SuperShaper: Task-Agnostic Super Pre-training of BERT Models with
Variable Hidden Dimensions

Anonymous ACL submission

Abstract

Task-agnostic pre-training followed by task-
specific fine-tuning is a default approach to
train NLU models which need to be deployed
on devices with varying resource and accuracy
constraints. However, repeating pre-training
and fine-tuning across tens of devices is pro-
hibitively expensive. To address this, we pro-
pose SuperShaper, a task agnostic pre-training
approach wherein we pre-train a single model
which subsumes a large number of Transformer
models by varying shapes, i.e., by varying the
hidden dimensions across layers. This is en-
abled by a backbone network with linear bottle-
neck matrices around each Transformer layer
which are sliced to generate differently shaped
sub-networks. Despite its simple design space
and efficient implementation, SuperShaper rad-
ically simplifies NAS for language models and
discovers networks that effectively trade-off ac-
curacy and model size: Discovered networks
are more accurate than a range of hand-crafted
and automatically searched networks on GLUE
benchmarks. Further, we find two critical ad-
vantages of shape as a design variable for Neu-
ral Architecture Search (NAS): (a) networks
found with these heuristics derived for good
shapes, match and even improve on carefully
searched networks across a range of parameter
counts, and (b) the latency of networks across
multiple CPUs and GPUs are insensitive to the
shape and thus enable device-agnostic search.

1 Introduction

In the past decade, there has been a surge in public
and private cloud usage which has centralized com-
pute and storage. However, rising cloud costs, ever
powerful client devices, and increased call for pri-
vacy favors (distributed) compute on edge (client)
devices. Deployment of compute-intensive Al mod-
els addressing the distribution-centralization gap re-
quires developers to ensure that their models are de-
ployable on tens of diverse devices spanning CPU
and GPU setups on cloud and client devices.

Al models, for NLP and NLU in particular, are
typically developed via the pre-train and fine-tune
approach (Devlin et al., 2019), where the former
is significantly more compute intensive than the
latter (Liu et al., 2021). Ideally, this should be done
for every point in the product space of multiple
tasks and multiple devices with different model
variants. However, this is prohibitively expensive
and is addressed in one of 3 ways: (a.) Pre-train a
single large language model, such as BERT, agnos-
tic of task and device, followed by device and task
specific model sizing via knowledge distillation
(Tang et al., 2019; Turc et al., 2019a; Sanh et al.,
2019a; Jiao et al., 2020), pruning (Michel et al.,
2019; Goyal et al., 2020), quantization (Shen et al.,
2020), factorization (Ma et al., 2019), etc. (b.) Pre-
train a single language model but simultaneously
fine-tune many sub-networks of different sizes, in
what we call super fine-tuning. Then for a chosen
task and device, an appropriately sized sub-network
can be sampled from the super-network and de-
ployed. Examples of such works are DynaBERT
(Hou et al., 2020) and YOCO-BERT (Zhang et al.,
2021). (c.) Instead of pre-training one large lan-
guage model, an entire family of language models
is trained, in what we call super pre-training which
was explored in NAS-BERT (Xu et al., 2021).

Super pre-training is more attractive than the
other approaches because the pre-trained model
avoids the need for model compression which in-
herently lossy and reduces generalizability while
being aware of model shapes and sizes agnostic of
the downstream task. That being said, super pre-
training involves searching for pre-training archi-
tectures from scratch and existing efforts (Xu et al.,
2021; Hou et al., 2020) propose complex methods
for reducing the search space by discretizing the
network into blocks, heuristic based search space
pruning among others. We propose an alternative
approach to super-training language models by sim-
plifying this design space, called SuperShaper.

SuperShaper, like NAS-BERT, is task-agnostic
but differs from existing methods in two crucial
ways: First, it starts out with an existing pretrained
BERT model and its search space is defined only
by the hidden dimension of each Transformer layer,
which we refer to as the shape of the network. This
is enabled by modifying the BERT backbone with
bottleneck matrices at the input and output of each
layer, inspired from MobileBERT (Sun et al., 2020).
In each batch, differently shaped networks are ran-
domly sampled by slicing the bottleneck matrices
and trained. Though a single parameter per layer,
the hidden dimension sensitively affects model ca-
pacity as the parameter count linearly depends on it.
Second, the super pre-training procedure is much
simpler with SuperShaper requiring only sliced
matrix multiplications on the bottleneck matrices,
similar to the earliest techniques proposed for elas-
tic training (Brock et al., 2018; Cai et al., 2019).
This is radically simpler than existing NAS tech-
niques which define complex design spaces, archi-
tecture modifications, and heuristics for managing
the search space. In PyTorch, only 20 lines of
additional code are required to add SuperShaper
functionality (see Appendix). The SuperShaper
model is a proxy for models with various shapes
that would otherwise be trained separately. Then,
we can use Evolutionary Algorithms (EA) to find
optimal sub-networks that are accurate and meet
given parameter and device constraints. These sub-
networks are fine-tuned for downstream tasks.

Despite the simple design space and efficient
implementation, SuperShaper helps identify sub-
networks that are competitive on GLUE tasks with
BERT-base as well as with many compressed mod-
els (both hand-crafted and searched with NAS) at
lower parameter counts. In the 60-66M parameter
regime, the model found with SuperShaper per-
forms better on GLUE than larger models iden-
tified with many successful techniques such as
LayerDrop, DistilBERT, Bert-PKD, miniLLM, Tiny-
BERT, BERT-of-Theseus, PD-BERT, and YOCO-
BERT. Only NAS-BERT, with its much larger
search space and knowledge distillation reports
a higher accuracy by 1%. Analyses of networks
searched via EAs help identify heuristics of good
shapes, which suggest a cigar-like shape. By apply-
ing these heuristics, we hand-craft sub-networks
across a range of parameter counts which match
and often exceed the performance of networks
searched with EAs. Thus, Transformer shapes af-

Output Representation

Gpmay= 768 / \
Output Bottleneck

Output Representation

yax = 768

Forward

~ o
Multi-Head

Attention

Multi-Head
Attention

=

dy<=768

Ghmax = /58

Figure 1: A Transformer layer in (a) BERT, and (b)
Backbone in SuperShaper with bottleneck matrices.

ford interpretable generalization of model compres-
sion across a range of parameter count constraints
indicating that NAS can be performed with radi-
cally simpler design spaces and implementations
focusing only on the hidden sizes, which generalize
across tasks, parameter counts, and devices.

2 SuperShaper: The methodology

This section details the SuperShaper methodology
focusing on the backbone network, pre-training
methods, sub-network search and fine-tuning.

