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ABSTRACT

Overparameterised neural networks have demonstrated the remarkable ability
to perfectly fit training samples, while still generalising to unseen test samples.
However, several recent works have revealed that such models’ good average per-
formance does not always translate to good worst-case performance: in particular,
they may perform poorly on subgroups that are under-represented in the training set.
In this paper, we show that in certain settings, overparameterised models’ perfor-
mance on under-represented subgroups may be improved via post-hoc processing.
Specifically, such models’ bias can be restricted to their classification layers, and
manifest as structured prediction shifts for rare subgroups. We detail two post-hoc
correction techniques to mitigate this bias, which operate purely on the outputs of
standard model training. We empirically verify that with such post-hoc correction,
overparameterisation can improve average and worst-case performance.

1 INTRODUCTION

Overparameterised neural networks have demonstrated the remarkable ability to perfectly fit training
samples, while still generalising to unseen test samples (Zhang et al., 2017; Neyshabur et al., 2019;
Nakkiran et al., 2020). However, several recent works have revealed that overparameterised models’
good average performance does not translate to good worst-case performance (Buolamwini & Gebru,
2018; Hashimoto et al., 2018; Sagawa et al., 2020a;b). In particular, the test performance of such
models may be poor on certain subgroups that are under-represented in the training data. Worse still,
such degradation can be exacerbated as model complexity increases. This indicates the unsuitability
of such models in ensuring fairness across subgroups, a topical concern given the growing societal
uses of machine learning (Dwork et al., 2012; Hardt et al., 2016; Buolamwini & Gebru, 2018).

Why does overparameterisation induce such unfavourable bias, and how can one correct for it?
Sagawa et al. (2020a) demonstrated how such models may fit to spurious correlations that explain
under-represented samples, which can generalise poorly. Sagawa et al. (2020b) further posited that
overparameterised models have an inductive bias towards memorising labels for as few samples
as possible, which are invariably those from under-represented subgroups. To mitigate such bias,
existing approaches include subsampling majority subgroups (Sagawa et al., 2020b), and modifying
the training objective (Sagawa et al., 2020a; Nam et al., 2020; Zhang et al., 2020; Goel et al., 2020).
This suggests two important points regarding overparameterised models’ performance:

(a) with standard training, increasing model complexity exacerbates degradation on rare subgroups;
(b) controlling this degradation may require alternate training objectives or procedures.

In this paper, we establish that while overparameterised models are biased against under-represented
examples, in certain settings, such bias may be easily corrected via post-hoc processing of the
model outputs. Specifically, such models’ bias can be largely restricted to their classification layers,
and manifest as structured shifts in predictions for rare subgroups. We thus show how two simple
techniques applied to the model outputs — classifier retraining based on the learned representations,
and correction of the classification threshold — can help overparameterised models improve worst-
subgroup performance over underparameterised counterparts. Consequently, even with standard
training, overparameterised models can learn sufficient information to model rare subgroups.
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(a) Distribution of overparameterised model scores.
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(b) Effect of post-hoc correction.

Figure 1: Distribution of model decision scores on test samples from a synthetic dataset of Sagawa
et al. (2020b), comprising two labels with two subgroups each (left panel). The scores are expected
to be > 0 iff the label is positive. We train a linear model with complexity controlled by its number
of features m. For the overparameterised setting m = 104 (left), within each class, rare subgroups
consistently appear on the wrong side of the decision boundary. Correcting this bias via post-hoc
score translation improves the worst-subgroup error as the model complexity is increased (right).

To make the above concrete, Figure 1 plots a histogram of model predictions for a synthetic dataset
from Sagawa et al. (2020b) (cf. §2). The data comprises four subgroups generated from combinations
(y, a(x)) of labels y ∈ {±1} and a feature a(x) ∈ {±1}. Most samples (x, y) have y = a(x),
and so these comprise two dominant subgroups within the positive and negative samples. We
train an overparameterised linear model, yielding logits f±1(x). We then plot the decision scores
f+1(x)− f−1(x), which are expected to be > 0 iff y = +1. Strikingly, there is a distinct separation
amongst the subgroup scores: e.g., samples with y = +1, a(x) = −1 have systematically lower
scores than those with y = +1, a(x) = +1. Consequently, the model incurs a significant error rate on
rare subgroups. The structured nature of the separation implies suggests to post-hoc shift the scores
to align the distributions; this markedly improves performance on the rare subgroups (Figure 1b).

Scope and contributions. The primary aim of this work is furthering the understanding of the
behaviour of overparameterised models, rather than proposing new techniques. Indeed, the post-hoc
correction techniques we employ have been well-studied in the related problem setting of long-
tail learning or learning under class imbalance (He & Garcia, 2009; Buda et al., 2017; Van Horn
& Perona, 2017). Several works have demonstrated that the representations learned by standard
networks contain sufficient information to distinguish between dominant and rare labels (Liu et al.,
2019; Zhang et al., 2019; Kang et al., 2020; Menon et al., 2020). Similar techniques are also common
the fairness literature (Hardt et al., 2016; Chzhen et al., 2019). However, it is not a-priori clear
whether such techniques are effective for overparameterised models, whose ability to perfectly fit the
training labels can thwart otherwise effective approaches (Sagawa et al., 2020a).

