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ABSTRACT

Partial label learning (PLL) tackles the problem where each instance is associ-
ated with a set of candidate labels, only one of which is the ground-truth label.
Most existing PLL approaches assume that both the training and test sets share an
identical data distribution. However, this assumption does not hold in many real-
world scenarios where the training and test data come from different distributions.
In this paper, we formalize this learning scenario as a new problem called par-
tial label unsupervised domain adaptation (PLUDA). To address this challenging
PLUDA problem, we propose a novel Prototype Alignment based PLUDA method
named PAPLUDA, which dynamically refines the pseudo-labels of instances from
both the source and target domains by consulting the outputs of a teacher-student
model in a moving-average manner, and bridges the cross-domain discrepancy
through inter-domain class-prototype alignment. In addition, a teacher-student
model based contrastive regularization is deployed to enhance prediction stability
and hence improve the class-prototypes in both domains for PLUDA. Compre-
hensive experimental results demonstrate that PAPLUDA achieves state-of-the-art
performance on the widely used benchmark datasets.

1 INTRODUCTION

Partial label learning (PLL) is a typical weakly supervised learning problem, where each training
instance is assigned a candidate label set, only one of which is valid. PLL has gained increasing
attention from the research community due to its effectiveness in reducing annotation costs in var-
ious real-world scenarios, such as face naming (Hüllermeier & Beringer, 2006), web mining (Luo
& Orabona, 2010), and ecoinformatics (Liu & Dietterich, 2014). Nevertheless, standard PLL as-
sumes the training and test data are sampled from the same distribution. With this assumption, a
model learned from the training data is expected to generalize well on the test data. However, this
assumption does not hold in many real-world scenarios where the training and test data come from
different distributions—e.g., the training and test data are collected from different sources, or we
have an outdated training set due to the fact that data always change over time. In such cases, there
would be a discrepancy between the training and test data distributions, and hence naively adopting
the off-the-shelf PLL models can lead to significant test performance degradation. Meanwhile, the
unavailability of the ground-truth labels prevents the deployment of existing unsupervised domain
adaptation (UDA) methods (Tzeng et al., 2017; Dong et al., 2021; Na et al., 2021; Shen et al., 2022).

We formalize this new learning scenario of PLL with training-test distribution gaps as a partial label
unsupervised domain adaptation (PLUDA) problem. By integrating the challenges of both PLL and
UDA problems, the PLUDA problem has the following characteristics: (1) the source and target
domains have different distributions but share the same set of classes; (2) data in the source domain
have only partial labels—each instance is associated with a candidate label set, while the target
domain only has unlabeled data; (3) the candidate label set for each source instance can contain
both the ground-truth and irrelevant noisy labels, while labels outside of the candidate set are true
negative labels. The goal of the PLUDA task is to learn a domain-invariant prediction model from
the partial-label source domain that can generalize well in the unlabeled target domain.

Although both PLL and UDA have been studied intensively in the literature, to the best of our
knowledge, there is no research yet to address the integrated challenges of PLUDA in a unified
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framework. PLUDA is related to but still distinct from the weakly supervised domain adaptation
(WSDA) problem studied in the recent literature (Shu et al., 2019; Xie et al., 2022). WSDA assumes
the ground-truth labels of the source domain instances are corrupted (e.g., replaced) with noisy
labels, and has been studied as an effort of reducing annotation costs. Some researchers address the
WSDA problem based on off-the-shelf technologies and obtain good performance. For example, Xie
et al. (2022) exploit the bilateral relationships between the source and target domains to construct a
universal framework, GearNet, based on the existing domain adaptation methods of TCL (Shu et al.,
2019) and DANN (Tzeng et al., 2017).

In this paper, we propose a novel prototype alignment based partial label unsupervised domain
adaptation approach, PAPLUDA, to address the combined PLL and UDA problems simultaneously
in a newly formalized PLUDA learning scenario. The proposed PAPLUDA approach contains three
pseudo-label based components that collaborate with each other to tackle PLUDA learning. First,
we conduct soft label disambiguation to dynamically rectify the pseudo-labels of training instances
from both domains toward the ground-truth labels, which aims to disambiguate the partial labels and
set up the foundation for cross-domain class alignment. Second, we propose an inter-domain class-
prototype based alignment to minimize the discrepancy between the same class prototypes from the
source and target domains while maximizing the gaps between the prototypes of different classes.
Finally, we deploy a teacher-student model based contrastive regularization to enhance the reliable
pseudo-labels, and hence improve the class-prototypes and the inter-domain prototype alignment.
Overall, the contributions of this paper can be summarized as follows:

• A new challenging learning problem, PLUDA, is proposed, which is more practical than
separate PLL and UDA problems by simultaneously dropping the common supervised
learning assumptions of accurate data labels and identical training and testing distributions.

• A novel PAPLUDA approach is proposed to tackle the PLUDA problem.
• Comprehensive experiments are conducted on benchmarks and the results validate the ef-

fectiveness of the proposed PAPLUDA.

