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Abstract

Recently, many studies have highlighted that training data-efficient generative adversarial
networks (DE-GANs) suffers from the overfitting of the discriminator (D) problem. How-
ever, how this issue theoretically influences the training of the generator (G) remains unclear.
In this paper, we unveil a novel insight in DE-GANs training, regarding the significance of
useful gradients of G. Notably, the useful gradients of G are those computed on generated
samples closer to the real data distribution, which helps the generator to better learn the real
data distribution. As the overfitting degree of D increases, the gradients of the G become
progressively less useful, which hinders DE-GANs training. Based on this novel insight, we
propose a simple yet effective general training strategy for DE-GANs to provide more useful
gradients for G by selecting fake samples to update G during training, namely adaptive
Top-k (ATop-k). Concretely, only the Top-k high-score fake samples are used to update G,
where the value of k is controlled by the overfitting degree of D adaptively. Extensive ex-
periments on several datasets demonstrate that ATop-k can effectively improve the training
of DE-GANs and achieve better performance with different DE-GANs.

1 Introduction

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have been remarkably successful (Karras
et al., 2018; Miyato & Koyama, 2018; Karras et al., 2019; 2020b; Yu et al., 2021; Jiang et al., 2021b) in
generating high-quality data when working with large datasets. However, collecting and cleaning these
large datasets can be expensive, time-consuming, and even infeasible. Therefore, data-efficient generative
adversarial networks (DE-GANs) (Li et al., 2022b; Zhao et al., 2020) have received great attention.

Recently, more and more studies (Zhao et al., 2020; Karras et al., 2020a; Yang et al., 2021; 2022a) have
focused on DE-GANs and highlighted that DE-GANs are prone to the overfitting of the discriminator (D)
issue during training. However, it is still unclear how this issue influences the training of the generator (G)
theoretically. To answer this, we present a novel insight regarding the significance of useful gradients of G in
DE-GANs training. As discussed in Sinha et al. (2020) and Wu et al. (2019), the useful gradients of G are
those computed on generated samples closer to the real data distribution (Sinha et al., 2020; Wu et al., 2019),
which leads to the generator learning a better model of the data distribution. When the overfitting degree
(Karras et al., 2020a) of D increases, i.e., D becomes more and more confident in distinguishing both real and
fake data, the overlapping parts, i.e., the overlap between the supports of real and fake data distributions,
become smaller and smaller (Karras et al., 2020a). As shown in Figure 1, the progressive disappearance
of overlapping parts indicates that the generated samples are further and further away from the real data
distribution (Karras et al., 2020a), which leads to the gradients of the generator (G) becoming less and less
useful. Finally, as pointed out in Arjovsky & Bottou (2017) and Goodfellow et al. (2014), the overlapping
parts disappear or can be ignored when D becomes overly confident, i.e., D reaches optimality. This results
in the gradient instability or vanishing problem of the generator (G). Without loss of generality, we analyze
this novel insight theoretically using two widely-used DE-GAN backbones with different loss functions, i.e.,
StyleGAN2 (Karras et al., 2020b) with non-saturating loss and FastGAN (Liu et al., 2021) with hinge loss
(refer to §3.1).
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Figure 1: An illustration of the novel insight regarding the significance of useful gradients of G in DE-
GANs training. According to the useful gradients of G as defined in Sinha et al. (2020) and Wu et al.
(2019), we demonstrate the overlapping parts during training, which can effectively show how close the
fake data distribution is to the real data distribution, to illustrate the novel insight. Top: The real and
fake data distributions during training. The overlapping parts exist in the initial training state. As the
overfitting degree of D increases, the overlapping parts become smaller and smaller, and the gradients of G
become less and less useful. When D becomes overly confident, i.e., D reaches optimality, the overlapping
parts disappear or can be ignored, causing the gradient instability or vanishing problem of G (see §3.1).
Bottom: The augmented real and fake data distributions during training. Data augmentation can enlarge
the overlapping parts in the initial training state by augmenting both real and fake data distributions, which
makes more generated samples closer to the real data distribution, thus providing more useful gradients for
G during training and leading to better performance.

