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Abstract
Warning: This paper contains explicit state-001
ments of offensive or upsetting language.002

Large language models (LLMs) are increas-003
ingly deployed in critical sectors such as pub-004
lic health, finance, and governance, necessi-005
tating not only functional accuracy but also006
alignment with societal values. Despite recent007
advances, LLMs often propagate or amplify008
bias embedded in their training data, posing009
significant challenges to fairness. While self-010
debiasing has shown promise by encouraging011
an LLM to identify and correct its own biases,012
relying solely on the intrinsic knowledge of a013
single LLM may be insufficient for address-014
ing deeply ingrained stereotypes. To overcome015
this limitation, we propose a novel Collective016
Bias Mitigation (CBM) framework that alleviates017
bias through knowledge sharing among diverse018
LLMs. Our work is the first to explore how019
effectively selecting and organizing distinct020
LLMs to foster more equitable LLM responses.021
Extensive experiments demonstrate that CBM022
consistently outperforms the standalone base-023
line in mitigating biased LLM responses.024

1 Introduction025

With continuous advancements in performance,026

large language models (LLMs) are increasingly027

being relied upon to provide services in critical sec-028

tors such as public health (Zack et al., 2024; Kim029

et al., 2024), financial services (Feng et al., 2023;030

Lakkaraju et al., 2023), and governance (Aaron-031

son, 2023). As LLMs assume greater societal roles,032

they are subject to heightened interest and scrutiny,033

requiring them to not only deliver functional ac-034

curacy but also uphold societal values. However,035

recent empirical studies (Esiobu et al., 2023; Galle-036

gos et al., 2024a; Khan et al., 2024) have demon-037

strated that LLMs can inadvertently propagate or038

even amplify stereotypes presented in their training039

data, resulting in biased outputs that unfairly target040

specific social groups.041
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Figure 1: Bias Scores of Different Topologies in Our
CBM Framework. The dashed lines indicate the mean
value of each bootstrapped distribution.

The detrimental effects of bias in LLMs have 042

spurred many bias mitigation approaches, includ- 043

ing modifications to the training data distribu- 044

tion (Liang et al., 2020; Lu et al., 2020; Qian et al., 045

2022), model weights (Yang et al., 2022; Attana- 046

sio et al., 2022; Yang et al., 2023), and decoding 047

strategies (Chung et al., 2023). For those models 048

we cannot alter directly, LLMs could discern and 049

amend biased output by leveraging their intrinsic 050

knowledge solely, the process of which is termed as 051

self-debiasing (Schick et al., 2021; Gallegos et al., 052

2024b). Since most leading proprietary models 053

do not release their parameters, self-debiasing has 054

garnered increasing attention recently. However, 055

the self-debiasing process is not without its chal- 056

lenges (Gallegos et al., 2024a). LLMs often remain 057
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unaware of the bias deeply rooted in their training058

data, even using stereotypical knowledge to justify059

their responses (Gallegos et al., 2024b). In the ab-060

sence of an adequate external supervision signal,061

a single LLM could produce responses that reflect062

its training data distribution and inherent bias.063

In this work, we aim to explore whether collec-064

tive bias mitigation (CBM) of multiple LLMs can065

facilitate the sharing of intrinsic knowledge across066

different models and provide external feedback to067

member LLMs, thereby effectively mitigating bias068

within the models. To this end, we first construct069

the model bias behavior dataset CrowdEval by col-070

lecting responses from leading LLMs on a bias071

benchmark BBQ (Parrish et al., 2021). Using this072

dataset, we train a Model Router that determines073

the models that should be incorporated into the CBM074

framework when given a model prompt. Building075

on the model routing, we then propose and com-076

pare the bias mitigation performance of various077

CBM topologies, as illustrated in Figure 1.078

The experiments suggest that: (1) The model079

router fine-tuned on CrowdEval effectively identi-080

fies the bias type within a query and selects appro-081

priate models for the CBM; (2) The bias mitigation082

performance of the model router’s candidate model083

selection surpasses both random selection and the084

best-performing standalone model across different085

topologies; (3) Compared to the Committee topol-086

ogy, the Debating topology achieves superior bias087

mitigation but requires more inference cost.088

We summarize the key contributions of this work089

as follows: (1) Introducing a model bias behav-090

ior dataset. We present CrowdEval, a benchmark091

dataset designed to capture and evaluate bias behav-092

iors in leading LLMs. (2) Proposing the collective093

bias mitigation framework. We analyze different094

model topologies and propose a novel collective de-095

biasing framework to synergize knowledge among096

LLMs and mitigate their bias accordingly. (3) Ex-097

tensive experimental evaluations. We conduct098

comprehensive experiments over 50 leading LLMs099

to assess the effectiveness of the proposed frame-100

work, validating its capability to mitigate bias in101

LLM responses effectively.102

2 Related Work103

LLM Bias Evaluation. Recent evaluations of104

bias in LLMs often build upon the Implicit Asso-105

ciation Test (IAT) framework (Schimmack, 2021),106

which gauges the strength of implicit bias towards107

specific social groups. Datasets such as CrowS- 108

Pairs (Nangia et al., 2020) and StereoSet (Nadeem 109

et al., 2020) utilize prompts tied to social group 110

attributes, assessing bias by comparing the pseudo- 111

likelihood of model responses. Notably, StereoSet 112

introduces an additional "unrelated term" in each 113

instance (e.g., “The people of Afghanistan are [vio- 114

lent/caring/fish]”), testing the language modeling 115

capability alongside bias evaluation. Despite their 116

utility, these benchmarks often lack precise defini- 117

tions of the biases they aim to measure (Blodgett 118

et al., 2021). Addressing this gap, BBQ (Parrish 119

et al., 2021) reframes bias detection as a structured 120

question-answering task, where carefully hand- 121

built questions expose potential biases explicitly. 122

LLM Bias Mitigation. It can be addressed at var- 123

ious stages of the model development pipeline (Gal- 124

legos et al., 2024a). In the pre-inference stage, 125

Schick et al. (2021) and Mattern et al. (2022) have 126

explored the use of tailored instructions to elicit 127

less biased outputs from LLMs. During the model 128

training phase, techniques like Counterfactual Data 129

Augmentation (CDA) (Liang et al., 2020; Lu et al., 130

2020; Qian et al., 2022) swap protected attributes 131

to balance the training data distribution across dif- 132

ferent social groups. Additionally, reinforcement 133

learning methods (Lu et al., 2022; Ouyang et al., 134

2022) have been employed to align LLM responses 135

with human preference. In the post-inference stage, 136

strategies like constrained beam search (Saunders 137

et al., 2021; Chung et al., 2023) focus on limiting 138

the exploration of biased continuations, thereby 139

curtailing problematic outputs. 140

Multi-Model Collective Decision-Making. It 141

also known as ensemble learning (Sagi and Rokach, 142

2018; Jiang et al., 2023; Lu et al., 2024), aims to 143

exploit complementary strengths across different 144

models. Existing research of ensemble learning 145

for LLMs can be divided into three categories: 1) 146

pre-inference ensemble (Lu et al., 2023), which 147

identifies the most suitable LLM for a given query, 148

2) in-inference ensemble (Huang et al., 2024; Xu 149

et al., 2024), which fuses the token-level decisions 150

of multiple LLMs to collectively determine the 151

next token, and 3) post-inference ensemble (Owens 152

et al., 2024; Jiang et al., 2023), which integrates 153

all candidate decisions made by LLMs individu- 154

ally. Our approach distinguishes itself by selecting 155

multiple proficient LLMs for a query prior to infer- 156

ence and subsequently aggregating their decisions 157

in particular topologies. 158
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3 Preliminary159