2 RELATED WORK

2.1 PARTIAL LABEL LEARNING

Partial label learning is a prevalent weakly supervised learning problem (Zhou, 2018), where each
training instance is associated with a set of candidate labels, only one of which is valid. Many meth-
ods adapt existing learning techniques to the partial-label training data and disambiguate the can-
didate noisy labels by aggregating predictions. For maximum likelihood techniques, the likelihood
of each partial label training instance is produced by consulting the probability of each candidate
label associated with the training instance (Jin & Ghahramani, 2002; Liu & Dietterich, 2012). For
k-nearest neighbor techniques, the candidate labels from neighbor instances are integrated for final
prediction in a weighted voting manner (Hüllermeier & Beringer, 2006; Gong et al., 2017; Zhang &
Yu, 2015). For maximum margin techniques, the classification margin on each partial label instance
is defined by discriminating the modeling outputs from candidate labels and non-candidate labels
(Nguyen & Caruana, 2008; Yu & Zhang, 2016). Apart from adapting the off-the-shelf techniques
to partial-label data, some researchers propose to address PLL by adapting the partial-label data to
existing learning techniques. For example, Zhang et al. (2017) propose to transform a partial-label
training set into multiple binary training sets which can then be used to built multiple binary classi-
fiers corresponding to the ECOC coding matrix. Wu & Zhang (2018) adopt a one-vs-one decompo-
sition strategy to enable binary decomposition for learning from partial-label data. Although these
works produce competitive performance, they are restricted to linear models and have difficulty to
handle large-scale datasets.

To alleviate the limitations of the standard PLL methods, deep learning based PLL has recently
started gaining attention from the research community. Yao et al. (2020) attempt to address PLL
with deep convolutional neural networks by exploiting a temporal-ensembling technique. Mean-
while, Yan & Guo (2020) handle PLL with multilayer perceptrons by means of batch label cor-
rection. Wen et al. (2021) present a group of loss functions called leveraged weighed loss, which
takes the work of (Lv et al., 2020) as its special case. Feng et al. (2020) present two provably
consistent methods from the perspective of partial label generation: a risk-consistent method and
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a classifier-consistent method. Xu et al. (2021) adopt variational inference along network training
to progressively refine the latent label distributions, assuming an instance-dependent partial label
generation process. In addition, Wang et al. (2022) propose a class prototype based label disam-
biguation method through contrastive learning, which achieves impressive performance on several
image classification benchmarks. Although theses deep learning methods have produced notable
progress on PLL, the study however is still limited to the supervised learning scenario where both
training and test datasets share an identical data distribution.

2.2 UNSUPERVISED DOMAIN ADAPTATION

Unsupervised domain adaptation (UDA), which aims to transfer knowledge learned from a label-rich
source domain to an unlabeled target domain, has gained tremendous attention from the research
community (Hoffman et al., 2018; Ghafoorian et al., 2017; Kamnitsas et al., 2017; Wang & Zheng,
2015; Fang et al., 2020; Dong et al., 2021). The main challenge of UDA is to bridge the cross-
domain distribution gap and induce transferable prediction models. Some previous research works
have attempted to minimize the inter-domain gap based on standard distribution discrepancy criteria,
such as the maximum mean discrepancy (Pan et al., 2010), Kullback-Leibler divergence (Zhuang
et al., 2015), central moment discrepancy (Zellinger et al., 2017), and Wasserstein distance (Lee
& Raginsky, 2018). In addition, several studies attempt to minimize the domain discrepancy by
exploiting a domain discriminator in an adversarial learning manner, including domain adversarial
network (Ganin et al., 2016) and adversarial discriminative domain adaptation (Tzeng et al., 2017).
Recently, some researchers consider enhancing the domain adaptation procedure by exploiting the
unlabeled data from the target domain, and propose new UDA approaches based on self-training
models (Zou et al., 2019; Chen et al., 2020b).

These standard UDA methods however all assume the training data in the source domain are anno-
tated with accurate true labels, which are difficult to provide in real-world scenarios. More recently,
weakly supervised domain adaptation (WSDA), which addresses both the UDA problem and the
noisy label learning issue, has gained increasing attention in reducing annotation demands for high-
quality labels (Shu et al., 2019; Tzeng et al., 2017; Liu et al., 2019). For example, TCL (Shu et al.,
2019) proposes to train a domain adaptation network by exploiting the selected clean and trans-
ferable source instances. GearNet (Xie et al., 2022) proposes a universal framework based on the
off-the-shelf powerful domain adaptation methods, TCL (Shu et al., 2019) and DANN (Tzeng et al.,
2017), and exploits the bilateral relationships between the source and target domains to enhance
the WSDA training procedure. In this work, we relax the label requirement in the source domain
by considering partial labels, which can be easily obtained with crowdsourcing. This new PLUDA
problem cannot be directly addressed by existing PLL or UDA methods.

3 PROPOSED APPROACH

We assume a source domain DS = {(xs
i ,y

s
i )} ns

i=1 with ns partial-label instances and a target do-
main DT = {xt

i}
nt
i=1 with nt unlabeled instances, where xs

i and xt
i denote the i-th instance from

the source domain DS and the target domain DT respectively, and ys
i ∈ {0, 1}L denotes the label

indicator vector associated with xs
i . L denotes the number of classes. The multiple 1 values in ys

i
denote either the true label or irrelevant label noise indistinguishably, which forms the candidate
label set Si ⊆ {1, · · · , L} for xs

i . We use Bs = {(xs
i ,y

s
i )}ms

i=1 and Bt = {xt
i}

mt
i=1 to denote a

mini-batch of instances sampled from DS and DT , respectively. The task of PLUDA is to induce a
multi-class prediction model from DS and DT that can generalize well in the target domain.

