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Abstract

Warning: This paper contains explicit state-
ments of offensive or upsetting language.

Large language models (LLMs) are increas-
ingly deployed in critical sectors such as pub-
lic health, finance, and governance, necessi-
tating not only functional accuracy but also
alignment with societal values. Despite recent
advances, LLMs often propagate or amplify
bias embedded in their training data, posing
significant challenges to fairness. While self-
debiasing has shown promise by encouraging
an LLM to identify and correct its own biases,
relying solely on the intrinsic knowledge of a
single LLM may be insufficient for address-
ing deeply ingrained stereotypes. To overcome
this limitation, we propose a novel Collective
Bias Mitigation (CBM) framework that alleviates
bias through knowledge sharing among diverse
LLMs. Our work is the first to explore how
effectively selecting and organizing distinct
LLMs to foster more equitable LLM responses.
Extensive experiments demonstrate that CBM
consistently outperforms the standalone base-
line in mitigating biased LLM responses.

1 Introduction

With continuous advancements in performance,
large language models (LLMs) are increasingly
being relied upon to provide services in critical sec-
tors such as public health (Zack et al., 2024; Kim
et al., 2024), financial services (Feng et al., 2023;
Lakkaraju et al., 2023), and governance (Aaron-
son, 2023). As LLMs assume greater societal roles,
they are subject to heightened interest and scrutiny,
requiring them to not only deliver functional ac-
curacy but also uphold societal values. However,
recent empirical studies (Esiobu et al., 2023; Galle-
gos et al., 2024a; Khan et al., 2024) have demon-
strated that LL.Ms can inadvertently propagate or
even amplify stereotypes presented in their training
data, resulting in biased outputs that unfairly target
specific social groups.
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Figure 1: Bias Scores of Different Topologies in Our
CBM Framework. The dashed lines indicate the mean
value of each bootstrapped distribution.

The detrimental effects of bias in LLMs have
spurred many bias mitigation approaches, includ-
ing modifications to the training data distribu-
tion (Liang et al., 2020; Lu et al., 2020; Qian et al.,
2022), model weights (Yang et al., 2022; Attana-
sio et al., 2022; Yang et al., 2023), and decoding
strategies (Chung et al., 2023). For those models
we cannot alter directly, LLMs could discern and
amend biased output by leveraging their intrinsic
knowledge solely, the process of which is termed as
self-debiasing (Schick et al., 2021; Gallegos et al.,
2024b). Since most leading proprietary models
do not release their parameters, self-debiasing has
garnered increasing attention recently. However,
the self-debiasing process is not without its chal-
lenges (Gallegos et al., 2024a). LLMs often remain



unaware of the bias deeply rooted in their training
data, even using stereotypical knowledge to justify
their responses (Gallegos et al., 2024b). In the ab-
sence of an adequate external supervision signal,
a single LLLM could produce responses that reflect
its training data distribution and inherent bias.

In this work, we aim to explore whether collec-
tive bias mitigation (CBM) of multiple LLMs can
facilitate the sharing of intrinsic knowledge across
different models and provide external feedback to
member LLMs, thereby effectively mitigating bias
within the models. To this end, we first construct
the model bias behavior dataset CrowdEval by col-
lecting responses from leading LLMs on a bias
benchmark BBQ (Parrish et al., 2021). Using this
dataset, we train a Model Router that determines
the models that should be incorporated into the CBM
framework when given a model prompt. Building
on the model routing, we then propose and com-
pare the bias mitigation performance of various
CBM topologies, as illustrated in Figure 1.

The experiments suggest that: (/) The model
router fine-tuned on CrowdEval effectively identi-
fies the bias type within a query and selects appro-
priate models for the CBM; (2) The bias mitigation
performance of the model router’s candidate model
selection surpasses both random selection and the
best-performing standalone model across different
topologies; (3) Compared to the Committee topol-
ogy, the Debating topology achieves superior bias
mitigation but requires more inference cost.

We summarize the key contributions of this work
as follows: (1) Introducing a model bias behav-
ior dataset. We present CrowdEval, a benchmark
dataset designed to capture and evaluate bias behav-
iors in leading LLMs. (2) Proposing the collective
bias mitigation framework. We analyze different
model topologies and propose a novel collective de-
biasing framework to synergize knowledge among
LLMs and mitigate their bias accordingly. (3) Ex-
tensive experimental evaluations. We conduct
comprehensive experiments over 50 leading LLMs
to assess the effectiveness of the proposed frame-
work, validating its capability to mitigate bias in
LLM responses effectively.

2 Related Work

LLM Bias Evaluation. Recent evaluations of
bias in LLMs often build upon the Implicit Asso-
ciation Test (IAT) framework (Schimmack, 2021),
which gauges the strength of implicit bias towards

specific social groups. Datasets such as CrowS-
Pairs (Nangia et al., 2020) and StereoSet (Nadeem
et al., 2020) utilize prompts tied to social group
attributes, assessing bias by comparing the pseudo-
likelihood of model responses. Notably, StereoSet
introduces an additional "unrelated term" in each
instance (e.g., “The people of Afghanistan are [vio-
lent/caring/fish]”), testing the language modeling
capability alongside bias evaluation. Despite their
utility, these benchmarks often lack precise defini-
tions of the biases they aim to measure (Blodgett
et al., 2021). Addressing this gap, BBQ (Parrish
et al., 2021) reframes bias detection as a structured
question-answering task, where carefully hand-
built questions expose potential biases explicitly.

LLM Bias Mitigation. It can be addressed at var-
ious stages of the model development pipeline (Gal-
legos et al., 2024a). In the pre-inference stage,
Schick et al. (2021) and Mattern et al. (2022) have
explored the use of tailored instructions to elicit
less biased outputs from LLMs. During the model
training phase, techniques like Counterfactual Data
Augmentation (CDA) (Liang et al., 2020; Lu et al.,
2020; Qian et al., 2022) swap protected attributes
to balance the training data distribution across dif-
ferent social groups. Additionally, reinforcement
learning methods (Lu et al., 2022; Ouyang et al.,
2022) have been employed to align LLM responses
with human preference. In the post-inference stage,
strategies like constrained beam search (Saunders
et al., 2021; Chung et al., 2023) focus on limiting
the exploration of biased continuations, thereby
curtailing problematic outputs.

Multi-Model Collective Decision-Making. It
also known as ensemble learning (Sagi and Rokach,
2018; Jiang et al., 2023; Lu et al., 2024), aims to
exploit complementary strengths across different
models. Existing research of ensemble learning
for LLMs can be divided into three categories: 1)
pre-inference ensemble (Lu et al., 2023), which
identifies the most suitable LLM for a given query,
2) in-inference ensemble (Huang et al., 2024; Xu
et al., 2024), which fuses the token-level decisions
of multiple LLMs to collectively determine the
next token, and 3) post-inference ensemble (Owens
et al., 2024; Jiang et al., 2023), which integrates
all candidate decisions made by LLMs individu-
ally. Our approach distinguishes itself by selecting
multiple proficient LLMs for a query prior to infer-
ence and subsequently aggregating their decisions
in particular topologies.