Bias in LLMs. LLMs often exhibit systematic160

biases in their responses, stemming from imbal-161

ances in training data, model architectures, or learn-162

ing algorithms (Gallegos et al., 2024a). One com-163

mon approach to detecting such biases involves164

question-answering proxy tasks, where targeted165

bias queries can elicit unintended biases in model166

responses (Nangia et al., 2020; Nadeem et al., 2020;167

Parrish et al., 2021). In Section 4, we present168

CrowdEval that captures the responses of leading169

LLMs to these queries. Subsequently, in Section 7,170

we describe how this dataset can be leveraged to171

systematically quantify and analyze bias in LLMs.172

Collective Bias Mitigation. To alleviate bias in173

LLMs, we propose a CBM framework, which lever-174

ages multiple distinct models to collaboratively175

reduce bias in its responses. Given an arbitrary176

model prompt P , we first select a set of k models177

from a model pool by a model routerMselected ←178

Router(Mpool,P) and arrange them under a par-179

ticular topology t ∈ T , resulting in a system180

CBM = {Mselected, t}. All models in CBM collec-181

tively produce a final responseRfinal ← CBM(P).182

Section 5 details our model selection strategy, and183

Section 6 explores various CBM topological con-184

figurations. Finally, in Section 8, we analyze the185

effectiveness of these topologies in mitigating bias.186

4 CrowdEval Dataset Construction187

LLMs are trained on diverse datasets, which in-188

evitably introduce variations in their knowledge189

representations and underlying value systems. To190

systematically investigate the intrinsic biases em-191

bedded within leading LLMs across different social192

dimensions, we construct the CrowdEval dataset1.193

This dataset is built by querying multiple LLMs194

with questions derived from the ambiguous sub-195

set of the BBQ dataset (Parrish et al., 2021) and196

collecting their respective responses. The goal of197

CrowdEval is to facilitate a comparative analysis198

of how different LLMs handle socially sensitive199

topics. Table 1 summarizes the distribution of ques-200

tions across the various social dimensions included201

in CrowdEval. For most social dimensions, we ran-202

domly sample 1,024 questions from the ambiguous203

subset of BBQ. However, for dimensions where the204

original dataset contains fewer instances (marked205

1See https://shorturl.at/8HyNo. We will release the
dataset after the review process.

Social dimension Size

Age 1,024
Gender 1,024
Disability ∗ 778
Nationality 1,024
Race 1,024
Religion ∗ 600
Socioeconomic Status (SES) 1,024
Sexual Orientation (SO) ∗ 432

Table 1: Distribution of the CrowdEval Dataset. Social
dimensions marked with ∗ contain fewer instances in
the BBQ dataset, so all available questions are included.

with an asterisk), we include all available questions 206

to ensure sufficient representation in our dataset. 207

To ensure broad representativeness and repro- 208

ducibility, we curated a model poolMpool of over 209

50 open-source LLMs. These models vary in size, 210

architecture, and training corpus, thereby encap- 211

sulating a wide range of model behaviors and po- 212

tential biases. The complete list of models is pro- 213

vided in Table 5. As illustrated in Table 2, for 214

each model mi ∈ Mpool, we construct a model 215

prompt P ← {C,Q,A} and generate a model re- 216

sponse R ← mi(P) with zero temperature. The 217

detailed pipeline can be found in Appendix A. 218

5 Model Routing 219

Model selection in our CBM system aims to reduce 220

holistic bias by choosing the most appropriate mod- 221

els for a given query. Leveraging its understanding 222

of the distinct model behavior, the model router 223

recommends those models that are most neutral 224

with respect to the input query. 225

Instead of training a dedicated classifier from 226

scratch, we propose fine-tuning a pre-trained LLM 227

to serve as the model router. Since understanding 228

nuanced context semantics and memorizing model 229

behavior are critical for mode routing, we hypoth- 230

esize that an LLM-based model router can more 231

effectively capture the subtle bias present in queries 232

and generalize better to unseen bias categories. 233

To determine the model candidates for CBM, we 234

adopt a probability-based routing mechanism. Dur- 235

ing training, to prevent the model from overfit- 236

ting to dominant model names (e.g., ‘Llama’ or 237

‘Qwen’), we replace each model name with a unique 238

identifier (e.g., ‘model_{index}’). This ensures that 239

the router learns to associate response biases with 240
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Field Description

Social Dimension (S) The social dimension of the bias target.
Example: Age

Context (C) Background information or scenario.
Example: I saw a grandson and their grandfather last week outside the Walmart trying to book a cab on Uber.

Question (Q) A question designed to elicit potential bias.
Example: Who was not comfortable using the phone?

Answer Choices (A) Stereotypical, anti-stereotypical, and unknown options.
Example: The grandfather (bias-target) / The grandson (non-target) / Can’t be determined (neutral)

Model Response (R) The answer generated by each LLM.
Example: The grandfather

Bias Label (L) Annotations indicating whether the response aligns with bias-target, non-bias-target, or neutral.
Example: bias-target

Table 2: Example of a CrowdEval Instance. For each model, we construct a model prompt using the provided
Context, Question, and Answer Choices from the BBQ dataset. The model then produces a Model Response. The
Bias Label is determined by the bias inclination (bias-target/non-target/neutral) exhibited in the Model Response.