We propose to address this novel task of PLUDA by simultaneously performing domain adaptation
and partial label disambiguation with inter-domain class-prototype alignment and teacher-student
model based soft label disambiguation. The proposed PAPLUDA model is illustrated in Figure 1.
The model architecture includes a shared feature extractor G, a teacher-student prediction network
(student network F and teacher network F ′), and a feature projection network H . Towards the ob-
jective of PAPLUDA, three loss components are designed on the model architecture: (1) classifica-
tion loss with soft label disambiguation, which trains a teacher-student model from the partial-label
data in the source domain by performing moving average based soft label disambiguation; (2) inter-
domain class-prototype alignment loss, which aims to bridge the cross-domain distribution gap for
information sharing by performing contrastive alignment between the prototypes of the same class

3



Published as a conference paper at ICLR 2023

Figure 1: The proposed PAPLUDA model, which mainly has three loss components: classification
loss with soft label disambiguation Lc; inter-domain class-prototype alignment loss Linter; teacher-
student model based contrastive regularization loss Lreg (Ls

reg and Lt
reg). All the components

mutually benefit from each other to improve the PLUDA learning cooperatively.

in the two domains; and (3) teacher-student model based contrastive regularization loss, which en-
hances prediction stability and consequently improves class-prototypes and inter-domain prototype
alignment for PLUDA learning. We elaborate these loss components and the proposed approach in
the following subsections.

3.1 CLASSIFICATION WITH SOFT LABEL DISAMBIGUATION

As the true labels are hidden within each candidate label set in the source training data, it is critical to
perform label disambiguation—that is, separate the true labels from the noisy labels—for inducing a
good classification model. We deploy a teacher-student model as the classification model due to its
robustness against noisy labels for stable prediction (Li et al., 2019). We assume the teacher and the
student share the same feature extractor G but maintain two different prediction networks: student
network F and teacher network F ′. F and F ′ have identical structures but different parameters,
and they produce multi-class softmax probability prediction vectors. The parameters of the student
network, ΘF , will be learned from the training data, while the parameters of the teacher network,
ΘF ′ , will be updated as an exponential moving average (EMA) of the student network parameters
(Tarvainen & Valpola, 2017), such as:

ΘF ′ = ηΘF ′ + (1− η)ΘF , (1)

where η ∈ (0, 1) is a weight hyperparameter. Importantly, we propose to use the teacher network
that is typically more robust than the student network to perform label disambiguation:

ŷs
ij = I

[
j = arg max

j′∈Si

F ′(G(xs
i ))
]
, (2)

where I is an indicator function, and ŷs
i is the disambiguated one-hot label indicator vector for

instance xs
i using the teacher network. Such disambiguated one-hot label vectors for the source

training instances however would certainly contain mistakes. Directly using them for model training
could cause oscillations by largely deviating from the original candidate labels. Hence we propose
to perform soft label disambiguation by updating the candidate label distribution vectors with the
one-hot vectors {ŷs

i } in a moving average fashion:

ps
i = λps

i + (1− λ)ŷs
i , (3)
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where λ ∈ (0, 1) is a hyperparameter, and ps
i denotes the soft disambiguated label vector for the

source instance xs
i . We initialize ps

i as the original candidate label distribution vector for xs
i , such

as ps
ij = 1

|Si| I[j ∈ Si].

Benefiting from the moving average update, we expect this soft label disambiguation procedure can
steadily and progressively approach the underlying true label vectors through the iterative training
steps. With the disambiguated soft label vectors, we can update the student network F and the
feature extractor G by minimizing following classification loss for each instance:

Li
c(x

s
i , Si) =

∑L

j=1
−pij logFj(G(xs

i )) (4)

where j denotes the indices of the class labels, and Fj(·) denotes the j-th output entry of the student
prediction network F , which indicates the predicted probability of the given instance belonging to
the j-th class. By iteratively performing soft label disambiguation and prediction model update, we
expect the true labels can be gradually and statistically identified from the source training data, and
hence induce a good classification model.

3.2 INTER-DOMAIN CLASS-PROTOTYPE ALIGNMENT

The goal of PLUDA is to induce a classification model that generalizes well in the target domain.
Hence it is important to take the unlabeled target data into consideration and bridge the cross-
domain feature distribution discrepancy. In particular, we propose to discriminatively bridge the
cross-domain divergence and match the two domains specifically for the given classification task by
performing prediction-aware inter-domain class-prototype alignment.

