1), or the fully refined partition into Ei,j = {(i, j)}
for i, j ∈ [N ] (with correspondingly greater choice of the associated loss values), or something in-
between. Note that we still refer to Ej as an “error type” even if it contains elements that correspond
to correct classification, namely if there exists y ∈ Y such that (y, y) ∈ Ej . As we will see later,
a more fine-grained partition will allow more error types to be distinguished and bounded, at the
expense of a looser bound. As a final example, for regression with Y = R, we may fix M strictly
increasing thresholds 0 = λ1 < λ2 < · · · < λM and partition Y2 into Ej = {(y1, y2) ∈ Y2 : λj ≤
|y1 − y2| < λj+1} for j ∈ [M − 1], and EM = {(y1, y2) ∈ Y2 : |y1 − y2| ≥ λM}.

Outline. We set our notation in Section 2. In Section 3 we state and prove generalisation bounds
in the setting of discretised error types: this significantly expands the previously known results from
Bégin et al. (2016) by allowing for generic output sets Y . Our main results are Theorem 3 and
Corollary 7. To make our findings profitable to the broader machine learning community we then
discuss how these new bounds can be turned into tractable training objectives in Section 4 (with a
general recipe described in greater detail in Appendix A). The paper closes with perspectives for
follow-up work in Section 5 and we defer to Appendix B the proofs of technical results.

2. Notation

For any set A, let M(A) be the set of probability measures on A. For any M ∈ Z>0, define
[M ] := {1, 2, . . . ,M}, the M -dimensional simplex △M := {u ∈ [0, 1]M : u1 + · · · + uM =
1} and its interior △>0

M := △M ∩ (0, 1)M . For m,M ∈ Z>0, define the integer counterparts
Sm,M :=

{
(k1, . . . , kM ) ∈ ZM

≥0 : k1 + · · ·+ kM = m
}

and S>0
m,M := Sm,M ∩ ZM

>0. The set Sm,M

is the domain of the multinomial distribution with parameters m,M and some r ∈ △M , which is
denoted Mult(m,M, r) and has probability mass function for k ∈ Sm,M given by

Mult(k;m,M, r) :=

(
m

k1 k2 · · · kM

) M∏
j=1

r
kj
j , where

(
m

k1 k2 · · · kM

)
:=

m!∏M
j=1 kj !

.

For q,p ∈ △M , let kl(q∥p) denote the KL-divergence of Mult(1,M, q) from Mult(1,M,p),
namely kl(q∥p) :=

∑M
j=1 qj ln

qj
pj

, with the convention that 0 log 0
x = 0 for x ≥ 0 and x log x

0 =∞
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for x > 0. For M = 2 we abuse notation and abbreviate kl((q, 1− q)∥(p, 1− p)) to kl(q∥p), which
is then the conventional definition of kl(·∥·) : [0, 1]2 → [0,∞] found in the PAC-Bayes literature
(as in Seeger, 2002, for example).

Let X and Y be arbitrary input (e.g., feature) and output (e.g., label) sets respectively. Let⋃M
j=1Ej be a partition of Y2 into a finite sequence of M error types, and to each Ej associate a loss

value ℓj ∈ [0,∞). The only restriction we place on the loss values ℓj is that they are not all equal.
This is not a strong assumption, since if they were all equal then all hypotheses would incur equal
loss and there would be no learning problem: we are effectively ruling out trivial cases.

Let H ⊆ YX denote a hypothesis class, D ∈ M(X × Y) a data-generating distribution and
S ∼ Dm an i.i.d. sample of size m drawn from D. For h ∈ H and j ∈ [M ] we define the
empirical j-risk and true j-risk of h to be Rj

S(h) :=
1
m

∑
(x,y)∈S 1[(h(x), y) ∈ Ej ] and Rj

D(h) :=
E(x,y)∼D[1[(h(x), y) ∈ Ej ]], respectively, namely, the proportion of the sample S on which h
makes an error of type Ej and the probability that h makes an error of type Ej on a new (x, y) ∼ D.

More generally, suppose H ⊆ M(Y)X is a class of soft hypotheses of the form H : X →
M(Y), where, for any A ⊆ Y , H(x)[A] is interpreted as the probability according to H that the
label of x is in A. It is worth stressing that a soft hypothesis is still deterministic since a prediction is
not drawn from the distribution it returns. We then define the empirical j-risk of H to be Rj

S(H) :=
1
m

∑
(x,y)∈S H(x)

[
{ŷ ∈ Y : (ŷ, y) ∈ Ej}

]
, namely the mean—over the elements (x, y) of S—

probability mass H assigns to predictions ŷ ∈ Y incurring an error of type Ej when labelling each x.
Further, we define the true j-risk of H to be Rj

D(H) := E(x,y)∼D

[
H(x)

[
{ŷ ∈ Y : (ŷ, y) ∈ Ej}

]]
,

namely the mean—over (x, y) ∼ D—probability mass H assigns to predictions ŷ ∈ Y incurring an
error of type Ej when labelling each x. We will see in Section 4 that the more general hypothesis
classH ⊆M(Y)X is necessary for constructing a differentiable training objective.

To each ordinary hypothesis h ∈ YX there corresponds a soft hypothesis H ∈ M(Y)X that,
for each x ∈ X , returns a point mass on h(x). In this case, it is straightforward to show that
Rj

S(h) = Rj
S(H) and Rj

D(h) = Rj
D(H) for all j ∈ [M ], where we have used the corresponding

definitions above for ordinary and soft hypotheses. Since, in addition, our results hold identically
for both ordinary and soft hypotheses, we henceforth use the same notation h for both ordinary
and soft hypotheses and their associated values Rj

S(h) and Rj
D(h). It will always be clear from

the context whether we are dealing with ordinary or soft hypotheses and thus which of the above
definitions of the empirical and true j-risks is being used.

We define the empirical risk and true risk of a (ordinary or soft) hypothesis h to be RS(h) :=
(R1

S(h), . . . , R
M
S (h)) and RD(h) := (R1

D(h), . . . , R
M
D (h)), respectively. It is straightforward to

show that RS(h) and RD(h) are elements of△M . Since S is drawn i.i.d. from D, the expectation
of the empirical risk is equal to the true risk, namely ES [R

j
S(h)] = Rj

D(h) for all j and thus
ES [RS(h)] = RD(h). Finally, we generalise to stochastic hypotheses Q ∈ M(H), which predict
by first drawing a deterministic hypothesis h ∼ Q and then predicting according to h, where a new
h is drawn for each prediction. Thus, we define the empirical j-risk and true j-risk of Q to be
the scalars Rj

S(Q) := Eh∼Q[R
j
S(h)] and Rj

D(Q) := Eh∼Q[R
j
D(h)], for j ∈ [M ], and simply the

empirical risk and true risk of Q to be the elements of △M defined by RS(Q) := Eh∼Q[RS(h)]
and RD(Q) := Eh∼Q[RD(h)]. As before, since S is i.i.d., we have (using Fubini this time) that
ES [RS(Q)] = RD(Q). Finally, given a loss vector ℓ ∈ [0,∞)M , we define the total risk of Q
by the scalar RT

D(Q) :=
∑M

j=1 ℓjR
j
D(Q). As is conventional in the PAC-Bayes literature, we refer

to sample independent and dependent distributions onM(H) (i.e. stochastic hypotheses) as priors
(denoted P ) and posteriors (denoted Q) respectively, even if they are not related by Bayes’ theorem.
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3. Inspiration and Main Results

We first state the existing results in Bégin et al. (2016) and Maurer (2004) that we will gener-
alise from just two error types (correct and incorrect) to any finite number of error types. These
results are stated in terms of the scalars RS(Q) := 1

m

∑
(x,y)∈S 1[h(x) ̸= y] and RD(Q) :=

E(x,y)∼D1[h(x) ̸= y] and, as we demonstrate, correspond to the case M = 2 of our generalisations.

Theorem 1 (Bégin et al., 2016, Theorem 4) Let X be an arbitrary set and Y = {−1, 1}. Let
D ∈ M(X × Y) be a data-generating distribution and H ⊆ YX be a hypothesis class. For any
prior P ∈ M(H), δ ∈ (0, 1], convex function d : [0, 1]2 → R, sample size m and β ∈ (0,∞),
with probability at least 1− δ over the random draw S ∼ Dm, we have that simultaneously for all
posteriors Q ∈M(H)

d
(
RS(Q), RD(Q)

)
≤ 1

β

[
KL(Q∥P ) + ln

Id(m,β)

δ

]
,

with Id(m,β) := supr∈[0,1]

[∑m
k=0 Bin(k;m, r) exp

(
βd
(
k
m , r

) )]
, where Bin(k;m, r) is the bi-

nomial probability mass function Bin(k;m, r) :=
(
m
k

)
rk(1− r)m−k.