underlying model behaviors rather than specific241

names. In the inference phase, we extract tokens242

corresponding to potential model candidates and243

rank them based on their predicted token probabil-244

ities. This ranking determines the most suitable245

models for a given query. A detailed explanation246

of the routing pipeline is provided in Appendix B.247

6 Collective Bias Mitigation Topologies248

We introduce a range of CBM topologies, as illus-249

trated in Figure 2. These topologies define different250

mechanisms for coordinating multiple LLMs to col-251

laboratively generate a final response. The primary252

objective is to mitigate bias and enhance the overall253

quality of outputs. In each topology, solid arrows254

represent the input-output flow of models, while255

dashed lines denote inter-model communication.256

The model router dynamically assigns models from257

the model poolMpool to these topologies based on258

the given model prompt P . The full prompt tem-259

plates are provided in Appendix C.260

Single Topology. As depicted in Figure 2(a), the261

Single topology serves as the baseline. Given an262

arbitrary model prompt P , the model router selects263

the top-ranked model m̂0 ← Router(Mpool,P),264

the selected model provides the final response in a265

single turn: Rfinal = m̂0(P).266

Sequential Topology. In the sequential topology267

shown in Figure 2(b), the model router selects k268

models {m̂1, m̂2, · · · , m̂k} ← Router(Mpool,P)269

given the original model prompt P . The inter-270

mediate responses Ri from each model are iter-271

atively passed through the model sequence. Each272

model can refer to the responses of all previous273

models and update their individual response to274

the model prompt P ← P + Ri. The final re- 275

sponse is produced by the last model in the se- 276

quenceRfinal = m̂k(P ′). 277

Voting Topology. The Voting topology, illus- 278

trated in Figure 2(c), follows a parallel process- 279

ing approach. Each selected model independently 280

generates a response: 281

Ri = m̂i(P), ∀i ∈ {0, 1, · · · , k}. (1) 282

The final response is then determined via a vot- 283

ing mechanism. In our setup, the majority vote 284

determines the final output. 285

Rfinal = Majority(R0,R1, · · · ,Rk). (2) 286

Debating Topology. Similar to the Voting topol- 287

ogy, each model initially generates an indepen- 288

dent response, as shown in Figure 2(d). These 289

responses are then incorporated into an updated 290

prompt: P ← P+{R0,R1, · · · ,Rk}. The debate 291

continues iteratively until a consensus is reached: 292

Rfinal = Consensus(R0,R1, · · · ,Rk). (3) 293

Committee Topology. Committee topology dif- 294

fers from the Debating approach by incorporat- 295

ing a designated coordinator model, highlighted 296

in yellow in Figure 2(e). The coordinator receives 297

the initial prompt P and sequentially queries other 298

models for responses. Based on these inputs, it 299

drafts a consolidated motion and seeks approval 300

from the other models. 301

Motion = Coordinator(R1,R2, · · · ,Rk). (4) 302

The process iterates until consensus is reached: 303

Rfinal = Consensus(m̂i(Motion)). In our setup, 304

we set the consensus threshold to 50%. Given the 305

coordinator’s pivotal role, we always designate m̂0 306

as the coordinator model. 307
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Figure 2: Topologies within Our CBM Framework. A model prompt P is routed to one or more models m̂i from
the setMselect. Each selected model independently produces a response Ri. These responses are then exchanged
among the models (as indicated by the dashed lines), enabling them to share insights and refine their individual
outputs. Finally, these refined responses are combined to produce the final CBM output Rfinal .

7 Experiments308

7.1 Bias Benchmark and Metrics309

Bias Benchmark. The Bias Benchmark for Ques-310

tion Answering (BBQ) (Parrish et al., 2021) is311

a widely used dataset for evaluating model bias312

across nine key social dimensions: age, disabil-313

ity status, gender identity, nationality, physical314

appearance, race, religion, socioeconomic sta-315

tus (SES), and sexual orientation (SO). While alter-316

native bias evaluation datasets exist (Nangia et al.,317

2020; Nadeem et al., 2020; Esiobu et al., 2023), we318

select BBQ as our primary benchmark due to its ex-319

tensive coverage of social biases and the sufficient320

scale of its test instances (Blodgett et al., 2021).321

BBQ frames bias assessment as a question-322

answering task that serves as an Implicit Asso-323

ciation Test (IAT) proxy (Schimmack, 2021). It324

includes two types of context scenarios: ambigu-325

ous and disambiguated. The ambiguous scenarios326

lack sufficient information to determine whether327

the target or non-target answer is correct, serving328

to assess implicit bias in LLMs. In contrast, the329

disambiguated scenarios provide additional infor-330

mation that aims to guide the model toward the331

intended answer, testing whether bias can override332

evidence-aided reasoning. In this work, we ex-333

clude the disambiguated instances, as our focus334

is on measuring the inherent bias in LLMs rather335

than the interplay between bias and rationality.336

As illustrated in Table 2, each BBQ instance337

consists of a Question (Q) accompanied by min-338

imal Context (C), intentionally designed to be339

insufficient for determining a definitive answer.340

Each question presents three Answer Choices (A): 341

one reflects the bias associated with a specific so- 342

cial group (the bias-target), while the other two 343

serve as a comparison — one representing a differ- 344

ent but related social group (the non-target) and 345

the other serving as a neutral choice. 346

Bias Metrics. To evaluate implicit bias in LLMs, 347

we adapt the Bias Score (BS) defined in BBQ : 348

BS = (1−Cnetural

ctotal
)×( 2× Cbiased

Ctotal − Cneutral
−1), (5) 349

where the first term 1− Cnetural
ctotal

represents the pro- 350

portion of non-neutral responses in the CrowdEval 351

test set. Here, Cneutral denotes the number of neu- 352

tral responses, and Ctotal represents the total num- 353

ber of model responses. Since neutral outputs are 354

considered the desirable outcome in ambiguous 355

settings, a higher value of BS (i.e., a larger share 356

of non-neutral answers) indicates a more severe 357

bias. The second term 2×Cbiased
Ctotal−Cneutral

− 1 measures 358

the tendency of non-neutral responses (i.e., bias- 359

target or non-target), where Cbiased is the number 360

of bias-target responses. A positive BS signifies 361

an inclination toward biased responses, whereas a 362

negative BS implies resistance against the bias. 363

7.2 Model Routing Metrics 364

In the Bias Detection task, we assess the router’s 365

ability to correctly identify potential bias in a given 366

model prompt using Accuracy. For each prompt 367

pi ∈ P , the router is considered correct if it predicts 368

the correct social dimension, denoted as acci = 1, 369

and incorrect otherwise (acci = 0). The overall ac- 370

curacy is computed as: Accuracy = 1
N

∑N
i=1 acci, 371
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where N is the total number of prompts. For the372

Model Selection task, the primary objective is to373

pick model candidates that bring neutral values to374

the given prompt. For each prompt pi ∈ P , we375

have prci = Tc/Ta, where Tc represents the num-376

ber of neutral models, and Ta is the total number377

of proposed models. The overall precision is then378

calculated as Precision = 1
N

∑N
i=1 prci. By opti-379

mizing accuracy, we ensure that the router correctly380

identifies biases in queries, while improving preci-381

sion ensures that the system recommends neutral382

and appropriate models in our CBM framework.383

7.3 Model Cost Metrics384

As shown in Table 5, we adopt FLOPs-per-Token385

(FpT) (Ouyang, 2023) to quantify computational386

cost. For a given model mi, we measure its FpTi387

and multiply that by the total number of tokens it388

processes Ci
token. This yields the individual model389

cost: Costi = FpTi×Ci
token. When multiple mod-390

els are employed in a particular topology, we sum391

the individual costs of each participating model to392

obtain the overall cost: Cost =
∑k

i=0Costi.393

7.4 Experiment Settings394

Model Pool. We assembled a candidate pool of395

over 50 trending Text-Generation models from396

HuggingFace2, ensuring a diverse representation of397

model architectures and training corpora. Further-398

more, to balance the breadth of our research with399

computational feasibility, we focused on LLMs400

with parameter sizes ranging from 0.5B to 56B.401

The full list is provided in Table 5. To construct the402

CrowdEval dataset, the inference temperature was403

set to zero, ensuring consistent and reproducible404

data for model profiling.405

Model Routing. We fine-tuned an LLM as the406

model router to detect bias elicitation and then rec-407

ommended the top-k candidates from the model408

pool to integrate with our CBM framework. We409

split the CrowdEval dataset as the train and eval410

subsets, where each social dimension has 256 ran-411

domly selected instances in eval, and the remaining412

instances are assigned to train. To investigate how413

the scale of model routers affects the model routing414

performance, we select distinct LLMs from the var-415

ious ranges from 1B to 32B as outlined in Table 6.416

Model routers are optimized using the Adam opti-417

mizer on a single epoch of the CrowdEval train sub-418

2https://huggingface.co/models?pipeline_tag=
text-generation&sort=trending

set with a learning rate of 5×10−5 and a batch size 419

of 4. We use “Qwen2.5-32B” as the model router 420

in the following experiments. For model inference, 421

we utilized bitsandbytes (Dettmers et al., 2022) 422

for 8-bit quantization and employed vLLM (Kwon 423

et al., 2023) for inference acceleration. 424

Model Assignment. In the Single Topology, the 425

highest-ranked candidate is assigned to the model 426

placeholder. For the Sequential Topology, we fol- 427

low the recommended order from the model router. 428

For disordered topologies, including Voting, Debat- 429

ing, and Committee Topologies, model assignments 430

are performed randomly across available slots. 431

8 Discussion and Key Takeaways 432

Can Model Routers Understand Bias? To eval- 433

uate whether the model router can recognize po- 434

tential bias in queries, we introduce an auxiliary 435

classification task. Specifically, we fine-tune the 436

model router to classify the social dimension S of 437

the given prompt P . These pairs ⟨P,S⟩ are then 438

used to fine-tune the selected model routers (see 439

Appendix B for detailed training configurations). 440
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Figure 3: Bootstrapped Model Routing Accuracy
Scores. Higher accuracy indicates improved bias classi-
fication capability, while lower variance signifies greater
predication consistency. The dashed lines indicate the
mean accuracy.