3 Preliminary

Bias in LLMs. LLMs often exhibit systematic
biases in their responses, stemming from imbal-
ances in training data, model architectures, or learn-
ing algorithms (Gallegos et al., 2024a). One com-
mon approach to detecting such biases involves
question-answering proxy tasks, where targeted
bias queries can elicit unintended biases in model
responses (Nangia et al., 2020; Nadeem et al., 2020;
Parrish et al., 2021). In Section 4, we present
CrowdEval that captures the responses of leading
LLMs to these queries. Subsequently, in Section 7,
we describe how this dataset can be leveraged to
systematically quantify and analyze bias in LLMs.

Collective Bias Mitigation. To alleviate bias in
LLMs, we propose a CBM framework, which lever-
ages multiple distinct models to collaboratively
reduce bias in its responses. Given an arbitrary
model prompt P, we first select a set of k£ models
from a model pool by a model router M sjecteqd <
Router (M, P) and arrange them under a par-
ticular topology ¢t € 7, resulting in a system
CBM = {Meiected, t}- All models in CBM collec-
tively produce a final response R inq; < CBM(P).
Section 5 details our model selection strategy, and
Section 6 explores various CBM topological con-
figurations. Finally, in Section 8, we analyze the
effectiveness of these topologies in mitigating bias.

4 CrowdEval Dataset Construction

LLMs are trained on diverse datasets, which in-
evitably introduce variations in their knowledge
representations and underlying value systems. To
systematically investigate the intrinsic biases em-
bedded within leading LLMs across different social
dimensions, we construct the CrowdEval dataset’.
This dataset is built by querying multiple LL.Ms
with questions derived from the ambiguous sub-
set of the BBQ dataset (Parrish et al., 2021) and
collecting their respective responses. The goal of
CrowdEval is to facilitate a comparative analysis
of how different LLMs handle socially sensitive
topics. Table 1 summarizes the distribution of ques-
tions across the various social dimensions included
in CrowdEval. For most social dimensions, we ran-
domly sample 1,024 questions from the ambiguous
subset of BBQ. However, for dimensions where the
original dataset contains fewer instances (marked

ISee https://shorturl.at/8HyNo. We will release the
dataset after the review process.

Social dimension Size
Age 1,024
Gender 1,024
Disability * 778
Nationality 1,024
Race 1,024
Religion 600
Socioeconomic Status (SES) 1,024
Sexual Orientation (SO) * 432

Table 1: Distribution of the CrowdEval Dataset. Social
dimensions marked with x contain fewer instances in
the BBQ dataset, so all available questions are included.

with an asterisk), we include all available questions
to ensure sufficient representation in our dataset.
To ensure broad representativeness and repro-
ducibility, we curated a model pool M, of over
50 open-source LLLMs. These models vary in size,
architecture, and training corpus, thereby encap-
sulating a wide range of model behaviors and po-
tential biases. The complete list of models is pro-
vided in Table 5. As illustrated in Table 2, for
each model m; € M., we construct a model
prompt P < {C, Q, A} and generate a model re-
sponse R < m;(P) with zero temperature. The
detailed pipeline can be found in Appendix A.

5 Model Routing

Model selection in our CBM system aims to reduce
holistic bias by choosing the most appropriate mod-
els for a given query. Leveraging its understanding
of the distinct model behavior, the model router
recommends those models that are most neutral
with respect to the input query.

Instead of training a dedicated classifier from
scratch, we propose fine-tuning a pre-trained LLM
to serve as the model router. Since understanding
nuanced context semantics and memorizing model
behavior are critical for mode routing, we hypoth-
esize that an LL.M-based model router can more
effectively capture the subtle bias present in queries
and generalize better to unseen bias categories.

To determine the model candidates for CBM, we
adopt a probability-based routing mechanism. Dur-
ing training, to prevent the model from overfit-
ting to dominant model names (e.g., ‘Llama’ or
‘Owen’), we replace each model name with a unique
identifier (e.g., ‘model_{index}’). This ensures that
the router learns to associate response biases with
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Field Description

The social dimension of the bias target.
Example: Age
Background information or scenario.

Social Dimension (S)

Example: [ saw a grandson and their grandfather last week outside the Walmart trying to book a cab on Uber.

Example: The grandfather (bias-target) | The grandson (non-target) | Can’t be determined (neutral)

Context (C)
. A question designed to elicit potential bias.
Question (Q) Example: Who was not comfortable using the phone?
Answer Choices (A) Stereotypical, anti-stereotypical, and unknown options.
The answer generated by each LLM.
Model Response (R) Example: The grandfather
Bias Label (£)

Example: bias-target

Annotations indicating whether the response aligns with bias-target, non-bias-target, or neutral.

Table 2: Example of a CrowdEval Instance. For each model, we construct a model prompt using the provided
Context, Question, and Answer Choices from the BBQ dataset. The model then produces a Model Response. The
Bias Label is determined by the bias inclination (bias-target/non-target/neutral) exhibited in the Model Response.

underlying model behaviors rather than specific
names. In the inference phase, we extract tokens
corresponding to potential model candidates and
rank them based on their predicted token probabil-
ities. This ranking determines the most suitable
models for a given query. A detailed explanation
of the routing pipeline is provided in Appendix B.

6 Collective Bias Mitigation Topologies

We introduce a range of CBM topologies, as illus-
trated in Figure 2. These topologies define different
mechanisms for coordinating multiple LLMs to col-
laboratively generate a final response. The primary
objective is to mitigate bias and enhance the overall
quality of outputs. In each topology, solid arrows
represent the input-output flow of models, while
dashed lines denote inter-model communication.
The model router dynamically assigns models from
the model pool M, to these topologies based on
the given model prompt P. The full prompt tem-
plates are provided in Appendix C.

Single Topology. As depicted in Figure 2(a), the
Single topology serves as the baseline. Given an
arbitrary model prompt P, the model router selects
the top-ranked model 7729 < Router(M oo, P),
the selected model provides the final response in a
single turn: R fina = mo(P).

Sequential Topology. In the sequential topology
shown in Figure 2(b), the model router selects k
models {9, -+ , My} < Router(Mpeor, P)
given the original model prompt P. The inter-
mediate responses R; from each model are iter-
atively passed through the model sequence. Each
model can refer to the responses of all previous
models and update their individual response to

the model prompt P < P + R;. The final re-
sponse is produced by the last model in the se-
quence R finar = my(P’).

Voting Topology. The Voting topology, illus-
trated in Figure 2(c), follows a parallel process-
ing approach. Each selected model independently
generates a response:

Ri:mi(P), Vi € {0,1,"' ,/{7}. (D)

The final response is then determined via a vot-
ing mechanism. In our setup, the majority vote
determines the final output.

R finat = Majority(Ro, R1, -+, Rg). (2

Debating Topology. Similar to the Voting topol-
ogy, each model initially generates an indepen-
dent response, as shown in Figure 2(d). These
responses are then incorporated into an updated
prompt: P <~ P+{Ro,R1,- - ,Ry}. The debate
continues iteratively until a consensus is reached:

R final = Consensus(Ro, Ry, -+, Ri). (3)

Committee Topology. Committee topology dif-
fers from the Debating approach by incorporat-
ing a designated coordinator model, highlighted
in yellow in Figure 2(e). The coordinator receives
the initial prompt P and sequentially queries other
models for responses. Based on these inputs, it
drafts a consolidated motion and seeks approval
from the other models.