Existing approaches (Zhao et al., 2020; Karras et al., 2020a; Liu et al., 2021; Fang et al., 2022; Tseng et al.,
2021; Sauer et al., 2021; Kumari et al., 2022; Wang et al., 2023b) employ various strategies on D such as data
augmentation, model regularization and pre-trained models to improve the DE-GANs training. Among these
studies, data augmentation (DA) is the widely-used approach for all these methods to improve the training
of DE-GANs. To demonstrate the generalization ability of the proposed novel insight, we theoretically
connect it with DA and highlight that DA in DE-GANs can prevent D from becoming overly confident,
thereby maintaining the overlapping parts, which indirectly leads to more useful gradients for G during
training. Specifically, DA in DE-GANs can enlarge the overlapping parts in the initial training state by
augmenting both real and fake data distributions, which makes more generated samples closer to the real
data distribution, thus resulting in better performance.

Driven by the proposed insight, we improve the DE-GANs training task from a novel perspective: Directly
providing more useful gradients for G by selecting fake samples to update G during training. This selection
process is guided by the critic scores (Azadi et al., 2018; Sinha et al., 2020), i.e., the discriminator outputs,
on the fake samples. To this end, we propose a general training strategy called adaptive Top-k (ATop-k)
for DE-GANs. Specifically, only the Top-k high-score fake samples, i.e., the generated samples that are the
closest to the real data distribution, are used to update the generator (G), where the value of k is controlled
by the overfitting degree of D adaptively. As a result, ATop-k enables G to directly obtain more useful
gradients during training, thus yielding better performance.

To sum up, the main contributions are as follows: (1) We unveil a novel insight regarding the significance
of useful gradients of G in DE-GANs training. Specifically, as the overfitting degree of D increases, the
overlapping parts become progressively smaller, resulting in the gradients of the G becoming progressively
less useful; (2) We propose a general training strategy called adaptive Top-k (ATop-k) for DE-GANs. ATop-k
effectively enables G to obtain more useful gradients during training, thereby achieving better performance;
(3) Experiments on low-shot (Zhao et al., 2020) and FFHQ (Karras et al., 2020b) datasets with different
DE-GANs demonstrate that ATop-k can improve performance across various DE-GANs and deliver state-
of-the-art performance.
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2 Related Work

2.1 Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) (Goodfellow et al., 2014) are a form of generative model that consists
of two players: a generator (G) and a discriminator (D). Concretely, G generates synthetic data with some
given noise while D distinguishes whether the data is from the generator’s output or real data. GANs are
well-known to suffer from instability of training, resulting in poor quality and lack of diversity of generated
samples. To stabilize the training of GANs as well as increase the quality and diversity of generated samples,
various methods have been proposed, focusing on more sophisticated advanced architectures (Miyato &
Koyama, 2018; Miyato et al., 2018; Zhang et al., 2019; Radford et al., 2016; Brock et al., 2019; Yang et al.,
2022b), more stable loss functions (Arjovsky et al., 2017; Gulrajani et al., 2017; Mao et al., 2017; Salimans
et al., 2016; Guo et al., 2020), and better training strategies (Karras et al., 2018; Denton et al., 2015; Liu
et al., 2020; Zhang et al., 2017; Li et al., 2022a) to achieve better results.

2.2 Data-Efficient GANs (DE-GANs)

Recently, investigating how to train GANs when sufficient data is unavailable has become increasingly popular
and meaningful. Nearly all studies (Zhao et al., 2020; Karras et al., 2020a; Cui et al., 2022; Jiang et al.,
2021a; Chen et al., 2021) demonstrate that data insufficiency causes the overfitting of D, which deteriorates
the training stability of GANs, compromising the quality and diversity of generated samples. To overcome
this challenge, various approaches have been proposed, focusing on proposing novel augmentation techniques
(Zhao et al., 2020; Karras et al., 2020a; Cui et al., 2022; Jiang et al., 2021a; Chen et al., 2021), designing
better regularization for D (Liu et al., 2021; Fang et al., 2022; Tseng et al., 2021), and applying pre-trained
models (Sauer et al., 2021; Kumari et al., 2022) to D to address the problem of discriminator overfitting.
Nearly all of these methods aim to prevent D from becoming overly confident in DE-GANs training, thereby
maintaining the overlapping parts, and resulting in more useful gradients for G during training.