2.1 SuperShaper Backbone

A super pre-training procedure is characterized by
a search space of networks. While existing works
focus on the number of attention heads, neurons in
the FFNs, encoder layers, the use of other operators
like separable convolution, etc. for the search space,
SuperShaper radically simplifies this by focusing
on a single variable - the hidden dimensions for
each layer. We focus on SuperShapers based on the
Transformer architecture (Vaswani et al., 2017).
In a standard BERT-like encoder (see Figure 1)
the hidden dimension dj, of each layer is a constant,
e.g., 768 for BERT-base. But with SuperShaper, we
would like to explore sub-networks where layers
have different hidden dimensions. The intuition be-
hind this choice is that different layers may perform
roles of varying importance. For instance, earlier
layers manipulating the input embeddings and the
final layers responsible for the output may require
larger hidden dimensions. To enable this, we take
inspiration from MobileBERT (Sun et al., 2020)
which proposed a bottleneck layer to compress the
parameter size of BERT. Based on this, we modify
the standard Transformer layer as shown in Figure 1

(b). The input and output of each transformer layer
are intermediated by bottleneck matrices, which
translate between the dimension of a token outside
a layer (say 768) and the dimension of a token in-
side a layer (say 120). To reduce the dimension
of a layer to 120, we slice the bottleneck matrix
at the input from 768 x 768 to 768 x 120. With
this change, each layer can have differently sized
bottleneck matrices such that the hidden dimension
varies across layers and we can generate differently
shaped sub-networks for super-pretraining.

2.2 Training with SuperShaper

We denote the SuperShaper backbone as 7" and any
sub-network sliced from the backbone as T's where
S is the shape vector that represents the layer-wise
hidden dimensions, S; for layer i. The set of all
possible values of S denotes the design space D.
The smallest and largest sub-networks in D are
denoted as T's— and Tg+, respectively, while a ran-
dom sub-network is denoted as Ts-. To evaluate
how well a sub-network T’s has trained, we calcu-
late the validation set perplexity, denoted P(T%s),
on the Masked Language Modelling (MLM) task.

From a given design space D, we sample n dif-
ferent shapes S and obtain 7Ts for each by the slic-
ing technique described in the previous subsection.
This sampling can be performed in two ways: (a)
uniform random sampling from D, and (b) ran-
dom Sampling with sandwich rule (Yu and Huang,
2019), where in addition to (a) we also sample the
largest and smallest sub-networks T'¢+ and Tg-.
Sandwich rule has been shown to perform better
for weight-sharing NAS in computer vision (Yu and
Huang, 2019; Yu et al., 2020; Wang et al., 2021a).
For language modelling, we study both sampling
methods and report our findings in Section 3. With
the sampled sub-networks, gradient updates are
computed and parameters are modified with a stan-
dard optimizer. Note that the sub-networks share a
large number of their parameters, in particular the
earlier rows and columns of the bottleneck matri-
ces. Also parts of matrices inside the layer (such
as query, key, and value projection matrices) are
shared. This parameter sharing is expected to en-
able generalization during training across the large
space of sub-networks. We evaluate and provide
empirical evidence for such generalization in Sec-
tion 3.

2.3 Fine-tuning 75 from SuperShaper

To fine-tune a sampled sub-network T for a spe-
cific task, several options exist. First, we can sam-
ple T's and fine-tune it directly on the task - G gj ect-
Second, we can further pre-train T individually
and then fine-tune on the task - G artial- Finally,
we can randomly initialize the weights of Ts and
pre-train from scratch before fine-tuning- éscratch'
We compare these options by fine-tuning on 8 tasks
— MNLI-m, QQP, QNLI, CoLA, SST-2, STS-B,
RTE, MRPC — from the GLUE benchmark (Wang
et al., 2018) and Squad V1 (Rajpurkar et al., 2016).

2.4 Searching for optimal shapes

Once we have super pre-trained with a design space
D, we can sample and deploy T’s for any .S, which
can then be fine-tuned by methods described in the
previous subsection. The design space of all sub-
networks can be large: A choice of 7 shapes each
for 12 layers can yield 14 billion sub-networks.
The search question is to find an optimal shape
from S which meets specific constraints on accu-
racy, parameter count, or latency on devices. We
adopt Evolutionary Algorithm (EA) from (Real
et al., 2017) as a generic optimization technique,
which starts with a population of solutions and over
generations create new solutions by applying ge-
netic operations like mutation and crossover and
retain the fittest solutions based on defined metrics
of interest. For SuperShaper, the genetic represen-
tation of sub-networks and genetic operations are
natural and simply described by the shape vector
S. For the fitness metrics, we use perplexity on
language modelling and latency on a device. To
amortize the expense of computing these metrics
for thousands of solutions, we use fitness predictors
that have been studied elsewhere in NAS (Cai et al.,
2019; Ganesan et al., 2020).

While EA with fitness predictors can search for
sub-networks, the most desirable setting is to find
sub-networks by applying a set of heuristics to
decide the shape of each layer. We propose a tech-
nique to discover such heuristics and then use it to
identify sub-networks for varying parameter count
constraints. We report results on how these com-
pare against EAs in Section 3.

3 Experimental Setup and Results

We now detail the experimental setup and report a
range of findings to evaluate SuperShaper.

20 - - Random sampling 121
Sandwich rule

|
5 \NW 41

--- Random sampling
Sandwich rule

15

10

2 e Suv-pework (5 1,200 {-- Random sampling -e- Random sampling

2 g e submemmo) | 1,000 { -+ Sandwich rule 80 - -+ Sandwich rule

5} =)

k| E 8009 60

% 2 2 600

> 400 40

2 200 { 2

= Dnnisnutanmuies SN RS TSV eesstens
0 20 40 60 80100120 5 10 15 5 10

Training Steps (in Thousands) Training Epochs

Training Epochs

15 5 10 15 5 10 15
Training Epochs Training Epochs

Figure 2: (a) Loss trajectory of T, T and Ts networks, (b)-(d) Perplexity trajectory of T, two randomly
sampled 7', and Tg‘ respectively for random-sampling and sandwich rule

o

51

=

120 240 60 480 540 600 768 k=]
o

Avg Gain in GLUE (in %)

60

40 4

204

Training time required (in %)

7
61 <

‘ ‘ ‘

4 45 5

Gscratch

T T T T T T
50 60 70 8 90 100

Parameters (in millions)

<
6 30 40

Figure 3: (a) Visualization of input and output bottleneck matrices for the first layer, (b) SuperShaper is a fast

and accurate proxy for sub-network perplexity, and (c)

partia

| inherited sub-networks only require a fraction of

pre-training cost (in blue) i.e. 1.3-6.6x reduction to reach optimum. This comes at a higher average gain in GLUE

score (in red).