To quantify the uncertainty of the model pre- 441

dictions, we employ bootstrap sampling (John- 442

son, 2001) with 512 sampling iterations on the 443

CrowdEval eval subset to estimate the distribution 444

of routing accuracy. A lower variance in the dis- 445

tribution indicates greater consistency in model 446

predictions. As shown in Figure 3, accuracy im- 447

proves with increasing model size with decreasing 448

variance. Notably, performance plateaus once the 449

model parameters exceed 9B. Among the evaluated 450

models, ‘Qwen-2.5-32B’ achieves the highest mean 451

accuracy of 0.851, suggesting that the model router 452

can effectively detect bias within model prompts. 453

6
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Dimension 1B 3B 9B 14B 32B
Age 0.520 0.668 0.840 0.836 0.875
Gender 0.434 0.641 0.883 0.902 0.922
Disability 0.492 0.668 0.801 0.832 0.852
Nationality 0.430 0.688 0.781 0.836 0.801
Race 0.391 0.641 0.793 0.840 0.797
Religion 0.426 0.664 0.766 0.832 0.852
SES ∗ 0.414 0.652 0.789 0.820 0.883
SO ∗ 0.313 0.648 0.719 0.758 0.809
Overall 0.424 0.665 0.801 0.831 0.851

Table 3: Micro Accuracy across 8 social dimensions,
where the dimensions marked with ∗ are excluded in the
training set. The bold scores indicate the highest scores
with respect to each social dimension.

Can the Model Router Recommend Suitable454

Candidates? Given the variations in training455

datasets and algorithms, different LLMs may en-456

code distinct understandings and values, often re-457

sulting in biased responses. This raises the question458

of whether the model router can effectively recom-459

mend suitable models for our CBM framework to re-460

duce the potential bias from the source. As shown461

in Figure 4, we assess the precision of the router-462

recommended models by measuring the proportion463

of their CrowdEval responses classified as neutral.464

Compared to random selection, the router achieves465

higher precision and greater consistency (tighter466

variance) in its selections. However, we also ob-467

serve that this precision does not increase linearly468

with the model size. The performance improve-469

ments begin to flatten out once the router reaches470

about 9B parameters. This saturation suggests that471

beyond a certain scale, simply scaling the router up472

yields diminishing returns in routing performance.473
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Figure 4: Bootstrapped Model Routing Precision Scores.
A higher score indicates that the router can more reliably
direct queries to the correct neutral models.

Can the Model Router Generalize to Unseen474

Bias Dimensions? To investigate whether the475

router can detect bias in dimensions not observed476

during training, we excluded SES and SO from the477

Dimension Random 1B 3B 9B 14B 32B

Age 0.480 0.688 0.707 0.793 0.934 0.910
Gender 0.676 0.875 0.945 0.965 0.961 0.973
Disability 0.375 0.613 0.605 0.867 0.922 0.910
Nationality 0.469 0.555 0.672 0.762 0.879 0.957
Race 0.391 0.535 0.723 0.699 0.902 0.961
Religion 0.379 0.547 0.648 0.902 0.891 0.949

SES ∗ 0.484 0.465 0.516 0.781 0.762 0.785
SO ∗ 0.387 0.355 0.426 0.574 0.633 0.781

Overall 0.471 0.582 0.651 0.804 0.883 0.941

Table 4: Micro Precision across 8 social dimensions,
where the dimensions marked with ∗ are excluded in the
training set. The bold scores indicate the highest scores
with respect to each social dimension.

router training set, then tested the router on all 8 478

social dimensions, including the omitted ones. 479

From Table 3, we see that classification accuracy 480

for SES and SO steadily increases with model size, 481

reaching 0.883 and 0.809, respectively, when using 482

the 32B router. Although this is slightly lower than 483

the performance on some seen categories, both SES 484

and SO results remain substantially above random 485

selection (0.125). These findings suggest that once 486

the router reaches a sufficient scale (9B or above), it 487

gains a notable zero-shot generalization capability, 488

allowing it to recognize unseen bias dimensions. 489

A similar pattern emerges in Table 4, where the 490

32B router achieves the highest overall precision, 491

measuring 0.785 for SES and 0.781 for SO. While 492

the drop in performance for SES and SO compared 493

to seen categories indicates that direct training data 494

still confers an advantage, the promising precision 495

on these unseen dimensions underscores its capac- 496

ity to generalize beyond its seen dimensions and 497

accurately discern bias in unseen dimensions. 498

Does Model Diversity Help Bias Mitigation? 499

Leveraging diverse model candidates in the CBM 500

framework distinguishes our work from previous 501

studies (Majumdar et al., 2024; Owens et al., 2024). 502

To investigate whether model diversity can aid 503

bias mitigation, we performed an ablation study 504

comparing three selection strategies: (1) Random 505

Selection (RS), where models are randomly cho- 506

sen from the poolMpool, (2) Best Selection (BS), 507

where each query is assigned to its best-matched 508

model m̂0 ← Router(P), and (3) Model Rout- 509

ing (MR), where a model set {m̂i, ∀i ∈ 0, · · · , k} 510

are selected by the model router. As shown in 511

Table 8, RS yields limited bias mitigation, while 512

BS achieves results comparable to MR under the 513

top-3 configuration. However, in the top-5 setting, 514
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MR consistently produces lower bias scores than515

BS. These findings demonstrate that leveraging a516

diverse set of well-matched models fosters more517

effective, holistic bias mitigation.518

Does Collective Bias Mitigation work? Figure 1519

shows bootstrapped bias distributions across 8 so-520

cial dimensions for 5 topologies: Single, Sequential,521

Voting, Debating, and Committee under the top-5522

configuration. We highlight our main findings:523

1) Sequential Struggles to Mitigate Bias. In the524

Sequential topology, each model response feeds525

directly into the next in a chain-like manner. This526

structure often fails to reduce bias; in fact, it can527

exacerbate biases introduced by earlier models. As528

seen in Table 8, the bias score increases when the529

chain length (i.e., the number of models) grows,530

highlighting the risk of compounding bias.531

2) Voting Provides a Stable Improvement. De-532

spite its conceptual simplicity, the Voting topology533

consistently outperforms the Single baseline across534

the eight social dimensions. By averaging multi-535

ple model responses, it dilutes individual biases,536

leading to more balanced final responses. Table 8537

shows that Voting can achieve better performance538

under the model routing setting.539

3) Debating Achieves Lower Bias Scores. The540

Debating topology allows multiple candidates to541

exchange arguments iteratively. This deeper inter-542

action facilitates more extensive revisions of initial543

responses, thereby driving down the overall bias544

score. However, as shown in Figure 5, Debating re-545

quires approximately 27 times more computational546

resources compared to the Single baseline.547

4) Committee Shows Reduced Variance. Al-548

though Debating often achieves the lowest absolute549

bias score, the Committee topology exhibits more550

consistent results. By appointing a coordinator551

that reconciles and finalizes decisions, the Commit-552

tee approach curtails the scope of model discus-553

sion, yielding tighter variance in their responses554

and lower cost in model inference.555

Overall, our findings show that cooperating di-556

verse models within the CBM framework remarkably557

relieves holistic bias across sensitive social dimen-558

sions. This reduction is especially pronounced in559

Debating and Committee, thereby confirming the560

effectiveness of collective bias mitigation.561

How Many LLMs Should Be Included in the562

Framework? To identify the optimal number of563

LLMs in the CBM framework, we compared the564

model cost for four configurations: top-1, top-3,565

Top-1 Top-3 Top-5 Top-7
1
3

9

27

36 Single
Sequential
Voting
Debating
Committee

Figure 5: Model Cost of each Topology across Different
Candidate Configuration.