Motion = Coordinator(Ri, Ra,- -, Rk). (4)

The process iterates until consensus is reached:
R final = Consensus(ri;(Motion)). In our setup,
we set the consensus threshold to 50%. Given the
coordinator’s pivotal role, we always designate 1
as the coordinator model.
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Figure 2: Topologies within Our CBM Framework. A model prompt P is routed to one or more models 7m; from
the set M¢icct- Each selected model independently produces a response R;. These responses are then exchanged
among the models (as indicated by the dashed lines), enabling them to share insights and refine their individual
outputs. Finally, these refined responses are combined to produce the final CBM output R ;.

7 Experiments

7.1 Bias Benchmark and Metrics

Bias Benchmark. The Bias Benchmark for Ques-
tion Answering (BBQ) (Parrish et al., 2021) is
a widely used dataset for evaluating model bias
across nine key social dimensions: age, disabil-
ity status, gender identity, nationality, physical
appearance, race, religion, socioeconomic sta-
tus (SES), and sexual orientation (SO). While alter-
native bias evaluation datasets exist (Nangia et al.,
2020; Nadeem et al., 2020; Esiobu et al., 2023), we
select BBQ as our primary benchmark due to its ex-
tensive coverage of social biases and the sufficient
scale of its test instances (Blodgett et al., 2021).
BBQ frames bias assessment as a question-
answering task that serves as an Implicit Asso-
ciation Test (IAT) proxy (Schimmack, 2021). It
includes two types of context scenarios: ambigu-
ous and disambiguated. The ambiguous scenarios
lack sufficient information to determine whether
the target or non-target answer is correct, serving
to assess implicit bias in LLMs. In contrast, the
disambiguated scenarios provide additional infor-
mation that aims to guide the model toward the
intended answer, testing whether bias can override
evidence-aided reasoning. In this work, we ex-
clude the disambiguated instances, as our focus
is on measuring the inherent bias in LLMs rather
than the interplay between bias and rationality.
As illustrated in Table 2, each BBQ instance
consists of a Question (Q) accompanied by min-
imal Context (C), intentionally designed to be
insufficient for determining a definitive answer.

Each question presents three Answer Choices (A):
one reflects the bias associated with a specific so-
cial group (the bias-target), while the other two
serve as a comparison — one representing a differ-
ent but related social group (the non-target) and
the other serving as a neutral choice.

Bias Metrics. To evaluate implicit bias in LLMs,
we adapt the Bias Score (BS) defined in BBQ :

Cnetural 2 X Cbiased

BS = (1-

Ctotal Clotal — Cheutral

where the first term 1 — % represents the pro-
portion of non-neutral responses in the CrowdEval
test set. Here, C},cutrqr denotes the number of neu-
tral responses, and C}¢,; represents the total num-
ber of model responses. Since neutral outputs are
considered the desirable outcome in ambiguous
settings, a higher value of B.S (i.e., a larger share
of non-neutral answers) indicates a more severe
bias. The second term % — 1 measures
the tendency of non-neutral responses (i.e., bias-
target or non-target), where Chjiaseq 1S the number
of bias-target responses. A positive B.S signifies
an inclination toward biased responses, whereas a
negative BS implies resistance against the bias.

7.2 Model Routing Metrics

In the Bias Detection task, we assess the router’s
ability to correctly identify potential bias in a given
model prompt using Accuracy. For each prompt
p; € P, the router is considered correct if it predicts
the correct social dimension, denoted as acc; = 1,
and incorrect otherwise (acc; = 0). The overall ac-
curacy is computed as: Accuracy = % vazl acc;,



where NV is the total number of prompts. For the
Model Selection task, the primary objective is to
pick model candidates that bring neutral values to
the given prompt. For each prompt p; € P, we
have prc; = T./T,, where T, represents the num-
ber of neutral models, and 7T, is the total number
of proposed models. The overall precision is then
calculated as Precision = & S| pre;. By opti-
mizing accuracy, we ensure that the router correctly
identifies biases in queries, while improving preci-
sion ensures that the system recommends neutral
and appropriate models in our CBM framework.

7.3 Model Cost Metrics

As shown in Table 5, we adopt FLOPs-per-Token
(FpT) (Ouyang, 2023) to quantify computational
cost. For a given model m;, we measure its FpT;,
and multiply that by the total number of tokens it
processes C’Z ien- This yields the individual model
cost: Cost; = FpT; x C},,. ... When multiple mod-
els are employed in a particular topology, we sum
the individual costs of each participating model to

obtain the overall cost: Cost = Zf:o Cost;.

7.4 Experiment Settings

Model Pool. We assembled a candidate pool of
over 50 trending Text-Generation models from
HuggingFace?, ensuring a diverse representation of
model architectures and training corpora. Further-
more, to balance the breadth of our research with
computational feasibility, we focused on LLMs
with parameter sizes ranging from 0.5B to 56B.
The full list is provided in Table 5. To construct the
CrowdEval dataset, the inference temperature was
set to zero, ensuring consistent and reproducible
data for model profiling.

Model Routing. We fine-tuned an LLM as the
model router to detect bias elicitation and then rec-
ommended the fop-k candidates from the model
pool to integrate with our CBM framework. We
split the CrowdEval dataset as the train and eval
subsets, where each social dimension has 256 ran-
domly selected instances in eval, and the remaining
instances are assigned to train. To investigate how
the scale of model routers affects the model routing
performance, we select distinct LLMs from the var-
ious ranges from 1B to 32B as outlined in Table 6.
Model routers are optimized using the Adam opti-
mizer on a single epoch of the CrowdEval train sub-

2h'ctps ://huggingface.co/models?pipeline_tag=
text-generation&sort=trending

set with a learning rate of 5 x 10> and a batch size
of 4. We use “Qwen2.5-32B” as the model router
in the following experiments. For model inference,
we utilized bitsandbytes (Dettmers et al., 2022)
for 8-bit quantization and employed vLLM (Kwon
et al., 2023) for inference acceleration.

Model Assignment. In the Single Topology, the
highest-ranked candidate is assigned to the model
placeholder. For the Sequential Topology, we fol-
low the recommended order from the model router.
For disordered topologies, including Voting, Debat-
ing, and Committee Topologies, model assignments
are performed randomly across available slots.

8 Discussion and Key Takeaways

Can Model Routers Understand Bias? To eval-
uate whether the model router can recognize po-
tential bias in queries, we introduce an auxiliary
classification task. Specifically, we fine-tune the
model router to classify the social dimension S of
the given prompt P. These pairs (P, S) are then
used to fine-tune the selected model routers (see
Appendix B for detailed training configurations).
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Figure 3: Bootstrapped Model Routing Accuracy
Scores. Higher accuracy indicates improved bias classi-
fication capability, while lower variance signifies greater
predication consistency. The dashed lines indicate the
mean accuracy.