2.3 Improve GANs Training via Critic Scores

In recent years, some studies (Azadi et al., 2018; Sinha et al., 2020) utilize the critic scores to improve the
training of GANs. The widely-used one is Top-k GAN (Sinha et al., 2020). Top-k GAN proposes a linear
decrease k (Linear Top-k) approach for the Top-k method in GANs and sets the initial value of k as the
batchsize and the minimum value of k as constant × batchsize. In this case, the bad samples (low critic
scores samples) can be thrown away during training, thus improving the training of GANs. The difference
between the Linear Top-k and ATop-k is shown as follows. The value of k in Linear Top-k is gradually
decreased with a fixed declining rate, and the minimum value of k is set as constant × batchsize. On the
contrary, the value of k in the proposed ATop-k is controlled by the overfitting degree of D adaptively (see
Eq.(11)), with the possibility of being increased or decreased, and the minimum value of k is set as 1. ATop-k
is more suited to data-efficient scenarios.

3 Methodology

3.1 Understanding the Training of DE-GANs

As pointed out in studies (Zhao et al., 2020; Karras et al., 2020a; Yang et al., 2022a), DE-GANs suffer from
the overfitting of D during training. In this section, we unveil a novel insight regarding the significance of
the useful gradients of G in DE-GANs training. Specifically, as the overfitting degree of D increases, i.e., D
becomes increasingly confident in distinguishing real and fake data, the overlapping parts become gradually
smaller (Karras et al., 2020a). The progressive disappearance of overlapping parts shows that the generated
samples are further and further away from the real data distribution (Karras et al., 2020a), leading to the
gradients of G becoming progressively less useful (Sinha et al., 2020; Wu et al., 2019). At the point when D
becomes overly confident, i.e., D reaches optimal as discussed in Arjovsky & Bottou (2017), the overlapping
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parts disappear or can be ignored. Consequently, the disappearance of overlapping parts can cause the
gradient instability or vanishing problem of G.

Without loss of generality, we select the widely-used DE-GAN backbones, i.e., StyleGAN2 (Karras et al.,
2020b) and FastGAN (Liu et al., 2021), for analysis. Following the theory shown in Arjovsky & Bottou
(2017) and Mescheder et al. (2018), for both StyleGAN2 with non-saturating loss and FastGAN with hinge
loss (both with regularizations), there exists an optimal discriminator D∗ (Arjovsky & Bottou, 2017). Then,
following this perfect discrimination theorems in (Arjovsky & Bottou, 2017), we can conclude that the
optimal D∗ is overly confident in distinguishing both real and fake samples. In this case, the overlapping
parts between PG and PR disappear or can be ignored.

Next, we theoretically analyze how the disappearance of overlapping parts can cause the gradient problem
for the G on both StyleGAN2 and FastGAN as follows:

(1) For StyleGAN2, the loss function is the non-saturating loss, formulated as

VD(G, D) = Ex∼PR
[log D(x)] + Ex∼PG

[log(1 − D(x))],
VG(G, D) = −Ex∼PG

[log(D(x))].
(1)

Based on the theory of the original GAN (Goodfellow et al., 2014), we can obtain the optimal D∗ for Eq.(1)
as

D∗(x) = PR(x)
PR(x) + PG(x) . (2)

Following the perfect discrimination theorem, under this optimal D∗, the overlapping parts between PG and
PR disappear or can be ignored. Then, based on Theorem 2.6 in Arjovsky & Bottou (2017), the complete
disappearance of overlapping parts causes the gradient instability of G during training.