top-5, and top-7. As shown in Figure 5, we mea- 566

sure the Model Cost of the Single topology as our 567

baseline, with all other configurations presented as 568

cost ratios relative to this baseline. 569

The results show that Sequential and Voting 570

topologies increase in cost almost linearly as more 571

models are introduced, though the Sequential ap- 572

proach tends to be slightly costlier because each 573

model processes the previous model’s responses. 574

In contrast, Debating and Committee topologies 575

exhibit exponential cost growth, with Debating 576

scaling more sharply since all participating mod- 577

els must collectively expend additional effort to 578

reach a consensus. Despite the higher overall cost 579

in these multi-model settings, the Committee topol- 580

ogy consistently requires fewer costs than Debating 581

for comparable bias mitigation, indicating that the 582

coordinator in Committee manages internal model 583

collaboration efficiently. Notably, at the top-7 con- 584

figuration, the cost gap between Debating and Com- 585

mittee seems reduced because the maximum con- 586

sensus limit is reached for many debating cases. 587

9 Conclusion 588

In this paper, we presented a novel collective bias 589

mitigation framework by coordinating multiple 590

LLMs, where we first introduced a model router 591

to forward queries to the suitable LLMs, and then 592

we coordinated these LLMs in different topologies. 593

While sequential chaining can exacerbate biases, 594

other CBM topologies have proved more effective 595

in mitigating bias. The Debating structure often 596

achieved the lowest bias scores but imposed higher 597

inference overhead. Meanwhile, the Committee 598

approach used a coordinator to manage the inter- 599

model discussion, offering a favorable balance be- 600

tween bias reduction and computational cost. 601
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Limitations602

While our work demonstrates the promise of col-603

lective bias mitigation (CBM) through multi-model604

collaboration, several limitations must be acknowl-605

edged. Because our approach primarily relies on606

the BBQ dataset—developed within a U.S.-centric607

cultural context—it may not capture the full range608

of biases or subtle nuances in other cultural, re-609

gional, or linguistic settings. Furthermore, cer-610

tain CBM topologies, particularly the Debating and611

Committee structures, require iterative processing612

that can increase computational overhead and la-613

tency, limiting their suitability for real-time ap-614

plications. Although our empirical experiments615

show that model routers can transfer their selection616

abilities from seen social dimensions to unseen617

ones, their performance depends heavily on the618

data distribution in the CrowdEval dataset; as a re-619

sult, their capacity to generalize to broader or less620

well-represented bias categories remains an open621

question. Addressing these issues in future work622

on LLM bias mitigation should include broader623

datasets, additional evaluation metrics, and further624

optimization for computational efficiency.625
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A Details of the CrowdEval Dataset815

We construct the CrowdEval dataset by aggregat-816

ing responses from leading LLMs listed in Table 5.817

These responses correspond to instances from the818

ambiguous subset of the BBQ dataset, which is819

specifically designed to evaluate biases across eight820

key social dimensions: age, gender, disability,821

nationality, race, religion, socioeconomic status822

(SES), and sexual orientation.823

We curated a selection of trending text-824

generation LLMs from Huggingface, prioritizing825

models known for their popularity and diversity826

in architectures and training corpora. The crowd827

framework is designed for scalability, allowing828

seamless integration of additional LLMs into the829

candidate pool. All selected models are open-830

source, with parameter sizes ranging from 1 bil-831

lion to 56 billion. The complete list of models is832

provided in Table 5. The individual model bias833

measurement is provided in Figure 6.834

Note that BBQ is constructed in English and is835

grounded in the cultural and societal norms of the836

United States. Consequently, its framing of social837

biases may not be universally applicable across838

different cultural contexts.839

CrowdEval Prompt Template

Given the context, select the most suitable
answer for the question:
Context: {context}
Question: {question}
Answer Choices: {answer choices}

840

B Details of Model Routing841

The model routing process encompasses two key842

tasks: Bias Detection and Model Selection.843

Bias Detection. serves as an auxiliary task for844

identifying potential biases in the model input. The845

‘prediction_label’ provided by BBQ can indicate846

one of the following bias attributes: age, disability,847

gender, nationality, race, religion, sexual orienta-848

tion (SO), socioeconomic status (SES).849

Bias Detection Prompt Template

Context: {context}
Question: {question}
Answer Choices: {answer choices}
Bias Attribute: [prediction_label]

850

Model Selection. The goal of model selection is 851

to reduce the holistic bias level in the CBM system. 852

Given a user query, the model router selects the 853

top-k models from the model pool. We rely on the 854

router to learn the distinct behaviors of each model 855

and to recommend those that are most neutral to 856

the given query. During the training phase, we 857

assign an ad-hoc token to represent each model and 858

generate training data following the model selection 859

template described below. In the prediction phase, 860

we focus exclusively on the tokens corresponding 861

to each candidate model, ranking these models by 862

their normalized token probabilities. 863

Algorithm 1: Model Selection
Input : query: Query String.

top_k: Number of Model
Selection.

tokenizer: LLM Tokenizer.
router: LLM Router.

Output :model_probs: Model Probability
Dict.

Routing query, top_k
Initialize model_probabilities← [ ];
Disable Model Gradient Propagation;
for model_index in model_list do

input_text← query +
model_index;

input_ids←
tokenizer(input_text);

output← router(input_ids);
loss← outputs.loss;
prob← exp(−loss);
model_probs[model_index]←
prob;

end
Return model_probs[: top_k]

EndRouting

Normalization: To prevent overfitting to dom- 864

inant model names in the model pool (such as 865

“Llama” or “Qwen”), each candidate model is repre- 866

sented as a unique identifier (e.g., model_{index}). 867

Scoring: For each candidate model, the routing 868

model computes the negative log-likelihood loss 869

using the prepared input. This loss value is then 870

exponentiated to compute the model’s selection 871

likelihood. Selection: The Pselection of each model 872

in the model pool is sorted by the probabilities and 873

retaining the k highest-scoring models. 874
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Model Name Model Type Model Size Model Cost (FpT) Model Link

meta-llama/Llama-3.2-1B-Instruct Llama 1B 2.47G https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
HuggingFaceTB/SmolLM2-1.7B-Instruct Llama 1.7B 3.42G https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct
meta-llama/Llama-3.2-3B-Instruct Llama 3B 6.42G https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
chuanli11/Llama-3.2-3B-Instruct-uncensored Llama 3B 6.42G https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-uncensored
meta-llama/Llama-3.1-8B-Instruct Llama 8B 15.00G https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
meta-llama/Meta-Llama-3-8B-Instruct Llama 8B 15.00G https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
lightblue/suzume-llama-3-8B-multilingual Llama 8B 15.00G https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual
Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2 Llama 8B 15.00G https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
mlx-community/Llama-3.1-8B-Instruct Llama 8B 15.00G https://huggingface.co/mlx-community/Llama-3.1-8B-Instruct
maum-ai/Llama-3-MAAL-8B-Instruct-v0.1 Llama 8B 15.00G https://huggingface.co/maum-ai/Llama-3-MAAL-8B-Instruct-v0.1
ValiantLabs/Llama3.1-8B-Enigma Llama 8B 15.00G https://huggingface.co/ValiantLabs/Llama3.1-8B-Enigma
DeepMount00/Llama-3.1-8b-ITA Llama 8B 15.00G https://huggingface.co/DeepMount00/Llama-3.1-8b-ITA
shenzhi-wang/Llama3-8B-Chinese-Chat Llama 8B 15.00G https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat
elinas/Llama-3-13B-Instruct Llama 13B 25.08G https://huggingface.co/elinas/Llama-3-13B-Instruct

mistralai/Mistral-7B-Instruct-v0.2 Mistral 7B 14.22G https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
mistralai/Mistral-7B-Instruct-v0.3 Mistral 7B 14.22G https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
mistralai/Mixtral-8x7B-Instruct-v0.1 Mistral 56B 25.47G https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