Note the original statement in Bégin et al. (2016) is for a positive integer m′, but the proof
trivially generalises to any β ∈ (0,∞). One of the bounds that Theorem 1 unifies—which we also
generalise—is that of Seeger (2002), later tightened in Maurer (2004), which we now state. It can
be recovered from Theorem 1 by setting β = m and d(q, p) = kl(q∥p) := q log q

p +(1−q) log 1−q
1−p .

Corollary 2 (Maurer, 2004, Theorem 5) Let X be an arbitrary set and Y = {−1, 1}. Let D ∈
M(X × Y) be a data-generating distribution and H ⊆ YX be a hypothesis class. For any prior
P ∈ M(H), δ ∈ (0, 1] and sample size m, with probability at least 1 − δ over the random draw
S ∼ Dm, we have that simultaneously for all posteriors Q ∈M(H)

kl
(
RS(Q), RD(Q)

)
≤ 1

m

[
KL(Q∥P ) + ln

2
√
m

δ

]
.

We wish to bound the deviation of the empirical vector RS(Q) from the unknown vector
RD(Q). Since in general the stochastic hypothesis Q we learn will depend on the sample S, it
is useful to obtain bounds on the deviation of RS(Q) from RD(Q) that are uniform over Q, just as
in Theorem 1 and Corollary 2. In Theorem 1, the deviation d(RS(Q), RD(Q)) between the scalars
RS(Q), RD(Q) ∈ [0, 1] is measured by some convex function d : [0, 1]2 → R. In our case, the devi-
ation d(RS(Q),RD(Q)) between the vectors RS(Q),RD(Q) ∈ △M is measured by some convex
function d : △2

M → R. In Section 3.2 we will derive Corollary 7 from Theorem 3 by selecting
β = m and d(q,p) := kl(q∥p), analogous to how Corollary 2 is obtained from Theorem 1.

3.1. Statement and proof of the generalised bound

We now state and prove our generalisation of Theorem 1. The proof follows identical lines to that
of Theorem 1 given in Bégin et al. (2016), but with additional non-trivial steps to account for the
greater number of error types and the possibility of soft hypotheses.
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Theorem 3 Let X and Y be arbitrary sets and
⋃M

j=1Ej be a disjoint partition of Y2. Let D ∈
M(X × Y) be a data-generating distribution and H ⊆ M(Y)X be a hypothesis class. For any
prior P ∈M(H), δ ∈ (0, 1], jointly convex function d : △2

M → R, sample size m and β ∈ (0,∞),
with probability at least 1− δ over the random draw S ∼ Dm, we have that simultaneously for all
posteriors Q ∈M(H)

d
(
RS(Q),RD(Q)

)
≤ 1

β

[
KL(Q∥P ) + ln

Id(m,β)

δ

]
, (1)

where Id(m,β) := supr∈△M

[∑
k∈Sm,M

Mult(k;m,M, r) exp
(
βd
(
k
m , r

))]
. Further, the bounds

are unchanged if one restricts to an ordinary hypothesis class, namely ifH ⊆ YX .

One can derive multiple bounds from this theorem, all of which then hold simultaneously with
probability at least 1 − δ. For example, one can derive bounds on the individual error probabilities
Rj

D(Q) or combinations thereof. It is this flexibility that allows Theorem 3 to provide far richer
information on the performance of the posterior Q on unseen data. For a more in depth discussion of
how such bounds can be derived, including a recipe for transforming the bound into a differentiable
training objective, see Section 4 and Appendix A.

To see that Theorem 3 is a generalisation of Theorem 1, note that we can recover it by setting
Y = {−1, 1}, M = 2, E1 = {(−y, y) : y ∈ Y} and E2 = {(y, y) : y ∈ Y}. Then, for
any convex function d : [0, 1]2 → R, apply Theorem 3 with the convex function d′ : △2

M → R
defined by d′((u1, u2), (v1, v2)) := d(u1, v1) so that Theorem 3 bounds d′

(
RS(Q),RD(Q)

)
=

d
(
R1

S(Q), R1
D(Q)

)
which equals d(RS(Q), RD(Q)) in the notation of Theorem 1. Further,

∑
k∈Sm,2

Mult(k;m, 2, r) exp
(
βd′
(
k
m , r

) )
=

m∑
k=0

Bin(k;m, r1) exp
(
βd
(
k
m , r1

) )
,

so that the supremum over r1 ∈ [0, 1] of the right hand side equals the supremum over r ∈ △2 of
the left hand side, which, when substituted into (1), yields the bound given in Theorem 1.

Our proof of Theorem 3 follows the lines of the proof of Theorem 1 in Bégin et al. (2016),
making use of the change of measure inequality Lemma 4. However, a complication arises from the
use of soft classifiers h ∈M(Y)X . A similar problem is dealt with in Maurer (2004) when proving
Corollary 2 by means of a Lemma permitting the replacement of [0, 1]-valued random variables by
corresponding {0, 1}-valued random variables with the same mean. We use a generalisation of this,
stated as Lemma 5 (Lemma 3 in Maurer, 2004 corresponds to the case M = 2), the proof of which
is not insightful for our purposes and thus deferred to Appendix B.1. An immediate consequence of
Lemma 5 is Corollary 6, which is a generalisation of the first half of Theorem 1 in Maurer (2004).
While we only use it implicitly in the remainder of the paper, we state it as it may be of broader
interest.

The consequence of Lemma 5 is that the worst case (in terms of bounding d(RS(Q),RD(Q)))
occurs when the R{(x,y)}(h) are one-hot vectors for all (x, y) ∈ S and h ∈ H, namely when
H ⊆ M(Y)X only contains hypotheses that, when labelling S, put all their mass on elements
ŷ ∈ Y that incur the same error type2. In particular, this is the case for hypotheses that put all their

2. More precisely, when ∀h ∈ H ∀(x, y) ∈ S ∃j ∈ [M ] such that h(x)[{ŷ ∈ Y : (ŷ, y) ∈ Ej)}] = 1.
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mass on a single element of Y , equivalent to the simpler case H ⊆ YX as discussed in Section 2.
Thus, Lemma 5 shows that the bound given in Theorem 3 cannot be made tighter only by restricting
to such hypotheses.

Lemma 4 (Change of measure, Csiszár, 1975, Donsker and Varadhan, 1975) For any set H, any
P,Q ∈M(H) and any measurable function ϕ : H → R,

E
h∼Q

ϕ(h) ≤ KL(Q∥P ) + ln

(
E

h∼P
exp(ϕ(h))

)
.

Lemma 5 (Generalisation of Lemma 3 in Maurer, 2004) Let X1, . . . ,Xm be i.i.d △M -valued
random vectors with mean µ and suppose that f : △m

M → R is convex. If X ′
1, . . . ,X

′
m are i.i.d.

Mult(1,M,µ) random vectors, then

E[f(X1, . . . ,Xm)] ≤ E[f(X ′
1, . . . ,X

′
m)].

Corollary 6 (Generalisation of Theorem 1 in Maurer, 2004) Let X1, . . . ,Xm be i.i.d△M -valued
random vectors with mean µ and X ′

1, . . . ,X
′
m be i.i.d. Mult(1,M,µ). Then

E
[
exp

(
mkl(X̄∥µ

)]
≤ E

[
exp

(
mkl(X̄ ′∥µ

)]
,

where X̄ := 1
m

∑m
i=1Xi and X̄ ′ := 1

m

∑m
i=1X

′
i.

Proof (of Corollary 6) This is immediate from Lemma 5 since the average is linear, the kl-divergence
is convex and the exponential is non-decreasing and convex.

Proof (of Theorem 3) The case H ⊆ YX follows directly from the more general case by taking
H′ := {h′ ∈M(Y)X : ∃h ∈ H such that ∀x ∈ X h′(x) = δh(x)}, where δh(x) ∈M(Y) denotes a
point mass on h(x). For the general case H ⊆ M(Y)X , using Jensen’s inequality with the convex
function d(·, ·) and Lemma 4 with ϕ(h) = βd(RS(h),RD(h)), we see that for all Q ∈M(H)

βd
(
RS(Q),RD(Q)

)
= βd

(
E

h∼Q
RS(h), E

h∼Q
RD(h)

)
≤ E

h∼Q
βd
(
RS(h),RD(h)

)
≤ KL(Q∥P ) + ln

(
E

h∼P
exp

(
βd
(
RS(h),RD(h)

)))
= KL(Q∥P ) + ln(ZP (S)),

where ZP (S) := Eh∼P exp
(
βd(RS(h),RD(h))

)
. Note that ZP (S) is a non-negative random

variable, so that by Markov’s inequality P
S∼Dm

(
ZP (S) ≤ ES′∼DmZP (S′)

δ

)
≥ 1 − δ. Thus, since

ln(·) is strictly increasing, with probability at least 1−δ over S ∼ Dm, we have that simultaneously
for all Q ∈M(H)