3.1 Experimental Setup

We describe the experimental setups for pre-
training and fine-tuning.

Design space We slice the bottleneck matrix to
produce Transformer layers of varying hidden di-
mensions in {120, 240, 360, 480, 540, 600, 768},
which creates a design space D of 7'2 or about 14
billion sub-networks.

Super pre-training We initialize our backbone
with BERT-base-cased model trained on Wikipedia
and BookCorpus with identity bottleneck matrices.
We then super pre-train the backbone using Masked
language modeling over the C4 RealNews dataset
(Raffel et al., 2019) with effective batch size of
2048, max sequence length 128, for 175K steps (or
26 epochs) on 8 A100 GPUs. Other hyperparame-
ters are described in the Appendix.

Fine tuning. Similar to (Xu et al., 2021), we evalu-
ate the effectiveness of SuperShaper by pre-training
all our compressed models from scratch and later
fine-tune them on 8 GLUE tasks and SQuAD V1.
The task details and evaluation metrics are men-
tioned in the Appendix.

Evolutionary Algorithm (EA). For EA, we adapt
the algorithm presented in (Real et al., 2017). We
choose a population size of 100, mutation probabil-
ity of 0.4, and the ratio of parent size to mutation or
crossover size as 1. We bound the search algorithm
to 300 iterations.

Fitness Predictors. For perplexity predictor, we

randomly sample 10, 000 sub-networks and evalu-
ate their perplexity as measured on validation set
of C4-RealNews dataset. We use this dataset to
build the predictor based on XGBoost model (Chen
et al., 2015). For latency predictor, we sample
1,000 — 4,000 sub-networks and evaluate their
latency on the chosen device. We again train a XG-
Boost model to predict latency from this dataset.
We consider 5 devices - 3 GPUs: 1080Ti, 1060Ti
and K80, and 2 CPUs: AMD Ryzen CPU and a
server class single-core Xeon CPU.

3.2 Pre-training with SuperShaper
Effect of sub-network sampling rule.

In computer vision, sandwich rule is widely used in
the context of weight-sharing NAS (Yu and Huang,
2019). We super pre-train the trained backbone
network with the sandwich rule. The correspond-
ing loss trajectory for largest, smallest, and ran-
domly sampled sub-networks are shown in Fig-
ure 2(a). Clearly, the larger network has a lower
perplexity, but the super pre-training ensures that
a range of networks are simultaneously trained on
the MLM task. Specifically, randomly sampled
subnetworks shown as T's- even though not sam-
pled as frequently as the smallest subnetwork, have
a lower perplexity. This provides evidence of gen-
eralization during super pre-training.

We now compare the sandwich sampling rule
with fully randomised sampling. We plot the per-

plexity of 4 networks: the largest, smallest, and
two other intermediate networks in Figure 2(b)-(e).
Sandwich sampling always samples the largest and
smallest and thus the perplexity on these networks
is significantly lower with sandwich sampling than
random sampling. This suggests that sandwich
sampling effectively combines good extremum sub-
networks with reasonably good intermediate sub-
networks. In all subsequent experiments, we use
sandwich sampling.

Visualizing bottleneck matrices.

We initialize the bottleneck matrices to identity
weights and zero bias. After super pre-training, we
visualize these matrices to understand the role of
sliced training of sub-networks. We take the soft-
max of the principal diagonal of the two bottleneck
matrices of the first layer, and plot them in Fig-
ure 3 (a). We clearly observe that the entries show
a banded pattern with boundaries at the shapes in
our design space: 120, 240, 360, 480, 540, 600,
and 768. This implies that super pre-training learns
different linear projections of 768 dimensional in-
put representation to the chosen hidden dimensions.
Visualizations for other layers are in the Appendix.

Effectiveness of super pre-training.

We ask two questions towards evaluating the ef-
fectiveness of super pre-training: (a) Is the relative
performance of sampled sub-networks on the MLM
perplexity (édirect) correlated with performance
of the same sub-networks when pre-trained individ-
ually from scratch (éscratch)?’ and (b) Does the su-
per pre-training afford sub-networks an advantage
when being fine-tuned for tasks? For the first ques-
tion, we sample a set of sub-networks T’s of both
varying (33-96M) and similar (63-65M) parame-
ter counts, and plot G irect and Ggepareh in Fig-
ure 3 (b). We notice that G girect and Ggeratch ar€
highly correlated with a Spearman correlation coef-
ficient of 0.954. This implies that the sub-network’s
measured MLM perplexity after super pre-training
is a good proxy for final performance. We also
observe that networks sampled at the similar pa-
rameter count (63-65M) have varying performance
suggesting the sensitive role of shape in accuracy.

For studying the second question, we pre-train
and then fine-tune the varying parameter count
sub-networks (33-96M) in two ways (a) by retain-
ing the weights learnt during super pre-training
(épartial)’ and (b) starting with random initializa-

tion Ggcpatch- We plot two quantities in Figure 3

(c): the amount of pre-training time saved with (a)
and the additional GLUE score obtained with (a).
We observe that models with fewer parameters (30-
50M) show significant savings in the pre-training
time (up to 6.6) and simultaneously benefit from
improved GLUE accuracy (up to 3%). The gains
on both axes for larger models are smaller. This
suggests that smaller models whose parameters re-
ceive more weight updates due to sharing of the ear-
lier rows and columns across sub-networks benefit
more from super pre-training. This is encouraging
because most effort in deployability is concerned
with models of smaller size.

3.3 Comparing sub-networks with other
methods

Comparing with BERT-base.

As a first baseline, we search for a SuperShaper-
Base model with EA with a constraint of 100M
parameters and obtain a model with 96M param-
eters. This model is comparable against an un-
compressed BERT-base model which has 110M
parameters. We compare the GLUE and SQuAD
V1 performance of SuperShaper-Base (éscratch)
with two of the top reported results on BERT-Base
(Xu et al., 2021; Sanh et al., 2019b). While the
task-wise details are in the Appendix, we find that
the average GLUE score across the two reported
BERT-base baselines (83.7%) is the same as that
with SuperShaper-Base (83.7%). For Squad v1, our
F1 score of 88.2 is competitive with other baselines
- 88.9 and 88.5 Thus, SuperShaper-Base performs
competitively with the uncompressed BERT-base
with fewer parameters (96M vs 110M).

Randomly sampled
11 : ~¢-Evolutionary Search
~*-Heuristic-based

Perplexity

40M 50M 60M 70M 80M 90M
Parameters (in millions)

Figure 4: Evolutionary search finds optimal models
while simple heuristics yield competitive models.