Existing techniques for improving the worst-subgroup error of overparameterised models involve
altering the inputs to the model (Sagawa et al., 2020b), or the training objective (Sagawa et al., 2020a).
By contrast, the techniques we study alter the outputs of a standard network, trained to minimise the
softmax cross-entropy on the entire data. Our findings illustrate that such models do not necessarily
require bespoke training modifications to perform well on rare subgroups: even with standard training,
overparameterised models can (in certain settings) learn useful information about rare subgroups.

In summary, our contributions are:

(i) we demonstrate that, in certain settings, overparameterised models’ poor performance on under-
represented subgroups is the result of a structured bias in the classification layer (cf. §3);

(ii) we show that two simple post-hoc correction procedures (cf. §4) can mitigate the above bias, and
thus significantly reduce their worst-subgroup error (cf. §5).

2 BACKGROUND AND SETTING

Suppose we have a labelled training sample S = {(xi, yi)}ni=1 ∈ (X × Y)n, for instance space
X ⊂ Rd and label space Y. One typically assumes S is an i.i.d. draw from some unknown distribution
P(x, y). Further, suppose each (x, y) has an associated group membership g(x, y) ∈ G, with
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G
.
= |G|. This induces G data subgroups, with a prior P(g) and conditional distributions P(x, y | g).

Following Sagawa et al. (2020a;b), we consider groups g(x, y) = (y, a(x)), where a(x) ∈ R is some
attribute within x. We assume a(x) is fully specified during train and test time; while not always
realistic, such an assumption has precedent in the fairness literature (Lipton et al., 2018).

The standard goal in classification is to learn a classifier h : X→ Y that minimises the average error

Lavg(h)
.
= E

g
E

x,y|g
[`01(y, h(x))] ,

where `01(y, h(x)) = Jy 6= h(x)K is the 0-1 loss. Typically, one constructs h(x) = argmaxy fy(x),
where f(x) ∈ RY comprises real-valued logits, as learned by empirical risk minimisation (ERM):
minf∈F

1
n

∑n
i=1 `(yi, f(xi)). Here, ` is a surrogate loss such as the softmax cross-entropy, and F is

a function class, such as a neural networks with a fixed architecture. A network is overparametrised
if it can perfectly fit the training labels, and thus drive the training error to zero. Remarkably —
and in apparent contrast to orthodox statistical wisdom — this does not come at the expense of
generalisation on test samples (Zhang et al., 2017; Belkin et al., 2019; Nakkiran et al., 2020).

This apparent power comes at a price, however. Let us define the worst-subgroup error as

Lmax(h)
.
= max

g∈G
E

x,y|g
[`01(y, h(x))] , (1)

i.e., the worst-case error over all data subgroups. Prior work (Sagawa et al., 2020a;b) established
that for overparameterised models, the worst-subgroup training error can go to zero (since the model
can fit all samples), but the worst-subgroup test error can devolve to that of random guessing (since
the model can fit spurious correlations for rare subgroups). Further, the degree of degradation can
increase with the model complexity. This indicates that the naïve use of overparametrised models
may be at odds with ensuring fairness across data subgroups, a core concern in moden applications of
machine learning (Calders & Verwer, 2010; Dwork et al., 2012; Hardt et al., 2016; Zafar et al., 2017).

There are several potential strategies to cope with this. One is to perform distributionally robust
optimisation (Hashimoto et al., 2018; Mohri et al., 2019; Sagawa et al., 2020a), and minimise:

LDRO(h)
.
= max

g∈G

[
E

x,y|g
[`(y, f(x))] + Ωg(f)

]
,

where Ωg is some per-group regulariser. In settings where P(g) is non-uniform, Sagawa et al.
(2020a) proposed to set Ωg(f) ≡ 1√

ng
, where ng is the number of training samples with group g.

Alternatively, one can reweight samples to upweight the contribution of rarer groups and minimise:

LRW(h)
.
=
∑
g∈G

wg · E
x,y|g

[`(y, f(x))] , (2)

where, e.g., wg = P(g) leads to the standard average error, while wg = 1 implicitly upweights rare
subgroups. While intuitive, Sagawa et al. (2020b) established that such an approach is also subject
to poor worst-subgroup performance, owing to a broader issue with using importance weighting in
conjunction with neural networks (Wen et al., 2014; Byrd & Lipton, 2019). Sagawa et al. (2020b)
established that one can achieve good performance by instead subsampling dominant groups, an
operation equivalent in expectation to minimising LRW(h) with wg = 1. Recent developments in the
mitigation of worst-subgroup errors include Nam et al. (2020); Zhang et al. (2020); Goel et al. (2020).

In the sequel, we shall make extensive use of three datasets from Sagawa et al. (2020a;b), each of
which involve binary labels y ∈ Y and a binary attribute a(x) ∈ A:

(i) synth, a synthetic dataset where X ⊂ R200, Y = {±1}, and A ∈ {±1}.
(ii) waterbirds, a dataset of bird images with Y = {land bird, water bird} corresponding to the

bird type, and A = {land background, water background} corresponding to the background.
(iii) celebA, a dataset of celebrity images with Y = {blond, dark} corresponding to individuals’

hair colour, and A = {male, female}.
For each dataset, we construct four subgroups g(x, y) = (y, a(x)), with two such subgroups being
under-represented. On synth and waterbirds, these correspond to subgroups with y 6= a(x) , while
on celebA, these corespond to the subgroups {(blond, male)} and {(dark, female)}. Owing to
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Figure 2: Two-dimensional tSNE visualisation of test embeddings as produced by overparameterised
models. Within each class, samples from each of the two subgroups tend to be closely clustered.
This suggests that the representations learned by the models contain sufficient information to help
distinguish samples from rare versus dominant subgroups. The poor worst-subgroup performance of
such models may thus be traced to issues with the classification layer. (Best viewed in colour.)

the rarity of certain subgroups, it is intuitively easy for an overparameterised network to learn to
predict a(x) rather than y, and memorise spurious patterns to predict the rare subgroups.