βd
(
RS(Q),RD(Q)

)
≤ KL(Q∥P ) + ln

E
S′∼Dm

ZP (S
′)

δ
. (2)
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To bound ES′∼DmZP (S
′), let Xi := R{(xi,yi)′}(h) ∈ △M for i ∈ [m], where (xi, yi)

′ is the
i’th element of the dummy sample S′. Noting that each Xi has mean RD(h), define the random
vectors X ′

i ∼ Mult(1,M,RD(h)) and Y :=
∑m

i=1X
′
i ∼ Mult(m,M,RD(h)). Finally let f :

△m
M → R be defined by f(x1, . . . , xm) := exp

(
βd
(
1
m

∑m
i=1 xi,RD(h)

))
, which is convex since

the average is linear, d is convex and the exponential is non-decreasing and convex. Then, by
swapping expectations (which is permitted by Fubini’s theorem since the argument is non-negative)
and applying Lemma 5, we have that ES′∼DmZP (S

′) can be written as

ES′∼DmZP (S
′) = E

S′∼Dm
E

h∼P
exp

(
βd
(
RS′(h),RD(h)

))
= E

h∼P
E

S′∼Dm
exp

(
βd
(
RS′(h),RD(h)

))
= E

h∼P
E

X1,...,Xm

exp

(
βd

(
1

m

m∑
i=1

Xi,RD(h)

))

≤ E
h∼P

E
X′

1,...,X
′
m

exp

(
βd

(
1

m

m∑
i=1

X ′
i,RD(h)

))

= E
h∼P

E
Y
exp

(
βd

(
1

m
Y ,RD(h)

))
= E

h∼P

∑
k∈Sm,M

Mult
(
k;m,M,RD(h)

)
exp

(
βd
(
k
m ,RD(h)

))

≤ sup
r∈△M

 ∑
k∈Sm,M

Mult
(
k;m,M, r

)
exp

(
βd
(
k
m , r

)) .

Which is the definition of Id(m,β). Inequality (1) then follows by substituting this bound on
ES′∼DmZP (S

′) into (2) and dividing by β.

3.2. Statement and proof of the generalised corollary

We now apply our generalised theorem with β = m and d(q,p) = kl(q∥p). This results in the
following corollary, analogous to Corollary 2 (although the multi-dimensionality makes the proof
much more involved, requiring multiple lemmas and extra arguments to make the main idea go
through). We give two forms of the bound since, while the second is looser, the first is not practical
to calculate except when m is very small.

Corollary 7 Let X and Y be arbitrary sets and
⋃M

j=1Ej be a disjoint partition of Y2. Let D ∈
M(X × Y) be a data-generating distribution and H ⊆ M(Y)X be a hypothesis class. For any
prior P ∈ M(H), δ ∈ (0, 1] and sample size m, with probability at least 1 − δ over the random
draw S ∼ Dm, we have that simultaneously for all posteriors Q ∈M(H)

kl
(
RS(Q)∥RD(Q)

)
≤ 1

m

KL(Q∥P ) + ln

 m!

δmm

∑
k∈Sm,M

M∏
j=1

k
kj
j

kj !

 (3)

8
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≤ 1

m

[
KL(Q∥P ) + ln

(
1

δ

√
πe1/12m

(m
2

)M−1
2

M−1∑
z=0

(
M

z

)
1

(πm)z/2 Γ
(
M−z
2

))] , (4)

where the second inequality holds provided m ≥ M . Further, the bounds are unchanged if one
restricts to an ordinary hypothesis class, namely ifH ⊆ YX .

While analogous corollaries can be obtained from Theorem 3 by other choices of convex func-
tion d, the kl-divergence leads to convenient cancellations that remove the dependence of Ikl(m,β, r)
on r, making Ikl(m,β) := supr∈△M

Ikl(m,β, r) simple to evaluate. Nevertheless, if one de-
sires a bound on, say, the total variation TV(RS(Q),RD(Q)) := 1

2∥RS(Q) − RD(Q)∥1, one

may apply to Corollary 7 Pinsker’s inequality TV(RS(Q),RD(Q)) ≤
√

1
2kl(RS(Q)∥RD(Q)), or

TV(RS(Q),RD(Q)) ≤
√

1− e−kl(RS(Q)∥RD(Q)) (due to Bretagnolle and Huber, 1978, Lemma
2.1; see also Tsybakov, 2009, Eq. 2.25). Further, if one desires a bound on the Hellinger distance
H(RS(Q),RD(Q)) := 1√

2
∥
√
RS(Q)−

√
RD(Q)∥2, one can combine one of the previous inequal-

ities with H(RS(Q),RD(Q)) ≤
√

TV(RS(Q),RD(Q)) (due to Kraft, 1955; see also Steerneman,
1983 and van Erven and Harremoës, 2014).

To prove Corollary 7 we require Lemma 8, the proof of which is deferred to Appendix B.2.

Lemma 8 For integers M ≥ 1 and m ≥M ,∑
k∈S>0

m,M

1∏M
j=1

√
kj
≤ π

M
2 m

M−2
2

Γ(M2 )
.

Proof (of Corollary 7) Applying Theorem 3 with d(q,p) = kl(q∥p) (defined in Section 2) and
β = m gives that with probability at least 1 − δ over S ∼ Dm, simultaneously for all posteriors
Q ∈M(H),

kl
(
RS(Q)∥RD(Q)

)
≤ 1

m

[
KL(Q∥P ) + ln

Ikl(m,m)

δ

]
,

where Ikl(m,m) := supr∈△M

[∑
k∈Sm,M

Mult(k;m,M, r) exp
(
mkl

(
k
m , r

))]
. Thus, to estab-

lish the first inequality of the corollary, it suffices to show that

Ikl(m,m) ≤ m!

mm

∑
k∈Sm,M

M∏
j=1

k
kj
j

kj !
. (5)

To see this, for each fixed r = (r1, . . . , rM ) ∈ △M let Jr = {j ∈ [M ] : rj = 0}. Then
Mult(k;m,M, r) = 0 for any k ∈ Sm,M such that kj ̸= 0 for some j ∈ Jr. For the other
k ∈ Sm,M , namely those such that kj = 0 for all j ∈ Jr, the probability term can be written as

Mult(k;m,M, r) =
m!∏M
j=1 kj !

M∏
j=1

r
kj
j =

m!∏
j ̸∈Jr kj !

∏
j ̸∈Jr

r
kj
j ,

and (recalling the convention that 0 log 0
0 = 0) the term exp

(
mkl

(
k
m , r

))
can be written as

exp

m
M∑
j=1

kj
m ln

kj
m

rj

 = exp

∑
j ̸∈Jr

kj ln
kj
mrj

 =
∏
j ̸∈Jr

(
kj
mrj

)kj

=
1

mm

∏
j ̸∈Jr

(
kj
rj

)kj

,

9



where the last equality is obtained by recalling that the kj sum to m. Substituting these two ex-
pressions into the definition of Ikl(m,m) and only summing over those k ∈ Sm,M with non-zero
probability, we obtain∑
k∈Sm,M

Mult(k;m,M, r) exp
(
mkl

(
k
m , r

))
=

∑
k∈Sm,M :

∀j∈Jr kj=0

Mult(k;m,M, r) exp
(
mkl

(
k
m , r

))

=
∑

k∈Sm,M :

∀j∈Jr kj=0

m!∏
j ̸∈Jr kj !

∏
j ̸∈Jr

r
kj
j

1

mm

∏
j ̸∈Jr

(
kj
rj

)kj

=
m!

mm

∑
k∈Sm,M :

∀j∈Jr kj=0

∏
j ̸∈Jr

k
kj
j

kj !

=
m!

mm

∑
k∈Sm,M :

∀j∈Jr kj=0

M∏
j=1

k
kj
j

kj !
(because 00

0! = 1)

≤ m!

mm

∑
k∈Sm,M

M∏
j=1

k
kj
j

kj !
.

Since this is independent of r, it also holds after taking the supremum over r ∈ △M of the left hand
side. We have thus established (5) and hence (3).

Defining f :
⋃∞

M=2 Sm,M → R by f(k) =
∏|k|

j=1

k
kj
j

kj !
, we see that to establish inequality (4) it

suffices to show that

m!

mm

∑
k∈Sm,M

f(k) ≤
√
πe1/12m

(m
2

)M−1
2

M−1∑
z=0

(
M

z

)
1

(πm)z/2 Γ
(
M−z
2

) . (6)

We show this by upper bounding each f(k) individually using Stirling’s formula
√
2πn

(n
e

)n
< n! <

√
2πn

(n
e

)n
e

1
12n , ∀n ≥ 1.

