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Abstract

Task-agnostic pre-training followed by task-001
specific fine-tuning is a default approach to002
train NLU models which need to be deployed003
on devices with varying resource and accuracy004
constraints. However, repeating pre-training005
and fine-tuning across tens of devices is pro-006
hibitively expensive. To address this, we pro-007
pose SuperShaper, a task agnostic pre-training008
approach wherein we pre-train a single model009
which subsumes a large number of Transformer010
models by varying shapes, i.e., by varying the011
hidden dimensions across layers. This is en-012
abled by a backbone network with linear bottle-013
neck matrices around each Transformer layer014
which are sliced to generate differently shaped015
sub-networks. Despite its simple design space016
and efficient implementation, SuperShaper rad-017
ically simplifies NAS for language models and018
discovers networks that effectively trade-off ac-019
curacy and model size: Discovered networks020
are more accurate than a range of hand-crafted021
and automatically searched networks on GLUE022
benchmarks. Further, we find two critical ad-023
vantages of shape as a design variable for Neu-024
ral Architecture Search (NAS): (a) networks025
found with these heuristics derived for good026
shapes, match and even improve on carefully027
searched networks across a range of parameter028
counts, and (b) the latency of networks across029
multiple CPUs and GPUs are insensitive to the030
shape and thus enable device-agnostic search.031

1 Introduction032

In the past decade, there has been a surge in public033

and private cloud usage which has centralized com-034

pute and storage. However, rising cloud costs, ever035

powerful client devices, and increased call for pri-036

vacy favors (distributed) compute on edge (client)037

devices. Deployment of compute-intensive AI mod-038

els addressing the distribution-centralization gap re-039

quires developers to ensure that their models are de-040

ployable on tens of diverse devices spanning CPU041

and GPU setups on cloud and client devices.042

AI models, for NLP and NLU in particular, are 043

typically developed via the pre-train and fine-tune 044

approach (Devlin et al., 2019), where the former 045

is significantly more compute intensive than the 046

latter (Liu et al., 2021). Ideally, this should be done 047

for every point in the product space of multiple 048

tasks and multiple devices with different model 049

variants. However, this is prohibitively expensive 050

and is addressed in one of 3 ways: (a.) Pre-train a 051

single large language model, such as BERT, agnos- 052

tic of task and device, followed by device and task 053

specific model sizing via knowledge distillation 054

(Tang et al., 2019; Turc et al., 2019a; Sanh et al., 055

2019a; Jiao et al., 2020), pruning (Michel et al., 056

2019; Goyal et al., 2020), quantization (Shen et al., 057

2020), factorization (Ma et al., 2019), etc. (b.) Pre- 058

train a single language model but simultaneously 059

fine-tune many sub-networks of different sizes, in 060

what we call super fine-tuning. Then for a chosen 061

task and device, an appropriately sized sub-network 062

can be sampled from the super-network and de- 063

ployed. Examples of such works are DynaBERT 064

(Hou et al., 2020) and YOCO-BERT (Zhang et al., 065

2021). (c.) Instead of pre-training one large lan- 066

guage model, an entire family of language models 067

is trained, in what we call super pre-training which 068

was explored in NAS-BERT (Xu et al., 2021). 069

Super pre-training is more attractive than the 070

other approaches because the pre-trained model 071

avoids the need for model compression which in- 072

herently lossy and reduces generalizability while 073

being aware of model shapes and sizes agnostic of 074

the downstream task. That being said, super pre- 075

training involves searching for pre-training archi- 076

tectures from scratch and existing efforts (Xu et al., 077

2021; Hou et al., 2020) propose complex methods 078

for reducing the search space by discretizing the 079

network into blocks, heuristic based search space 080

pruning among others. We propose an alternative 081

approach to super-training language models by sim- 082

plifying this design space, called SuperShaper. 083
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SuperShaper, like NAS-BERT, is task-agnostic084

but differs from existing methods in two crucial085

ways: First, it starts out with an existing pretrained086

BERT model and its search space is defined only087

by the hidden dimension of each Transformer layer,088

which we refer to as the shape of the network. This089

is enabled by modifying the BERT backbone with090

bottleneck matrices at the input and output of each091

layer, inspired from MobileBERT (Sun et al., 2020).092

In each batch, differently shaped networks are ran-093

domly sampled by slicing the bottleneck matrices094

and trained. Though a single parameter per layer,095

the hidden dimension sensitively affects model ca-096

pacity as the parameter count linearly depends on it.097

Second, the super pre-training procedure is much098

simpler with SuperShaper requiring only sliced099

matrix multiplications on the bottleneck matrices,100

similar to the earliest techniques proposed for elas-101

tic training (Brock et al., 2018; Cai et al., 2019).102

This is radically simpler than existing NAS tech-103

niques which define complex design spaces, archi-104

tecture modifications, and heuristics for managing105

the search space. In PyTorch, only 20 lines of106

additional code are required to add SuperShaper107

functionality (see Appendix). The SuperShaper108

model is a proxy for models with various shapes109

that would otherwise be trained separately. Then,110

we can use Evolutionary Algorithms (EA) to find111

optimal sub-networks that are accurate and meet112

given parameter and device constraints. These sub-113

networks are fine-tuned for downstream tasks.114

Despite the simple design space and efficient115

implementation, SuperShaper helps identify sub-116

networks that are competitive on GLUE tasks with117

BERT-base as well as with many compressed mod-118

els (both hand-crafted and searched with NAS) at119

lower parameter counts. In the 60-66M parameter120

regime, the model found with SuperShaper per-121

forms better on GLUE than larger models iden-122

tified with many successful techniques such as123

LayerDrop, DistilBERT, Bert-PKD, miniLM, Tiny-124

BERT, BERT-of-Theseus, PD-BERT, and YOCO-125

BERT. Only NAS-BERT, with its much larger126

search space and knowledge distillation reports127

a higher accuracy by 1%. Analyses of networks128

searched via EAs help identify heuristics of good129

shapes, which suggest a cigar-like shape. By apply-130

ing these heuristics, we hand-craft sub-networks131

across a range of parameter counts which match132

and often exceed the performance of networks133

searched with EAs. Thus, Transformer shapes af-134

Figure 1: A Transformer layer in (a) BERT, and (b)
Backbone in SuperShaper with bottleneck matrices.