To train overparameterised models, we follow the setup of Sagawa et al. (2020a;b), which we briefly
summarise. For celebA and waterbirds, we use a ResNet-50, which can attain perfect training
accuracy. For synth, we train a weakly regularised (λ = 10−16) logistic regression model on
a fixed representation Φ constructed as follows: for fixed m, we construct Φ(x) = ReLU(V x),
where V ∈ Rm×200 is a random Gaussian matrix with normalised rows. Overparameterised models
consistently demonstrate a significant gap between the average and worst-subgroup error: e.g. (see
Figure 4), on synth, the model achieves 91% average accuracy, but 36% worst-subgroup accuracy.

3 THE DOMINANT SUBGROUP BIAS OF OVERPARAMETERISED MODELS

We study the nature of overparameterised models’ poor performance on rare subgroups more closely.
We make two observations: first, this under-performance is largely owing to a bias in the classification
layer. Second, this bias manifests in the form of a distribution shift in the model scores for rare
subgroups. This shall subsequently motivate post-hoc correction procedures.

3.1 CAN THE LEARNED REPRESENTATIONS DISTINGUISH BETWEEN SUBGROUPS?

Neural models make predictions based on logits fy(x) = w>y Φ(x), for classification weights
wy ∈ RK and representations Φ(x) ∈ RK . Suppose such a model performs poorly on a subgroup
(ȳ, ā). This implies that for a sample (x, ȳ) in this subgroup, fȳ(x)� fy′(x) for some competing y′.

Why do overparameterised models underperform on rare subgroups? The factorised nature of the
logits suggests this arises from issues with the representations, the classification weights, or both.
To determine which of these is likely, we begin by inspecting the representations. Recall that we
train a ResNet-50 on celebA and waterbirds, which produce K = 2048 dimensional instance
embeddings. We may thus embed test instances from each of the four data subgroups, and study their
geometric structure. Intuitively, if instances from rare and dominant subgroups with the same label
have limited similarity, the representations for rare samples are insufficiently rich.

The high dimensionality of the embeddings prohibits an exact inspection, but as a rough surrogate,
we employ a two-dimensional tSNE (Maaten & Hinton, 2008) visualisation. As tSNE attempts to
preserve neighbourhood information amongst samples, we hope to evince the relative geometries of
samples from the various subgroups. Figure 2 reveals that for celebA and waterbirds, samples
from the rare subgroups tend to be closely clustered with those belonging to the same class.
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Figure 3: Distributions of model decision scores f+1(x)− f−1(x) on test samples on waterbirds
and celebA, comprising two labels with two sub-groups each. The rare and dominant subgroup score
distributions largely differ, with the former often on the incorrect side of the decision boundary (i.e.,
with decision scores < 0 for positive samples, and > 0 for negative samples). Notably, the scores for
rare subgroups tend to be shifted compared to those for dominant subgroups.

The above suggests that the representations learned by the models contain information to (at least
partly) help distinguish samples from rare versus dominant subgroups.1 This suggests the poor
worst-subgroup performance of such models may result from issues with the classification layer.

3.2 HOW DOES BIAS MANIFEST IN THE CLASSIFICATION LAYER?

To study the potential issues in the classification layer, we continue our strategy of visualising the
model outputs. Since the datasets we consider involve binary labels, we may simply study the
distribution of the decision scores f+1(x)− f−1(x). Since our predicted label is the highest scoring
logit, we desire this score to be > 0 iff the sample has a positive label. As in the previous section, we
may break down these scores for each of the subgroups induced by label y and attribute a(x).

We earlier illustrated this distribution for synth in Figure 1; Figure 3 further provides distributions
for celebA and waterbirds. On both datasets, within each label, there is a shift in the score
distributions for one or both of the rare subgroups. This is in keeping with the poor performance of
the model on these subgroups: e.g., on waterbirds, rare samples in the positive class systematically
have negative decision scores, implying the model incurs a high false-negative rate on these samples.

In light of the above findings, we may revisit ablations from prior work that tease apart the factors
causing poor worst-subgroup performance. For example, Sagawa et al. (2020b) showed that increasing
model complexity on synth can degrade worst-subgroup performance beyond a certain critical point,
and that this can be mitigated with a combination of strong regularisation and subsampling. The same
conclusions largely hold (see Appendix D) for the varying decision scores amongst subgroups: e.g.,
the difference in rare and dominant subgroup scores is exacerbated as we increase model complexity.

3.3 DISCUSSION AND IMPLICATIONS

The systematic under-prediction of scores for rare subgroups can be seen as a particular manifestation
of neural networks producing uncalibrated probability estimates (Guo et al., 2017): from Figure 3,
the model will systematically under- or over-estimate the probability of rare samples being positive.

We emphasise here that our illustrations above are for test samples not observed during training.
Training samples exhibit qualitatively different trends, reflective of overparameterised models’ ability
to perfectly fit them: e.g., the decision scores for all samples are consistently on the correct side of the
decision boundary (see Appendix D). The fact that the scores on unseen samples exhibit a distinction
amongst subgroups suggest the network encodes an implicit bias against such samples.