Since we cannot use this to upper bound 1/kj ! when kj = 0, we partition the sum above according
to the number of coordinates of k at which kj = 0. Let z index the number of such coordinates.
Since f is symmetric under permutations of its arguments, we can write the sum above as

∑
k∈Sm,M

f(k) =

M−1∑
z=0

(
M

z

) ∑
k∈S>0

m,M−z

f(k). (7)

For k ∈ S>0
m,M we can now use Stirling’s formula to bound f(k) as follows

f(k) ≤
M∏
j=1

k
kj
j√

2πkj

(
kj
e

)kj =

M∏
j=1

ekj√
2πkj

=
em

(2π)M/2

M∏
j=1

1√
kj

.
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An application of Lemma 8 now gives

∑
k∈S>0

m,M−z

f(k) ≤ em

(2π)M/2

∑
k∈S>0

m,M−z

M∏
j=1

1√
kj
≤ em

(2π)
M
2

π
M−z

2 m
M−z−2

2

Γ
(
M−z
2

) =
emm

M−2
2

2
M
2 (πm)z/2 Γ

(
M−z
2

) .
Substituting this into equation (7) and bounding m! using Stirling’s formula, we have

m!

mm

∑
k∈Sm,M

f(k) ≤
√
2πme1/12m

em

M−1∑
z=0

(
M

z

)
emm

M−2
2

2M/2 (πm)z/2 Γ
(
M−z
2

)
=
√
πe1/12m

(m
2

)M−1
2

M−1∑
z=0

(
M

z

)
1

(πm)z/2 Γ
(
M−z
2

) .
which is (6), establishing (4), completing the proof.

4. Implied Bounds and Construction of a Differentiable Training Objective

As already discussed, a multitude of bounds can be derived from Theorem 3 and Corollary 7, all of
which then hold simultaneously with high probability. For example, suppose after a use of Corollary
7 we have a bound of the form kl(RS(Q)||RD(Q)) ≤ B. The following proposition then yields the
bounds Lj ≤ Rj

D(Q) ≤ Uj , where Lj := inf{p ∈ [0, 1] : kl(Rj
S(Q)∥p) ≤ B} and Uj := sup{p ∈

[0, 1] : kl(Rj
S(Q)∥p) ≤ B}. Moreover, since in the worst case we have kl(RS(Q)||RD(Q)) = B,

the proposition shows that the lower and upper bounds Lj and Uj are the tightest possible, since if
Rj

D(Q) ̸∈ [Lj , Uj ] then kl(Rj
S(Q)∥Rj

D(Q)) > B implying kl(RS(Q)||RD(Q)) > B. For a more
precise version of this argument and a proof of Proposition 9, see Appendix B.3.

Proposition 9 Let q,p ∈ △M . Then kl(qj∥pj) ≤ kl(q∥p) for all j ∈ [M ], with equality when
pi =

1−pj
1−qj

qi. for all i ̸= j.

As a second much more interesting example, suppose we can quantify how bad an error of each
type is by means of a loss vector ℓ ∈ [0,∞)M , where ℓj is the loss we attribute to an error of type Ej .
We may then be interested in bounding the total risk RT

D(Q) ∈ [0,∞) of Q which, recall is defined
by RT

D(Q) :=
∑M

j=1 ℓjR
j
D(Q). Indeed, given a bound of the form kl(RS(Q)||RD(Q)) ≤ B, we

can derive

RT
D(Q) ≤ sup


M∑
j=1

ℓjrj : r ∈ △M , kl(RS(Q)||r) ≤ B

 . (8)

This motivates the following definition of kl−1
ℓ (u|c). To see that this is indeed well-defined (at least

when u ∈ △>0
M ), see the discussion at the beginning of Appendix B.4.

Definition 10 For u ∈ △M , c ∈ [0,∞) and ℓ ∈ [0,∞)M , define kl−1
ℓ (u|c) to be an element

v ∈ △M solving the constrained optimisation problem

Maximise: fℓ(v) :=
M∑
j=1

ℓjvj , (9)

11



Subject to: kl(u∥v) ≤ c. (10)

Can we calculate kl−1
ℓ (u|c) and hence fℓ(kl−1

ℓ (u|c)) in order to evaluate the bound on the total
risk given by (8)? Additionally, if we wish to use the bound on the total risk as a training objective,
can we calculate the partial derivatives of f∗

ℓ (u, c) := fℓ(kl−1
ℓ (u|c)) with respect to the uj and c

so that we can use gradient descent? Our Proposition 11 answers both of these questions in the
affirmative, at least in the sense that it provides a speedy method for approximating these quantities
to arbitrary precision provided uj > 0 for all j ∈ [M ] and c > 0. Indeed, the only approximation
step required is that of approximating the unique root of a continuous and strictly increasing scalar
function. Thus, provided the uj themselves are differentiable, Corollary 7 combined with Proposi-
tion 11 yields a tractable and fully differentiable objective that can be used for training. More details
on how this can be done, including an algorithm written in pseudocode, can be found in Appendix
A. While somewhat analogous to the technique used in Clerico et al. (2021) to obtain derivatives
of the one-dimensional kl-inverse, our proposition directly yields derivatives on the total risk by
(implicitly) employing the envelope theorem (see for example Takayama and Akira, 1985). Since
the proof of Proposition 11 is rather long and technical, we defer it to Appendix B.4.

Proposition 11 Fix ℓ ∈ [0,∞)M such that not all ℓj are equal, and define fℓ : △M → [0,∞) by
fℓ(v) :=

∑M
j=1 ℓjvj . For all ũ = (u, c) ∈ △>0

M ×(0,∞), define v∗(ũ) := kl−1
ℓ (u|c) ∈ △M and let

µ∗(ũ) ∈ (−∞,−maxj ℓj) be the unique solution to c = ϕℓ(µ), where ϕℓ : (−∞,−maxj ℓj)→ R
is the continuous and strictly increasing function

ϕℓ(µ) := log

− M∑
j=1

uj
µ+ ℓj

+
M∑
j=1

uj log
(
− (µ+ ℓj)

)
.

Then v∗(ũ) = kl−1
ℓ (u|c) is given by

v∗(ũ)j =
λ∗(ũ)uj

µ∗(ũ) + ℓj
for j ∈ [M ], where λ∗(ũ) =

 M∑
j=1

uj
µ∗(ũ) + ℓj

−1

.

Further, defining f∗
ℓ : △>0

M × (0,∞)→ [0,∞) by f∗
ℓ (ũ) := fℓ(v

∗(ũ)), we have that

∂f∗
ℓ

∂uj
(ũ) = λ∗(ũ)

(
1 + log

uj
v∗(ũ)j

)
and

∂f∗
ℓ

∂c
(ũ) = −λ∗(ũ).

5. Perspectives

We have established a novel type of PAC-Bayes generalisation bound by abstracting to a general
setting of discretised error types. We intend to carry on adapting this to different learning problems,
including structured output prediction (as investigated by Cantelobre et al., 2020, in the PAC-Bayes
setting), multi-task learning and the learning-to-learn framework (among many references, see e.g.
Maurer et al., 2016). Besides these exciting theoretical developments which we will address in
follow-up works, we aim to put our bounds to the test, in particular adapting and applying the
algorithm given in Appendix A, obtaining numerical results for real-world learning problems.
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Théophile Cantelobre, Benjamin Guedj, Marı́a Pérez-Ortiz, and John Shawe-Taylor. A PAC-
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Appendix A. Recipe for implementing and deploying our strategy

We here outline more explicitly how Corollary 7 and Proposition 11 may be used to formulate a
fully differentiable objective by which a model may be trained.

First, if one wishes to make hard labels, namely H ⊆ YX , it will first be necessary to use a
surrogate class of soft hypothesesH′ ⊆M(Y)X during training, before reverting to hard labels for
example by taking the mean label or the one with highest probability. Using soft hypotheses during
training is necessary to ensure that the empirical j-risks Rj

S(Q) are differentiable in the model
parameters. Since how one chooses to do this will depend on the specific use case, we restrict our
attention here to the case of soft hypotheses. Specifically, we consider a class of soft hypotheses
H = {hθ : θ ∈ RN} ⊆ M(Y)X parameterised by the weights θ ∈ RN of some neural network
of a given architecture with N parameters in such a way that the Rj

S(hθ) are differentiable in θ.
A concrete example would be multiclass classification using a fully connected neural network with
output being softmax probabilities on the classes so that the Rj

S(hθ) are differentiable.
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Second, it is necessary to restrict the prior and posterior P,Q ∈M(H) to a parameterised subset
ofM(H) in which KL(Q∥P ) has a closed form which is differentiable in the parameterisation. A
simple choice for our case of a neural network with N parameters is P,Q ∈ {N (w, diag(s)) : w ∈
RN , s ∈ RN

>0}. For prior a Pv,r = N (v, diag(r)) and posterior Qw,s = N (w, diag(s)) we have
the closed form

KL(Qw,s∥Pv,r) =
1

2

[
N∑

n=1

(
sn
rn

+
(wn − vn)

2

rn
+ ln

rn
sn

)
−N

]
,

which is indeed differentiable in v, r,w and s. While Qw,s and Pv,r are technically distributions
on RD rather thanH, the KL-divergence between the distributions they induce onH will be at most
as large as the expression above. Thus, substituting the expression above into the bounds we prove
in Section 3 can only increase the value of the bounds, meaning the enlarged bounds certainly still
hold with probability at least 1− δ.