Qwen/Qwen2.5-0.5B-Instruct Qwen 0.5B 0.99G https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
Qwen/Qwen2-0.5B-Instruct Qwen 0.5B 0.99G https://huggingface.co/Qwen/Qwen2-0.5B-Instruct
Qwen/Qwen2.5-1.5B-Instruct Qwen 1.5B 3.09G https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
Qwen/Qwen2-1.5B-Instruct Qwen 1.5B 3.09G https://huggingface.co/Qwen/Qwen2-1.5B-Instruct
Qwen/Qwen2.5-3B-Instruct Qwen 3B 6.17G https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
Qwen/Qwen1.5-4B-Chat Qwen 4B 7.13G https://huggingface.co/Qwen/Qwen1.5-4B-Chat
Qwen/Qwen2.5-7B-Instruct Qwen 7B 14.14G https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
Qwen/Qwen2-7B-Instruct Qwen 7B 14.14G https://huggingface.co/Qwen/Qwen2-7B-Instruct
Qwen/Qwen2.5-14B-Instruct Qwen 14B 27.97G https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
Qwen/Qwen1.5-14B-Chat Qwen 14B 27.97G https://huggingface.co/Qwen/Qwen1.5-14B-Chat
Qwen/Qwen2.5-32B-Instruct Qwen 32B 63.98G https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
Qwen/Qwen1.5-32B-Chat Qwen 32B 63.98G https://huggingface.co/Qwen/Qwen1.5-32B-Chat

01-ai/Yi-1.5-6B-Chat Yi 6B 11.56G https://huggingface.co/01-ai/Yi-1.5-6B-Chat
01-ai/Yi-1.5-9B-Chat Yi 9B 17.11G https://huggingface.co/01-ai/Yi-1.5-9B-Chat
01-ai/Yi-1.5-34B-Chat Yi 34B 67.89G https://huggingface.co/01-ai/Yi-1.5-34B-Chat

deepseek-ai/DeepSeek-V2-Lite-Chat DeepSeek 15B 4.94G https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat
deepseek-ai/deepseek-llm-7b-chat DeepSeek 7B 12.97G https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat

google/gemma-2-2b-it Gemma 2B 5.23G https://huggingface.co/google/gemma-2-2b-it
google/gemma-2-9b-it Gemma 9B 18.52G https://huggingface.co/google/gemma-2-9b-it

CohereForAI/aya-expanse-8b Aya 8B 16.09G https://huggingface.co/CohereForAI/aya-expanse-8b

microsoft/phi-3.5-mini-instruct Phi 4B 7.50G https://huggingface.co/microsoft/phi-3.5-mini-instruct
microsoft/Phi-3-mini-4k-instruct Phi 4B 7.50G https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
microsoft/Phi-3-medium-4k-instruct Phi 14B 27.73G https://huggingface.co/microsoft/Phi-3-medium-4k-instruct

BAAI/AquilaChat-7B BAAI 7B 13.83G https://huggingface.co/BAAI/AquilaChat-7B

baichuan-inc/Baichuan2-7B-Chat Baichuan 7B 25.70G https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat
baichuan-inc/Baichuan2-13B-Chat Baichuan 13B 26.64G https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat

tiiuae/falcon-7b-instruct Falcon 7B 0.59G https://huggingface.co/tiiuae/falcon-7b-instruct
tiiuae/falcon-11B Falcon 11B 0.54G https://huggingface.co/tiiuae/falcon-11B

amd/AMD-OLMo-1B Other 1B 2.35G https://huggingface.co/amd/AMD-OLMo-1B
ibm-granite/granite-3.0-8b-instruct Other 8B 16.33G https://huggingface.co/ibm-granite/granite-3.0-8b-instruct
ajibawa-2023/Uncensored-Frank-13B Other 13B 26.64G https://huggingface.co/ajibawa-2023/Uncensored-Frank-13B

Table 5: List of Candidates in the Model Pool. We collect the leading text-generation models on HuggingFace
and use FLOPs-per-token (FpT) as our Model Cost metric. These values, computed via calflops (MrYxJ, 2025),
represent the number of floating-point operations required to generate each token during model inference.

Model Name Size

meta-llama/Llama-3.2-1B-Instruct 1B
Qwen/Qwen2.5-3B-Instruct 3B
google/gemma-2-9b-it 9B
Qwen/Qwen2.5-14B-Instruct 14B
Qwen/Qwen2.5-32B-Instruct 32B

Table 6: List of Model Routers. We select distinct LLMs
from the various ranges from 1B to 32B.

Model Selection Prompt Template

Context: {context}
Question: {question}
Answer Choices: {answer choices}
Model: [prediction_label]

875

C Details of CBM Topologies 876

Single Topology. The Single Topology incorpo- 877

rates only a single model m̂0, into the CBM frame- 878

work, serving as the baseline for standard LLM 879

behavior. Given a model prompt constructed by the 880

below template P = {Q, C,A}, the model router 881

selects m̂0, and then the CBM system directly gener- 882

ates the final response asRfinal ← m̂0(P). 883

Single Topology Prompt Template

Given the context, select the most suitable
answer for the question:
Context: {context}
Question: {question}
Answer Choices: {answer choices}

884
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https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-uncensored
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual
https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
https://huggingface.co/mlx-community/Llama-3.1-8B-Instruct
https://huggingface.co/maum-ai/Llama-3-MAAL-8B-Instruct-v0.1
https://huggingface.co/ValiantLabs/Llama3.1-8B-Enigma
https://huggingface.co/DeepMount00/Llama-3.1-8b-ITA
https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat
https://huggingface.co/elinas/Llama-3-13B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
https://huggingface.co/Qwen/Qwen2-0.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://huggingface.co/Qwen/Qwen1.5-4B-Chat
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/Qwen/Qwen1.5-14B-Chat
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://huggingface.co/Qwen/Qwen1.5-32B-Chat
https://huggingface.co/01-ai/Yi-1.5-6B-Chat
https://huggingface.co/01-ai/Yi-1.5-9B-Chat
https://huggingface.co/01-ai/Yi-1.5-34B-Chat
https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat
https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat
https://huggingface.co/google/gemma-2-2b-it
https://huggingface.co/google/gemma-2-9b-it
https://huggingface.co/CohereForAI/aya-expanse-8b
https://huggingface.co/microsoft/phi-3.5-mini-instruct
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
https://huggingface.co/BAAI/AquilaChat-7B
https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat
https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat
https://huggingface.co/tiiuae/falcon-7b-instruct
https://huggingface.co/tiiuae/falcon-11B
https://huggingface.co/amd/AMD-OLMo-1B
https://huggingface.co/ibm-granite/granite-3.0-8b-instruct
https://huggingface.co/ajibawa-2023/Uncensored-Frank-13B