At the same time, this bias largely manifests as a translation of the scores. This suggests a simple
post-hoc correction of the scores may suffice to improve performance; e.g., bumping up scores for
samples with a(x) = land background in waterbirds can make the error on the rare subgroup
(water bird, land background) more equitable. It remains now to more carefully describe such
post-hoc procedures, and study their performance.

1We crucially rely on a classification layer to help distinguish samples between subgroups; by themselves,
however, the embeddings can be systematically biased (Bolukbasi et al., 2016; Gonen & Goldberg, 2019).
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4 CORRECTING THE SUBGROUP BIAS OF OVERPARAMETERISED MODELS

Drawing from the literature on long-tail learning (Zhang et al., 2017; Kang et al., 2020; Ye et al.,
2020) and fairness (Hardt et al., 2016; Chzhen et al., 2019), we now detail two post-hoc correction
techniques to mitigate overparameterised models’ bias against rare subgroups.

4.1 CLASSIFIER RETRAINING

Given that §3.1 demonstrates that learned representations Φ(x) appear meaningful across subgroups,
a natural thought is to fit a linear classifier on top of them; i.e., we treat {(Φ(xi), yi)}ni=1 as a
new training set for a linear model. Overparameterisation introduces a challenge, however: since
the original network can find a classifier with the lowest possible (i.e., zero) training error, simple
modifications to the loss (e.g., reweighting samples) will result in learning the same classifier.

Fortunately, there are several options to find a distinct classifier than the original network: e.g., one
can subsample elements from the majority subgroups, per Sagawa et al. (2020b). We emphasise
an important difference between employing such techniques in standard training, and in classifier
retraining: the latter uses representations learned from a standard network, as opposed to changing
the network objective itself. The success of the latter shall thus demonstrate that the standard network
representations are rich enough to reasonably distinguish between subgroups.

4.2 THRESHOLD CORRECTION

The illustrations in Figures 3 suggest a simple approach to improving classification performance:
rather than using an identical classification threshold for all samples, one can employ per-subgroup
thresholds. In detail, observe that in the case of binary labels, we predict h(x) = +1 ⇐⇒
f+1(x)− f−1(x) > 0. Instead, we can predict

h(x) = +1 ⇐⇒ f+1(x)− f−1(x) > ta(x),

where {ta ∈ R : a ∈ A} are per-attribute thresholds. Equivalently, this translates the scores for all
samples with a given attribute a(x) so that the decision boundary is at 0. This can compensate for the
distribution shifts observed in Figures 1 and 3: intuitively, by enforcing a lower threshold for samples
with a(x) = −1, we can account for the fact that most of these samples obtain a low model score.

It remains to specify how to choose the thresholds ta. One simple option is to perform a parameter
sweep, and employ the thresholds that minimise the worst-subgroup error on a holdout set. This is
feasible in settings where |A| and |Y| are small, and can directly target the performance measure of
interest. For more complex problems, one may suitably parameterise the thresholds, or attempt to
learn so as to minimise a suitable objective (see discussion below).

4.3 DISCUSSION AND RELATED WORK

The long-tail learning literature has demonstrated the value of both classifier retraining (Zhang et al.,
2017; Kang et al., 2020) and threshold correction (Zhou & Liu, 2006; Collell et al., 2016; Menon
et al., 2020). Similarly, in the fairness literature, post processing of classifier outputs based on
per-subgroup thresholds is a similarly well-established technique (Hardt et al., 2016). Our aim here
is to investigate the effectiveness of such techniques in the overparameterised setting. Given such
models can perfectly fit training labels, it is less clear whether the representations learned from
standard training are sufficiently useful to learn a good classifier, and whether their outputs can be
easily corrected post-hoc; e.g., a model that merely memorised certain training labels could not be
meaningfully corrected to perform well on test samples.

To extend threshold correction to multi-class settings, one could tie the thresholds to the frequencies
P((y, a(x))) of various subgroups, rather than tune them. This is akin to class prior or logit correction
techniques from long-tail learning (Collell et al., 2016; Menon et al., 2020). In the fairness literature,
relevant techniques include Hardt et al. (2016), who propose an objective to select optimal thresholds
for ensuring a particular notion of fairness; and recent techniques that learn a post-processing of model
scores (Chzhen et al., 2019; Jiang et al., 2020; Wei et al., 2020) to de-bias predictions. Exploring
such techniques in the overparameterised setting is an interesting direction for future work.
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Table 1: Summary of average and worst-subgroup errors on synth, waterbirds, and celebA. For
synth and waterbirds with a logistic regression model, we use the overparameterised setting
where m = 104. Standard ERM performs well on average, but poorly on the worst-subgroup.
However, this is significantly improved by post-hoc correction of the ERM predictions, either through
classifier retraining (CRT) or threshold correction (THR). The former is only applied to models with
a learned representation. We also report the results of distributionally robust optimisation (DRO) and
sub-sampling of the training data (SAM), per Sagawa et al. (2020a;b). The results marked with † are
quoted from Sagawa et al. (2020a, Table 2).