To quantify the uncertainty of the model pre-
dictions, we employ bootstrap sampling (John-
son, 2001) with 512 sampling iterations on the
CrowdEval eval subset to estimate the distribution
of routing accuracy. A lower variance in the dis-
tribution indicates greater consistency in model
predictions. As shown in Figure 3, accuracy im-
proves with increasing model size with decreasing
variance. Notably, performance plateaus once the
model parameters exceed 9B. Among the evaluated
models, ‘Owen-2.5-32B” achieves the highest mean
accuracy of 0.851, suggesting that the model router
can effectively detect bias within model prompts.
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Dimension 1B 3B 9B 14B 32B

Dimension Random 1B 3B 9B 14B 32B

Age 0.520 0.668 0.840 0.836 0.875 Age 0.480  0.688 0.707 0.793 0.934 0.910
Gender 0.434 0.641 0.883 0.902 0.922 Gender 0.676  0.875 0.945 0.965 0.961 0.973
Disability  0.492 0.668 0.801 0.832 0.852 Disability 0375  0.613 0.605 0.867 0.922 0.910
Nationality 0.430 0.688 0.781 0.836 0.801 Nationality ~ 0.469  0.555 0.672 0.762 0.879 0.957
Race 0.391 0.641 0.793 0.840 0.797 Race 0391  0.535 0723 0.699 0.902 0.961
Religion 0426 0.664 0.766 0.832 0.852 Religion 0379  0.547 0.648 0.902 0.891 0.949
SES 0414 0.652 0.789 0.820 0.883 SES x* 0.484  0.465 0516 0.781 0.762 0.785
SO * 0.313 0.648 0.719 0.758 0.809 SO * 0.387  0.355 0426 0.574 0.633 0.781
Overall 0.424 0.665 0.801 0.831 0.851 Overall 0471  0.582 0.651 0.804 0.883 0.941

Table 3: Micro Accuracy across 8 social dimensions,
where the dimensions marked with * are excluded in the
training set. The bold scores indicate the highest scores
with respect to each social dimension.

Can the Model Router Recommend Suitable
Candidates? Given the variations in training
datasets and algorithms, different LLMs may en-
code distinct understandings and values, often re-
sulting in biased responses. This raises the question
of whether the model router can effectively recom-
mend suitable models for our CBM framework to re-
duce the potential bias from the source. As shown
in Figure 4, we assess the precision of the router-
recommended models by measuring the proportion
of their CrowdEval responses classified as neutral.
Compared to random selection, the router achieves
higher precision and greater consistency (tighter
variance) in its selections. However, we also ob-
serve that this precision does not increase linearly
with the model size. The performance improve-
ments begin to flatten out once the router reaches
about 9B parameters. This saturation suggests that
beyond a certain scale, simply scaling the router up
yields diminishing returns in routing performance.

Al

Qwen-2.5 (14B)

Random Sampling == Llama 3.2 (18) * Qwen-2.5 (38) == Gemma-2 (98) Qwen-2.5(328)

Figure 4: Bootstrapped Model Routing Precision Scores.
A higher score indicates that the router can more reliably
direct queries to the correct neutral models.

Can the Model Router Generalize to Unseen
Bias Dimensions? To investigate whether the
router can detect bias in dimensions not observed
during training, we excluded SES and SO from the

Table 4: Micro Precision across 8 social dimensions,
where the dimensions marked with * are excluded in the
training set. The bold scores indicate the highest scores
with respect to each social dimension.

router training set, then tested the router on all 8
social dimensions, including the omitted ones.
From Table 3, we see that classification accuracy
for SES and SO steadily increases with model size,
reaching 0.883 and 0.809, respectively, when using
the 32B router. Although this is slightly lower than
the performance on some seen categories, both SES
and SO results remain substantially above random
selection (0.125). These findings suggest that once
the router reaches a sufficient scale (9B or above), it
gains a notable zero-shot generalization capability,
allowing it to recognize unseen bias dimensions.
A similar pattern emerges in Table 4, where the
32B router achieves the highest overall precision,
measuring 0.785 for SES and 0.781 for SO. While
the drop in performance for SES and SO compared
to seen categories indicates that direct training data
still confers an advantage, the promising precision
on these unseen dimensions underscores its capac-
ity to generalize beyond its seen dimensions and
accurately discern bias in unseen dimensions.

Does Model Diversity Help Bias Mitigation?
Leveraging diverse model candidates in the CBM
framework distinguishes our work from previous
studies (Majumdar et al., 2024; Owens et al., 2024).
To investigate whether model diversity can aid
bias mitigation, we performed an ablation study
comparing three selection strategies: (1) Random
Selection (RS), where models are randomly cho-
sen from the pool M., (2) Best Selection (BS),
where each query is assigned to its best-matched
model Mg < Router(P), and (3) Model Rout-
ing (MR), where a model set {7;,Vi € 0,--- , k}
are selected by the model router. As shown in
Table 8, RS yields limited bias mitigation, while
BS achieves results comparable to MR under the
top-3 configuration. However, in the fop-5 setting,



MR consistently produces lower bias scores than
BS. These findings demonstrate that leveraging a
diverse set of well-matched models fosters more
effective, holistic bias mitigation.

Does Collective Bias Mitigation work? Figure 1
shows bootstrapped bias distributions across 8 so-
cial dimensions for 5 topologies: Single, Sequential,
Voting, Debating, and Committee under the fop-5
configuration. We highlight our main findings:

1) Sequential Struggles to Mitigate Bias. In the
Sequential topology, each model response feeds
directly into the next in a chain-like manner. This
structure often fails to reduce bias; in fact, it can
exacerbate biases introduced by earlier models. As
seen in Table 8, the bias score increases when the
chain length (i.e., the number of models) grows,
highlighting the risk of compounding bias.

2) Voting Provides a Stable Improvement. De-
spite its conceptual simplicity, the Voting topology
consistently outperforms the Single baseline across
the eight social dimensions. By averaging multi-
ple model responses, it dilutes individual biases,
leading to more balanced final responses. Table 8
shows that Voting can achieve better performance
under the model routing setting.

3) Debating Achieves Lower Bias Scores. The
Debating topology allows multiple candidates to
exchange arguments iteratively. This deeper inter-
action facilitates more extensive revisions of initial
responses, thereby driving down the overall bias
score. However, as shown in Figure 5, Debating re-
quires approximately 27 times more computational
resources compared to the Single baseline.

4) Committee Shows Reduced Variance. Al-
though Debating often achieves the lowest absolute
bias score, the Committee topology exhibits more
consistent results. By appointing a coordinator
that reconciles and finalizes decisions, the Commit-
tee approach curtails the scope of model discus-
sion, yielding tighter variance in their responses
and lower cost in model inference.

Overall, our findings show that cooperating di-
verse models within the CBM framework remarkably
relieves holistic bias across sensitive social dimen-
sions. This reduction is especially pronounced in
Debating and Committee, thereby confirming the
effectiveness of collective bias mitigation.

How Many LL.Ms Should Be Included in the
Framework? To identify the optimal number of
LLMs in the CBM framework, we compared the
model cost for four configurations: top-1, top-3,

36 )
Single

Sequential
Voting
Debating
Committee

27 A

W

Top-1 Top-3 Top-5 Top-7

Figure 5: Model Cost of each Topology across Different
Candidate Configuration.

top-5, and top-7. As shown in Figure 5, we mea-
sure the Model Cost of the Single topology as our
baseline, with all other configurations presented as
cost ratios relative to this baseline.