ford interpretable generalization of model compres- 135

sion across a range of parameter count constraints 136

indicating that NAS can be performed with radi- 137

cally simpler design spaces and implementations 138

focusing only on the hidden sizes, which generalize 139

across tasks, parameter counts, and devices. 140

2 SuperShaper: The methodology 141

This section details the SuperShaper methodology 142

focusing on the backbone network, pre-training 143

methods, sub-network search and fine-tuning. 144

2.1 SuperShaper Backbone 145

A super pre-training procedure is characterized by 146

a search space of networks. While existing works 147

focus on the number of attention heads, neurons in 148

the FFNs, encoder layers, the use of other operators 149

like separable convolution, etc. for the search space, 150

SuperShaper radically simplifies this by focusing 151

on a single variable - the hidden dimensions for 152

each layer. We focus on SuperShapers based on the 153

Transformer architecture (Vaswani et al., 2017). 154

In a standard BERT-like encoder (see Figure 1) 155

the hidden dimension dh of each layer is a constant, 156

e.g., 768 for BERT-base. But with SuperShaper, we 157

would like to explore sub-networks where layers 158

have different hidden dimensions. The intuition be- 159

hind this choice is that different layers may perform 160

roles of varying importance. For instance, earlier 161

layers manipulating the input embeddings and the 162

final layers responsible for the output may require 163

larger hidden dimensions. To enable this, we take 164

inspiration from MobileBERT (Sun et al., 2020) 165

which proposed a bottleneck layer to compress the 166

parameter size of BERT. Based on this, we modify 167

the standard Transformer layer as shown in Figure 1 168
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(b). The input and output of each transformer layer169