(2) For FastGAN, the loss function is the hinge loss (Miyato et al., 2018; Zhang et al., 2019), formulated as

VD(D, G) = Ex∼PR
[min(0, −1 + D(x))] + Ex∼PG

[min(0, −1 − D(x))],
VG(D, G) = −Ex∼PG

[D(x)].
(3)

According to Miyato et al. (2018), Lim & Ye (2017), and Tran et al. (2017), optimizing the hinge loss is
equivalent to minimizing the so-called reverse KL divergence item KL(PG || PR). To prove that the hinge
loss in FastGAN suffers from the gradient vanishing of G when the overlapping parts completely disappear,
we first follow Suh and Lim & Ye (2017) to analyze the optimal D∗(x) with hinge loss as follows:

Lemma 1. For the hinge loss, the optimal discriminator D∗(x) is given by

D∗(x) = sign(PR(x) − PG(x)), ∀x ∈ M ∪ P, (4)

where sign() indicates the sign function that returns +1 for a non-negative input; −1, otherwise. M and P
are the supports of PR and PG, respectively. D∗(x) = +1 in the equality case PR(x) = PG(x).

Proof. See Appendix A.1.

Under this optimal D∗(x), we introduce Lemma 2 for G as follows:

Lemma 2. Let Gθ(z) be a differentiable function that induces a distribution PG. Let D be a differentiable
discriminator. For an optimal discriminator in Lemma 1 D∗ : X → (−∞, +∞), the perfect discrimination
theorems in Arjovsky & Bottou (2017) is still satisfied. Let ∥D − D∗∥ < ϵ and EGθ(z)∼PG

[∥JθGθ(z)∥2
2] ≤ M2

(Arjovsky & Bottou, 2017), then

∥∥▽θEGθ(z)∼PG
[D(Gθ(z))]

∥∥
2 < Mϵ. (5)

Proof. See Appendix A.2.
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Then, we have lim
∥D−D∗∥−→0

▽θ EGθ(z)∼PG
[D(Gθ(z))] = 0, which indicates that the gradient of G vanishes

under D∗(x).

Discussion of Regularizations in StyleGAN2 and FastGAN. Both StyleGAN2 and FastGAN apply
regularization to D to enhance the training of DE-GANs. To demonstrate the rigor and reasonableness
of our insights in §3.1, we analyze that regularizations in both StyleGAN2 and FastGAN aim to avoid D
becoming overly confident, thereby maintaining the overlapping parts, resulting in more useful gradients for
G. Therefore, regularizations do not influence the soundness of our insights under optimal D∗(x).

(1) For StyleGAN2, the R1 regularization (Mescheder et al., 2018) is applied to D. According to Mescheder
et al. (2018), applying the R1 regularization to StyleGAN2 can avoid D exactly providing 1 for real data
and 0 for fake data during training, thus preventing D from reaching optimal D∗, effectively maintaining
the overlapping parts, which results in more useful gradients for G.

(2) For FastGAN, reconstructive regularization is applied to D. Similar to the R1 regularization in Style-
GAN2, reconstructive regularization also aims to prevent D from being overly confident, thus leading to
more useful gradients for G.

Then, based on the theory in Mescheder et al. (2018), applying regularizations in GANs can still be convergent
when the GANs are initialized sufficiently close to the equilibrium point. Consequently, there still exists an
optimal D∗ for both StyleGAN2 and FastGAN in theory. As per Karras et al. (2020a), Zhao et al. (2020),
and Liu et al. (2021), applying regularizations in DE-GANs can still suffer from overfitting under limited
data settings, which indicates that such optimal D∗ also exists in practice.

3.2 Generalization Ability of the Proposed Novel Insight

Existing approaches apply various strategies for D to improve the DE-GANs training. Among these studies,
data augmentation (DA) is the widely-used approach for all these methods. To demonstrate the generaliza-
tion ability of the proposed novel insight in §3.1, we connect it with DA and highlight that DA in DE-GANs
can enlarge the overlapping parts in the initial training state by augmenting both real and fake data distri-
butions, which avoids the D becoming overly confident, thereby indirectly providing more useful gradients
for G during training. Notably, the selection of DA in DE-GANs should follow Karras et al. (2020a), Tran
et al. (2021), and Zhao et al. (2020) to avoid the leaking issue (Karras et al., 2020a; Zhang et al., 2020;
Zhao et al., 2021; Zhang et al., 2024). In this case, we first prove that for both StyleGAN2 and FastGAN,
applying DA to both real and fake samples for G and D in DE-GANs results in the optimization between
augmented fake data distribution (P T