Comparing with compressed models

We now compare against state-of-the-art com-
pressed models either hand-crafted or found by
NAS algorithms (see Table 1). Since several of

these models are in the range of 60-67M, we search
for a sub-network from SuperShaper with a param-
eter constraint of 66M. The task-wise performance
of the obtained sub-network is reported in Table 1.
On GLUE benchmark, SuperShaper outperforms
many prominent hand-crafted or compressed net-
works proposed over the last two years by a signifi-
cant margin. Across NAS-based methods, Super-
Shaper performs competitively despite a much sim-
pler design space. On SQuAD, we outperform Bert-
PKD, ELM and have competitive results compared
to DistillBert while having lesser parameters (63M
vs 66-67M). Only NAS-BERT reports a higher av-
erage GLUE and better EM/F1 scores, which may
be attributed to the use of novel operators such as
separable convolution in the design space. Also,
NAS-BERT and DynaBERT use knowledge dis-
tillation and data augmentation. These methods
are orthogonal to shaping and can be combined
with our approach. In summary, we establish that
SuperShaper with a simple design space and effi-
cient super pre-training implementation performs
competitively in compressing models to a given
parameter count.

We now apply EA to search for sub-networks at
varying parameter count, ranging from 40 to 110M.
To understand the effectiveness of EA search, we
sample 10,000 random sub-networks and compute
their perplexity. We then plot these points along
with the networks searched by EA in Figure 4. First,
we observe that sub-network’s shape critically af-
fects language modeling perplexity. Second, EA
effectively searches for accurate networks across
the parameter range(33M-100M). We report GLUE
scores for these networks in the Appendix.

3.4 Shape analysis of Super-Networks.

In contrast to other NAS techniques, the design
space of SuperShaper is interpretable - the network
shape. We can thus ask the question: Are there
good shapes for different model sizes?

Models with templated shapes.

We evaluate the performance of the following tem-
plated shapes in the 63-65M parameter range: hid-
den sizes increase from lower layers to the higher
layers, upper triangle, rectangle (all layers have
similar hidden sizes), diamond, inverted diamond,
bottle, and inverted bottle. Details of the hidden di-
mensions and sub-network perplexity for each net-
work are in the Appendix. We observe that lower
triangle has the lowest perplexity (7.31) while in-

verted bottle (9.22) has the highest. This wide
range reiterates that shape sensitively affects perfor-
mance. Further, we observe that more parameters
in deeper layers benefits model performance.

Feature importance from optimal sub-networks.
From the analysis of sub-networks searched by EA
and the templated shapes, we find that accurate net-
works have more parameters in later layers. We
analyse this using the perplexity predictor trained
to estimate épartial given the shape. For this pre-
dictor, we compute the feature importance (plot
in the Appendix) of each layer’s shape and find it
to be highest for the last few layers and the first
layer. Based on these observations, we derive a set
of heuristics indicating good shapes: (a) a large
dimension in the last layer, (b) moderately large
dimension in the first layer, (c¢) low dimensions in
early middle layers (2-5), and (d) moderate dimen-
sions in later middle layers (6-11). We characterize
this as a cigar-like shape.

Heuristically shaped models. Based on the above
heuristics, we hand-shape sub-networks with the
following algorithm: (a) construct a reference
model Ts+ following the heuristics at a given pa-
rameter range (say 60-65M), (b) for a target pa-
rameter count, scale the shape S; of every layer
linearly, (c) for early middle layers, round down
the scaled .S; (as they have lesser importance) and
for remaining layers round up S; to the nearest
configuration in D. Based on this algorithm, we
identify sub-networks across the parameter count
with cigar-like shapes as shown in Figure 6. We
evaluate these hand-crafted sub-networks on per-
plexity édirect and find that they are competitive
and even outperform sub-networks searched with
EAs (see Figure 4). We also pre-train and evalu-
ate one of the heuristic models with a parameter
count of 61M on the Glue tasks (see Table 1). We
observe that, similar to our evolutionary-search sub-
network (63M), the heuristic model outperforms
prominent hand-crafted or compressed networks
This strongly demonstrates the generalization of
the derived heuristics across model size. To the
best or our knowledge, this is the first such gener-
alization demonstrated for NAS.

3.5 Device-specific efficient models.

We now discuss searching for sub-networks based
on latency on a device. We consider 5 devices - 3
GPUs 1080Ti, 1060Ti and K80, 2 CPUs - AMD
Ryzen CPU and a server class single-core Xeon

Avg.

Model Params MNLI-m QQP QNLI CoLA SST-2 STS-B RTE MRPC GLUE SQuAD V1
LayerDrop (Fan et al., 2019) 66M 80.7 883 88.4 454 90.7 - 652 85.9

DistilBERT (Sanh et al., 2019b) 66M 822 885 89.2 513 91.3 869 599 875 79.6 79.1/86.9
Bert-PKD (Sun et al., 2019a) 66M 815 70.7 89.0 92.0 - 655 85.0 - 77.1/85.3
MiniLM (Wang et al., 2020b) 66M 84.0 91.0 91.0 492 920 - 715 88.4 -

Ta-TinyBert (Jiao et al., 2020) 6™ 835 90.6 90.5 42.8 91.6 86.5 722 88.4 80.8

Tiny-BERT (Jiao et al., 2020) 66M 84.6 89.1 90.4 51.1 93.1 83.7 70.0 82.6 80.6 79.7/81.5
BERT-of-Theseus (Xu et al., 2020) 66M 823 89.6 89.5 51.1 91.5 887 682 -

PD-BERT (Turc et al., 2019b) 66M 825 90.7 89.4 91.1 - 66.7 84.9

ELM (Jiao et al., 2021) 6TM 842 91.1 90.8 542 927 889 722 89.0 82.9 77.2185.7
NAS-BERT (Xu et al., 2021) 60M 833 909 91.3 556 920 88.6 785 87.5 83.5 80.5/88.0
DynaBERT+ (Hou et al., 2020) 60M 842 912 91.5 56.8 92.7 892 722 84.1 82.8

YOCO-bert (Zhang et al., 2021) 59-6TM 82.6 90.5 87.2 59.8 92.8 - 729 90.3 -

SuperShaper (ours) 63M 822 90.2 88.1 530 919 87.6 79.1 89.5 82.7 78.25/86.01
SuperShaper heuristic-shaped (ours) 61M 82.0 903 88.4 52.6 91.6 878 776 86.5 82.1 77.86/85.83

Table 1: Comparison of SuperShaper with 60-67M parameter constraint models on development set of GLUE.
indicates models trained with data augmentation, * indicates model trained without knowledge distillation in the

fine-tuning stage

—e— Parameters Constrained
—e— Latency Constrained
Latency Constrained

i
S
|

®©
|

AN

Perplexity

o
|

v

T T T
0.15 0.2 0.25

Latency (in s) Latency (in s)

T T
1 1.