are intermediated by bottleneck matrices, which170

translate between the dimension of a token outside171

a layer (say 768) and the dimension of a token in-172

side a layer (say 120). To reduce the dimension173

of a layer to 120, we slice the bottleneck matrix174

at the input from 768 × 768 to 768 × 120. With175

this change, each layer can have differently sized176

bottleneck matrices such that the hidden dimension177

varies across layers and we can generate differently178

shaped sub-networks for super-pretraining.179

2.2 Training with SuperShaper180

We denote the SuperShaper backbone as T and any181

sub-network sliced from the backbone as TS where182

S is the shape vector that represents the layer-wise183

hidden dimensions, Si for layer i. The set of all184

possible values of S denotes the design space D.185

The smallest and largest sub-networks in D are186

denoted as TS− and TS+ , respectively, while a ran-187

dom sub-network is denoted as TSr . To evaluate188

how well a sub-network TS has trained, we calcu-189

late the validation set perplexity, denoted P (TS),190

on the Masked Language Modelling (MLM) task.191

From a given design space D, we sample n dif-192

ferent shapes S and obtain TS for each by the slic-193

ing technique described in the previous subsection.194

This sampling can be performed in two ways: (a)195

uniform random sampling from D, and (b) ran-196

dom Sampling with sandwich rule (Yu and Huang,197

2019), where in addition to (a) we also sample the198

largest and smallest sub-networks TS+ and TS− .199

Sandwich rule has been shown to perform better200

for weight-sharing NAS in computer vision (Yu and201

Huang, 2019; Yu et al., 2020; Wang et al., 2021a).202

For language modelling, we study both sampling203

methods and report our findings in Section 3. With204

the sampled sub-networks, gradient updates are205

computed and parameters are modified with a stan-206

dard optimizer. Note that the sub-networks share a207

large number of their parameters, in particular the208

earlier rows and columns of the bottleneck matri-209

ces. Also parts of matrices inside the layer (such210

as query, key, and value projection matrices) are211

shared. This parameter sharing is expected to en-212

able generalization during training across the large213

space of sub-networks. We evaluate and provide214

empirical evidence for such generalization in Sec-215

tion 3.216

2.3 Fine-tuning TS from SuperShaper 217

To fine-tune a sampled sub-network TS for a spe- 218

cific task, several options exist. First, we can sam- 219

ple TS and fine-tune it directly on the task - Gdirect. 220

Second, we can further pre-train TS individually 221

and then fine-tune on the task - Gpartial. Finally, 222

we can randomly initialize the weights of TS and 223

pre-train from scratch before fine-tuning- Gscratch. 224

We compare these options by fine-tuning on 8 tasks 225

– MNLI-m, QQP, QNLI, CoLA, SST-2, STS-B, 226

RTE, MRPC – from the GLUE benchmark (Wang 227

et al., 2018) and Squad V1 (Rajpurkar et al., 2016). 228

2.4 Searching for optimal shapes 229

Once we have super pre-trained with a design space 230

D, we can sample and deploy TS for any S, which 231

can then be fine-tuned by methods described in the 232

previous subsection. The design space of all sub- 233

networks can be large: A choice of 7 shapes each 234

for 12 layers can yield 14 billion sub-networks. 235

The search question is to find an optimal shape 236

from S which meets specific constraints on accu- 237

racy, parameter count, or latency on devices. We 238

adopt Evolutionary Algorithm (EA) from (Real 239

et al., 2017) as a generic optimization technique, 240

which starts with a population of solutions and over 241

generations create new solutions by applying ge- 242

netic operations like mutation and crossover and 243

retain the fittest solutions based on defined metrics 244

of interest. For SuperShaper, the genetic represen- 245

tation of sub-networks and genetic operations are 246

natural and simply described by the shape vector 247

S. For the fitness metrics, we use perplexity on 248

language modelling and latency on a device. To 249

amortize the expense of computing these metrics 250

for thousands of solutions, we use fitness predictors 251

that have been studied elsewhere in NAS (Cai et al., 252

2019; Ganesan et al., 2020). 253

While EA with fitness predictors can search for 254

sub-networks, the most desirable setting is to find 255

sub-networks by applying a set of heuristics to 256

decide the shape of each layer. We propose a tech- 257

nique to discover such heuristics and then use it to 258

identify sub-networks for varying parameter count 259

constraints. We report results on how these com- 260

pare against EAs in Section 3. 261

3 Experimental Setup and Results 262

We now detail the experimental setup and report a 263

range of findings to evaluate SuperShaper. 264
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Figure 2: (a) Loss trajectory of T+
S , T−

S and TS networks, (b)-(d) Perplexity trajectory of T−
S , two randomly

sampled T r
S , and T+

S respectively for random-sampling and sandwich rule
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Figure 3: (a) Visualization of input and output bottleneck matrices for the first layer, (b) SuperShaper is a fast
and accurate proxy for sub-network perplexity, and (c) Gpartial inherited sub-networks only require a fraction of
pre-training cost (in blue) i.e. 1.3-6.6x reduction to reach optimum. This comes at a higher average gain in GLUE
score (in red).

3.1 Experimental Setup265

We describe the experimental setups for pre-266

training and fine-tuning.267

Design space We slice the bottleneck matrix to268

produce Transformer layers of varying hidden di-269

mensions in {120, 240, 360, 480, 540, 600, 768},270

which creates a design space D of 712 or about 14271

billion sub-networks.272

Super pre-training We initialize our backbone273

with BERT-base-cased model trained on Wikipedia274

and BookCorpus with identity bottleneck matrices.275

We then super pre-train the backbone using Masked276

language modeling over the C4 RealNews dataset277

(Raffel et al., 2019) with effective batch size of278

2048, max sequence length 128, for 175K steps (or279

26 epochs) on 8 A100 GPUs. Other hyperparame-280

ters are described in the Appendix.281

Fine tuning. Similar to (Xu et al., 2021), we evalu-282

ate the effectiveness of SuperShaper by pre-training283

all our compressed models from scratch and later284

fine-tune them on 8 GLUE tasks and SQuAD V1.285

The task details and evaluation metrics are men-286

tioned in the Appendix.287

Evolutionary Algorithm (EA). For EA, we adapt288

the algorithm presented in (Real et al., 2017). We289

choose a population size of 100, mutation probabil-290

ity of 0.4, and the ratio of parent size to mutation or291

crossover size as 1. We bound the search algorithm292

to 300 iterations.293

Fitness Predictors. For perplexity predictor, we294

randomly sample 10, 000 sub-networks and evalu- 295

ate their perplexity as measured on validation set 296

of C4-RealNews dataset. We use this dataset to 297

build the predictor based on XGBoost model (Chen 298

et al., 2015). For latency predictor, we sample 299

1, 000 − 4, 000 sub-networks and evaluate their 300

latency on the chosen device. We again train a XG- 301

Boost model to predict latency from this dataset. 302

We consider 5 devices - 3 GPUs: 1080Ti, 1060Ti 303

and K80, and 2 CPUs: AMD Ryzen CPU and a 304

server class single-core Xeon CPU. 305

3.2 Pre-training with SuperShaper 306

Effect of sub-network sampling rule. 307

In computer vision, sandwich rule is widely used in 308

the context of weight-sharing NAS (Yu and Huang, 309

2019). We super pre-train the trained backbone 310

network with the sandwich rule. The correspond- 311

ing loss trajectory for largest, smallest, and ran- 312

domly sampled sub-networks are shown in Fig- 313

ure 2(a). Clearly, the larger network has a lower 314

perplexity, but the super pre-training ensures that 315

a range of networks are simultaneously trained on 316

the MLM task. Specifically, randomly sampled 317

subnetworks shown as TSr even though not sam- 318

pled as frequently as the smallest subnetwork, have 319

a lower perplexity. This provides evidence of gen- 320

eralization during super pre-training. 321

We now compare the sandwich sampling rule 322

with fully randomised sampling. We plot the per- 323
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plexity of 4 networks: the largest, smallest, and324