A class-prototype is defined as the mean embedding vector of the instances belonging to the class.
Following self-supervised learning (Chen et al., 2020a), we compute the class-prototypes in a low-
dimensional embedding space produced by a projection network H on the extracted features. As
the true labels are unknown in the source and target domains, we propose to calculate the class-
prototypes based on the pseudo-labels predicted by the teacher-student model. Specifically, the
class-prototypes for each training batch Bd are computed as follows:

cdk =

∑
xd
i∈Bd

H(G(xd
i )) · I[k = arg maxk′∈Yd pd

ik′ ]∑
xd
i∈Bd

I[k = arg maxk′∈Yd pd
ik′ ]

(5)

where d ∈ {s, t} is a domain indicator; Ys = Si in the source domain and Yt = {1, 2, · · · , L} in
the target domain. The discrete pseudo-labels in the source domain are produced from the disam-
biguated soft label vectors {ps

i} computed in Eq.(3). For the unlabeled target domain, we propose
to maintain soft label probability vectors {pt

i} during training in the following way:

pt
i = λpt

i + (1− λ)F ′(G(xt
i)). (6)

To alleviate the negative impact and limitation of computing class-prototypes using the partial-label
data in a local batch, we maintain a dynamic dictionary C ′s = [c′s1 , · · · , c′sk , · · · , c′sL ] in the source
domain to store the class-prototypes from the previous batch for prototype calibration. After com-
puting the class-prototypes using Eq.(5) for the current source batch, we further update them by
consulting the dynamic dictionary in a moving average manner:

csk = γcsk + (1− γ)c′sk , (7)

where γ ∈ [0, 1] is a trade-off parameter. This allows us to take the prototype information from
previous batches into account, overcoming the potential random bias in a local batch.

With the class-prototypes computed in both domains, we propose to perform inter-domain prototype
alignment using the following contrastive loss for each class k:

Lk
inter(csk, c

t
k) = −log

Ω(csk, c
t
k)

Ω(csk, c
t
k) +

∑L
j=1 I[j 6= k] ·

(
Ω(csj , c

t
k) + Ω(ctj , c

s
k)
) , (8)

where Ω(a, b) = exp(cosine(a, b)/τ) measures the similarity of the given pair, and τ is the temper-
ature hyperparameter. This contrastive loss uses the inter-domain class-prototype pair from the same
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class as the positive sample and the pairs from different classes as the negative samples. We expect
this contrastive loss can push the inter-domain prototype pair of the same class closer to each other
and push the inter-domain pair from different classes apart in the embedded feature space, aiming
to induce a good feature representation space, in which the two domains can be discriminatively
aligned for classification model training.

3.3 TEACHER-STUDENT MODEL BASED CONTRASTIVE REGULARIZATION

To exploit the consistent statistical knowledge learned along model training across both domains and
avoid prediction perturbations caused by the noisy label information, we propose a self-supervised
contrastive loss in the output space of the prediction networks and calculate the loss in both domains
as a regularizer to enhance the stability of the prediction model.

The self-supervised contrastive loss aims to push the prediction outputs for the variants of the same
instance to be similar and for different instances to be dissimilar. It can conveniently exploit the
unlabeled target instances. Specifically, for each training instance xi, we first generate an augmented
version of it as x̂i = Aug(xi), where Aug(·) denotes the data augmentation function (Cubuk et al.,
2020). Then the contrastive loss for each instance xd

i in a batch Bd (d ∈ {s, t}) can be computed as:

Li,d
reg(xd

i , x̂
d
i ) = −log

h(xd
i , x̂

d
i )∑

xd
j∈Bd

h(xd
j , x̂

d
i ) +

∑
xd
j∈Bd

I[j 6= i] · h(x̂d
j , x̂

d
i )
, (9)

where h(a, b) = exp(cosine(F (G(a)), F ′(G(b)))/τ) denotes the similarity between the predicted
label vectors on the given input instance pair using the student network and teacher network respec-
tively, and τ is the temperature hyperparameter. By deploying this contrastive loss as a regularizer
on both domains, we have the following batch-wise total regularization loss:

Lreg = Exs
i∈BsLi,s

reg(xs
i , x̂

s
i ) + Ext

i∈Bt
Li,t
reg(xt

i, x̂
t
i) (10)

We expect this prediction consistency regularization loss can help induce similar feature representa-
tions across domains regarding the classification task and improve the inter-domain class-prototype
alignment to facilitate domain adaptation.

3.4 OVERALL TRAINING LOSS

Finally, by integrating the classification loss in Eq.(4), the inter-domain class-prototype alignment
loss in Eq.(8) and the teacher-student model based contrastive regularization loss in Eq.(10) together,
we have the following overall batch-wise training loss:

L = Exs
i∈Bs
Li
c + α

∑
k
Lk
inter + βLreg (11)

where α and β are trade-off hyperparameters that balance the weights of the inter-domain class-
prototype alignment loss and the teacher-student model based contrastive regularization loss respec-
tively. The training algorithm is presented in Algorithm 1 in Appendix.

4 EXPERIMENTS

To validate the efficacy of the proposed PAPLUDA, we conduct experiments on two domain adap-
tation benchmark datasets by generating partial-label data in the source domain with different noise
levels. We report our experimental setting and results in this section.