The results show that Sequential and Voting
topologies increase in cost almost linearly as more
models are introduced, though the Sequential ap-
proach tends to be slightly costlier because each
model processes the previous model’s responses.
In contrast, Debating and Committee topologies
exhibit exponential cost growth, with Debating
scaling more sharply since all participating mod-
els must collectively expend additional effort to
reach a consensus. Despite the higher overall cost
in these multi-model settings, the Committee topol-
ogy consistently requires fewer costs than Debating
for comparable bias mitigation, indicating that the
coordinator in Committee manages internal model
collaboration efficiently. Notably, at the fop-7 con-
figuration, the cost gap between Debating and Com-
mittee seems reduced because the maximum con-
sensus limit is reached for many debating cases.

9 Conclusion

In this paper, we presented a novel collective bias
mitigation framework by coordinating multiple
LLMs, where we first introduced a model router
to forward queries to the suitable LLLMs, and then
we coordinated these LLMs in different topologies.
While sequential chaining can exacerbate biases,
other CBM topologies have proved more effective
in mitigating bias. The Debating structure often
achieved the lowest bias scores but imposed higher
inference overhead. Meanwhile, the Committee
approach used a coordinator to manage the inter-
model discussion, offering a favorable balance be-
tween bias reduction and computational cost.



Limitations

While our work demonstrates the promise of col-
lective bias mitigation (CBM) through multi-model
collaboration, several limitations must be acknowl-
edged. Because our approach primarily relies on
the BBQ dataset—developed within a U.S.-centric
cultural context—it may not capture the full range
of biases or subtle nuances in other cultural, re-
gional, or linguistic settings. Furthermore, cer-
tain CBM topologies, particularly the Debating and
Committee structures, require iterative processing
that can increase computational overhead and la-
tency, limiting their suitability for real-time ap-
plications. Although our empirical experiments
show that model routers can transfer their selection
abilities from seen social dimensions to unseen
ones, their performance depends heavily on the
data distribution in the CrowdEval dataset; as a re-
sult, their capacity to generalize to broader or less
well-represented bias categories remains an open
question. Addressing these issues in future work
on LLM bias mitigation should include broader
datasets, additional evaluation metrics, and further
optimization for computational efficiency.
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A Details of the CrowdEval Dataset

We construct the CrowdEval dataset by aggregat-
ing responses from leading LLMs listed in Table 5.
These responses correspond to instances from the
ambiguous subset of the BBQ dataset, which is
specifically designed to evaluate biases across eight
key social dimensions: age, gender, disability,
nationality, race, religion, socioeconomic status
(SES), and sexual orientation.

We curated a selection of trending text-
generation LL.Ms from Huggingface, prioritizing
models known for their popularity and diversity
in architectures and training corpora. The crowd
framework is designed for scalability, allowing
seamless integration of additional LLMs into the
candidate pool. All selected models are open-
source, with parameter sizes ranging from 1 bil-
lion to 56 billion. The complete list of models is
provided in Table 5. The individual model bias
measurement is provided in Figure 6.

Note that BBQ is constructed in English and is
grounded in the cultural and societal norms of the
United States. Consequently, its framing of social
biases may not be universally applicable across
different cultural contexts.

CrowdEval Prompt Template

Given the context, select the most suitable
answer for the question:

Context: {context}

Question: {question}

Answer Choices: {answer choices}

B Details of Model Routing

The model routing process encompasses two key
tasks: Bias Detection and Model Selection.

Bias Detection. serves as an auxiliary task for
identifying potential biases in the model input. The
‘prediction_label’ provided by BBQ can indicate
one of the following bias attributes: age, disability,
gender, nationality, race, religion, sexual orienta-
tion (S0O), socioeconomic status (SES).

Bias Detection Prompt Template

Context: {context}

Question: {question}

Answer Choices: {answer choices}
Bias Attribute: [prediction_label]
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Model Selection. The goal of model selection is
to reduce the holistic bias level in the CBM system.
Given a user query, the model router selects the
top-k models from the model pool. We rely on the
router to learn the distinct behaviors of each model
and to recommend those that are most neutral to
the given query. During the training phase, we
assign an ad-hoc token to represent each model and
generate training data following the model selection
template described below. In the prediction phase,
we focus exclusively on the tokens corresponding
to each candidate model, ranking these models by
their normalized token probabilities.

Algorithm 1: Model Selection
Input

: query: Query String.
top_k: Number of Model
Selection.
tokenizer: LLM Tokenizer.
router: LLM Router.
Output :model_probs: Model Probability
Dict.
Routing query, top_k
Initialize model_probabilities < [];
Disable Model Gradient Propagation;
for model_index in model_list do
input_text < query +
model_index;
input_ids «
tokenizer(input_text);
output < router(input_ids);
loss < outputs.loss;
prob < exp(—1loss);
model_probs|model_index] <
prob;

end
Return model_probs|: top_k]|
EndRouting

Normalization: To prevent overfitting to dom-
inant model names in the model pool (such as
“Llama” or “Qwen”), each candidate model is repre-
sented as a unique identifier (e.g., model_{index}).
Scoring: For each candidate model, the routing
model computes the negative log-likelihood loss
using the prepared input. This loss value is then
exponentiated to compute the model’s selection
likelihood. Selection: The Piejection Of €ach model
in the model pool is sorted by the probabilities and
retaining the k highest-scoring models.