two other intermediate networks in Figure 2(b)-(e).325

Sandwich sampling always samples the largest and326

smallest and thus the perplexity on these networks327

is significantly lower with sandwich sampling than328

random sampling. This suggests that sandwich329

sampling effectively combines good extremum sub-330

networks with reasonably good intermediate sub-331

networks. In all subsequent experiments, we use332

sandwich sampling.333

Visualizing bottleneck matrices.334

We initialize the bottleneck matrices to identity335

weights and zero bias. After super pre-training, we336

visualize these matrices to understand the role of337

sliced training of sub-networks. We take the soft-338

max of the principal diagonal of the two bottleneck339

matrices of the first layer, and plot them in Fig-340

ure 3 (a). We clearly observe that the entries show341

a banded pattern with boundaries at the shapes in342

our design space: 120, 240, 360, 480, 540, 600,343

and 768. This implies that super pre-training learns344

different linear projections of 768 dimensional in-345

put representation to the chosen hidden dimensions.346

Visualizations for other layers are in the Appendix.347

Effectiveness of super pre-training.348

We ask two questions towards evaluating the ef-349

fectiveness of super pre-training: (a) Is the relative350

performance of sampled sub-networks on the MLM351

perplexity (Gdirect) correlated with performance352

of the same sub-networks when pre-trained individ-353

ually from scratch (Gscratch)?, and (b) Does the su-354

per pre-training afford sub-networks an advantage355

when being fine-tuned for tasks? For the first ques-356

tion, we sample a set of sub-networks TS of both357

varying (33-96M) and similar (63-65M) parame-358

ter counts, and plot Gdirect and Gscratch in Fig-359

ure 3 (b). We notice that Gdirect and Gscratch are360

highly correlated with a Spearman correlation coef-361

ficient of 0.954. This implies that the sub-network’s362

measured MLM perplexity after super pre-training363

is a good proxy for final performance. We also364

observe that networks sampled at the similar pa-365

rameter count (63-65M) have varying performance366

suggesting the sensitive role of shape in accuracy.367

For studying the second question, we pre-train368

and then fine-tune the varying parameter count369

sub-networks (33-96M) in two ways (a) by retain-370

ing the weights learnt during super pre-training371

(Gpartial), and (b) starting with random initializa-372

tion Gscratch. We plot two quantities in Figure 3373

(c): the amount of pre-training time saved with (a) 374

and the additional GLUE score obtained with (a). 375

We observe that models with fewer parameters (30- 376

50M) show significant savings in the pre-training 377

time (up to 6.6×) and simultaneously benefit from 378

improved GLUE accuracy (up to 3%). The gains 379

on both axes for larger models are smaller. This 380

suggests that smaller models whose parameters re- 381

ceive more weight updates due to sharing of the ear- 382

lier rows and columns across sub-networks benefit 383

more from super pre-training. This is encouraging 384

because most effort in deployability is concerned 385

with models of smaller size. 386

3.3 Comparing sub-networks with other 387

methods 388

Comparing with BERT-base. 389

As a first baseline, we search for a SuperShaper- 390

Base model with EA with a constraint of 100M 391

parameters and obtain a model with 96M param- 392

eters. This model is comparable against an un- 393

compressed BERT-base model which has 110M 394

parameters. We compare the GLUE and SQuAD 395

V1 performance of SuperShaper-Base (Gscratch) 396

with two of the top reported results on BERT-Base 397

(Xu et al., 2021; Sanh et al., 2019b). While the 398

task-wise details are in the Appendix, we find that 399

the average GLUE score across the two reported 400

BERT-base baselines (83.7%) is the same as that 401

with SuperShaper-Base (83.7%). For Squad v1, our 402

F1 score of 88.2 is competitive with other baselines 403

- 88.9 and 88.5 Thus, SuperShaper-Base performs 404

competitively with the uncompressed BERT-base 405

with fewer parameters (96M vs 110M). 406

Figure 4: Evolutionary search finds optimal models
while simple heuristics yield competitive models.

Comparing with compressed models 407

We now compare against state-of-the-art com- 408

pressed models either hand-crafted or found by 409

NAS algorithms (see Table 1). Since several of 410
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these models are in the range of 60-67M, we search411