Latency (in s)

T T T T T T T T T
21.4161.8 0.15 0.2 0.25

Latency (in s) Latency (in s)

Figure 5: Perplexity vs Latency for optimal models searched using EA with parameter and latency constrained and
for heuristically shaped models across: (a) 1080Ti GPU, (b) Xeon CPU, (¢) K80 GPU, (d) 1060Ti GPU, and (e)

AMD-Ryzen CPU

800

" e e
O

N 600

2

o=}

O 400

=]

o

T

200

10

Layers

Figure 6: Heuristically shaped models have a cigar-like
shape

CPU (for quality of fitness predictors for these de-
vices see Appendix). The feature importance of
the latency predictors for these devices strongly
favours total parameters and only very weakly de-
pends on layer dimensions (see Appendix). This
is a crucial insight: the shape of the network for a
given parameter count is a free variable that can be
optimized for accuracy. Thus for deployment on
a device, we need to identify the right parameter
count that meets the latency constraint while the

shape can be identified with EA or the heuristics
we have laid out.

We run EA under two settings - parameter con-
straints and latency constraints for all devices. We
also evaluate the hand-crafted models. The latency
and perplexity of these models are shown in Fig-
ure 5. As can be seen, all three techniques result
in similar performance. This corroborates that la-
tency is insensitive to shape and that the heuristics
identify competitive networks.

In summary, we showed that SuperShaper ef-
fectively generalizes training across sub-networks,
and finds competitive networks at various sizes.
This training on language models enables general-
ization across tasks. Further we derived a set of
simple rules to shape a network which is compet-
itive with EA search, thereby easily generalizing
the search across model size. And finally we es-
tablished that latency on devices is insensitive to
shapes and thus EA search on parameter count or

hand-crafted networks generalize across devices.
Thus, with a simple and effective super pre-training
procedure we identify sub-networks that generalize
across tasks, model sizes, and devices.

4 Related Work

Over the years, a number of solutions have been
proposed for efficient deployment of language mod-
els. These can be broadly grouped into the follow-
ing categories.

4.1 Model Compression

In the context of language models, model com-
pression has been widely applied to reduce com-
putational complexity. Prominent efforts include
low-rank approximation of weight matrices (Wang
et al., 2019; Ma et al., 2019), pruning attention
heads (Michel et al., 2019), tokens (Goyal et al.,
2020; Wang et al., 2021b; Kim et al., 2021) or
layers (Fan et al., 2019; Sajjad et al., 2020), apply-
ing lottery-ticket hypothesis (Frankle and Carbin,
2018) to BERT models (Prasanna et al., 2020; Chen
et al., 2020c,d; Yu et al., 2019), and using quanti-
zation of weights to lower precisions (Shen et al.,
2020; Zafrir et al., 2019).

4.2 Knowledge Distillation

Knowledge distillation (KD) (Hinton et al., 2015)
aims to compress the knowledge from a large
teacher model to a compact and fast student model.
Traditionally, the student models are trained by
minimizing the error relative to the soft-targets ob-
tained from the teacher model from the final pre-
diction layer, embedding layer outputs (Sanh et al.,
2019a; Jiao et al., 2020), hidden states (Jiao et al.,
2020; Sun et al., 2020) or even self-attention out-
puts (Wang et al., 2020b; Jiao et al., 2020).

KD can either be task-specific (Tang et al., 2019;
Turc et al., 2019a; Sun et al., 2019b; Chen et al.,
2020a) or task-agnostic (Sanh et al., 2019a; Jiao
et al., 2020; Sun et al., 2020) depending on whether
the teacher model is fine-tuned on all downstream
tasks before distillation.

4.3 Neural Architecture Search

Neural Architecture Search (Zoph and Le, 2017)
automates the design of DNNs by searching
through a large space of network topologies.
Weight-sharing based NAS defines current state-of-
the-art (Cai et al., 2019; Yu et al., 2020; Wang et al.,
2021a), where model training and sub-network

search are decoupled by the use of a super-network
subsuming many sub-networks. This process is
challenging for language modeling that involves
task-agnostic pre-training and task-specific finetun-
ing.

In NLP, many efforts apply NAS to the task-
specific fine-tuning stage for optimal NLU models
(Gao et al., 2021; Chen et al., 2020b). Recent con-
temporary efforts focus on the challenging search
for task-agnostic models using techniques such
as block-wise search, progressive shrinking and
stochastic gradient optimization (Xu et al., 2021;
Zhang et al., 2021).

In contrast, SuperShaper is a super-pretraining
methodology to train a large number of task-
agnostic and device-insensitive models in one-shot,
thereby simplifying NAS. Many of the model-
compression and knowledge-distillation efforts de-
scribed here are complementary to SuperShaper
and can be applied together for more gains. Most
importantly, SuperShaper uses a simple design
space to effectively train models unlike other con-
temporary efforts (Xu et al., 2021; Zhang et al.,
2021).

5 Conclusions and Future Work

To address the problem of deploying NLU models
across a range of devices, we propose SuperShaper,
a NAS technique to pre-train language models by
shaping Transformer layers. SuperShaper identifies
networks that outperform state-of-the-art model
compression techniques on GLUE benchmarks.
We discovered that cigar-like shapes of networks
generalize across parameter counts and device la-
tency is insensitive to shape. Consequently, we
demonstrate that NAS can be performed with rad-
ically simple design space and implementation,
while deriving generalization across tasks, model
sizes, and devices. This work can be extended (a)
to other tasks such as NLG, and (b) to generate
smaller models in combination with other compres-
sion techniques.

References

Jacob Benesty, Jingdong Chen, Yiteng Huang, and Is-
rael Cohen. 2009. Pearson correlation coefficient.
In Noise reduction in speech processing, pages 1-4.
Springer.

Andrew Brock, Theo Lim, JM Ritchie, and Nick Weston.
2018. Smash: One-shot model architecture search

through hypernetworks. In International Conference
on Learning Representations.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,
and Song Han. 2019. Once-for-all: Train one net-
work and specialize it for efficient deployment. In
International Conference on Learning Representa-
tions.

Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang,
Bofang Li, Bolin Ding, Hongbo Deng, Jun Huang,
Wei Lin, and Jingren Zhou. 2020a. Adabert: Task-
adaptive bert compression with differentiable neural
architecture search. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, pages 2463-2469. Interna-
tional Joint Conferences on Artificial Intelligence
Organization. Main track.

Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang,
Bofang Li, Bolin Ding, Hongbo Deng, Jun Huang,
Wei Lin, and Jingren Zhou. 2020b. Adabert: Task-
adaptive bert compression with differentiable neural
architecture search. Cell, 2(3):4.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020c. The lottery ticket hypothesis
for pre-trained bert networks. arXiv preprint
arXiv:2007.12223.

Tianqi Chen, Tong He, Michael Benesty, Vadim
Khotilovich, Yuan Tang, Hyunsu Cho, et al. 2015.
Xgboost: extreme gradient boosting. R package ver-
sion 0.4-2, 1(4):1-4.

Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan,
Zhangyang Wang, and Jingjing Liu. 2020d. Early-
bert: Efficient bert training via early-bird lottery tick-
ets. arXiv preprint arXiv:2101.00063.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT (1).

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635.

Vinod Ganesan, Surya Selvam, Sanchari Sen, Pratyush
Kumar, and Anand Raghunathan. 2020. A case for
generalizable dnn cost models for mobile devices. In
2020 IEEE International Symposium on Workload
Characterization (IISWC), pages 169—180. IEEE.

Jiahui Gao, Hang Xu, Xiaozhe Ren, Philip LH Yu, Xi-
aodan Liang, Xin Jiang, Zhenguo Li, et al. 2021.
Autobert-zero: Evolving bert backbone from scratch.
arXiv preprint arXiv:2107.07445.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh
Raje, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Ashish Verma. 2020. Power-bert: Accelerating
bert inference via progressive word-vector elimina-
tion. In International Conference on Machine Learn-
ing, pages 3690-3699. PMLR.

Geoffrey E. Hinton, Oriol Vinyals, and J. Dean. 2015.
Distilling the knowledge in a neural network. ArXiv,
abs/1503.02531.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert
with adaptive width and depth. In Advances in Neural
Information Processing Systems, volume 33, pages
9782-9793. Curran Associates, Inc.

Xiaoqi Jiao, Huating Chang, Yichun Yin, Lifeng Shang,
Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and
Qun Liu. 2021. Improving task-agnostic bert distil-
lation with layer mapping search. Neurocomputing,
461:194-203.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for Natural Language
Understanding. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: Findings.

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gho-
lami, Joseph Hassoun, and Kurt Keutzer. 2021.
Learned token pruning for transformers. arXiv
preprint arXiv:2107.00910.

Hanxiao Liu, Zihang Dai, David R. So, and Quoc V. Le.
2021. Pay attention to mlps. ArXiv, abs/2105.08050.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan,
Yuexian Hou, Ming Zhou, and Dawei Song. 2019. A
tensorized transformer for language modeling. Ad-
vances in Neural Information Processing Systems,
32:2232-2242.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? arXiv
preprint arXiv:1905.10650.

Leann Myers and Maria J Sirois. 2004. Spearman cor-
relation coefficients, differences between. Encyclo-
pedia of statistical sciences, 12.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020.
When bert plays the lottery, all tickets are winning.
arXiv preprint arXiv:2005.00561.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

https://doi.org/10.24963/ijcai.2020/341
https://doi.org/10.24963/ijcai.2020/341
https://doi.org/10.24963/ijcai.2020/341
https://doi.org/10.24963/ijcai.2020/341
https://doi.org/10.24963/ijcai.2020/341
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh
Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le,
and Alexey Kurakin. 2017. Large-scale evolution
of image classifiers. In International Conference on
Machine Learning, pages 2902-2911. PMLR.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav
Nakov. 2020. Poor man’s bert: Smaller and faster

transformer models. arXiv e-prints, pages arXiv—
2004.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019a. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019b. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low
precision quantization of bert. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815-8821.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019a.
Patient knowledge distillation for bert model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323-4332.

Siqgi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019b.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323-4332, Hong Kong, China. Association for Com-
putational Linguistics.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2158-2170, Online. Association for Computa-
tional Linguistics.

Raphael Tang, Yao Lu, L. Liu, Lili Mou, Olga Vech-
tomova, and Jimmy J. Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. ArXiv, abs/1903.12136.

10

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019a. Well-read students learn better:
The impact of student initialization on knowledge
distillation. ArXiv, abs/1908.08962.

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019b. Well-read students learn better:
The impact of student initialization on knowledge
distillation. arXiv preprint arXiv:1908.08962, 13.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pages
353-355.

Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chan-
dra. 2021a. Attentivenas: Improving neural architec-
ture search via attentive sampling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6418-6427.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai,
Ligeng Zhu, Chuang Gan, and Song Han. 2020a. Hat:
Hardware-aware transformers for efficient natural lan-
guage processing. arXiv preprint arXiv:2005.14187.

Hanrui Wang, Zhekai Zhang, and Song Han. 2021b.
Spatten: Efficient sparse attention architecture with
cascade token and head pruning. In 2021 IEEE Inter-
national Symposium on High-Performance Computer
Architecture (HPCA), pages 97-110. IEEE.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020b. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. In Advances in Neural
Information Processing Systems.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019.
Structured pruning of large language models. arXiv
preprint arXiv:1910.04732.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and Ming Zhou. 2020. BERT-of-Theseus: Compress-
ing BERT by Progressive Module Replacing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7859-7869.

Jin Xu, Xu Tan, Rengian Luo, Kaitao Song, Jian Li, Tao
Qin, and Tie-Yan Liu. 2021. Nas-bert: Task-agnostic
and adaptive-size bert compression with neural ar-
chitecture search. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery &
Data Mining.

https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.1145/3447548.3467262
https://doi.org/10.1145/3447548.3467262
https://doi.org/10.1145/3447548.3467262
https://doi.org/10.1145/3447548.3467262
https://doi.org/10.1145/3447548.3467262

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S
Morcos. 2019. Playing the lottery with rewards and
multiple languages: lottery tickets in rl and nlp. In
International Conference on Learning Representa-
tions.

Jiahui Yu and Thomas S Huang. 2019. Universally
slimmable networks and improved training tech-
niques. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 1803—
1811.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Ben-
der, Pieter-Jan Kindermans, Mingxing Tan, Thomas
Huang, Xiaodan Song, Ruoming Pang, and Quoc Le.
2020. Bignas: Scaling up neural architecture search
with big single-stage models. In European Confer-
ence on Computer Vision, pages 702-717. Springer.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. arXiv
preprint arXiv:1910.06188.

Shaokun Zhang, Xiawu Zheng, Chenyi Yang, Yuchao
Li, Yan Wang, Fei Chao, Mengdi Wang, Shen Li, Jun
Yang, and Rongrong Ji. 2021. You only compress
once: Towards effective and elastic bert compression
via exploit-explore stochastic nature gradient. arXiv
preprint arXiv:2106.02435.