Model Name Model Type Model Size Model Cost (FpT) Model Link
meta-llama/Llama-3.2-1B-Instruct Llama 1B 247G https://huggingface.co/meta-1lama/Llama-3.2-1B-Instruct
HuggingFaceTB/SmolLM2-1.7B-Instruct Llama 1.7B 3.42G https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct
meta-llama/Llama-3.2-3B-Instruct Llama 3B 6.42G https://huggingface.co/meta-1lama/Llama-3.2-3B-Instruct
chuanlil 1/Llama-3.2-3B-Instruct-uncensored Llama 3B 6.42G https://huggingface.co/chuanli1l/Llama-3.2-3B-Instruct-uncensored
meta-llama/Llama-3.1-8B-Instruct Llama 8B 15.00G https://huggingface.co/meta-1lama/Llama-3.1-8B-Instruct
meta-llama/Meta-Llama-3-8B-Instruct Llama 8B 15.00G https://huggingface.co/meta-1lama/Meta-Llama-3-8B-Instruct
lightblue/suzume-1lama-3-8B-multilingual Llama 8B 15.00G https://huggingface.co/lightblue/suzume-1lama-3-8B-multilingual
Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2 Llama 8B 15.00G https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-Vv2
mlx-community/Llama-3.1-8B-Instruct Llama 8B 15.00G https://huggingface.co/mlx-community/Llama-3.1-8B-Instruct
maum-ai/Llama-3-MAAL-8B-Instruct-v0.1 Llama 8B 15.00G https://huggingface.co/maum-ai/Llama-3-MAAL-8B-Instruct-ve.1
ValiantLabs/Llama3.1-8B-Enigma Llama 8B 15.00G https://huggingface.co/ValiantLabs/Llama3.1-8B-Enigma
DeepMount00/Llama-3.1-8b-ITA Llama 8B 15.00G https://huggingface.co/DeepMount@@/Llama-3.1-8b-ITA
shenzhi-wang/Llama3-8B-Chinese-Chat Llama 8B 15.00G https://huggingface.co/shenzhi-wang/L1lama3-8B-Chinese-Chat
elinas/Llama-3-13B-Instruct Llama 13B 25.08G https://huggingface.co/elinas/Llama-3-13B-Instruct
mistralai/Mistral-7B-Instruct-v0.2 Mistral 7B 14.22G https://huggingface.co/mistralai/Mistral-7B-Instruct-ve.2
mistralai/Mistral-7B-Instruct-v0.3 Mistral 7B 14.22G https://huggingface.co/mistralai/Mistral-7B-Instruct-ve.3
mistralai/Mixtral-8x7B-Instruct-v0. 1 Mistral 56B 2547G https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-ve.1
Qwen/Qwen2.5-0.5B-Instruct Qwen 0.5B 0.99G https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
Qwen/Qwen2-0.5B-Instruct Qwen 0.5B 0.99G https://huggingface.co/Qwen/Qwen2-0.5B-Instruct
Qwen/Qwen2.5-1.5B-Instruct Qwen 1.5B 3.09G https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
Qwen/Qwen2-1.5B-Instruct Qwen 1.5B 3.09G https://huggingface.co/Qwen/Qwen2-1.5B-Instruct
Qwen/Qwen2.5-3B-Instruct Qwen 3B 6.17G https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
Qwen/Qwenl1.5-4B-Chat Qwen 4B 7.13G https://huggingface.co/Qwen/Qwen1.5-4B-Chat
Qwen/Qwen2.5-7B-Instruct Qwen 7B 14.14G https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
Qwen/Qwen2-7B-Instruct Qwen 7B 14.14G https://huggingface.co/Qwen/Qwen2-7B-Instruct
Qwen/Qwen2.5-14B-Instruct Qwen 14B 27.97G https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
Qwen/Qwenl.5-14B-Chat Qwen 14B 27.97G https://huggingface.co/Qwen/Qwen1.5-14B-Chat
Qwen/Qwen2.5-32B-Instruct Qwen 32B 63.98G https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
Qwen/Qwen1.5-32B-Chat Qwen 32B 63.98G https://huggingface.co/Qwen/Qwen1.5-32B-Chat
01-ai/Yi-1.5-6B-Chat Yi 6B 11.56G https://huggingface.co/@1-ai/Yi-1.5-6B-Chat
01-ai/Yi-1.5-9B-Chat Yi 9B 17.11G https://huggingface.co/01-ai/Yi-1.5-9B-Chat
01-ai/Yi-1.5-34B-Chat Yi 34B 67.89G https://huggingface.co/@1-ai/Yi-1.5-34B-Chat
deepseek-ai/DeepSeek-V2-Lite-Chat DeepSeek 15B 4.94G https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat
deepseek-ai/deepseek-1Im-7b-chat DeepSeek 7B 12.97G https://huggingface.co/deepseek-ai/deepseek-11m-7b-chat
google/gemma-2-2b-it Gemma 2B 5.23G https://huggingface.co/google/gemma-2-2b-it
google/gemma-2-9b-it Gemma 9B 18.52G https://huggingface.co/google/gemma-2-9b-it
CohereForAl/aya-expanse-8b Aya 8B 16.09G https://huggingface.co/CohereForAl/aya-expanse-8b
microsoft/phi-3.5-mini-instruct Phi 4B 7.50G https://huggingface.co/microsoft/phi-3.5-mini-instruct
microsoft/Phi-3-mini-4k-instruct Phi 4B 7.50G https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
microsoft/Phi-3-medium-4k-instruct Phi 14B 27.73G https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
BAAI/AquilaChat-7B BAAI 7B 13.83G https://huggingface.co/BAAI/AquilaChat-7B
baichuan-inc/Baichuan2-7B-Chat Baichuan 7B 25.70G https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat
baichuan-inc/Baichuan2-13B-Chat Baichuan 13B 26.64G https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat
tiiuae/falcon-7b-instruct Falcon 7B 0.59G https://huggingface.co/tiiuae/falcon-7b-instruct
tiiuae/falcon-11B Falcon 11B 0.54G https://huggingface.co/tiiuae/falcon-11B

amd/AMD-OLMo-1B Other 1B 2.35G https://huggingface.co/amd/AMD-0OLMo-1B
ibm-granite/granite-3.0-8b-instruct Other 8B 16.33G https://huggingface.co/ibm-granite/granite-3.0-8b-instruct
ajibawa-2023/Uncensored-Frank-13B Other 13B 26.64G https://huggingface.co/ajibawa-2023/Uncensored-Frank-13B

Table 5: List of Candidates in the Model Pool. We collect the leading text-generation models on HuggingFace
and use FLOPs-per-token (FpT) as our Model Cost metric. These values, computed via calflops (MrYxJ, 2025),
represent the number of floating-point operations required to generate each token during model inference.

Model Name Size

1B
3B
9B
14B
32B

meta-llama/Llama-3.2-1B-Instruct
Qwen/Qwen?2.5-3B-Instruct
google/gemma-2-9b-it
Qwen/Qwen?2.5-14B-Instruct
Qwen/Qwen?2.5-32B-Instruct

Table 6: List of Model Routers. We select distinct LLMs
from the various ranges from 1B to 32B.

Model Selection Prompt Template

Context: {context}

Question: {question}

Answer Choices: {answer choices}
Model: [prediction_label]
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C Details of CBM Topologies

Single Topology. The Single Topology incorpo-
rates only a single model My, into the CBM frame-
work, serving as the baseline for standard LLM
behavior. Given a model prompt constructed by the
below template P = {Q, C, A}, the model router
selects Mg, and then the CBM system directly gener-
ates the final response as R finqr < 1m0 (P).

Single Topology Prompt Template

Given the context, select the most suitable
answer for the question:

Context: {context}

Question: {question}

Answer Choices: {answer choices}



https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-uncensored
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual
https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
https://huggingface.co/mlx-community/Llama-3.1-8B-Instruct
https://huggingface.co/maum-ai/Llama-3-MAAL-8B-Instruct-v0.1
https://huggingface.co/ValiantLabs/Llama3.1-8B-Enigma
https://huggingface.co/DeepMount00/Llama-3.1-8b-ITA
https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat
https://huggingface.co/elinas/Llama-3-13B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
https://huggingface.co/Qwen/Qwen2-0.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://huggingface.co/Qwen/Qwen1.5-4B-Chat
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/Qwen/Qwen1.5-14B-Chat
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://huggingface.co/Qwen/Qwen1.5-32B-Chat
https://huggingface.co/01-ai/Yi-1.5-6B-Chat
https://huggingface.co/01-ai/Yi-1.5-9B-Chat
https://huggingface.co/01-ai/Yi-1.5-34B-Chat
https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat
https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat
https://huggingface.co/google/gemma-2-2b-it
https://huggingface.co/google/gemma-2-9b-it
https://huggingface.co/CohereForAI/aya-expanse-8b
https://huggingface.co/microsoft/phi-3.5-mini-instruct
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
https://huggingface.co/BAAI/AquilaChat-7B
https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat
https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat
https://huggingface.co/tiiuae/falcon-7b-instruct
https://huggingface.co/tiiuae/falcon-11B
https://huggingface.co/amd/AMD-OLMo-1B
https://huggingface.co/ibm-granite/granite-3.0-8b-instruct
https://huggingface.co/ajibawa-2023/Uncensored-Frank-13B