Third, in all but the simplest cases Rj
S(Qw,s) will not have a closed form, much less one that

is differentiable in w and s. A common solution to this is to use the so-called pathwise gradient
estimator. In our case, this corresponds to drawing ϵ ∼ N (0, I), where I is the N × N identity
matrix, and estimating

∇w,sR
j
S(Qw,s) = ∇w,s

[
Eϵ′∼N (0,I)R

j
S(hw+ϵ′⊙

√
s)
]
≈ ∇w,sR

j
S(hw+ϵ⊙

√
s),

where hw denotes the function expressed by the neural network with parameters w. For a proof that
this is an unbiased estimator, and for other methods for estimating the gradients of expectations, see
the survey Mohamed et al. (2020).

Fourth, one must choose the prior. Designing priors which are optimal in some sense (i.e.,
minimising the Kullback-Leibler term in the right-hand side of generalisation bounds) has been at
the core of an active line of work in the PAC-Bayesian literature. For the sake of simplicity, and
since it is out of the scope of our contributions, we assume here that the prior is given beforehand,
although we stress that practitioners should pay great attention to its tuning. For our purposes, it
suffices to say that if one is using a data-dependent prior then it is necessary to partition the sample
into S = SPrior ∪ SBound, where SPrior is used to train the prior and SBound is used to evaluate the
bound. Since our bound holds uniformly over posteriors Q ∈ M(H), the entire sample S is free
to be used to train the posterior Q. For a more in-depth discussion on the choice of prior, we
refer to the following body of work: Ambroladze et al. (2006), Lever et al. (2010, 2013), Parrado-
Hernández et al. (2012), Dziugaite and Roy (2017, 2018), Rivasplata et al. (2018), Letarte et al.
(2019), Perez-Ortiz et al. (2021a), Dziugaite et al. (2021), Biggs and Guedj (2021, 2022a,b).

Finally, given a confidence level δ ∈ (0, 1], one may use Algorithm 1 to obtain a posterior
Qw,s with minimal upper bound on the total risk. Note we take the pointwise logarithm of the
variances r and s to obtain unbounded parameters on which to perform stochastic gradient descent
or some other minimisation algorithm. We use ⊕ to denote vector concatenation. The algorithm
can be straightforwardly adapted to permit mini-batches by, for each epoch, sequentially repeating
the steps with S equal to each mini-batch.
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Algorithm 1: Calculating a posterior with minimal bound on the total risk.
Input:
X ,Y /* Arbitrary input and output spaces */⋃M

j=1Ej = Y2 /* A finite partition into error types */

ℓ ∈ [0,∞)M /* A vector of losses, not all equal */
S = SPrior ∪ SBound ∈ (X × Y)m /* A partitioned i.i.d. sample */
N ∈ N /* The number of model parameters */
Pv,r, v(SPrior) ∈ RN , r(SPrior) ∈ RN

≥0 /* A (data-dependent) prior */

Qw0,s0 , w0 ∈ RN , s0 ∈ RN
≥0 /* An initial posterior */

δ ∈ (0, 1] /* A confidence level */
λ > 0 /* A learning rate */
T /* The number of epochs to train for */

Output:
Qw,s, w ∈ RN , s ∈ RN

≥0 /* A trained posterior */

Procedure:
ζ0 ← log s0 /* Transform to unbounded scale parameters */
p← w0 ⊕ ζ0 /* Collect mean and scale parameters */
for t← 1 to T do

Draw ϵ ∼ N (0, I)
u← RS

(
h
w+ϵ⊙

√
exp(ζ)

)
B ← 1

m

[
KL
(
Qw,exp(ζ)

∥∥Pv,r

)
+ ln

(
1
δ

√
πe1/12m

(
m
2

)M−1
2
∑M−1

z=0

(
M
z

)
1

(πm)z/2Γ(M−z
2 )

)]
ũ← (u1, . . . , uM , B)
G← 02N×(M+1) /* Initialise gradient matrix */

F ← 0M+1 /* Initialise gradient vector */
for j ← 1 to M + 1 do

Fj ←
∂f∗

ℓ
∂ũj

(ũ) /* Gradients of total loss from Prop 11 */

for i← 1 to 2N do
Gi,j ← ∂ũj

∂pi
(p) /* Gradients of empirical risks and bound */

end
end
H ← GF /* Gradients of total loss w.r.t. parameters */
p← p− λH /* Gradient step */

end
w = (p1, . . . , pN )
s = (exp(pN+1), . . . , exp(p2N ))
return w, s
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Appendix B. Proofs

B.1. Proof of Lemma 5

Let EM := {e1, . . . , eM}, namely the set of M -dimensional basis vectors. We will denote a typical
element of Em

M by η(m) = (η1, . . . ,ηm). For any x(m) = (x1, . . . ,xm) ∈ △m
M , a straightforward

induction on m yields ∑
η(m)∈Em

M

(
m∏
i=1

xi · ηi

)
= 1. (11)

To see this, for m = 1 we have E1
M = {(e1, ), . . . , (eM , )}, where we have been pedantic in using

1-tuples to maintain consistency with larger values of m. Thus, for any x(1) = (x1, ) ∈ △1
M , the

left hand side of equation (11) can be written as
M∑
j=1

x1 · ej =
M∑
j=1

(x1)j = 1.

Now suppose that equation (11) holds for any x(m) ∈ △m
M and let x(m+1) = (x1, . . . ,xm+1) ∈

△m+1
M . Then the left hand side of equation (11) can be written as

∑
η(m+1)∈Em+1

M

(
m+1∏
i=1

xi · ηi

)
=

∑
η(m)∈Em

M

M∑
j=1

(
m∏
i=1

xi · ηi

)
(xm+1 · ej)

=
∑

η(m)∈Em
M

(
m∏
i=1

xi · ηi

)
M∑
j=1

(xm+1 · ej) = 1.

We now show that any x(m) = (x1, . . . ,xm) ∈ △m
M can be written as a convex combination of

the elements of Em
M in the following way

x(m) =
∑

η(m)∈Em
M

(
m∏
i=1

xi · ηi

)
η(m). (12)

We have already shown that the weights sum to one, and they are clearly elements of [0, 1], so the
right hand side of equation (12) is indeed a convex combination of the elements of Em

M . We now
show that equation (12) holds, again by induction.

For m = 1 and any x(1) = (x1, ) ∈ △1
M , the right hand side of equation (12) can be written as

M∑
j=1

(x1 · ej)(ej , ) = (x1, ) = x.

For the inductive hypothesis, suppose equation (12) holds for some arbitrary m ≥ 1, and denote
elements of Em+1

M by η(m) ⊕ (e, ) for some η(m) ∈ Em
M and e ∈ EM , where ⊕ denotes vector

concatenation. Then for any x(m+1) = x(m) ⊕ (xm+1, ) = (x1, . . . ,xm+1) ∈ △m+1
M , the right

hand side of equation (12) can be written as∑
η(m+1)∈Em+1

M

(
m+1∏
i=1

xi · ηi

)
η(m+1) =

∑
η(m)∈Em

M

M∑
j=1

(
m∏
i=1

xi · ηi

)
(xm+1 · ej)η(m) ⊕ (ej , )
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=
∑

η(m)∈Em
M

M∑
j=1

(
m∏
i=1

xi · ηi

)
(xm+1 · ej)η(m)

⊕
∑

η(m)∈Em
M

M∑
j=1

(
m∏
i=1

xi · ηi

)
(xm+1 · ej)(ej , )

=
M∑
j=1

(xm+1 · ej)
∑

η(m)∈Em
M

(
m∏
i=1

xi · ηi

)
η(m)

⊕
∑

η(m)∈Em
M

(
m∏
i=1

xi · ηi

)
M∑
j=1

(xm+1 · ej)(ej , )

= 1 · x(m) ⊕ 1 · (xm+1, ) = x(m+1),

where in the penultimate inequality we have used the inductive hypothesis and (twice) the result of
the previous induction.

We can now prove the statement of the Lemma. Applying Jensen’s inequality to equation (12)
with the convex function f , we have that

f(x1, . . . ,xm) = f

 ∑
η(m)∈Em

M

(
m∏
i=1

xi · ηi

)
η(m)


≤

∑
η(m)∈Em

M

(
m∏
i=1

xi · ηi

)
f
(
η(m)

)
.