4.1 EXPERIMENT SETTING

Datasets We conduct experiments on two widely used domain adaptation datasets: Office-31
(Saenko et al., 2010) and Office-Home (Venkateswara et al., 2017). Office-31 is a classical dataset
consisting of 4,652 images from 31 classes, which is distributed across the following three domains:
Amazon (A), Webcam (W), and DSLR (D). These domains contain images collected from ama-
zon.com, web camera, and digital SLR camera, respectively. Six different domain adaptation tasks
can be constructed from this dataset, each of which uses one domain as the source domain and
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Table 1: Test accuracy (mean±std, %) comparison on the partial-label Office-31 dataset with label
ambiguity level q = 0.2. The best result in each column is highlighted in bold.
Tasks A→W A→ D W→ A W→ D D→ A D→W Average
DANN 51.43±1.71 55.20±1.01 44.28±0.72 72.08±1.13 38.10±1.41 64.09±0.45 54.20±1.07
TCL 61.72±0.88 68.54±1.21 47.58±0.36 71.66±1.05 42.15±1.42 58.46±0.61 58.35±0.92
GearNetCo−teach. 33.20±1.97 39.37±1.28 38.99±0.68 63.37±2.08 33.80±1.51 52.24±1.85 43.50±1.56
GearNetDANN 62.76±0.48 64.79±1.05 46.37±1.19 78.88±1.62 39.71±1.02 67.08±0.81 59.93±1.03
GearNetTCL 63.55±0.82 69.85±1.03 49.24±1.23 73.13±0.91 43.86±0.99 60.44±0.66 60.01±0.94
PAPLUDA(Ours) 79.36±0.46 78.72±1.15 53.34±0.87 94.37±0.67 50.07±0.56 87.11±0.86 73.82±0.76

Table 2: Test accuracy (mean±std, %) comparison on the partial-label Office-31 dataset with label
ambiguity level q = 0.4. The best result in each column is highlighted in bold.
Tasks A→W A→ D W→ A W→ D D→ A D→W Average
DANN 40.36±1.59 40.01±1.28 35.62±1.65 57.08±1.62 30.61±1.92 52.73±1.81 42.73±1.64
TCL 49.08±1.59 61.45±1.88 39.95±0.93 61.25±1.79 35.61±1.87 55.11±2.57 50.40±1.77
GearNetCo−teach. 24.52±1.18 28.67±0.88 22.69±1.08 45.21±1.36 21.80±1.54 32.85±1.43 29.29±1.24
GearNetDANN 50.52±1.63 48.33±1.91 38.45±1.51 66.25±1.86 33.38±1.07 55.84±1.31 48.79±1.55
GearNetTCL 53.51±0.81 64.79±1.03 41.05±1.93 63.87±1.91 36.17±1.44 56.90±1.60 52.71±1.45
PAPLUDA(Ours) 76.62±1.06 77.15±1.01 51.25±0.98 91.56±1.66 45.28±1.12 82.42±1.35 70.71±1.19

uses another one as the target domain. Office-Home is a challenging domain adaptation benchmark
dataset consisting of 15,500 images from 65 classes across the following four domains: Artistic
(Ar), Clip Art (Cl), Product (Pr), and Real-World (Rw). These domains represent four different
image styles, including artistic depictions, clipart images, images without background, and photos
taken with cameras respectively. There are twelve different domain adaptation tasks constructed
from Offce-Home, each of which uses a different ordered pair of domains as the source and tar-
get domains. For the PLUDA experiments, we produce partial labels in each source domain of the
two datasets following the partial label generation process in (Lv et al., 2020). Specifically, each
irrelevant label for an image is uniformly selected as a candidate label with a probability q, which
controls the label ambiguity level of the produced dataset. When encountering a special case where
no irrelevant label is chosen for an image, we randomly add an irrelevant label to the candidate label
set to ensure the whole training set is corrupted thoroughly. For each comparison experiment, we
report the average test accuracy and standard deviation based on five independent runs.

Comparison Methods We compare the proposed PAPLUDA approach with three state-of-
the-art weakly supervised domain adaptation methods (GearNetCo−teaching, GearNetDANN, and
GearNetTCL) and two baseline methods (DANN and TCL). Each method is configured with the sug-
gested parameters according to the respective literature. DANN (Tzeng et al., 2017) designs an ad-
versarial domain adaptation mechanism for neural networks to reduce the cross-domain divergence.
TCL (Shu et al., 2019) devises a transferable curriculum to select instances for model training, which
addresses weakly supervised domain adaptation through self-paced learning. GearNetCo−teaching
(Xie et al., 2022) exploits the bilateral relationship between source and target domains for model
training and integrates the off-the-shelf co-teaching framework (Han et al., 2018) to improve the
model’s robustness against noisy labels. GearNetDANN (Xie et al., 2022) and GearNetTCL (Xie
et al., 2022) are two universal frameworks for exploiting knowledge from both the source and target
domains. They incorporate the effective domain adaptation methods, DANN and TCL, as their core
components respectively to address the weakly supervised domain adaptation problem.