Barret Zoph and Quoc V. Le. 2017. Neural architecture
search with reinforcement learning. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

A Fine tuning tasks and Evaluation
metrics

We report performance metrics on the dev version
of the benchmark. For RTE, MRPC and STS-B,
we start with a model fine-tuned on MNLI sim-
ilar to (Liu et al., 2019; Xu et al., 2021). For
metrics, we report Matthews correlation for CoLA
(Wang et al., 2018), Spearman correlation for STS-
B (Wang et al., 2018) and accuracy for all other
tasks. For MNLI-m (Wang et al., 2018), we report
accuracy on the matched set. For Squad, we re-
port exact match and F1 score. Following (Devlin
et al., 2019; Xu et al., 2021; Zhang et al., 2021;
Hou et al., 2020), we also exclude the problematic
WNLI dataset. For all the datasets in GLUE, we
use the official train and dev splits and download
the datasets from HuggingFace datasets!.

B Hyperparameters used in SuperShaper

The hyperparameters we used for MLM pretraining
and finetuning tasks are detailed in Table 2 and
Table 3

"https://huggingface.co/datasets/glue

11

Data C4/RealNews
Max sequence length 128
Batch size 2048
Peak learning rate 2e-5
Number of steps 175K
Warmup steps 10K
Hidden dropout 0
GeLU dropout 0
Attention dropout 0
Learning rate decay Linear
Optimizer AdamW
Adam € le-6
Adam (81, f2) (0.9, 0.999)
Weight decay 0.01
Gradient clipping 0

Table 2: Hyperparameters for MLM super pre-training
on C4 RealNews. Super pre-training was done on 8

A100 GPUs

Other

CoLA | GLUE | Squad VI

tasks
Batch size {16, 32} 32 {8, 16, 32}
Weight decay {0, 0.1} 0 {0,0.1}
Warmup steps {0, 400} 0 {0, 1000}
Max sequence length 128 128 512
Peak learning rate Se-5 Se-5 le-5
Number of epochs 10
Hidden dropout 0
GeLU dropout 0
Attention dropout 0
Learning rate decay Linear
Optimizer AdamW
Adam € le-6
Adam (1, f2) (0.9, 0.999)
Gradient clipping 0

Table 3: Hyperparameters for fine-tuning on GLUE and

SQuAD V1

C Efficient Deployment of SuperShaper

sub-networks

Once the sub-networks are identified through
evolutionary-search or proposed heuristics, we
combine the output bottleneck matrices of layer
1 with the input bottleneck matrices of layer ¢ + 1
for further parameter-efficiency while retaining the
functionality.

https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

D Bottleneck Visualization

The visualization of principal diagonals for in-
put and output bottleneck matrices clearly show
a banded pattern across all the 12 layers (see Fig-
ure 7), strongly corroborating the insight that super
pre-training learns different linear projections of
768 dimensional input representation to the chosen
hidden dimensions.

H

120 240 360 480540600 120 240 360 480540600

120 240 360 480540600 120 240 360 480540600

360 480540600 120 240 360 480540600

240 360 480540600 120 240 360 480540600

480540600 120 240 360 480540600

480540600 768 120 240 360 480540600

768

120 240 360 480540600 120 240 360 480540600

120 240 360 480540600 240 360 480540600

120 240 360 480540600 240 360 480540600

120 240 360 480540600 120 240 360 480540600

-
I
S

240 360 480540600 120 240 360 480540600 768

-
o]
3

240 360 480540600 120 240 360 480540600 768

Figure 7: Visualization of input and output Bottleneck
matrix diagonals for all the 12 layers.

E Feature importances for optimal
sub-networks.

E.1 Perplexity Predictor importances.

Figure 8 shows the importance scores from the
perplexity predictor. The patterns used to derive
the heuristically-shaped networks are very clear.

12

E.2 Latency Predictor Importances.

Figure 8 shows the importance scores from latency
predictor for 1080Ti, K80 GPUs and Xeon CPUs
respectively. Evidently, the importances are fa-
vored largely towards the parameters suggesting
the insensitivity of device latencies to shape.

F Efficient Pytorch implementation

Pytorch code addition for slicing

1 elass Customlinear (nn.Linear) :

2 def _ init_ (

3 self, super_in_dim,
super_out_dim, bias=True,
uniform_=None,
non_linear="linear"

4) :

5 self.samples = {}

6 ...

7 def set_sample_config(self,

sample_in_dim, sample_out_dim
).

8 sample_weight = weight[:,
sample_in_dim]

9 sample_weight = sample_weight
[:sample_out_dim, :]

10 self.samples["weight"] =
sample_weight

11 self.samples|["bias"] = self.
bias[..., self.
sample_out_dim]

12

13 def forward(self, x):

14 #override the Forward pass to
use the sampled weights
and bias

15 return F.linear (x, self.

samples["weight"], self.

samples["bias"])

The above code shows the additional lines added
to PyTorch linear layer to support slicing for super
pre-training. We add this to all the fundamental
layers - embedding layer, Linear layer and Layer-
norm which adds up to 20 additional lines. This
implementation is inspired from HAT?

G Latency Predictor Performance

Figure 9 illustrates the actual-vs-predicted latency
for all network pairs in the test set for the 2 GPUs
and 1 CPU devices (30% of the dataset). The
points are closer to y=x line denoting high accuracy.
Quantitatively, the R? values of these predictors
are high proving the efficacy of these models to be
reliable performance indicators.

Zhttps://github.com/mit-han-lab/hardware-aware-
transformers

R

RS

» . 1+ 1 |

£ 30 0.6 0.8 08 - 00 80

3 20 0.4 0.6 0.6 40 - 60

o 10 - 0'2 i 0.4 0.4 20 | 40

3) l ||||”| : 0.2 0.2 20

% O l“\ ! 0 I f 0 T T 0 T T 0 I I O T T
5 5 10 5 10 5 10 5 10 5 10 5 10
g Layers Layers Layers Layers Layers Layers

Figure 8: Importance scores for (a) Perplexity Predictor, and (b)-(f) Latency predictor for 1080Ti, K80 GPU, Xeon
CPU, 1060Ti GPU, and AMD Ryzen CPU respectively. The features for (a) is the shape 5, i.e., the dimensions
across the 12 layers, while the latency predictor uses parameter count as a feature in addition to the shape S.

>
5 — 57025 . — ,

5 (0.4 ®1080Ti " | 1.6 - OKSOK eXeon .- [0.25 1 e 1060Ti - g | ®AMD Ryzen
= 4 1.4 - 0.2 v 092 - o 4

= 0.35 : : 7

2 03/ 129 # 0.15 | & 0.15 ;4 64 ¥

— T T T T T T T T T T T T T T

A~ 0.30.350.4 1.21.41.6 0.15 0.2 0.150.20.25 6 7 8

Actual Latency

Figure 9: The latency predictors are very accurate with R? scores of 0.993, 0.988, 0.892, 0.87, and 0.97 respectively.