Model Name Age Gender Disability Nationality Race_ethnicity Religion SES SO

Qwen-Qwen2-0.5B-Instruct -0.059  -0.292 0.035 0.392 0.194 0.023 0.028  -0.067
Qwen-Qwen2.5-0.5B-Instruct 0.025 0.068 -0.078 0.006 -0.020 0.217 0.025  -0.028
amd-AMD-OLMo-1B -0.164  -0.065 -0.077 -0.082 -0.027 -0.037 -0.028  -0.027
meta-llama-Llama-3.2-1B-Instruct -0.003 0.027 -0.257 -0.294 -0.235 0.030 0.012  -0.232
microsoft-phi-3.5-mini-instruct 0.299 0.127 0.171 0.051 0.027 0.059 0.147  -0.003
Qwen-Qwen2-1.5B-Instruct 0.132 0.016 0.239 0.014 0.056 0.031 0.145  0.025
Qwen-Qwen2.5-1.5B-Instruct 0.037 0.019 0.068 -0.037 0.001 0.026 0.004  -0.028
HuggingFaceTB-SmolLM2-1.7B-Instruct 0.093 0.065 0.077 0.020 0.023 0.081 0.081 0.045
google-gemma-2-2b-it -0.046 0.077 0.068 0.016 -0.007 0.008 0211  0.005
ibm-granite-granite-3.0-2b-instruct 0.153 0.047 0.119 0.048 0.076 0.130 0.190  0.058
chuanlil I-Llama-3.2-3B-Instruct-uncensored 0.182 0.053 0.089 0.065 0.039 0.110 0.097 -0.011
meta-llama-Llama-3.2-3B-Instruct 0.196 0.036 0.082 0.055 0.034 0.109 0.145  -0.035
Qwen-Qwen2.5-3B-Instruct 0.190 0.100 0.076 0.029 0.034 0.037 0.133  0.003
Qwen-Qwenl.5-4B-Chat 0.203 0.159 0.190 0.097 0.063 0.169 0206  0.015
microsoft-Phi-3-mini-4k-instruct 0.285 0.035 0.136 0.027 0.002 0.068 0.067  -0.027
microsoft-Phi-3-medium-4k-instruct 0.165 0.009 0.021 0.008 -0.002 0.061 0.031 0.012
01-ai-Yi-1.5-6B-Chat 0.195 0.092 0.471 0.131 0.077 0.089 0315 -0.001
tiiuae-falcon-7b-instruct -0.083  -0.054 -0.054 -0.230 -0.068 -0.186 -0.339  -0.112
BAAI-AquilaChat-7B -0.029  -0.115 0.104 0.020 -0.038 0.081 0.097  0.071
baichuan-inc-Baichuan2-7B-Chat 0.040 -0.051 -0.071 -0.006 -0.038 0.073 0.094  -0.018
deepseck-ai-DeepSeek-V2-Lite-Chat 0.193 0.031 0.179 0.035 0.106 0.071 0.128  0.051
deepseek-ai-deepseek-1lm-7b-chat 0.208 0.025 0.127 0.037 0.020 0.074 0.173  0.040
georgesung-llama2_7b_chat_uncensored 0.062 0.020 -0.055 0.016 -0.033 -0.005 0.057 -0.020
mistralai-Mistral-7B-Instruct-v0.2 0.080 0.012 0.057 0.010 0.004 0.043 0.032  0.005
mistralai-Mistral-7B-Instruct-v0.3 0.145 0.007 0.029 0.005 0.006 0.067 0.029  0.002
Qwen-Qwen2-7B-Instruct 0.179 0.066 0.085 0.020 0.060 0.092 0.135  -0.062
Qwen-Qwen2.5-7B-Instruct 0.058 0.005 0.015 0.006 0.002 0.051 0.007 -0.016
Tap-M-Luna-Al-Llama2-Uncensored 0.090 0.020 0.088 0.030 -0.002 0.047 0.100  0.012
arcee-ai-Llama-3.1-SuperNova-Lite 0.338 0.060 0.215 0.084 0.062 0.075 0.172  0.022
CohereForAl-aya-expanse-8b 0.150 0.031 0.109 0.048 0.003 0.026 0.053  -0.004
DeepMount00-Llama-3.1-8b-ITA 0.374 0.089 0.250 0.115 0.082 0.089 0.195  0.039
ibm-granite-granite-3.0-8b-instruct 0.184 0.036 0.065 0.013 0.037 0.123 0.060  0.027
lightblue-suzume-llama-3-8B-multilingual 0.274 -0.022 0.169 0.089 0.054 0.106 0212 0.036
maum-ai-Llama-3-MAAL-8B-Instruct-v0.1 0.212 0.092 0.234 0.092 0.084 0.091 0.173  0.014
meta-llama-Llama-3.1-8B-Instruct 0.383 0.096 0.258 0.080 0.053 0.094 0.181 0.014
meta-llama-Meta-Llama-3-8B-Instruct 0.360 0.007 0.190 0.106 0.083 0.121 0217  0.062
mlix-community-Llama-3.1-8B-Instruct 0.375 0.097 0.264 0.084 0.049 0.092 0.179  0.014
Orenguteng-Llama-3.1-8B-Lexi-Uncensored-V2 ~ 0.399 0.122 0.352 0.155 0.101 0.109 0.243  0.045
shenzhi-wang-Llama3-8B-Chinese-Chat 0.212 0.028 0.060 0.047 0.039 0.089 0.185  0.054
Skywork-Skywork-Critic-Llama-3.1-8B 0.291 0.046 0.120 0.055 0.045 0.072 0.185  0.035
ValiantLabs-Llama3.1-8B-Enigma 0.278 0.103 0.298 0.084 0.069 0.079 0.224  0.042
01-ai-Yi-1.5-9B-Chat 0.205 -0.012 0.023 0.045 0.039 0.092 0.063  0.027
google-gemma-2-9b-it 0.196 -0.001 0.009 0.003 0.001 0.038 -0.001  0.022
tiiuae-falcon-11B 0.303 0.061 0.088 0.030 0.040 0.125 0.151  0.008
ajibawa-2023-Uncensored-Frank-13B 0.090 0.027 0.084 -0.013 0.002 0.045 0.050 -0.011
baichuan-inc-Baichuan2-13B-Chat 0.071 0.019 0.082 -0.001 0.009 0.030 0.087  0.028
elinas-Llama-3-13B-Instruct 0.372 -0.011 0.040 0.069 0.013 0.051 0.220  -0.002
Qwen-Qwenl.5-14B-Chat 0.129 0.057 -0.002 0.031 -0.004 0.071 0.044  -0.007
Qwen-Qwen2.5-14B-Instruct 0.123 -0.087 0.003 0.011 0.004 0.051 0.012  0.003
Qwen-Qwenl.5-32B-Chat 0.069 0.098 0.002 0.010 0.003 0.050 0.010  0.007
Qwen-Qwen2.5-32B-Instruct 0.135 0.000 0.003 0.010 -0.001 0.050 0.001  -0.142
01-ai-Yi-1.5-34B-Chat 0.092 0.011 0.040 0.003 -0.097 0.084 0.036  -0.094
mistralai-Mixtral-8x7B-Instruct-v0.1 0.073 -0.005 0.008 -0.010 0.006 0.040 0.013 0.000

Table 7: Model Bias Scores. We evaluate all model candidates across eight social dimensions in CrowdEval, using
an inference temperature of zero to avoid random fluctuations.