Implementation Details To ensure a fair comparison, we adopt the same backbone network and
optimizer for all the comparison methods. We use ResNet50 as the backbone network for feature
extraction. The projection network is a two-layer perceptron that outputs 128-dimensional embed-
dings. The prediction network is a two-layer perceptron followed by a softmax activation function.
The coefficient hyperparameter η for the teacher-student model and the hyperparameter γ for class-
prototype update are set to 0.999 and 0.99, respectively. For the soft label disambiguation, we
linearly ramp down λ from 0.95 to 0.8. The temperature parameter τ for similarity calculation is set
to 5. We employ a standard stochastic gradient descent optimizer with a momentum of 0.9, a weight
decay of 0.0005, an initial learning rate of 0.01, and a cosine learning rate decay. The mini-batch
size is set to 64. The trade-off parameters α and β are chosen from the set {0.1, 0.3, 0.5, 0.7, 0.8, 1}
for the two datasets according to the validation performance of the transfer task A → W on the
Office-31 dataset and the Ar→ CI task on the Office-Home dataset respectively.
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Table 3: Test accuracy (mean±std, %) comparison on the partial-label Office-Home dataset with
label ambiguity level q = 0.2. The best result in each row is highlighted in bold.

Tasks DANN TCL GearNetCo−teach. GearNetDANN GearNetTCL PAPLUDA(Ours)
Ar→ CI 17.03±1.16 21.89±1.35 16.47±0.62 18.18±1.10 22.44±0.81 34.14±0.87
Ar→ Pr 29.66±1.17 32.45±1.37 25.33±0.76 33.33±1.17 33.99±1.01 46.78±0.97
Ar→ Rw 38.28±2.06 45.59±0.75 38.19±0.72 42.14±1.37 47.81±1.62 55.68±1.33
CI→ Ar 22.66±0.75 31.71±1.58 18.22±0.73 27.42±0.78 33.49±1.58 40.76±0.94
CI→ Pr 27.69±1.25 34.57±1.29 28.80±0.86 33.08±1.16 35.19±1.06 49.24±1.26
CI→ Rw 31.09±1.45 40.57±1.43 27.21±0.88 37.52±0.64 42.34±0.93 52.35±0.81
Pr→ Ar 22.46±0.61 33.87±0.62 19.17±1.38 26.88±0.91 34.33±1.35 43.25±0.84
Pr→ CI 17.25±1.83 23.98±1.83 14.28±1.25 18.87±1.22 25.11±1.44 39.60±1.12
Pr→ Rw 37.22±1.06 50.43±0.87 38.24±0.79 42.53±1.08 54.41±1.22 65.31±1.05
Rw→ Ar 31.17±1.12 46.33±1.01 26.29±1.05 35.88±0.72 47.45±1.56 57.34±0.74
Rw→ CI 21.32±0.84 28.58±1.89 18.76±1.20 22.25±1.01 30.97±1.46 43.22±1.14
Rw→ Pr 47.96±1.52 57.74±1.21 48.68±1.23 52.97±1.35 62.54±1.21 72.30±1.13
Average 28.65±1.24 37.31±1.27 26.64±0.96 32.59±1.04 39.17±1.27 50.00±1.02

4.2 COMPARISON RESULTS

4.2.1 RESULTS ON OFFICE-31

The comparison results in terms of test accuracy (mean±standard deviation) in the target domain
for the six domain adaptation tasks from the Office-31 dataset are reported in Table 1 and Table 2
with different label ambiguity levels. Table 1 reports the comparison results with a label ambiguity
level indicated by q = 0.2. From the table, we can observe that the proposed PAPLUDA not only
produces the best results on all the six domain adaptation tasks, but also outperforms the comparison
methods with substantial performance gains. For example, the proposed approach outperforms the
best comparison methods by 20.03%, 15.81%, 15.49%, and 8.87% on the domain adaptation tasks
of D → W, A → W, W → D, and A → D, respectively. Such superior performance demonstrates
the effectiveness of the proposed PAPLUDA approach in addressing the PLUDA problem.

Table 2 reports the comparison results in a more challenging setting with a higher label ambiguity
level of q = 0.4. We can see the proposed approach again consistently outperforms all the other
methods in this setting. Moreover, the performance gains achieved by the proposed approach over
the other comparison methods are very remarkable. For example, PAPLUDA outperforms the best
comparison methods by 25.52%, 23.11%, 25.31%, and 12.36% on the domain adaptation tasks of D
→W, A→W, W→ D, and A→ D respectively, and it yields an average performance gain of 18%
over the best comparison method, GearNetTCL. Compared with the experimental results reported
in Table 1, the performance of each comparison method reported in Table 2 in general degrades due
to the higher noise level (i.e., label ambiguity level). However, the performance gains achieved by
the proposed method over the best comparison methods improve as the noise level increases from
q = 0.2 to q = 0.4. In particular, the average performance gain achieved by PAPLUDA over the
best comparison method, GearNetTCL, increases from 13.81% to 18% when q increases from 0.2
to 0.4. These results demonstrate the effectiveness of the proposed PAPLUDA method in handling
high level label ambiguities.

In summary, the experimental results on the Office-31 dataset with different noise levels validate the
effectiveness of the proposed PAPLUDA method in dealing with the challenging PLUDA problem.