Dataset Model Average error Worst-subgroup error
ERM SAM DRO CRT THR ERM SAM DRO CRT THR

synth Logistic 9.49 23.99 17.99 N/A 22.18 63.20 27.38 22.67 N/A 27.51
waterbirds Logistic 4.37 17.18 10.57 N/A 16.71 52.34 20.82 16.73 N/A 17.46

ResNet 2.15 15.66 6.30† 2.58 5.23 17.23 18.41 9.50† 8.30 8.70
celebA ResNet 4.64 9.28 6.60† 9.38 7.90 56.11 10.63 12.20† 14.68 12.96

The contemporaneous work of Sohoni et al. (2020) also considers the viability of improving worst-
subgroup performance using the learned representations. Specifically, they propose to cluster these
embeddings, and train a new distributionally robust classifier to predict cluster assignments. While
very much in the spirit of our classifier retraining proposal, their study does not consider the efficacy
of such a procedure under varying model complexity, nor correction techniques that operate purely
on the classification outputs.

5 EXPERIMENTS: HOW EFFECTIVE IS POST-HOC CORRECTION?

We now show that the above post-hoc correction techniques can significantly improve overparame-
terised models’ performance on rare subgroups. This indicates that even when trained in the usual
manner, such models can learn useful information about rare subgroups.

5.1 EXPERIMENTAL SETUP

We follow the same basic setup as Sagawa et al. (2020a;b). We instantiate overparameterised models
on each dataset: a ResNet-50 on celebA and waterbirds; a linear logistic regression on synth,
using fixed features as described in §2; and a linear logistic regression on waterbirds, using the
embeddings from a ResNet-18 pre-trained on ImageNet. See Appendix A for details of experimental
hyper-parameters. We measure both the average and worst-subgroup errors on both the train and test
set, repeating each experiment 5 times.

We apply post-hoc correction to these learned models, via classifier retraining (CRT) on the learned
representations, using a linear logistic regression model with subsampling of the dominant subgroups
per Sagawa et al. (2020b); and threshold correction (THR) on the decision scores, using a holdout
set to estimate thresholds {ta : a ∈ {±1}} that minimise the worst-subgroup error. For waterbirds,
we use the holdout set from Sagawa et al. (2020a); for celebA, we use the standard holdout set; and
for synth, we construct a holdout set using 20% of the training samples.

As reference, we report the results of standard minimisation on a balanced subsample (SAM) of the
training set, where following Sagawa et al. (2020b) we down-sample each subgroup to have nmin

examples, where nmin is the number of examples in the smallest subgroup. We also report the results
of the regularised distributionally robust optimisation (DRO) procedure of Sagawa et al. (2020a).
This involves strongly regularising the model, and modifying the training objective to target the
worst-subgroup error. Our aim is not to improve on the performance of this method, which directly
trains to minimise the worst-subgroup error; rather, our goal is to understand and quantify how much
useful information standard model training learns about rare subgroups.

5.2 RESULTS AND DISCUSSION

Table 1 summarises the test set results on all datasets. We highlight several key points.

7



Published as a conference paper at ICLR 2021

0 1 2 3 4
log m

0

20

40

60

Er
ro

r
Average train
Average test
Worst train
Worst test

(a) ERM (synth).

0 1 2 3 4
log m

0

20

40

60

Er
ro

r

Average train
Average test
Worst train
Worst test

(b) THR (synth).

0 1 2 3 4
log m

0

20

40

60

80

100

Er
ro

r

Average train
Average test
Worst train
Worst test

(c) ERM (waterbirds).

0 1 2 3 4
log m

20

40

60

80

Er
ro

r

Average train
Average test
Worst train
Worst test

(d) THR (waterbirds).

Figure 4: Performance of baseline (ERM) and threshold correction (THR) on synth and waterbirds
datasets, with fixed input representations. We vary the feature dimensionality m between 101 and
104, and plot the average and worst-subgroup error on both the train and test set over 5 independent
trials. For the baseline, the worst-case error devolves as m increases. For threshold correction, both
average and worst-case error steadily improve on the test set. Of salience is that overparameterisation
(large m) aids worst-subgroup performance under post-hoc correction.

ERM has poor worst-subgroup error. In keeping with Sagawa et al. (2020a;b), standard ERM
performs poorly in terms of worst-subgroup error. This may be strongly mitigated by modifying the
training objective per DRO, or by modifying the training sample per SAM. (Each of these incurs only
a mild penalty in terms of the average error.) This confirms the finding of prior work that modification
of the training procedure can achieve a suitable trade-off between average- and worst-subgroup error.

Post-hoc correction improves worst-subgroup error. Encouragingly, post-hoc techniques consis-
tently and significantly reduce the worst-subgroup error of ERM. For example, on celebA, THR
reduces the worst-subgroup error from 56.11% to 12.96%, with only a mild increase in the average
error. Between the post-hoc techniques, we generally find THR to yield the best performance. We
reiterate that this technique does not modify the training procedure directly, but simply post-processes
the learned ERM model output. This confirms the analysis of the previous section, which indicates
that (on the considered datasets) the result of standard ERM can by themselves contain sufficient
information to overcome poor worst-subgroup error.

Post-hoc correction is comparable to training modification. Post-hoc techniques generally com-
pare favourably with DRO and SAM in terms of the trade-off between average- and worst-subgroup
error. While DRO is notably superior on synth, this gap appears to be in part due to the challenge of
tuning hyperparameters given holdout data with limited subgroup representation. For example, using
a larger holdout set size of n = 2400 samples improves the performance of THR on synth to 24%.