for a sub-network from SuperShaper with a param-412

eter constraint of 66M. The task-wise performance413

of the obtained sub-network is reported in Table 1.414

On GLUE benchmark, SuperShaper outperforms415

many prominent hand-crafted or compressed net-416

works proposed over the last two years by a signifi-417

cant margin. Across NAS-based methods, Super-418

Shaper performs competitively despite a much sim-419

pler design space. On SQuAD, we outperform Bert-420

PKD, ELM and have competitive results compared421

to DistillBert while having lesser parameters (63M422

vs 66-67M). Only NAS-BERT reports a higher av-423

erage GLUE and better EM/F1 scores, which may424

be attributed to the use of novel operators such as425

separable convolution in the design space. Also,426

NAS-BERT and DynaBERT use knowledge dis-427

tillation and data augmentation. These methods428

are orthogonal to shaping and can be combined429

with our approach. In summary, we establish that430

SuperShaper with a simple design space and effi-431

cient super pre-training implementation performs432

competitively in compressing models to a given433

parameter count.434

We now apply EA to search for sub-networks at435

varying parameter count, ranging from 40 to 110M.436

To understand the effectiveness of EA search, we437

sample 10,000 random sub-networks and compute438

their perplexity. We then plot these points along439

with the networks searched by EA in Figure 4. First,440

we observe that sub-network’s shape critically af-441

fects language modeling perplexity. Second, EA442

effectively searches for accurate networks across443

the parameter range(33M-100M). We report GLUE444

scores for these networks in the Appendix.445

3.4 Shape analysis of Super-Networks.446

In contrast to other NAS techniques, the design447

space of SuperShaper is interpretable - the network448

shape. We can thus ask the question: Are there449

good shapes for different model sizes?450

Models with templated shapes.451

We evaluate the performance of the following tem-452

plated shapes in the 63-65M parameter range: hid-453

den sizes increase from lower layers to the higher454

layers, upper triangle, rectangle (all layers have455

similar hidden sizes), diamond, inverted diamond,456

bottle, and inverted bottle. Details of the hidden di-457

mensions and sub-network perplexity for each net-458

work are in the Appendix. We observe that lower459

triangle has the lowest perplexity (7.31) while in-460

verted bottle (9.22) has the highest. This wide 461

range reiterates that shape sensitively affects perfor- 462

mance. Further, we observe that more parameters 463

in deeper layers benefits model performance. 464

Feature importance from optimal sub-networks. 465

From the analysis of sub-networks searched by EA 466

and the templated shapes, we find that accurate net- 467

works have more parameters in later layers. We 468

analyse this using the perplexity predictor trained 469

to estimate Gpartial given the shape. For this pre- 470

dictor, we compute the feature importance (plot 471

in the Appendix) of each layer’s shape and find it 472

to be highest for the last few layers and the first 473

layer. Based on these observations, we derive a set 474

of heuristics indicating good shapes: (a) a large 475

dimension in the last layer, (b) moderately large 476

dimension in the first layer, (c) low dimensions in 477

early middle layers (2-5), and (d) moderate dimen- 478

sions in later middle layers (6-11). We characterize 479

this as a cigar-like shape. 480

Heuristically shaped models. Based on the above 481

heuristics, we hand-shape sub-networks with the 482

following algorithm: (a) construct a reference 483

model TS∗ following the heuristics at a given pa- 484

rameter range (say 60-65M), (b) for a target pa- 485

rameter count, scale the shape Si of every layer 486

linearly, (c) for early middle layers, round down 487

the scaled Si (as they have lesser importance) and 488

for remaining layers round up Si to the nearest 489

configuration in D. Based on this algorithm, we 490

identify sub-networks across the parameter count 491

with cigar-like shapes as shown in Figure 6. We 492

evaluate these hand-crafted sub-networks on per- 493

plexity Gdirect and find that they are competitive 494

and even outperform sub-networks searched with 495

EAs (see Figure 4). We also pre-train and evalu- 496

ate one of the heuristic models with a parameter 497

count of 61M on the Glue tasks (see Table 1). We 498

observe that, similar to our evolutionary-search sub- 499

network (63M), the heuristic model outperforms 500

prominent hand-crafted or compressed networks 501

This strongly demonstrates the generalization of 502

the derived heuristics across model size. To the 503

best or our knowledge, this is the first such gener- 504

alization demonstrated for NAS. 505

3.5 Device-specific efficient models. 506

We now discuss searching for sub-networks based 507

on latency on a device. We consider 5 devices - 3 508

GPUs 1080Ti, 1060Ti and K80, 2 CPUs - AMD 509

Ryzen CPU and a server class single-core Xeon 510
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Model Params MNLI-m QQP QNLI CoLA SST-2 STS-B RTE MRPC Avg.
GLUE SQuAD V1

LayerDrop (Fan et al., 2019) 66M 80.7 88.3 88.4 45.4 90.7 - 65.2 85.9 - -

DistilBERT (Sanh et al., 2019b) 66M 82.2 88.5 89.2 51.3 91.3 86.9 59.9 87.5 79.6 79.1 / 86.9

Bert-PKD (Sun et al., 2019a) 66M 81.5 70.7 89.0 - 92.0 - 65.5 85.0 - 77.1 / 85.3

MiniLM (Wang et al., 2020b) 66M 84.0 91.0 91.0 49.2 92.0 - 71.5 88.4 - -

Ta-TinyBert (Jiao et al., 2020) 67M 83.5 90.6 90.5 42.8 91.6 86.5 72.2 88.4 80.8 -

Tiny-BERT (Jiao et al., 2020) 66M 84.6 89.1 90.4 51.1 93.1 83.7 70.0 82.6 80.6 79.7 / 87.5

BERT-of-Theseus (Xu et al., 2020) 66M 82.3 89.6 89.5 51.1 91.5 88.7 68.2 - - -

PD-BERT (Turc et al., 2019b) 66M 82.5 90.7 89.4 - 91.1 - 66.7 84.9 - -

ELM (Jiao et al., 2021) 67M 84.2 91.1 90.8 54.2 92.7 88.9 72.2 89.0 82.9 77.2 / 85.7

NAS-BERT∗ (Xu et al., 2021) 60M 83.3 90.9 91.3 55.6 92.0 88.6 78.5 87.5 83.5 80.5 / 88.0

DynaBERT† (Hou et al., 2020) 60M 84.2 91.2 91.5 56.8 92.7 89.2 72.2 84.1 82.8 -

YOCO-bert (Zhang et al., 2021) 59-67M 82.6 90.5 87.2 59.8 92.8 - 72.9 90.3 - -

SuperShaper (ours) 63M 82.2 90.2 88.1 53.0 91.9 87.6 79.1 89.5 82.7 78.25 / 86.01

SuperShaper heuristic-shaped (ours) 61M 82.0 90.3 88.4 52.6 91.6 87.8 77.6 86.5 82.1 77.86 / 85.83

Table 1: Comparison of SuperShaper with 60-67M parameter constraint models on development set of GLUE. †
indicates models trained with data augmentation, ∗ indicates model trained without knowledge distillation in the
fine-tuning stage
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CPU (for quality of fitness predictors for these de-511