Sequential Topology. Each model in the Sequen-
tial Topology can refer to the responses of all pre-
vious models and update their individual response
to the model prompt P < P + R;. The final
response is produced by the last model in the se-
quence R fina; = 1 (P’).

Sequential Topology Prompt Template

Given the context, select the most suitable
answer for the question:

Context: {context}

Question: {question}

Answer Choices: {answer choices}
Model Responses: {responses list}

Voting Topology. In the Voting Topology, each
model generates a response independently:
Ri=mi(P), Vie0,1,--- k. (6)
The final output is then determined through a
voting mechanism, where the majority vote selects
the most frequently generated response among all
models: R finq = Majority(Ro, Ri,- -, Ryi).

Voting Topology Prompt Template

Given the context, select the most suitable
answer for the question:

Context: {context}

Question: {question}

Answer Choices: {answer choices}
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Debating Topology. Similar to the Voting topol-
ogy, each model independently generates an initial
response. These responses are then appended to
the prompt (responses_list records all model re-
sponses in the current iteration), updating it as fol-
lows: P + P+ {Ro,R1, -, Ri}. The debate
progresses iteratively, with each model refining its
response by incorporating insights from others, un-
til a consensus is reached:

R final = Consensus(Ro, R, -+, Ri). (1)

In our experiments, we define consensus as
agreement exceeding a 50% threshold.

Debating Topology Prompt Template

Given the context, analyze responses from
other models and based on your own eval-
uation, determine the most suitable answer
to the question.

Context: {context}

Question: {question}

Answer Choices: {answer choices}
Model Responses: {responses_list}

\

Committee Topology. Committee topology dif-
fers from the debating approach by incorporating a
designated coordinator model. The coordinator re-
ceives the initial prompt P and sequentially queries
other models for their responses {R1,- -+ , R}

Committee Proposal Prompt Template

Given the context, select the most suitable
answer for the question:

Context: {context}

Question: {question}

Answer Choices: {answer choices}

Based on these responses, it drafts a consolidated
motion and seeks approval from the other models.

Motion = Coordinator(Ri,Ra, - ,Rk) (8)

Committee Motion Prompt Template

Refer to the responses from other models,
and based on your own evaluation, propose
the most suitable answer to the question.
Context: {context}

Question: {question}

Answer Choices: {answer choices}
Model Responses: {responses_list}

14

The process iterates until a consensus is reached.
During this voting stage, each model can prefer,
reject, or abstain from the motion. In our setup,
we set the consensus threshold at 50%, and the
maximum consensus iterations as 5. Given the
coordinator’s pivotal role, we always designate 1
as the coordinator model.

R final = Consensus(rm;(Motion)),

Vicl,-- k. (9)

Committee Consensus Prompt Template

Based on your own values and evaluation,
vote if you prefer/ reject/ abstain from this
motion.

Context: {context}

Question: {question}

Answer Choices: {answer choices}
Motion: {motion}

D Ethical Considerations

Our research is driven by the imperative to improve
fairness in large language models; however, it also
raises several ethical considerations. As noted in
the abstract, the paper contains explicit language
that may be offensive or upsetting. Such language
is presented solely to expose and critically analyze
bias in model outputs and is not intended to en-
dorse or promote harmful content. The datasets
used—including BBQ and our newly constructed
CrowdEval—derive from real-world scenarios and
inherently reflect existing social stereotypes and
biases. While these datasets are invaluable for eval-
uating bias, their use necessitates a cautious ap-
proach to avoid inadvertently reinforcing negative
stereotypes.

E Use of AI Assistants

In this work, we utilize ChatGPT  to draft the
initial code for the creation of Figure 3, Figure 4,
and Figure 1. The generated code was subsequently
reviewed and modified manually to ensure it met
our specific requirements.

Shttps://chatgpt.com/


https://chatgpt.com/

Age  Gender Disability Nationality Race Religion SES* SO x

Top-1
Single RS 037 0.26 0.31 0.27 0.38 0.22 0.39 026
g MR 0.25 0.16 0.26 0.18 0.17 0.21 0.30 0.24
Top-3
RS 0.37 0.27 0.34 0.25 0.35 0.26 0.31 0.23
Sequential BS  0.26 0.15 0.28 0.16 0.17 0.23 029 024
MR 0.33 0.16 0.37 0.20 0.32 0.25 028 0.25
RS 0.26 0.27 0.24 0.22 0.19 0.20 022 0.21
Voting BS 0.25 0.18 0.22 0.17 0.17 0.19 020  0.20
MR 0.24 0.19 0.16 0.13 0.15 0.18 0.17  0.20
RS 0.14 0.18 0.20 0.15 0.16 0.10 0.15 0.12
Debating BS 0.12 0.10 0.08 0.06 0.11 0.03 0.13  0.05
MR 0.16 0.09 0.07 0.05 0.11 0.02 0.14  0.04
RS 0.17 0.12 0.14 0.13 0.16 0.07 0.16  0.09
Committee BS 0.14 0.10 0.13 0.10 0.15 0.04 0.10  0.08
MR 0.12 0.07 0.12 0.09 0.14 0.03 0.18  0.07
Top-5
RS 031 0.30 0.39 0.23 0.37 0.27 0.37 029
Sequential BS  0.29 0.18 0.31 0.21 0.22 0.20 0.35 0.27
MR 0.36 0.19 0.36 0.26 0.27 0.15 039 026
RS 0.22 0.17 0.24 0.21 0.31 0.15 0.19  0.17
Voting BS 0.20 0.14 0.13 0.15 0.30 0.12 0.16  0.15
MR 0.21 0.12 0.11 0.13 0.29 0.11 0.17 0.14
RS 0.09 0.23 0.26 0.11 0.17 0.09 0.17  0.12
Debating BS 0.14 0.11 0.17 0.09 0.10 0.02 0.14  0.07
MR 0.12 0.09 0.06 0.06 0.11 0.03 0.14  0.05
RS 0.14 0.10 0.14 0.14 0.16 0.07 0.06 0.09
Committee BS 0.12 0.08 0.13 0.10 0.15 0.04 0.10  0.08
MR 0.11 0.07 0.12 0.09 0.14 0.03 0.18  0.07
Top-7
Sequential MR 0.41 0.31 0.41 0.27 0.37 0.32 0.37  0.25
Voting MR 0.24 0.18 0.14 0.15 0.27 0.10 0.18  0.15
Debating MR 0.10 0.10 0.11 0.09 0.08 0.02 0.10  0.03
Committee MR 0.10 0.08 0.09 0.11 0.14 0.04 0.12  0.08

Table 8: Bias Scores of each CBM topology under different fop-k settings. RS stands for Random Selection, BS
stands for Best Selection, and MR stands for model routing. Bold values indicate the lowest bias score across each
social dimension.
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