The superior overall performance of DRO is in keeping with findings about the efficacy of training
modification for fairness (Agarwal et al., 2018). Nonetheless, the generally competitive performance
of CRT and THR suggests the latter can extract non-trivial gains from overparameterised models.

Overparameterisation with post-hoc correction can improve worst-subgroup error. We now
confirm that increasing model complexity can result in improved average and worst-subgroup
performance, provided the ERM outputs are suitably corrected. As the synth and waterbirds
datasets with fixed features allow for modifying the feature dimensionality m — which controls
the degree of overparameterisation – we perform an experiment where we vary m between 101 and
104. Figure 4 shows the average and worst-subgroup error on both the train and test set, over 5
independent trials. The overall and worst-case training error approaches 0% as m increases (i.e., the
model becomes overparameterised). Further, the average test error appears reasonable, approaching
10%; however, the worst-case error devolves as m increases, exceeding 60%.

The plots also show the results of THR as m is varied. Here, both average and worst-case error
steadily improve: indeed, overparameterisation aids worst-subgroup performance. Further, the gains
in the worst-subgroup test error are dramatic compared to ERM. Thus, while ERM is susceptible
to a tradeoff between overparameterisation and worst group accuracy, this tension can be mitigated
with simple mechanisms to encourage equitable performance. This general trend is largely robust
to distributional properties such as the fraction of majority samples in synth, though significantly
increasing this expectedly degrades the best achievable performance; see Appendix D.

Illustration of classification thresholds. Figure 5 studies the effect of tuning the classification
thresholds ta on each of the per-subgroup errors for synth (m = 104). Here, we plot the errors for
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Figure 5: Effect of tuning classification threshold ta for synth, when m = 104. The case ta = 0
corresponds to the baseline. Modifying ta systematically trades off performance on the rare subgroups
compared to the dominant ones (left). By choosing the thresholds to minimise the worst-subgroup
error, the resulting score distributions are aligned for rare and dominant subgroups (right).

each of the four subgroups as we sweep over the thresholds. The case ta = 0 corresponds to the
baseline. Modifying ta trades off performance on the rare subgroups compared to the dominant ones.
One may then pick optimal thresholds for a = ±1, which correspond to cross-over points of the error
curves for each value of a: for example, when t+1 ∼ 10, the errors on the subgroups y = +1, a = +1
and y = −1, a = +1 are equitable, and thus the maximum of the two errors is minimised. Choosing
such thresholds aligns the scores distributions for rare and dominant subgroups (right).

6 DISCUSSION AND FUTURE WORK

Post-hoc correction relies on knowledge of the data subgroups at train and test time. An important
practical challenge is extending this to settings with unknown subgroups. One natural strategy is to
attempt to unearth these subgroups via clustering of the model outputs, but careful study is needed
to inform design choices (e.g., choosing the number of clusters). For a contemporaneous study
of a similar technique, see Sohoni et al. (2020). Exploring the viability of post-hoc correction
in overparameterised settings with multi-class labels, and multiple subgroups — e.g., through
adaptations of techniques noted in §4.3 — is also of interest. More broadly, the study of learning
bias-free representations has received significant interest (Bahng et al., 2020; Kim et al., 2019; Li
& Vasconcelos, 2019; Arjovsky et al., 2020; Nam et al., 2020). Exploring the efficacy of such
approaches in overparameterised settings would be of interest.
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A EXPERIMENTAL SETUP

For the logistic regression experiments, we train the models using LogisticRegression package in
sklearn with C = 1/(n · λ), for number of training examples n and minimal regularisation strength
λ = 10−16. This employs the liblinear solver under-the-hood, and thus finds an approximate
minimiser for the convex empirical risk objective on the entire training sample.

For the ResNet-50 experiments, we initalise the model using a ResNet-50 pre-trained on ImageNet.
We train the models using SGD with a momentum value of 0.9. We use a batch size of 128, weight
decay 10−4, and a learning rate of decayed according to a cosine schedule. We train with a base
learning rate of 10−4 for 1000 epochs2 on waterbirds, and a base learning rate of 10−2 for 50
epochs on celebA. We also employ data augmentation in the form of random cropping and flipping,
which offers a consistent boost in rare subgroup performance.

B ADDITIONAL EXPERIMENTS

We present additional experimental results that explore a few key hypotheses:

• how sensitive are the results to inexact subgroup specification?
• how does the precise choice of target label and spurious attribute affect results?
• how generalisable are the results to multi-class settings?

B.1 INEXACT SUBGROUP SPECIFICATION

The post-hoc modification techniques in the body crucially rely on knowledge of the precise sub-
group specification of each example. This is unrealistic in practice, where the subgroups may
be latent or inexactly specified. Following Sagawa et al. (2020a)[Appendix B], we simulate a
setting of inexact specification of the subgroups on celebA. Here, we use as spurious attributes
A′ = WearingLipstick× Eyeglasses× Smiling× DoubleChin× OvalFace, comprising 32
distinct values. We then learn using the subgroups Y×A′ as input, and then measure performance
with respect to the original subgroups Y×A′.

As noted in the body, the threshold adjustment technique (THR) is challenging to apply as-is in this
setting, as it requires setting 32 distinct thresholds. As suggested in §4.3, we thus apply a simple
heuristic of tying the thresholds to the subgroup frequencies, i.e., ta(x) = logP(y = +1 | a(x))−
logP(y = −1 | a(x)). This has the effect of implicitly requiring higher model confidences to classify
examples into a dominant subgroup. This technique is seen to have a worst-subgroup error of 16.67%,
which is a modest increase compared to the 12.10% obtained when using the exact subgroups Y×A′.
This illustrates that one can still make useful predictions given imperfect subgroup information.