G ) and augmented real data distribution (P T
R ), shown as follows:

(1) For StyleGAN2, the loss function of DA in DE-GANs is shown as follows

VD(D, G) = ET (x)∼P T
R

[log D(T (x))] + ET (x)∼P T
G

[log(1− D(T (x)))],

VG(D, G) = −ET (x)∼P T
G

[log(D(T (x)))],
(6)

where T is the applied DA in DE-GANs. Then, based on the theory of the original GAN (Goodfellow et al.,
2014), we have that

D∗(T (x)) = P T
R (T (x))

P T
R (T (x)) + P T

G (T (x))
. (7)

Given the optimal D∗(T (x)), following Theorem 2.5 in Arjovsky & Bottou (2017), training the G with
augmented samples T (x) under non-saturating loss can be expressed as

VG(D∗, G) = KL(P T
G || P T

R ) − 2JS(P T
G || P T

R ), (8)
where KL and JS are the Kullback–Leibler and Jensen–Shannon divergence, respectively, Eq.(8) demon-
strates that the DA applied to both real and fake samples for G and D in DE-GANs causes the optimization
between P T

G and P T
R .
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(2) For FastGAN, the objective function with DA can be formulated as

VD(D, G) = ET (x)∼P T
R

[min(0, −1 + D(T (x)))] + ET (x)∼P T
G

[min(0, −1 − D(T (x)))],

VG(D, G) = −ET (x)∼P T
G

[D(T (x))],
(9)

where T is the applied DA. Then, based on Miyato et al. (2018), Lim & Ye (2017), and Tran et al. (2017),
optimizing the hinge loss with augmented samples T (x) is equivalent to minimizing the so-called reverse KL
divergence item KL(P T

G || P T
R ), indicating that DA applied to both real and fake samples for D and G causes

the optimization between P T
G and P T

R .

To assist with understanding how distributions P T
G and P T

R can enlarge the overlapping parts in the initial
training state, we provide Lemma 3 as follows:

Lemma 3. For two supports of the distributions PG and PR consisting of overlapping parts, if there exists
one sample x ∈ PG ∩ PR, for ∀ augmentation T , T (x) ∈ P T

G ∩ P T
R .

Proof. See Appendix A.3

Lemma 3 shows that with the T in DE-GANs, if the sample x is in the overlapping parts between the
supports of PG and PR, T (x) can still be in the overlapping parts between the supports of P T

G and P T
R .

Then, according to Tran et al. (2021), Zhao et al. (2020), and Karras et al. (2020a), DA in DE-GANs is
applied with random parameters. Therefore, applying DA to one sample x can produce a series of different
augmented samples T (x). As a result, DA in DE-GANs can yield overlapping parts between the supports of
P T

G and P T
R consisting of more different samples T (x). Consequently, the supports of P T

G and P T
R consist of

more overlapping parts than the supports of PG and PR in the initial training state, which results in more
generated samples closer to the real data distribution, thereby providing more useful gradients for G during
training, thus benefiting the training of DE-GANs.

3.3 Proposed Method

Driven by the insight in §3.1, different from the existing approaches that enhance the D in DE-GANs
training to obtain more useful gradients for G during training, we address the DE-GANs training task from
a novel perspective, i.e., directly providing more useful gradients for G through selecting fake samples to
update G during training. This selection process is guided by the critic scores (Azadi et al., 2018; Sinha
et al., 2020), i.e., the discriminator outputs, on the fake samples. To this end, we propose a general training
strategy called adaptive Top-k (ATop-k) for DE-GANs, as shown in Figure 2. Specifically, only the Top-k
high-score fake samples, i.e., realistic-looking fake samples closer to the real data distribution, are used to
update the generator (G). The more overfitting of D, the less overlapping parts can be observed during
training, resulting in fewer generated samples having more useful gradients. Therefore, the value of k in
ATop-k is adjusted adaptively based on the degree of overfitting without manually tuning. Specifically,
following ANDA (Zhang et al., 2024), APA (Jiang et al., 2021a) and ADA (Karras et al., 2020a), we apply
an overfitting heuristic η that quantifies the degree of D’s overfitting as follows:

η = E(sign(Dreal)), Dreal = logit(D(x)), (10)
where sign() means the sign function that returns +1 for the non-negative input; −1, otherwise. We follow
the ADA, APA and ANDA to use η to obtain the overfitting probability p. Specifically, we initialize p to
zero and adjust its value once every four minibatches1 based on the η. If η is larger/smaller than a pre-set
threshold t (in most cases of our experiments, t = 0.6), i.e., η indicates too much/little overfitting regarding
t, the probability p will be increased/decreased by one fixed step2. Then, p can increase from zero to one in
500k images shown to D. After every adjustment, we clamp p from below to 0. The larger value of p means
that the more overfitting degree. Then, we set the initial k value as batchsize, and adjust its value based on
the p as follows:

1This choice follows from the official codes of StyleGAN2 + ADA
2The step size follows from the StyleGAN2 + ADA
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(a) (b)(b)

Figure 2: An overview of adaptive Top-k (ATop-k) for (a) updating D and (b) updating G in DE-GANs.
For updating D, both real and fake samples are used to update the parameters of D. For updating G, only
the Top-k high-score fake samples are applied to update the parameters of G. Specifically, the value of k is
controlled by the overfitting probability p adaptively by Eq.(11). Best viewed in color.

k =
{

k − 1 (p)
k + 1 (1 − p) (11)

where k is adjusted to k-1 under the probability p and is adjusted to k+1 under the probability 1 − p. We
set the range of k as kmin = 1 and kmax = batchsize. Then, the ATop-k in the DE-GANs can be formulated
as:

VD(G, D) = Ex∼PR
[f̃1(D(x))] + Ex∼PG

[f̃2(D(x))],
VG(G, D) = −Ex∼PG

[g̃(Top-k(D(x)))],
(12)

where f̃1, f̃2 and g̃ are scalar-to-scalar functions. For the StyleGAN2 backbone, f̃1(x) = log(x), f̃2(x) =
log(1 − x) and g̃(x) = log(x). For the FastGAN backbone, f̃1(x) = min(0, −1 + x), f̃2(x) = min(0, −1 − x)
and g̃(x) = x.

We conduct several experiments to better demonstrate that ATop-k can enable G to directly obtain more
useful gradients during training, thus leading to better performance. Because the distributions observed
by D can effectively show how close the fake data distribution is to the real data distribution, we observe
the output of D in the experiments to show how useful the gradients of G are during training. Based on
Jiang et al. (2021a), Karras et al. (2020a) and Cui et al. (2022), the less difference between the output of
D on real images x and on fake images G(z), i.e., smaller D(x) − D(G(z)), indicates that the generated
distribution is closer to the real data distribution, resulting in more useful gradients for G during training.
Therefore, we compare StyleGAN2 + ATop-k with StyleGAN2, StyleGAN2 + Linear Top-k (Sinha et al.,
2020) and StyleGAN2 + Worst-k on the 100-shot Obama dataset by D(x) − D(G(z)), where Linear Top-k
is introduced in Sinha et al. (2020) and Worst-k is a training strategy that selects the k lowest-score fake
samples to update the G. As shown in Figure 3 (a), adding Worst-k to StyleGAN2 increases the value
of D(x) − D(G(z)), demonstrating that Worst-k results in less useful gradients for G during training. In
contrast, adding ATop-k to StyleGAN2 can clearly decrease the value of D(x) − D(G(z)), indicating that
ATop-k can enable G to obtain more useful gradients during training. Moreover, ATop-k also achieves a
significant improvement compared to Linear Top-k in StyleGAN2, showing that the ATop-k is more suitable
for DE-GANs. The FID results comparing ATop-k and Worst-k are shown in Figure 3 (b). It is evident
that more useful gradients for G lead to better performance. More comparison results between ATop-k and
Linear Top-k can be found in the ablation study (refer to §4.4).
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(a) (b)