vices see Appendix). The feature importance of512

the latency predictors for these devices strongly513

favours total parameters and only very weakly de-514

pends on layer dimensions (see Appendix). This515

is a crucial insight: the shape of the network for a516

given parameter count is a free variable that can be517

optimized for accuracy. Thus for deployment on518

a device, we need to identify the right parameter519

count that meets the latency constraint while the520

shape can be identified with EA or the heuristics 521

we have laid out. 522

We run EA under two settings - parameter con- 523

straints and latency constraints for all devices. We 524

also evaluate the hand-crafted models. The latency 525

and perplexity of these models are shown in Fig- 526

ure 5. As can be seen, all three techniques result 527

in similar performance. This corroborates that la- 528

tency is insensitive to shape and that the heuristics 529

identify competitive networks. 530

In summary, we showed that SuperShaper ef- 531

fectively generalizes training across sub-networks, 532

and finds competitive networks at various sizes. 533

This training on language models enables general- 534

ization across tasks. Further we derived a set of 535

simple rules to shape a network which is compet- 536

itive with EA search, thereby easily generalizing 537

the search across model size. And finally we es- 538

tablished that latency on devices is insensitive to 539

shapes and thus EA search on parameter count or 540

7



hand-crafted networks generalize across devices.541

Thus, with a simple and effective super pre-training542

procedure we identify sub-networks that generalize543

across tasks, model sizes, and devices.544

4 Related Work545

Over the years, a number of solutions have been546

proposed for efficient deployment of language mod-547

els. These can be broadly grouped into the follow-548

ing categories.549

4.1 Model Compression550

In the context of language models, model com-551

pression has been widely applied to reduce com-552

putational complexity. Prominent efforts include553

low-rank approximation of weight matrices (Wang554

et al., 2019; Ma et al., 2019), pruning attention555

heads (Michel et al., 2019), tokens (Goyal et al.,556

2020; Wang et al., 2021b; Kim et al., 2021) or557

layers (Fan et al., 2019; Sajjad et al., 2020), apply-558

ing lottery-ticket hypothesis (Frankle and Carbin,559

2018) to BERT models (Prasanna et al., 2020; Chen560

et al., 2020c,d; Yu et al., 2019), and using quanti-561

zation of weights to lower precisions (Shen et al.,562

2020; Zafrir et al., 2019).563

4.2 Knowledge Distillation564

Knowledge distillation (KD) (Hinton et al., 2015)565

aims to compress the knowledge from a large566

teacher model to a compact and fast student model.567

Traditionally, the student models are trained by568

minimizing the error relative to the soft-targets ob-569

tained from the teacher model from the final pre-570

diction layer, embedding layer outputs (Sanh et al.,571

2019a; Jiao et al., 2020), hidden states (Jiao et al.,572

2020; Sun et al., 2020) or even self-attention out-573

puts (Wang et al., 2020b; Jiao et al., 2020).574

KD can either be task-specific (Tang et al., 2019;575

Turc et al., 2019a; Sun et al., 2019b; Chen et al.,576

2020a) or task-agnostic (Sanh et al., 2019a; Jiao577

et al., 2020; Sun et al., 2020) depending on whether578

the teacher model is fine-tuned on all downstream579

tasks before distillation.580

4.3 Neural Architecture Search581

Neural Architecture Search (Zoph and Le, 2017)582

automates the design of DNNs by searching583

through a large space of network topologies.584

Weight-sharing based NAS defines current state-of-585

the-art (Cai et al., 2019; Yu et al., 2020; Wang et al.,586

2021a), where model training and sub-network587

search are decoupled by the use of a super-network 588

subsuming many sub-networks. This process is 589

challenging for language modeling that involves 590

task-agnostic pre-training and task-specific finetun- 591

ing. 592

In NLP, many efforts apply NAS to the task- 593

specific fine-tuning stage for optimal NLU models 594

(Gao et al., 2021; Chen et al., 2020b). Recent con- 595

temporary efforts focus on the challenging search 596

for task-agnostic models using techniques such 597

as block-wise search, progressive shrinking and 598

stochastic gradient optimization (Xu et al., 2021; 599

Zhang et al., 2021). 600

In contrast, SuperShaper is a super-pretraining 601

methodology to train a large number of task- 602

agnostic and device-insensitive models in one-shot, 603

thereby simplifying NAS. Many of the model- 604

compression and knowledge-distillation efforts de- 605

scribed here are complementary to SuperShaper 606

and can be applied together for more gains. Most 607

importantly, SuperShaper uses a simple design 608

space to effectively train models unlike other con- 609

temporary efforts (Xu et al., 2021; Zhang et al., 610

2021). 611

5 Conclusions and Future Work 612

To address the problem of deploying NLU models 613

across a range of devices, we propose SuperShaper, 614

a NAS technique to pre-train language models by 615

shaping Transformer layers. SuperShaper identifies 616

networks that outperform state-of-the-art model 617

compression techniques on GLUE benchmarks. 618

We discovered that cigar-like shapes of networks 619

generalize across parameter counts and device la- 620

tency is insensitive to shape. Consequently, we 621

demonstrate that NAS can be performed with rad- 622

ically simple design space and implementation, 623

while deriving generalization across tasks, model 624

sizes, and devices. This work can be extended (a) 625

to other tasks such as NLG, and (b) to generate 626

smaller models in combination with other compres- 627

sion techniques. 628
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A Fine tuning tasks and Evaluation883

metrics884

We report performance metrics on the dev version885

of the benchmark. For RTE, MRPC and STS-B,886

we start with a model fine-tuned on MNLI sim-887

ilar to (Liu et al., 2019; Xu et al., 2021). For888

metrics, we report Matthews correlation for CoLA889

(Wang et al., 2018), Spearman correlation for STS-890

B (Wang et al., 2018) and accuracy for all other891

tasks. For MNLI-m (Wang et al., 2018), we report892

accuracy on the matched set. For Squad, we re-893

port exact match and F1 score. Following (Devlin894

et al., 2019; Xu et al., 2021; Zhang et al., 2021;895

Hou et al., 2020), we also exclude the problematic896

WNLI dataset. For all the datasets in GLUE, we897

use the official train and dev splits and download898

the datasets from HuggingFace datasets1.899

B Hyperparameters used in SuperShaper900

The hyperparameters we used for MLM pretraining901

and finetuning tasks are detailed in Table 2 and902

Table 3903
1https://huggingface.co/datasets/glue

Data C4/RealNews
Max sequence length 128
Batch size 2048
Peak learning rate 2e-5
Number of steps 175K
Warmup steps 10K
Hidden dropout 0
GeLU dropout 0
Attention dropout 0
Learning rate decay Linear
Optimizer AdamW
Adam ϵ 1e-6
Adam (β1, β2) (0.9, 0.999)
Weight decay 0.01
Gradient clipping 0