Let µ = E[X1] denote the mean of the i.i.d. random vectors Xi. Then the above inequality implies

E[f(X1, . . . ,Xm)] ≤
∑

η(m)∈Em
M

(
m∏
i=1

µ · ηi

)
f
(
η(m)

)

=
∑

η(m)∈Em
M

(
m∏
i=1

P(X ′
i = ηi)

)
f
(
η(m)

)
= E[f(X ′

1, . . . ,X
′
m)].

B.2. Proof of Lemma 8

The proof of Lemma 8 itself requires two technical helping lemmas which we now state and prove.

Lemma 12 For any integers n ≥ 2 and p ≥ −1,

n−1∑
k=1

(n− k)p/2√
k

≤ n
p+1
2

∫ 1

0

(1− x)p/2√
x

dx.
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Proof The case of p = −1, namely

n−1∑
k=1

1√
k(n− k)

≤
∫ 1

0

1√
x(1− x)

dx,

has already been demonstrated in Maurer (2004). For p > −1, let

fp(x) :=
(1− x)p/2√

x
.

We will show that each fp(·) is monotonically decreasing on (0, 1). Indeed,

dfp
dx

(x) = −(1− x)
p
2
−1(px+ 1− x)

2x3/2
≤ −(1− x)p/2

2x3/2
< 0,

where for the inequalities we have used the fact that p > −1 and x ∈ (0, 1). We therefore see that

n−1∑
k=1

(n− k)p/2√
k

=
n−1∑
k=1

np/2(1− k
n)

p/2

√
n
√

k
n

= n
p+1
2

n−1∑
k=1

1

n

(1− k
n)

p/2√
k
n

= n
p+1
2

n−1∑
k=1

1

n
fp

(
k

n

)

≤ n
p+1
2

n−1∑
k=1

∫ k
n

k−1
n

fp(x)dx

= n
p+1
2

∫ 1− 1
n

0
fp(x)dx

≤ n
p+1
2

∫ 1

0
fp(x)dx.

Intuitively, the proof of the above lemma works by bounding the integral below by a Riemann
sum. In the following lemma we actually calculate this integral, yielding a more explicit bound on
the sum in Lemma 12. We found it is easier to calculate a slightly more general integral, where the
1 in the limit and the integrand is replaced by a positive constant a.

Lemma 13 For any real number a > 0 and integer n ≥ −1,∫ a

0

(a− x)n/2√
x

dx =
√
π
Γ(n+2

2 )

Γ(n+3
2 )

a
n+1
2 .
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Proof Define

In(a) :=
∫ a

0

(a− x)n/2√
x

dx and fn(a) :=
√
π
Γ(n+2

2 )

Γ(n+3
2 )

a
n+1
2 .

We proceed by induction, increasing n by 2 each time. This means we need two base cases. First,
for n = −1, we have

I−1(a) =

∫ a

0

1√
x(a− x)

dx =

[
2 arcsin

√
x

a

]a
0

= π = f−1(a),

since Γ(12) =
√
π and Γ(1) = 1. Second, for n = 0,

I0(a) =
∫ a

0

1√
x
dx =

[
2
√
x
]a
0
= 2
√
a = f0(a),

since Γ(32) =
√
π
2 . Now, by the Leibniz integral rule, we have

d

da
In+2(a) =

∫ a

0

∂

∂a

(a− x)
n+2
2

√
x

dx =
n+ 2

2

∫ a

0

(a− x)
n
2

√
x

dx =
n+ 2

2
In(a).

Thus

In+2(a) =
n+ 2

2

[∫ a

0
In(t)dt+ In(0)

]
=

n+ 2

2

∫ a

0
In(t)dt,

since In(0) = 0.
Now, for the inductive step, suppose In(a) = fn(a) for some n ≥ −1. Then, using the previous

calculation, we have

In+2(a) =
n+ 2

2

∫ a

0
fn(t)dt

=
n+ 2

2

∫ a

0

√
π
Γ(n+2

2 )

Γ(n+3
2 )

t
n+1
2 dt

=
√
π

n+2
2 Γ(n+2

2 )
n+3
2 Γ(n+3

2 )
a

n+3
2

=
√
π
Γ(n+2

2 + 1)

Γ(n+3
2 + 1)

a
n+3
2

=
√
π
Γ
(
(n+2)+2

2

)
Γ
(
(n+2)+3

2

)a (n+2)+1
2

= fn+2(a).

This completes the proof.

We are now ready to prove Lemma 8 which, for ease of reference, we restate here. For integers
M ≥ 1 and m ≥M , ∑

k∈S>0
m,M

1∏M
j=1

√
kj
≤ π

M
2 m

M−2
2

Γ(M2 )
.
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Proof (of Lemma 8) We proceed by induction on M . For M = 1, the set Sm,M contains a single
element, namely the one-dimensional vector k = (k1, ) = (m, ). In this case, the left hand side is
1/
√
m while the right hand side is

√
π/(
√
mΓ(1/2)) = 1/

√
m, since Γ(1/2) =

√
π.

Now, as the inductive hypothesis, assume (8) holds for some fixed M ≥ 1 and all m ≥ M .
Then for all m ≥M + 1, we have

∑
k∈S>0

m,M+1

1∏M+1
j=1

√
kj

=
m−M∑
k1=1

1√
k1

∑
k′∈S>0

m−k1,M

1∏M
j=1

√
k′j

≤
m−M∑
k1=1

1√
k1

π
M
2 (m− k1)

M−2
2

Γ(M2 )
(by the inductive hypothesis)

=
π

M
2

Γ(M2 )

m−M∑
k1=1

(m− k1)
M−2

2

√
k1

≤ π
M
2

Γ(M2 )

m−1∑
k1=1

(m− k1)
M−2

2

√
k1

(enlarging the sum domain)

≤ π
M
2

Γ(M2 )
m

M−1
2

∫ 1

0

(1− x)
M−2

2

√
x

dx (by Lemma 12)

=
π

M
2

Γ(M2 )
m

M−1
2
√
π

Γ(M2 )

Γ(M+1
2 )

(by Lemma 13)

=
π

M+1
2 m

M−1
2

Γ(M+1
2 )

,

as required.

B.3. Proof of Proposition 9

Proof The case where qj = 1 or pj = 1 can be dealt with trivially by splitting into the three
following subcases

• qj = pj = 1 =⇒ kl(qj∥pj) = kl(q∥p) = 0

• qj = 1, pj ̸= 1 =⇒ kl(qj∥pj) = kl(q∥p) = − log pj

• qj ̸= 1, pj = 1 =⇒ kl(qj∥pj) = kl(q∥p) =∞.

For qj ̸= 1 and pj ̸= 1 define the distributions q̃, p̃ ∈ △M by q̃j = p̃j = 0 and

q̃i =
qi

1− qj
and p̃i =

pi
1− pj

for i ̸= j. Then ∑
i ̸=j

qi log
qi
pi

=
∑
i ̸=j

(1− qj)q̃i log
(1− qj)q̃i
(1− pj)p̃i
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= (1− qj)
∑
i ̸=j

q̃i log
q̃i
p̃i

+ q̃i log
1− qj
1− pj

= (1− qj)kl(q̃∥p̃) + (1− qj) log
1− qj
1− pj

≥ (1− qj) log
1− qj
1− pj

.

The final inequality holds since kl(q̃∥p̃) ≥ 0. Further, note that we have equality if and only if
q̃ = p̃, which, by their definitions, translates to

pi =
1− pj
1− qj

qi

for all i ̸= j. If we now add qj log
qj
pj

to both sides, we obtain

kl(q∥p) ≥ (1− qj) log
1− qj
1− pj

+ qj log
qj
pj

= kl(qj∥pj),

with the same condition for equality.

The following proposition makes more precise the argument found at the beginning of Section 4
for how Proposition 9 can be used to derive the tightest possible lower and upper bounds on each
Rj

D(Q).

Proposition 14 Suppose that q,p ∈ △M are such that kl(q∥p) ≤ B, where q is known and p is
unknown. Then, in the absence of any further information, the tightest bound that can be obtained
on each pj is

pj ≤ kl−1(qj , B).

Proof Suppose pj > kl−1(qj , B). Then, by definition of kl−1, we have that kl(qj∥pj) > B.
By Proposition 9, this would then imply kl(q∥p) > B, contradicting our assumption. Therefore
pj ≤ kl−1(qj , B). Now, with the information we have, we cannot rule out that

pi =
1− pj
1− qj

qi

for all i ̸= j and thus, by Proposition 9, that kl(qj∥pj) = kl(q∥p). Further, we cannot rule out
that kl(q∥p) = B. Thus, it is possible that kl(qj∥pj) = B, in which case pj = kl−1(qj , B). We
therefore see that kl−1(qj , B) is the tightest possible upper bound on pj , for each j ∈ [M ].

B.4. Proof of Proposition 11

Before proving the proposition, we first argue that kl−1
ℓ (u|c) given by Definition 10 is well-defined.