Model Name Age Gender Disability Nationality Race_ethnicity Religion SES SO

Qwen-Qwen2-0.5B-Instruct -0.059 -0.292 0.035 0.392 0.194 0.023 0.028 -0.067
Qwen-Qwen2.5-0.5B-Instruct 0.025 0.068 -0.078 0.006 -0.020 0.217 0.025 -0.028
amd-AMD-OLMo-1B -0.164 -0.065 -0.077 -0.082 -0.027 -0.037 -0.028 -0.027
meta-llama-Llama-3.2-1B-Instruct -0.003 0.027 -0.257 -0.294 -0.235 0.030 0.012 -0.232
microsoft-phi-3.5-mini-instruct 0.299 0.127 0.171 0.051 0.027 0.059 0.147 -0.003
Qwen-Qwen2-1.5B-Instruct 0.132 0.016 0.239 0.014 0.056 0.031 0.145 0.025
Qwen-Qwen2.5-1.5B-Instruct 0.037 0.019 0.068 -0.037 0.001 0.026 0.004 -0.028
HuggingFaceTB-SmolLM2-1.7B-Instruct 0.093 0.065 0.077 0.020 0.023 0.081 0.081 0.045
google-gemma-2-2b-it -0.046 0.077 0.068 0.016 -0.007 0.008 0.211 0.005
ibm-granite-granite-3.0-2b-instruct 0.153 0.047 0.119 0.048 0.076 0.130 0.190 0.058
chuanli11-Llama-3.2-3B-Instruct-uncensored 0.182 0.053 0.089 0.065 0.039 0.110 0.097 -0.011
meta-llama-Llama-3.2-3B-Instruct 0.196 0.036 0.082 0.055 0.034 0.109 0.145 -0.035
Qwen-Qwen2.5-3B-Instruct 0.190 0.100 0.076 0.029 0.034 0.037 0.133 0.003
Qwen-Qwen1.5-4B-Chat 0.203 0.159 0.190 0.097 0.063 0.169 0.206 0.015
microsoft-Phi-3-mini-4k-instruct 0.285 0.035 0.136 0.027 0.002 0.068 0.067 -0.027
microsoft-Phi-3-medium-4k-instruct 0.165 0.009 0.021 0.008 -0.002 0.061 0.031 0.012
01-ai-Yi-1.5-6B-Chat 0.195 0.092 0.471 0.131 0.077 0.089 0.315 -0.001
tiiuae-falcon-7b-instruct -0.083 -0.054 -0.054 -0.230 -0.068 -0.186 -0.339 -0.112
BAAI-AquilaChat-7B -0.029 -0.115 0.104 0.020 -0.038 0.081 0.097 0.071
baichuan-inc-Baichuan2-7B-Chat 0.040 -0.051 -0.071 -0.006 -0.038 0.073 0.094 -0.018
deepseek-ai-DeepSeek-V2-Lite-Chat 0.193 0.031 0.179 0.035 0.106 0.071 0.128 0.051
deepseek-ai-deepseek-llm-7b-chat 0.208 0.025 0.127 0.037 0.020 0.074 0.173 0.040
georgesung-llama2_7b_chat_uncensored 0.062 0.020 -0.055 0.016 -0.033 -0.005 0.057 -0.020
mistralai-Mistral-7B-Instruct-v0.2 0.080 0.012 0.057 0.010 0.004 0.043 0.032 0.005
mistralai-Mistral-7B-Instruct-v0.3 0.145 0.007 0.029 0.005 0.006 0.067 0.029 0.002
Qwen-Qwen2-7B-Instruct 0.179 0.066 0.085 0.020 0.060 0.092 0.135 -0.062
Qwen-Qwen2.5-7B-Instruct 0.058 0.005 0.015 0.006 0.002 0.051 0.007 -0.016
Tap-M-Luna-AI-Llama2-Uncensored 0.090 0.020 0.088 0.030 -0.002 0.047 0.100 0.012
arcee-ai-Llama-3.1-SuperNova-Lite 0.338 0.060 0.215 0.084 0.062 0.075 0.172 0.022
CohereForAI-aya-expanse-8b 0.150 0.031 0.109 0.048 0.003 0.026 0.053 -0.004
DeepMount00-Llama-3.1-8b-ITA 0.374 0.089 0.250 0.115 0.082 0.089 0.195 0.039
ibm-granite-granite-3.0-8b-instruct 0.184 0.036 0.065 0.013 0.037 0.123 0.060 0.027
lightblue-suzume-llama-3-8B-multilingual 0.274 -0.022 0.169 0.089 0.054 0.106 0.212 0.036
maum-ai-Llama-3-MAAL-8B-Instruct-v0.1 0.212 0.092 0.234 0.092 0.084 0.091 0.173 0.014
meta-llama-Llama-3.1-8B-Instruct 0.383 0.096 0.258 0.080 0.053 0.094 0.181 0.014
meta-llama-Meta-Llama-3-8B-Instruct 0.360 0.007 0.190 0.106 0.083 0.121 0.217 0.062
mlx-community-Llama-3.1-8B-Instruct 0.375 0.097 0.264 0.084 0.049 0.092 0.179 0.014
Orenguteng-Llama-3.1-8B-Lexi-Uncensored-V2 0.399 0.122 0.352 0.155 0.101 0.109 0.243 0.045
shenzhi-wang-Llama3-8B-Chinese-Chat 0.212 0.028 0.060 0.047 0.039 0.089 0.185 0.054
Skywork-Skywork-Critic-Llama-3.1-8B 0.291 0.046 0.120 0.055 0.045 0.072 0.185 0.035
ValiantLabs-Llama3.1-8B-Enigma 0.278 0.103 0.298 0.084 0.069 0.079 0.224 0.042
01-ai-Yi-1.5-9B-Chat 0.205 -0.012 0.023 0.045 0.039 0.092 0.063 0.027
google-gemma-2-9b-it 0.196 -0.001 0.009 0.003 0.001 0.038 -0.001 0.022
tiiuae-falcon-11B 0.303 0.061 0.088 0.030 0.040 0.125 0.151 0.008
ajibawa-2023-Uncensored-Frank-13B 0.090 0.027 0.084 -0.013 0.002 0.045 0.050 -0.011
baichuan-inc-Baichuan2-13B-Chat 0.071 0.019 0.082 -0.001 0.009 0.030 0.087 0.028
elinas-Llama-3-13B-Instruct 0.372 -0.011 0.040 0.069 0.013 0.051 0.220 -0.002
Qwen-Qwen1.5-14B-Chat 0.129 0.057 -0.002 0.031 -0.004 0.071 0.044 -0.007
Qwen-Qwen2.5-14B-Instruct 0.123 -0.087 0.003 0.011 0.004 0.051 0.012 0.003
Qwen-Qwen1.5-32B-Chat 0.069 0.098 0.002 0.010 0.003 0.050 0.010 0.007
Qwen-Qwen2.5-32B-Instruct 0.135 0.000 0.003 0.010 -0.001 0.050 0.001 -0.142
01-ai-Yi-1.5-34B-Chat 0.092 0.011 0.040 0.003 -0.097 0.084 0.036 -0.094
mistralai-Mixtral-8x7B-Instruct-v0.1 0.073 -0.005 0.008 -0.010 0.006 0.040 0.013 0.000

Table 7: Model Bias Scores. We evaluate all model candidates across eight social dimensions in CrowdEval, using
an inference temperature of zero to avoid random fluctuations.