B.2 CHOICE OF TARGET LABEL AND SPURIOUS ATTRIBUTE

The results in the body involve data with one or more rare subgroups. Is this rarity the primary factor
that influences performance, or does the definition of the subgroups themselves matter? To test this,
we consider a variant of the celebA dataset in the body where the target label and sensitive attribute
are swapped. In this variant of the dataset, we have Y = {male, female} and A = {blond, dark}.
This exactly preserves the subgroup definitions and their rarity, but fundamentally changes the target
label and feature used in training.

Interestingly, this simple modification dramatically improves performance of the baseline: on the
rarest subgroup, the error is 13.67%, which is a significant reduction over the 56.94% for the original
dataset. This indicates that the precise choice of subgroup definition can play a non-trivial role in
final performance. Intuitively, performance can be hampered when the target variable is spuriously
correlated with many features in the training set.

2This large number of epochs, coupled with the small learning rate, endows some stability in the worst
subgroup performance. One may however obtain qualitatively similar results with much fewer epochs and a
larger learning rate.
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Nonetheless, even with this improved model, we find that threshold adjustment (THR) can further
improve performance to 9.11%. The average subgroup errors of both techniques are similar, being
1.29% and 1.28% respectively.

B.3 MULTI-CLASS SETTINGS

The results in the body involve problems with binary labels. To assess the effect of working with multi-
class labels, we employ a modified version of MNIST based on Goel et al. (2020). Here, one mixes the
standard MNIST dataset with samples from a corrupted version of MNIST comprising zig-zag images.
The zig-zag images are made to be strongly correlated with the digit parity, so that most odd digits are
zig-zagged. We then consider subgroups defined by Y×A, where A = {normal, zig− zag}. Note
that we consider Y = {0, 1, . . . , 9} to illustrate performance in a multi-class setting, unlike Goel et al.
(2020) who consider Y = {0, 1} to be the digit parity.

We train a LeNet-5 for 100 epochs using a learning rate of 0.0001, momentum 0.9, weight decay 0.05,
and batch size 100. Here, ERM achieves a worst-subgroup error of 67.11%. Classifier retraining
(cRT) based on subsampling all non-minority samples improves this to 74.52%. Similarly, threshold
adjustment (THR) based on the heuristic of tying the thresholds to the subgroup frequencies (as
described in the previous section) achieves 78.95%. This illustrates the potential for post-hoc
techniques to also be useful in scenarios other than binary classification.

C VISUALISATION OF EMBEDDINGS UNDER GROUP-BASED DRO

Figure 6 shows a tSNE visualisation of the embeddings learned by a model trained to minimise the
group-based DRO objective of Sagawa et al. (2020a). Similar to the results of ERM, there is generally
a notable separation of samples from the four subgroups.
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Figure 6: Two-dimensional tSNE visualisation of test embeddings as produced by an overparame-
terised model trained to minimise group-based DRO.

D ADDITIONAL EXPERIMENTAL ABLATIONS

We present additional experimental results, highlighting several key points:

• the separation of scores between rare and dominant subgroups is consistent across all datasets
considered in the paper; however, the score distributions are markedly different on train and test
sets, owing to models being overly confident on training samples.

• increasing model complexity systematically exacerbates the distribution shift in decision scores.
• early stopping has limited effect on the score distributions; even after a single of epoch of training,

there may be a distinction between rare and dominant subgroups’ scores.
• increased `2 regularisation strength has a favourable effect on the score distributions, encouraging

samples from both rare and dominant subgroups to be correctly classified.
• subsampling (per Sagawa et al. (2020a)) has a positive effect on the score distributions, making

them almost perfectly align across subgroups.
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(b) Waterbirds (logistic).
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(c) Waterbirds (ResNet).
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(d) CelebA.

Figure 7: Histograms of model scores on test samples on various datasets, comprising two labels with
two sub-groups each. In general, there are differences in the distributions for the rare and dominant
subgroup scores, with the former often lying on the incorrect side of the decision boundary.

• increasing the fraction of majority samples has a deleterious effect on overall performance;
however, even at extreme levels of imbalance, the score distribution for rare samples may be
shifted to correct for bias.

D.1 HISTOGRAM OF TRAIN AND TEST SCORES

Figure 7 plots histograms of test scores for all datasets considered in this paper. We consistently find
that there is a separation between the scores for rare and dominant subgroups.

We see similar behaviour on training scores in Figure 8. However, note the vastly different scale,
owing to the model being more confident in its predictions for these samples. In general, while there
are differences in the distributions for the rare and dominant subgroup scores, nearly all such scores
are on the correct side of the decision boundary. This is expected, since overparameterised models
perfectly fit the training data, and thus correctly classify all samples. The ability of these models to
nonetheless produce meaningful results on test samples is owing to their inductive bias.

D.2 IMPACT OF MODEL COMPLEXITY ON SCORES

Figure 9 shows model scores on test samples on synth as number of projection features m is
varied. We see that as the model complexity increases, there is a steady increase in the separation
of decision scores between the rare and dominant subgroups for a label. This is in keeping with
overparameterisation exacerbating worst-subgroup error: as the decision scores have more pronounced
separation, using a default classification threshold will lead to significantly worse performance.