H Performance of SuperShaper

H.1 Fine-tuning 75 from SuperShaper

Table 6 compares the different methods of fine-
tuning T’s, i.e. Girect» Gscratch- and Gpartial re-
spectively for a 63M network configuration ob-
tained through evolutionary search. From the table,
it is clear that Gy pq¢cp, and épartial have better
average GLUE performance. It is noteworthy, how-
ever, that SuperShaper is able to already provide
good models that perform close to the best perfor-
mance. When it comes to épartial and Geratch:
a more rigorous analysis has been done in the main
paper across parameters and we refer the readers to
that.

H.2 Comparing with BERT models

Table 4 shows the performance of a base model for
SuperShaper, searched for 100M constraint com-
pared against BERT-Base. As discussed in the main
paper, SuperShaper provides models that match the
performance of BERT-Base models for a signifi-
cantly fewer parameters.

H.3 Shape difference vs performance.

To further study the effect of shape on performance,
we test if the shape difference between random
subnetworks and an optimal subnetwork (deter-

13

mined by evolutionary search) in the same param-
eter range, correlates with their differences in per-
formance. The shape difference between two sub-
networks with shapes 57 and S5 and their respec-
tive difference in performance (édirect) is charac-
terised by : Dif f = ||S1 — Sa||

We choose points across different parameter
ranges (50-100M) from the 10,000 random sam-
pled subnetworks from section Section 3 and com-
pute their shape and performance differences with
the optimal evolutionary-search model. The Spear-
man and Pearson correlation coefficient (Myers
and Sirois, 2004; Benesty et al., 2009) across the
shape and performance L2 norms are detailed in
Table Table 7. Clearly, we see a positive correlation
between shapes and performance further reinstat-
ing the sensitivity of shape in determining optimal
performance of a model.

H.4 Average GLUE performance of best
models from Evolutionary Search

Table 5 shows the average GLUE performance
for all the best models found through evolution-
ary search for reference.

Avg.

Model Params MNLI-m QQP QNLI CoLA SST2 STS-B RTE MRPC ['B Squad V1
BERT-Base (from NAS-BERT) 110M 85.2 91 913 61 929 90.3 76 87.7 844 81.8/889
BERT-Base (from DistilBERT) 110M 867 896 918 563 927 89 693 88.6 83 81.2/885
SuperShaper (ours) 96M 839 90.86 9092 5658 92.89 883 7798 8848 837 80.19/88.2
Table 4: Comparing SuperShaper with BERT-Base models.
Params M) Gpargial Gscrateh MNLIm QQP QNLI CoLA SST-2 STS-B RTE MRPC ‘z;’g%e
33 10.82 12.44 7345 8471 8052 1027 8532 8265 6570 8211 70.59
53 8.59 6.02 7940 89.51 8638 3385 8911 8666 6823 84.56 77.21
63 7.09 455 8223 90.18 8805 5300 91.86 87.63 79.06 89.46 82.68
69 6.62 428 8274 9045 8954 5498 9128 8842 7798 8775 82.89
80 6.17 402 83.05 9056 8922 5487 93.10 8846 80.14 87.75 83.39
90.5 5.83 3.79 83.06 9051 8872 5887 9151 8847 7726 8897 83.42
96 5.65 373 83.90 9086 9092 5658 9289 8830 7798 88.48 83.74
Table 5: Performance of best models from parameter-constrained evolutionary search
Shapes Params (M) G_direct G_scratch L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
EvoSearch 1 65 6.86 445 480 360 360 240 240 360 480 480 360 480 540 540
Evo Search 2 63 7.09 455 480 240 360 240 540 480 360 360 360 360 540 480
Lower Triangle 64 7.31 467 120 120 240 240 360 360 360 480 540 540 600 768
Random 64 7.49 491 480 360 360 540 480 540 360 480 540 120 360 540
Rectangle 58 7.5 472 360 360 360 360 360 360 360 360 360 360 360 360
Inverted Diamond 65 8.12 493 768 600 360 240 240 120 120 240 240 360 600 768
Bottle 64 8.31 49 120 120 120 120 120 120 600 600 600 600 600 768
Diamond 64 8.36 513 120 240 360 480 480 540 768 540 480 360 240 120
Upper Triangle 64 8.43 516 768 600 540 540 480 360 360 360 240 240 120 120
Inverted Bottle 64 9.22 537 768 600 600 600 600 600 120 120 120 120 120 120

Table 6: Hidden dimensions of templatized shapes and their corresponding perplexities for 6scratch and édirect'

Evo-search parameters Edimt Parameter range Number of networks Spearman Correlation Pearson Correlation
53 8.59 52-54 54 71.03 67.95
63 7.09 62-64 704 80.34 82.52
65 6.86 63-65 862 69.47 71.34
69 6.62 68-70 1065 4722 52.06
80 6.17 79-81 486 72.32 67.34
90.5 5.83 89-91 47 56.8 54.67
96 5.65 95-97 6 65.71 69.65

Table 7: Shape difference positively correlates with 6direetdifference across a wide parameter range

H.S Comparison with HAT(Wang et al.,
2020a) and OFA(Cai et al., 2019)

HAT compresses encoder-decoder models by elasti-
cizing number of layers, hidden size and number of
attention heads for machine translation task while
OFA proposed a compression for CNN based mod-
els on image classification task. To compare our

14

approach with these techniques, We use the results
from (Zhang et al., 2021) who reimplement these
approaches and report on three Glue tasks - MRPC,
SST2 and RTE for 2 compression ratios - 0.75x and
0.5x. We compare these results against our pareto
evolutionary search models that have compression
ratios of 0.78x (90.5M) and 0.54x (63M). The re-

MRPC SST2 RTE

Hodd Compression Ratio AVG
0.75x 0.5x 0.75x 0.5x 0.75x 0.5x
HAT-BERT 82.2 82.6 88.6 88.6 65.0 64.6 78.6
OFA-BERT 87.6 85.2 89.3 89.8 62.8 65.3 80.0
YOCO-BERT 90.4 87.6 92.9 91.9 75.1 69.3 84.5

SuperShaper(ours)* 88.97 89.46 91.51 91.86 77.26 79.06 86.4

Table 8: Comparison with HAT, OFA and YocoBert with SuperShaper. * We use models with compression ratios of
0.78x (90.5M) and 0.54x (63M)

sults are reported in table table 8 and we see that
SuperShaper outperforms both these approaches
with a significant margin.

15