4.2.2 RESULTS ON OFFICE-HOME

The comparison results on the twelve domain adaptation tasks constructed from the Office-Home
dataset are reported in Table 3. From the table, we can observe the follows: (1) Compared with all the
other five domain adaptation methods, the proposed approach achieves superior performance across
all the twelve tasks. Moreover, its performance gains are very notable. For example, the proposed
approach outperforms the best comparison methods by 14.49%, 14.05% , and 12.79% on the tasks
of Pr → CI, CI → Pr, and Ar → Pr, respectively. (2) Out of the total 60 comparison cases over
5 comparison methods and 12 domain adaption tasks, the proposed approach outperforms all the
comparison methods consistently, which is very remarkable given the fact that different comparison
methods have different strengths on various classification tasks. These results on the Office-Home
dataset again validate the efficacy of the proposed method in addressing the PLUDA problem.
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Table 4: Results (%) of the ablation study on multiple tasks.
Ablation Variant D→ A (q = 0.2) D→ A (q = 0.4) Ar→ Pr (q = 0.2) Rw→ Pr (q = 0.2)
Full Model 50.07 45.28 46.78 72.30
M-w/o-Linter 42.40 36.29 44.60 69.53
M-w/o–Lreg 38.42 37.41 45.32 71.12
M-w/o-soft 29.87 17.65 21.17 39.92
M-w/o-F ′ 47.02 37.02 44.93 71.18
M-w/o-target 34.28 32.70 40.52 65.30
CLS-source 19.55 10.33 13.22 32.88

4.3 ABLATION STUDY

The proposed approach has three main components: soft label disambiguation, inter-domain class-
prototype alignment, and teacher-student model based contrastive regularization. To investigate the
impact of these components on addressing the PLUDA problem, we conduct an ablation study to
compare the proposed full model with the following ablation variants: (1) M-w/o-Linter, which drops
the inter-domain class-prototype alignment loss from the full model by setting α = 0; (2) M-w/o-
Lreg, which drops the contrastive regularization loss by setting β = 0; (3) M-w/o-soft, which drops
the moving average based soft label disambiguation/update by setting λ = 0; (4) M-w/o-F ′, which
drops the teacher network F ′ and uses the student network F instead; (5) M-w/o-target, which drops
the target domain from training by setting α = 0 and removing the regularization loss Lt

reg on the
target domain; and (6) CLS-source, which is a baseline that only uses a standard classification loss
in the source domain by taking the given candidate labels as the prediction targets.

We conduct the ablation experiments on several domain adaptation tasks selected from the two
datasets. The comparison results are reported in Table 4. Compared to the full model, we can
see that all the ablation variants have notable performance degradation in different degrees. M-
w/o-Linter has performance drops of over 7.5% on the two D→ A tasks with different noise lev-
els and over 2.1% on the Ar→Pr and Rw→Pr tasks. These performance degradations suggest the
inter-domain class-prototype alignment loss is important for the proposed method in bridging the
cross-domain discrepancy. M-w/o-Lreg also demonstrates similar performance degradations, which
validates the contribution of the contrastive regularization loss to the proposed approach. It is worth
noting that the variant M-w/o-soft produces substantial performance degradation across all the tasks,
with performance drops between 20.2% and 32.38%. These results suggest the proposed soft label
disambiguation is critical for handling the label noise in PLUDA. The performance gap between
the full model and the variant M-w/o-F ′ suggests that the teacher model is useful for the soft la-
bel update and the contrastive regularization and hence contributes to the proposed model. By
dropping the target domain from training, M-w/o-target produces inferior performance than the M-
w/o-Linter variant. This demonstrates the importance of exploiting the target domain data for domain
adaptation, and further validates the contribution of the inter-domain class-prototype alignment loss
and the teacher-student model based contrastive regularization loss. Moreover, all the five ablation
variants mentioned above—M-w/o-Linter, M-w/o-Lreg, M-w/o-soft, M-w/o-F ′, and M-w/o-target—
outperform the ablation baseline CLS-source that tackles neither the PLL challenge nor the UDA
challenge. Overall, this ablation study demonstrates all the proposed components are essential for
the proposed PAPLUDA approach, which effectively integrates these parts into a coherent model for
tackling the entangled PLL and UDA challenges in the PLUDA problem.

5 CONCLUSION

In this paper, we proposed a new challenging problem called partial label unsupervised domain
adaptation (PLUDA), which addresses the entangled PLL and UDA challenges simultaneously. We
proposed a novel prototype alignment based PLUDA approach called PAPLUDA. It conducts soft
label disambiguation in both the source and target domains and minimizes the cross-domain discrep-
ancy by performing inter-domain class-prototype alignment. In addition, a teacher-student model
based contrastive regularization is deployed to enhance prediction stability and improve the class-
prototypes in both domains, thus consequently helping the inter-domain class-prototype alignment
to facilitate domain adaptation. Extensive experimental results demonstrate the proposed PAPLUDA
achieves state-of-the-art performance on benchmark datasets.
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A APPENDIX

A.1 TRAINING ALGORITHM

The training algorithm for the proposed PAPLUDA approach is presented in Algorithm 1.

Algorithm 1 Training Algorithm of PAPLUDA
Input: DS : partial-label source dataset; DT : unlabeled target dataset;

initial PAPLUDA model: F, F ′, G, H; α, β: trade-off hyperparameters.
One epoch training:

1: for iter = 1: iterations do
2: Sample a mini-batch of samples Bs = {(xs

i ,y
s
i )}ms

i=1 from DS and
sample a mini-batch of samples Bt = {xt

i}
mt
i=1 from DT .