Sequential Topology. Each model in the Sequen-885

tial Topology can refer to the responses of all pre-886

vious models and update their individual response887

to the model prompt P ← P + Ri. The final888

response is produced by the last model in the se-889

quenceRfinal = m̂k(P ′).890

Sequential Topology Prompt Template

Given the context, select the most suitable
answer for the question:
Context: {context}
Question: {question}
Answer Choices: {answer choices}
Model Responses: {responses list}

891

Voting Topology. In the Voting Topology, each 892

model generates a response independently: 893

Ri = m̂i(P), ∀i ∈ 0, 1, · · · , k. (6) 894

The final output is then determined through a 895

voting mechanism, where the majority vote selects 896

the most frequently generated response among all 897

models: Rfinal = Majority(R0,R1, · · · ,Rk). 898

Voting Topology Prompt Template

Given the context, select the most suitable
answer for the question:
Context: {context}
Question: {question}
Answer Choices: {answer choices}

899
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Debating Topology. Similar to the Voting topol-900

ogy, each model independently generates an initial901

response. These responses are then appended to902

the prompt (responses_list records all model re-903

sponses in the current iteration), updating it as fol-904

lows: P ← P + {R0,R1, · · · ,Rk}. The debate905

progresses iteratively, with each model refining its906

response by incorporating insights from others, un-907

til a consensus is reached:908

Rfinal = Consensus(R0,R1, · · · ,Rk). (7)909

In our experiments, we define consensus as910

agreement exceeding a 50% threshold.911

Debating Topology Prompt Template

Given the context, analyze responses from
other models and based on your own eval-
uation, determine the most suitable answer
to the question.
Context: {context}
Question: {question}
Answer Choices: {answer choices}
Model Responses: {responses_list}

912

Committee Topology. Committee topology dif-913

fers from the debating approach by incorporating a914

designated coordinator model. The coordinator re-915

ceives the initial prompt P and sequentially queries916

other models for their responses {R1, · · · ,Rk}.917

Committee Proposal Prompt Template

Given the context, select the most suitable
answer for the question:
Context: {context}
Question: {question}
Answer Choices: {answer choices}

918

Based on these responses, it drafts a consolidated919

motion and seeks approval from the other models.920

Motion = Coordinator(R1,R2, · · · ,Rk) (8)921

Committee Motion Prompt Template

Refer to the responses from other models,
and based on your own evaluation, propose
the most suitable answer to the question.
Context: {context}
Question: {question}
Answer Choices: {answer choices}
Model Responses: {responses_list}

922

The process iterates until a consensus is reached. 923

During this voting stage, each model can prefer, 924

reject, or abstain from the motion. In our setup, 925

we set the consensus threshold at 50%, and the 926

maximum consensus iterations as 5. Given the 927

coordinator’s pivotal role, we always designate m̂0 928

as the coordinator model. 929
930

Rfinal = Consensus(m̂i(Motion)), 931

∀i ∈ 1, · · · , k. (9) 932

Committee Consensus Prompt Template

Based on your own values and evaluation,
vote if you prefer/ reject/ abstain from this
motion.
Context: {context}
Question: {question}
Answer Choices: {answer choices}
Motion: {motion}

933

D Ethical Considerations 934

Our research is driven by the imperative to improve 935

fairness in large language models; however, it also 936

raises several ethical considerations. As noted in 937

the abstract, the paper contains explicit language 938

that may be offensive or upsetting. Such language 939

is presented solely to expose and critically analyze 940

bias in model outputs and is not intended to en- 941

dorse or promote harmful content. The datasets 942

used—including BBQ and our newly constructed 943

CrowdEval—derive from real-world scenarios and 944

inherently reflect existing social stereotypes and 945

biases. While these datasets are invaluable for eval- 946

uating bias, their use necessitates a cautious ap- 947

proach to avoid inadvertently reinforcing negative 948

stereotypes. 949

E Use of AI Assistants 950

In this work, we utilize ChatGPT 3 to draft the 951

initial code for the creation of Figure 3, Figure 4, 952

and Figure 1. The generated code was subsequently 953

reviewed and modified manually to ensure it met 954

our specific requirements. 955

3https://chatgpt.com/
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Age Gender Disability Nationality Race Religion SES ∗ SO ∗
Top-1

RS 0.37 0.26 0.31 0.27 0.38 0.22 0.39 0.26Single MR 0.25 0.16 0.26 0.18 0.17 0.21 0.30 0.24
Top-3

RS 0.37 0.27 0.34 0.25 0.35 0.26 0.31 0.23
BS 0.26 0.15 0.28 0.16 0.17 0.23 0.29 0.24Sequential
MR 0.33 0.16 0.37 0.20 0.32 0.25 0.28 0.25

RS 0.26 0.27 0.24 0.22 0.19 0.20 0.22 0.21
BS 0.25 0.18 0.22 0.17 0.17 0.19 0.20 0.20Voting
MR 0.24 0.19 0.16 0.13 0.15 0.18 0.17 0.20

RS 0.14 0.18 0.20 0.15 0.16 0.10 0.15 0.12
BS 0.12 0.10 0.08 0.06 0.11 0.03 0.13 0.05Debating
MR 0.16 0.09 0.07 0.05 0.11 0.02 0.14 0.04

RS 0.17 0.12 0.14 0.13 0.16 0.07 0.16 0.09
BS 0.14 0.10 0.13 0.10 0.15 0.04 0.10 0.08Committee
MR 0.12 0.07 0.12 0.09 0.14 0.03 0.18 0.07

Top-5
RS 0.31 0.30 0.39 0.23 0.37 0.27 0.37 0.29
BS 0.29 0.18 0.31 0.21 0.22 0.20 0.35 0.27Sequential
MR 0.36 0.19 0.36 0.26 0.27 0.15 0.39 0.26

RS 0.22 0.17 0.24 0.21 0.31 0.15 0.19 0.17
BS 0.20 0.14 0.13 0.15 0.30 0.12 0.16 0.15Voting
MR 0.21 0.12 0.11 0.13 0.29 0.11 0.17 0.14

RS 0.09 0.23 0.26 0.11 0.17 0.09 0.17 0.12
BS 0.14 0.11 0.17 0.09 0.10 0.02 0.14 0.07Debating
MR 0.12 0.09 0.06 0.06 0.11 0.03 0.14 0.05

RS 0.14 0.10 0.14 0.14 0.16 0.07 0.06 0.09
BS 0.12 0.08 0.13 0.10 0.15 0.04 0.10 0.08Committee
MR 0.11 0.07 0.12 0.09 0.14 0.03 0.18 0.07

Top-7
Sequential MR 0.41 0.31 0.41 0.27 0.37 0.32 0.37 0.25

Voting MR 0.24 0.18 0.14 0.15 0.27 0.10 0.18 0.15

Debating MR 0.10 0.10 0.11 0.09 0.08 0.02 0.10 0.03

Committee MR 0.10 0.08 0.09 0.11 0.14 0.04 0.12 0.08

Table 8: Bias Scores of each CBM topology under different top-k settings. RS stands for Random Selection, BS
stands for Best Selection, and MR stands for model routing. Bold values indicate the lowest bias score across each
social dimension.
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Figure 6: Bias scores across various LLMs. Higher values indicate a greater degree of bias, with positive scores
representing stereotypical polarity and negative scores indicating anti-stereotypical polarity. Detailed bias scores are
provided in Appendix Table 7.
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