D.3 IMPACT OF EARLY STOPPING ON SCORES

Figures 10 and 11 shows the evolution of model scores on test samples on the CelebA and Waterbirds
datasets. Here, the distinction between the scores amongst subgroups of the positive class is visible
even after early stopping. With increased training epochs, there is a systematic shift of the negative
scores, as the network becomes increasingly confident on them.

D.4 IMPACT OF REGULARISATION ON SCORES

Figures 12 and 13 shows how model scores on test samples vary as we modify the strength of
regularisation. Increasing the strength is seen to favourably impact the scores on the negative class,
for both the dominant and rare subgroups. This provides another perspective on why regularisation
can be somewhat effective at improving worst-subgroup performance.
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(b) Waterbirds (logistic).
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(c) Waterbirds (ResNet).
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Figure 8: Histograms of model scores on train samples on various datasets, comprising two labels
with two sub-groups each. In general, while there are differences in the distributions for the rare and
dominant subgroup scores, nearly all such scores are on the correct side of the decision boundary.
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(b) m = 102.
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(c) m = 103.
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Figure 9: Histograms of model scores on test samples on synth as number of projection features m
is varied. We see that as the model complexity increases, there is a steady increase in the separation
of decision scores between the rare and dominant subgroups for a label. This is in keeping with
overparameterisation exacerbating worst-subgroup error.

D.5 IMPACT OF SUBSAMPLING ON SCORES

Figure 14 shows histograms of model scores on test samples on synthetic dataset, with and without
subsampling per Sagawa et al. (2020a). Subsampling is seen to make the scores equitable across the
subgroups, which provides another perspective on why this technique can effectively mitigate a bias
against rare subgroups.

D.6 IMPACT OF FRACTION OF RARE SUBGROUPS ON SCORES

The synth dataset involves a parameter pdomin its construction, which controls the relative number
of samples belonging to the dominant class. By default, following Sagawa et al. (2020b), we use
pdom= 0.90. Figure 15 shows how the tradeoff is affected by changing pdom. As pdomincreases, as
expected, it is more challenging to minimise the worst-subgroup error at large m. Figure 16 further
shows how the test scores for each subgroup are affected by the choice of pdom. As pdomincreases,
the rare subgroup scores are seen to significantly diverge from the dominant one.
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(a) 1 epoch.
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(b) 5 epochs.
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(c) 10 epochs.
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(d) 50 epochs.

Figure 10: Evolution of histograms of model scores on test samples on celebA. The distinction
between the scores amongst subgroups of the positive class is visible even after early stopping. With
increased training epochs, there is a systematic shift of the negative scores, as the network becomes
increasingly confident on them.
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(a) 1 epoch.

10 5 0 5
Decision score

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity

Positive class
Dominant subgroup
Rare subgroup

20 15 10 5 0 5
Decision score

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity

Negative class
Dominant subgroup
Rare subgroup

(b) 10 epochs.
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(c) 100 epochs.

10 5 0 5
Decision score

0.0

0.1

0.2

0.3

0.4

De
ns

ity

Positive class
Dominant subgroup
Rare subgroup

20 15 10 5 0 5
Decision score

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity

Negative class
Dominant subgroup
Rare subgroup

(d) 1000 epochs.

Figure 11: Evolution of histograms of model scores on test samples on waterbirds.
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(a) λ = 10−4.
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(b) λ = 10−2.
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(c) λ = 100.

Figure 12: Histograms of model scores on test samples on celebA with various strenghts of regulari-
sation. Increasing the strength is seen to favourably impact the scores on the negative class, for both
the dominant and rare subgroups.
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(a) λ = 10−4.
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(b) λ = 10−2.

20 10 0 10 20
Decision score

0.000

0.025

0.050

0.075

0.100

0.125

0.150

De
ns

ity

Positive class
Dominant subgroup
Rare subgroup

40 20 0 20
Decision score

0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns

ity

Negative class
Dominant subgroup
Rare subgroup

(c) λ = 100.

Figure 13: Histograms of model scores on test samples on waterbirds with various strengths of
regularisation. Increasing the strength is seen to favourably impact the scores on the negative class,
for both the dominant and rare subgroups.
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(a) Baseline.
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(b) Baseline + subsampling.

Figure 14: Histograms of model scores on test samples on synth, with and without subsampling
per Sagawa et al. (2020a). Subsampling is seen to make the scores equitable across the subgroups.
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(a) Baseline pmaj = 0.5.
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(b) Threshold correction pmaj = 0.5.
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(c) Baseline pmaj = 0.9.
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(d) Threshold correction pmaj = 0.9.
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(e) Baseline pmaj = 0.95.
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(f) Threshold correction pmaj = 0.95.

Figure 15: Performance of baseline and threshold correction on synth. We vary the fraction of
majority samples pmaj. This is seen to adversely affect the performance of ERM. However, threshold
correction can effectively reduce this error, albeit at the expense of higher variance.
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(a) pmaj = 0.50.
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(b) pmaj = 0.75.
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(c) pmaj = 0.90.
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(d) pmaj = 0.95.

Figure 16: Histograms of model scores on test samples on synth, for various values of fraction of
majority samples pdom. As this fraction becomes larger, the rare subgroups see progressive shift in
their scores compared to the dominant ones.
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