Table 2: Hyperparameters for MLM super pre-training
on C4 RealNews. Super pre-training was done on 8
A100 GPUs

CoLA
Other
GLUE
tasks

Squad V1

Batch size {16, 32} 32 {8, 16, 32}
Weight decay {0, 0.1} 0 {0, 0.1}
Warmup steps {0, 400} 0 {0, 1000}
Max sequence length 128 128 512
Peak learning rate 5e-5 5e-5 1e-5

Number of epochs 10
Hidden dropout 0
GeLU dropout 0
Attention dropout 0
Learning rate decay Linear
Optimizer AdamW
Adam ϵ 1e-6
Adam (β1, β2) (0.9, 0.999)
Gradient clipping 0

Table 3: Hyperparameters for fine-tuning on GLUE and
SQuAD V1

C Efficient Deployment of SuperShaper 904

sub-networks 905

Once the sub-networks are identified through 906

evolutionary-search or proposed heuristics, we 907

combine the output bottleneck matrices of layer 908

i with the input bottleneck matrices of layer i+ 1 909

for further parameter-efficiency while retaining the 910

functionality. 911
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D Bottleneck Visualization912

The visualization of principal diagonals for in-913

put and output bottleneck matrices clearly show914

a banded pattern across all the 12 layers (see Fig-915

ure 7), strongly corroborating the insight that super916

pre-training learns different linear projections of917

768 dimensional input representation to the chosen918

hidden dimensions.919

Figure 7: Visualization of input and output Bottleneck
matrix diagonals for all the 12 layers.

E Feature importances for optimal920

sub-networks.921

E.1 Perplexity Predictor importances.922

Figure 8 shows the importance scores from the923

perplexity predictor. The patterns used to derive924

the heuristically-shaped networks are very clear.925

E.2 Latency Predictor Importances. 926

Figure 8 shows the importance scores from latency 927

predictor for 1080Ti, K80 GPUs and Xeon CPUs 928

respectively. Evidently, the importances are fa- 929

vored largely towards the parameters suggesting 930

the insensitivity of device latencies to shape. 931

F Efficient Pytorch implementation 932

Pytorch code addition for slicing
1 class CustomLinear(nn.Linear): 933
2 def __init__( 934
3 self, super_in_dim, 935

super_out_dim, bias=True, 936
uniform_=None, 937

non_linear="linear" 938
4 ): 939
5 self.samples = {} 940
6 ... 941
7 def set_sample_config(self, 942

sample_in_dim, sample_out_dim 943
): 944

8 sample_weight = weight[:, : 945
sample_in_dim] 946

9 sample_weight = sample_weight 947
[:sample_out_dim, :] 948

10 self.samples["weight"] = 949
sample_weight 950

11 self.samples["bias"] = self. 951
bias[..., : self. 952
sample_out_dim] 953

12 954
13 def forward(self, x): 955
14 #override the Forward pass to 956

use the sampled weights 957
and bias 958

15 return F.linear(x, self. 959
samples["weight"], self. 960
samples["bias"]) 961

The above code shows the additional lines added 962

to PyTorch linear layer to support slicing for super 963

pre-training. We add this to all the fundamental 964

layers - embedding layer, Linear layer and Layer- 965

norm which adds up to 20 additional lines. This 966

implementation is inspired from HAT2 967

G Latency Predictor Performance 968

Figure 9 illustrates the actual-vs-predicted latency 969

for all network pairs in the test set for the 2 GPUs 970

and 1 CPU devices (30% of the dataset). The 971

points are closer to y=x line denoting high accuracy. 972

Quantitatively, the R2 values of these predictors 973

are high proving the efficacy of these models to be 974

reliable performance indicators. 975

2https://github.com/mit-han-lab/hardware-aware-
transformers
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Figure 8: Importance scores for (a) Perplexity Predictor, and (b)-(f) Latency predictor for 1080Ti, K80 GPU, Xeon
CPU, 1060Ti GPU, and AMD Ryzen CPU respectively. The features for (a) is the shape S, i.e., the dimensions
across the 12 layers, while the latency predictor uses parameter count as a feature in addition to the shape S.
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Figure 9: The latency predictors are very accurate with R2 scores of 0.993, 0.988, 0.892, 0.87, and 0.97 respectively.