First, note that Au := {v ∈ △M : kl(u∥v) ≤ c} is compact (boundedness is clear and it is closed
because it is the preimage of the closed set [0, c] under the continuous map v 7→ kl(u∥v)) and so the
continuous function fℓ achieves its supremum on Au. Further, note that Au is a convex subset of
△M (because the map v 7→ kl(u∥v) is convex) and fℓ is linear, so the supremum of fℓ over Au is

24



CONTROLLING CONFUSION VIA GENERALISATION BOUNDS

achieved and is located on the boundary of Au. This means we can replace the inequality constraint
kl(u∥v) ≤ c in Definition 10 with the equality constraint kl(u∥v) = c. Finally, if u ∈ △>0

M then
Au is a strictly convex subset of △M (because the map v 7→ kl(u∥v) is then strictly convex) and
so the supremum of fℓ occurs at a unique point on the boundary of Au. In other words, if u ∈ △>0

M

then kl−1
ℓ (u|c) is defined uniquely.

Proof (of Proposition 11) We start by deriving the implicit expression for v∗(ũ) = kl−1
ℓ (u|c) given

in the proposition by solving a transformed version of the optimisation problem given by (9) and
(10) using the method of Lagrange multipliers. We obtain two solutions to the Lagrangian equations,
which must correspond to the maximum and minimum total risk over the set Au := {v ∈ △M :
kl(u∥v) ≤ c} because, as argued in the main text (see the discussion after Definition 10), Au is
compact and so the linear total risk fℓ(v) attains its maximum and minimum on Au.

By definition of v∗(ũ) = kl−1
ℓ (u|c), we know that kl(v∗(ũ)∥u) ≤ c. Since, by assumption,

uj > 0 for all j, we see that v∗(ũ)j > 0 for all j, otherwise we would have kl(v∗(ũ)∥u) = ∞,
a contradiction. Thus v∗(ũ) ∈ △>0

M and we are permitted to instead optimise over the unbounded
variable t ∈ RM , where tj := ln vj . With this transformation, the constraint v ∈ △M can be
replaced simply by

∑
j e

tj = 1 and the optimisation problem becomes

Maximise: F (t) :=
M∑
j=1

ℓje
tj

Subject to: g(t;u, c) := kl(u∥et)− c = 0,

h(t) :=
M∑
j=1

etj − 1 = 0,

where et ∈ RM is defined by (et)j := etj . Note that F (t) = fℓ(e
t). Following the terminology

of mathematical economics, we call the tj the optimisation variables, and the ũj (namely the uj
and c) the choice variables. The vector ℓ is considered fixed—we neither want to optimise over
it nor differentiate with respect to it—which is why we occasionally suppress it from the notation
henceforth.

For each ũ, let v∗(ũ) and t∗(ũ) be the solutions to the original and transformed optimisation
problems respectively. Since the map v = et is one-to-one, it is clear that since v∗(ũ) exists
uniquely, so does t∗(ũ), and that they are related by v∗(ũ) = et

∗(ũ). We therefore have the identity

fℓ(v
∗(ũ)) ≡ F (t∗(ũ)).

Recalling that f∗
ℓ (ũ) := fℓ(v

∗(ũ)), we see that

∇ũf
∗
ℓ (ũ) ≡ ∇ũF (t∗(ũ)). (13)

the derivatives of fℓ(kl−1
ℓ (u|c)) with respect to u and c are given by∇ũF (t∗(ũ)).

Using the method of Lagrange multipliers, there exist real numbers λ∗ = λ∗(ũ) and µ∗ = µ∗(ũ)
such that (t∗, λ∗, µ∗) is a stationary point (with respect to t, λ and µ) of the Lagrangian function

L(t, λ, µ; ũ) := F (t) + λg(t; ũ) + µh(t).
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Let Ft(·) and ht(·) denote the gradient vectors of F and h respectively, and let gt( · ; ũ) and
gũ(t; · ) denote the gradient vectors of g with respect to t only and ũ only, respectively. Simple
calculation yields

gt(t; ũ) =

(
∂g

∂t1
(t; ũ), . . . ,

∂g

∂tM
(t; ũ)

)
= −u and

gũ(t; ũ) =

(
∂g

∂ũ1
(t; ũ), . . . ,

∂g

∂ũM+1
(t; ũ)

)
=
(
1− t1 + log u1, . . . , 1− tM + log uM ,−1

)
.

(14)

Then, taking the partial derivatives of L with respect to λ, µ and the tj , we have that (t, λ, µ) =
(t∗(ũ), λ∗(ũ), µ∗(ũ)) solves the simultaneous equations

Ft(t) + λgt(t; ũ) + µht(t) = 0, (15)

g(t; ũ) = 0, and

h(t) = 0,

where the last two equations recover the constraints. Substituting the gradients Ft, gt and ht, the
first equation reduces to

ℓ⊙ et − λu+ µet = 0,

which implies that for all j ∈ [M ]

etj =
λuj

µ+ ℓj
. (16)

Substituting this into the constraints g = h = 0 yields the following simultaneous equations in λ
and µ

c = kl(u∥et) =
M∑
j=1

uj log
uj
etj

=
M∑
j=1

uj log
µ+ ℓj

λ
and λ

M∑
j=1

uj
µ+ ℓj

= 1.

Substituting the second into the first and rearranging the second, this is equivalent to solving

c =
M∑
j=1

uj log

(
(µ+ ℓj)

M∑
k=1

uk
µ+ ℓk

)
and λ =

 M∑
j=1

uj
µ+ ℓj

−1

. (17)

It has already been established in the discussion after Definition 10 that fℓ(v) attains its maximum
on the set Au := {v ∈ △M : kl(u∥v) ≤ c}. Therefore F (t) also attains its maximum on RM and
one of the solutions to these simultaneous equations corresponds to this maximum. We first show
that there is a single solution to the first equation in the set (−∞,−maxj ℓj), referred to as µ∗(ũ)
in the proposition. Second, we show that any other solution corresponds to a smaller total risk, so
that µ∗(ũ) corresponds to the maximum total risk and yields v∗(ũ) = kl−1

ℓ (u|c) when µ∗(ũ) and
the associated λ∗(ũ) are substituted into Eq. (16).

For the first step, note that since the etj are probabilities, we see from Eq. (16) that either
µ + ℓj > 0 for all j (in the case that λ > 0), or µ + ℓj < 0 for all j (in the case that λ < 0).
Thus any solutions µ to the first equation must be in (−∞,−maxj ℓj) or (−minj ℓj ,∞). If µ ∈
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(−∞,−maxj ℓj) then the first equation can be written as c = ϕℓ(µ), with ϕℓ as defined in the
statement of the proposition. We now show that ϕℓ is strictly increasing in µ, and that ϕℓ(µ) → 0
as µ → −∞ and ϕℓ(µ) → ∞ as µ → −maxj ℓj , so that c = ϕℓ(µ) does indeed have a single
solution in the set (−∞,−maxj ℓj). Straightforward differentiation and algebra shows that

ϕ′
ℓ(µ) =

M∑
j=1

uj

(µ+ ℓj)
∑M

k=1
uk

µ+ℓk

(
M∑

k′=1

uk′

µ+ ℓk′
− (µ+ ℓj)

M∑
k′=1

uk′

(µ+ ℓk′)2

)

=

(∑M
j=1

uj

µ+ℓj

)2
−
∑M

j=1
uj

(µ+ℓj)2∑M
k=1

uk
µ+ℓk

.

Jensen’s inequality demonstrates that the numerator is strictly negative, where strictness is due to
the assumption that the ℓj are not all equal. Further, since the denominator is strictly negative (since
we are dealing with the case where µ ∈ (−∞,−maxj ℓj)), we see that ϕℓ is strictly increasing for
µ ∈ (−∞,−maxj ℓj).3 Turning to the limits, we first show that ϕℓ(µ)→∞ as µ→ −maxj ℓj .

We now determine the left hand limit. Define J = {j ∈ [M ] : ℓj = maxk ℓk}, noting that
this is a strict subset of [M ] since by assumption the ℓj are not all equal. We then have that for
µ ∈ (−∞,maxj ℓj)

eϕℓ(µ) =

− M∑
j=1

uj
µ+ ℓj

( M∏
k=1

(
− (µ+ ℓk)

)uk

)

=

−∑
j∈J

uj
µ+ ℓj

−
∑
j′ ̸∈J

uj′

µ+ ℓj′

∏
k∈J

(
− (µ+ ℓk)

)uk
∏
k′ ̸∈J

(
− (µ+ ℓk′)

)uk′

≥

−∑
j∈J

uj
µ+ ℓj

∏
k∈J

(
− (µ+ ℓk)

)uk
∏
k′ ̸∈J

(
− (µ+ ℓk′)

)uk′

=

(∑
j∈J uj

)(∏
k′ ̸∈J

(
− (µ+ ℓk′)

)uk′
)

(
− (µ+maxj ℓj)

)1−∑
k∈J uk

.