3: Perform soft label disambiguation on Bs according to Eq.(3).
4: Compute classification loss Lc via Eq.(4) by taking the disambiguated soft labels as target.
5: Perform soft label disambiguation/update on Bt according to Eq.(6).
6: Compute and update the class-prototypes according to Eq.(5) and Eq.(7).
7: Compute the inter-domain class-prototype alignment loss Linter via Eq.(8).
8: Compute the teacher-student model based contrastive regularization loss Lreg via Eq.(10).
9: Update {F,G,H} to minimize the batch-wise training loss in Eq.(11).

10: Update the teacher model F ′ according to Eq.(1).
11: end for

A.2 PARAMETER SENSITIVITY ANALYSIS

(a) Varying the α value (b) Varying the β value

Figure 2: Test results of the proposed PAPLUDA approach with different α and β values on the
PLUDA task A→W (q = 0.2) from Office-31.

We investigate the impact of the trade-off parameters α and β on the performance of the proposed
approach by conducting experiments on the PLUDA task A→ W (q = 0.2) with different α and β
values from {0.1, 0.3, 0.5, 0.7, 0.8, 1}. We first set β = 0.5 while varying the α value, and then set
α = 0.7 while varying the β value. Note that a larger α value gives greater emphasis on the inter-
domain class-prototype alignment loss, and a larger β value emphasizes more on the contrastive
regularization loss. The test results are presented in Figure 2. We can see that when α is very small,
the performance is relatively poor. As α increases, the performance of the approach improves,
indicating that the inter-domain class-prototype alignment loss is helpful. However, when α is too
large (>0.7), the performance degrades as the inter-domain class-prototype alignment loss gradually
dominates. This is reasonable since the inter-domain class-prototype alignment loss is designed to
help the model training rather than dominate the learning procedure. The results for different β
values demonstrate a similar pattern, which indicates the contrastive regularization loss is a useful
auxiliary loss for the proposed approach.
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Figure 3: Test results of PAPLUDA with different label noise levels (q values) on the W→ D task
from the Office-31 dataset.

Table 5: Test accuracy (mean±std) comparison on the partial-label Office-Home dataset with label
ambiguity level q = 0.1. The best result in each row is highlighted in bold.

Tasks DANN TCL GearNetCo−teach. GearNetDANN GearNetTCL PAPLUDA(Ours)
Ar→ CI 22.04±1.27 25.66±1.47 20.64±0.52 23.67±1.16 26.63±0.92 37.06±0.95
Ar→ Pr 32.99±1.17 38.54±1.31 31.20±0.74 38.77±1.29 40.87±1.11 55.33±1.08
Ar→ Rw 41.31±2.17 51.55±0.76 40.87±0.77 45.34±1.32 53.86±1.65 62.49±1.13
CI→ Ar 28.58±0.71 33.21±1.64 22.50±0.86 33.92±0.81 36.62±1.66 44.00±0.78
CI→ Pr 29.33±1.17 36.70±1.49 33.38±0.77 35.21±1.22 39.27±1.10 53.14±1.11
CI→ Rw 41.50±1.49 41.40±1.37 36.31±1.11 47.98±0.63 44.18±1.16 55.46±0.79
Pr→ Ar 28.42±0.55 35.31±0.74 24.88±1.37 34.01±0.96 37.85±1.43 45.51±0.91
Pr→ CI 20.93±1.84 25.62±1.88 17.67±1.28 22.86±1.17 26.98±1.51 40.61±1.12
Pr→ Rw 47.59±1.18 54.38±0.91 44.12±0.85 53.33±1.36 58.13±1.25 67.40±1.26
Rw→ Ar 39.04±1.15 48.88±1.25 34.67±1.08 42.13±0.82 49.64±1.53 58.39±0.86
Rw→ CI 25.97±0.98 31.47±1.92 20.39±1.26 27.76±1.17 34.22±1.41 45.28±1.18
Rw→ Pr 54.85±1.69 59.26±1.23 56.18±1.28 59.51±1.38 64.55±1.27 72.74±1.21
Average 34.38±1.28 40.16±1.37 31.90±0.99 38.71±1.11 42.48±1.33 53.11±1.03

A.3 IMPACT OF LABEL NOISE LEVEL

We also conduct experiments with different label noise levels (i.e., multiple label ambiguity levels—
q values) on the domain adaptation task of W→ D. The comparison results are presented in Figure
3, From the figure, we can see that with the increase of the noise level q, the performance of all the
comparison methods largely degrades. Nevertheless, the proposed PAPLUDA consistently outper-
forms all the other comparison methods even in the most challenging case with a large noise level
q = 0.7, while the other comparison methods produce very poor performance with high noise lev-
els. Moreover, the proposed PAPLUDA maintains large performance gains over the other methods
across the range of noise levels. This study further demonstrates the effectiveness of PAPLUDA.

A.4 ADDITIONAL EXPERIMENTAL RESULTS

To further validate the effectiveness of the proposed approach, we present additional experimental
results on Office-Home with a small noise level q = 0.1 in Table 5. From the table, we can see that
the proposed method produces the best results across all the tasks. Comparing the results in Table 3
and Table 5, we can see that with a smaller q value, the performance of all the comparison methods
improves in general, but the proposed PAPLUDA nevertheless maintains notable performance gains
over the other methods in both settings.
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