H Performance of SuperShaper976

H.1 Fine-tuning TS from SuperShaper977

Table 6 compares the different methods of fine-978

tuning TS , i.e. Gdirect, Gscratch, and Gpartial re-979

spectively for a 63M network configuration ob-980

tained through evolutionary search. From the table,981

it is clear that Gscratch and Gpartial have better982

average GLUE performance. It is noteworthy, how-983

ever, that SuperShaper is able to already provide984

good models that perform close to the best perfor-985

mance. When it comes to Gpartial and Gscratch,986

a more rigorous analysis has been done in the main987

paper across parameters and we refer the readers to988

that.989

H.2 Comparing with BERT models990

Table 4 shows the performance of a base model for991

SuperShaper, searched for 100M constraint com-992

pared against BERT-Base. As discussed in the main993

paper, SuperShaper provides models that match the994

performance of BERT-Base models for a signifi-995

cantly fewer parameters.996

H.3 Shape difference vs performance.997

To further study the effect of shape on performance,998

we test if the shape difference between random999

subnetworks and an optimal subnetwork (deter-1000

mined by evolutionary search) in the same param- 1001

eter range, correlates with their differences in per- 1002

formance. The shape difference between two sub- 1003

networks with shapes S1 and S2 and their respec- 1004

tive difference in performance (Gdirect) is charac- 1005

terised by : Diff = ∥S1 − S2∥ 1006

We choose points across different parameter 1007

ranges (50-100M) from the 10,000 random sam- 1008

pled subnetworks from section Section 3 and com- 1009

pute their shape and performance differences with 1010

the optimal evolutionary-search model. The Spear- 1011

man and Pearson correlation coefficient (Myers 1012

and Sirois, 2004; Benesty et al., 2009) across the 1013

shape and performance L2 norms are detailed in 1014

Table Table 7. Clearly, we see a positive correlation 1015

between shapes and performance further reinstat- 1016

ing the sensitivity of shape in determining optimal 1017

performance of a model. 1018

H.4 Average GLUE performance of best 1019

models from Evolutionary Search 1020

Table 5 shows the average GLUE performance 1021

for all the best models found through evolution- 1022

ary search for reference. 1023
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Model Params MNLI-m QQP QNLI CoLA SST-2 STS-B RTE MRPC Avg.
GLUE Squad V1

BERT-Base (from NAS-BERT) 110M 85.2 91 91.3 61 92.9 90.3 76 87.7 84.4 81.8 / 88.9

BERT-Base (from DistilBERT) 110M 86.7 89.6 91.8 56.3 92.7 89 69.3 88.6 83 81.2 / 88.5

SuperShaper (ours) 96M 83.9 90.86 90.92 56.58 92.89 88.3 77.98 88.48 83.7 80.19 / 88.2

Table 4: Comparing SuperShaper with BERT-Base models.

Params (M) Gpartial Gscratch MNLI-m QQP QNLI CoLA SST-2 STS-B RTE MRPC Average
GLUE

33 10.82 12.44 73.45 84.71 80.52 10.27 85.32 82.65 65.70 82.11 70.59

53 8.59 6.02 79.40 89.51 86.38 33.85 89.11 86.66 68.23 84.56 77.21

63 7.09 4.55 82.23 90.18 88.05 53.00 91.86 87.63 79.06 89.46 82.68

69 6.62 4.28 82.74 90.45 89.54 54.98 91.28 88.42 77.98 87.75 82.89

80 6.17 4.02 83.05 90.56 89.22 54.87 93.10 88.46 80.14 87.75 83.39

90.5 5.83 3.79 83.06 90.51 88.72 58.87 91.51 88.47 77.26 88.97 83.42

96 5.65 3.73 83.90 90.86 90.92 56.58 92.89 88.30 77.98 88.48 83.74

Table 5: Performance of best models from parameter-constrained evolutionary search

Shapes Params (M) G_direct G_scratch L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

EvoSearch 1 65 6.86 4.45 480 360 360 240 240 360 480 480 360 480 540 540

Evo Search 2 63 7.09 4.55 480 240 360 240 540 480 360 360 360 360 540 480

Lower Triangle 64 7.31 4.67 120 120 240 240 360 360 360 480 540 540 600 768

Random 64 7.49 4.91 480 360 360 540 480 540 360 480 540 120 360 540

Rectangle 58 7.5 4.72 360 360 360 360 360 360 360 360 360 360 360 360

Inverted Diamond 65 8.12 4.93 768 600 360 240 240 120 120 240 240 360 600 768

Bottle 64 8.31 4.9 120 120 120 120 120 120 600 600 600 600 600 768

Diamond 64 8.36 5.13 120 240 360 480 480 540 768 540 480 360 240 120

Upper Triangle 64 8.43 5.16 768 600 540 540 480 360 360 360 240 240 120 120

Inverted Bottle 64 9.22 5.37 768 600 600 600 600 600 120 120 120 120 120 120

Table 6: Hidden dimensions of templatized shapes and their corresponding perplexities for Gscratch and Gdirect.

Evo-search parameters Gdirect Parameter range Number of networks Spearman Correlation Pearson Correlation

53 8.59 52-54 54 71.03 67.95

63 7.09 62-64 704 80.34 82.52

65 6.86 63-65 862 69.47 71.34

69 6.62 68-70 1065 47.22 52.06

80 6.17 79-81 486 72.32 67.34

90.5 5.83 89-91 47 56.8 54.67

96 5.65 95-97 6 65.71 69.65

Table 7: Shape difference positively correlates with Gdirectdifference across a wide parameter range

H.5 Comparison with HAT(Wang et al.,1024

2020a) and OFA(Cai et al., 2019)1025

HAT compresses encoder-decoder models by elasti-1026

cizing number of layers, hidden size and number of1027

attention heads for machine translation task while1028

OFA proposed a compression for CNN based mod-1029

els on image classification task. To compare our1030

approach with these techniques, We use the results 1031

from (Zhang et al., 2021) who reimplement these 1032

approaches and report on three Glue tasks - MRPC, 1033

SST2 and RTE for 2 compression ratios - 0.75x and 1034

0.5x. We compare these results against our pareto 1035

evolutionary search models that have compression 1036

ratios of 0.78x (90.5M) and 0.54x (63M). The re- 1037
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Model MRPC SST2 RTE
AVG

Compression Ratio

0.75x 0.5x 0.75x 0.5x 0.75x 0.5x

HAT-BERT 82.2 82.6 88.6 88.6 65.0 64.6 78.6

OFA-BERT 87.6 85.2 89.3 89.8 62.8 65.3 80.0

YOCO-BERT 90.4 87.6 92.9 91.9 75.1 69.3 84.5

SuperShaper(ours)∗ 88.97 89.46 91.51 91.86 77.26 79.06 86.4

Table 8: Comparison with HAT, OFA and YocoBert with SuperShaper. ∗ We use models with compression ratios of
0.78x (90.5M) and 0.54x (63M)

sults are reported in table table 8 and we see that1038

SuperShaper outperforms both these approaches1039

with a significant margin.1040
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