The first term in the numerator is a positive constant, independent of µ. The second term in the
numerator tends to a finite positive limit as µ ↑ −maxj ℓj . Since [M ] \ J is non-empty, the power
in the denominator is positive and the term in the outer brackets is positive and tends to zero as
µ ↑ −maxj ℓj . Thus eϕℓ(µ) →∞ as µ ↑ −maxj ℓj and, by the continuity of the logarithm, ϕℓ(µ)
as µ ↑ −maxj ℓj .

We now determine limµ→−∞ ϕℓ(µ) by sandwiching ϕ(µ) between two functions that both tend
to zero as µ→ −∞. First, since ℓj ≥ 0 for all j, for µ ∈ (−∞,−maxj ℓj) we have

log

− M∑
j=1

uj
µ+ ℓj

 ≥ log

− M∑
j=1

uj
µ

 = − log(−µ) = −
M∑
j=1

uj log(−µ),

3. Incidentally, this argument also shows that there is at most one solution to the first equation in (17) in the range
(−minj ℓj ,∞). There indeed exists a unique solution, which corresponds to the minimum total risk, but we do not
prove this.
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and so

ϕℓ(µ) ≥ −
M∑
j=1

uj log(−µ)+
M∑
j=1

uj log
(
−(µ+ℓj)

)
=

M∑
j=1

uj log

(
1 +

ℓj
µ

)
→ 0 as µ→ −∞.

Similarly,
M∑
j=1

uj log
(
− (µ+ ℓj)

)
≤

M∑
j=1

uj log(−µ) = log(−µ),

and so

ϕℓ(µ) ≤ log

µ

M∑
j=1

uj
µ+ ℓj

 = log

 M∑
j=1

uj

1 +
ℓj
µ

→ 0 as µ→ −∞.

This completes the first step, namely showing that there does indeed exist a unique solution µ∗(ũ)
in the set (−ℓ1,∞) to the first equation in line (17).

We now turn to the second step, namely showing that this solution corresponds to the maximum
total risk. Given a value of the Lagrange multiplier µ, substitution into Eq. (16) gives

etj (µ) =

uj

µ+ℓj∑M
k=1

uk
µ+ℓk

and therefore total risk

R(µ) =

∑M
j=1

ujℓj
µ+ℓj∑M

k=1
uk

µ+ℓk

.

To prove that the solution µ∗(ũ) ∈ (−∞,−maxj ℓj) is the solution to the first equation in line (17)
that maximises R, it suffices to show that R(µ) →

∑M
j=1 ujℓj as |µ| → ∞ and R′(µ) ≥ 0 for all

µ ∈ (−∞,−maxj ℓj) ∪ (−minj ℓj ,∞), so that

inf
µ∈(−∞,−maxj ℓj)

R(µ) ≥ sup
µ∈(−minj ℓj ,∞)

R(µ).

This suffices as we have already proved that µ∗(ũ) is the only solution in (−∞,−maxj ℓj) to the
first equation in line (17), and that no solutions exists in the set [−maxj ℓj ,−minj ℓj ].

The limit can be easily evaluated by first rewriting R(µ) and then taking the limit as |µ| → ∞
as follows

R(µ) =

∑M
j=1

ujℓj

1+
ℓj
µ∑M

k=1
uk

1+
ℓk
µ

→
∑M

j=1 ujℓj∑M
k=1 uk

=

M∑
j=1

ujℓj .

To show that R′(µ) ≥ 0, let ℓ(j) denote the j’th smallest component of ℓ (breaking ties arbitrar-
ily), so that ℓ(1) ≤ · · · ≤ ℓ(M), and use the quotient rule to see that

R′(µ) ≥ 0 ⇐⇒

(∑M
k=1

uk
µ+ℓk

)(∑M
j=1

−ujℓj
(µ+ℓj)2

)
−
(∑M

j=1
ujℓj
µ+ℓj

)(∑M
k=1

−uk
(µ+ℓk)2

)
(∑M

p=1
up

µ+ℓp

)2 ≥ 0
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⇐⇒
M∑
j=1

M∑
k=1

ujukℓj
(µ+ ℓj)(µ+ ℓk)

(
1

µ+ ℓk
− 1

µ+ ℓj

)
≥ 0

⇐⇒
∑

j,k∈[M ]
k<j

ujukℓ(j)

(µ+ ℓ(j))(µ+ ℓ(k))

(
1

µ+ ℓ(k)
− 1

µ+ ℓ(j)

)

+
∑

j,k∈[M ]
k>j

ujukℓ(j)

(µ+ ℓ(j))(µ+ ℓ(k))

(
1

µ+ ℓ(k)
− 1

µ+ ℓ(j)

)
≥ 0,

where in the final line we have dropped the summands where k = j since they equal zero as the
terms in the bracket cancel. This final inequality holds since the first sum can be bounded below by
the negative of the second sum as follows

∑
j,k∈[M ]
k<j

ujukℓ(j)

(µ+ ℓ(j))(µ+ ℓ(k))

(
1

µ+ ℓ(k)
− 1

µ+ ℓ(j)

)

≥
∑

j,k∈[M ]
k<j

ujukℓ(k)

(µ+ ℓ(j))(µ+ ℓ(k))

(
1

µ+ ℓ(k)
− 1

µ+ ℓ(j)

)
(since ℓ(k) ≤ ℓ(j) for k < j)

=
∑

j,k∈[M ]
k>j

ukujℓ(j)

(µ+ ℓ(k))(µ+ ℓ(j))

(
1

µ+ ℓ(j)
− 1

µ+ ℓ(k)

)
(swapping dummy variables j, k).

We now turn to finding the partial derivatives of F (t∗(ũ)) with respect the ũj , which in turn
will allow us to find the partial derivatives of kl−1

ℓ (u|c). Let ∇ũ denote the gradient operator with
respect to ũ. Then the quantity we are after is∇ũF (t∗(ũ)) ∈ RM+1, the j’th component of which
is (

∇ũF (t∗(ũ))
)
j
=

M+1∑
k=1

∂F

∂tk
(t∗(ũ))

∂t∗k
∂ũj

(ũ) = Ft(t
∗(ũ)) · ∂t

∗

∂ũj
(ũ) ∈ R.

Thus the full gradient vector is

∇ũF (t∗(ũ)) = Ft(t
∗(ũ))∇ũt

∗(ũ), (18)

where∇ũt
∗(ũ) is the M × (M + 1) matrix given by

(
∇ũt

∗(ũ)
)
j,k

=
∂t∗k
∂ũj

(ũ).

Finding an expression for this matrix is difficult. Fortunately we can avoid needing to by using a
trick from mathematical economics referred to as the envelope theorem, as we now show.

First, note that since, for all ũ, the constraints g = h = 0 are satisfied by t∗(ũ), we have the
identities

g(t∗(ũ), ũ) ≡ 0 and h(t∗(ũ)) ≡ 0.
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Differentiating these identities with respect to ũj then yields

gt(t
∗(ũ), ũ) · ∂t

∗

∂ũj
(ũ) + gũj (t

∗(ũ), ũ) ≡ 0 and ht(t
∗(ũ)) · ∂t

∗

∂ũj
(ũ) ≡ 0.

As before, we can write these M + 1 pairs of equations as the following pair of matrix equations

gt(t
∗(ũ), ũ)∇ũt

∗(ũ) + gũ(t
∗(ũ), ũ) ≡ 0 and ht(t

∗(ũ))∇ũt
∗(ũ) ≡ 0.

Multiplying these identities by λ∗(ũ) and µ∗(ũ) respectively, and combining with equation (18),
yields

∇ũF (t∗(ũ)) =
(
Ft(t

∗(ũ)) + λ∗(ũ)gt(t
∗(ũ), ũ) + µ∗(ũ)ht(t

∗(ũ))
)
∇ũt

∗(ũ)

+ λ∗(ũ)gũ(t
∗(ũ), ũ)

= λ∗(ũ)gũ(t
∗(ũ), ũ),

where the final equality comes from noting that the terms in the large bracket vanish due to equation
(15). Recalling the expression for gũ(t; ũ) given by Eq. (14) and that v∗(ũ) = exp(t∗(ũ)) we
obtain

∇ũF (t∗(ũ)) = λ∗(ũ)
(
1− t∗(ũ)1 + log u1, . . . , 1− t∗(ũ)M + log uM ,−1

)
= λ∗(ũ)

(
1 + log

u1
v∗(ũ)1

, . . . , 1 + log
uM

v∗(ũ)M
,−1

)
Finally, recalling Equivalence (13), namely ∇ũf

∗
ℓ (ũ) ≡ ∇ũF (t∗(ũ)), we see that the above ex-

pression gives the derivatives ∂f∗
ℓ

∂uj
(ũ) and ∂f∗

ℓ
∂c (ũ) stated in the proposition, thus completing the

proof.
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