Figure 3: Illustration Experiments of ATop-k can provide more useful gradients for G during training. (a)
The comparison of the value of D(x) − D(G(z)) for StyleGAN2, StyleGAN2 + Linear Top-k, StyleGAN2 +
Worst-k and StyleGAN2 + ATop-k on the 100-shot Obama dataset during training. According to Jiang et al.
(2021a) and Karras et al. (2020a), the smaller D(x) − D(G(z)) indicates that the generated distribution is
closer to the real data distribution, resulting in more useful gradients for G during training. Adding Worst-k
(using k lowest-score fake samples to update G) to StyleGAN2 can increase the value of D(x) − D(G(z)),
demonstrating that Worst-k causes less useful gradients for G during training. In contrast, adding ATop-k
to StyleGAN2 can clearly decrease the value of D(x) − D(G(z)), indicating that ATop-k can enable more
useful gradients for G during training. Furthermore, ATop-k also achieves a clear improvement compared
with Linear Top-k (Sinha et al., 2020), showing that the design of ATop-k is more suitable for DE-GANs.
(b) Fréchet Inception Distance (FID) (Heusel et al., 2017) score on 100-shot Obama dataset. The less useful
gradients for G during training caused by Worst-k can finally decrease performance. On the contrary, the
more useful gradients for G caused by ATop-k can achieve a significant improvement.

4 Experiment

We show the superiority of ATop-k by adding it to five different DE-GANs and evaluating it on commonly-
used datasets. More details of experiments and the anonymous link of the pre-trained model with test code
can be found in Appendix B.1.

4.1 Datasets and Implementation Details

We select low-shot (Zhao et al., 2020) and FFHQ (Karras et al., 2020b) datasets for the experiments.
According to Zhao et al. (2020), all the images are resized to 256 × 256 for a fair comparison. Low-shot
datasets contain five datasets (i.e., Obama, Grumpy Cat, Panda, Animal-Face Cat, and Animal-Face Dog)
with 100, 100, 100, 160, and 389 training images, respectively. The FFHQ dataset contains 70K high-
resolution images of human faces. Following FakeCLR (Li et al., 2022a), we select a subset of 100, 1K, 2K,
and 5K for a fair comparison. We demonstrate the superiority of the proposed ATop-k using five different
DE-GANs, i.e., StyleGAN2, StyleGAN2 + Diff-Augment, StyleGAN2 + ADA, InsGen + ADA and Diffusion-
Projected GAN. Specifically, the StyleGAN2 method does not apply any DA methods during training, and
Diffusion-Projected GAN applies the FastGAN as the backbone. The commonly used Fréchet Inception
Distance (FID) (Heusel et al., 2017), and Precision and Recall (Kynkäänniemi et al., 2019) are applied as
the evaluation metrics. Following prior work (Zhao et al., 2020; Karras et al., 2020a), the full dataset is used
as the reference distribution for all metrics calculation. The best FID result for each method is reported in
the experiments.
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Method MA P 100-shot Animal-Face
Obama Grumpy Cat Panda Cat Dog

Scale/shift (Noguchi & Harada, 2019) No Yes 50.72 34.20 21.38 54.83 83.04
MineGAN (Wang et al., 2020) No Yes 50.63 34.54 14.84 54.45 93.03
TransferGAN (Wang et al., 2018) No Yes 48.73 34.06 23.20 52.61 82.38
TransferGAN + DA (Zhao et al., 2020) Yes Yes 39.85 29.77 17.12 49.10 65.57
FreezeD (Mo et al., 2020) No Yes 41.87 31.22 17.95 47.70 70.46
StyleGAN2 (Karras et al., 2020b) No No 80.20 48.90 34.27 71.71 131.90
FakeCLR (Li et al., 2022a) Yes No 26.95 19.56 8.42 26.34 42.02
FastGAN (Liu et al., 2021) Yes No 35.80 25.75 9.70 33.85 52.46
FreGAN (Yang et al., 2022b) Yes No 33.39 24.93 8.97 31.05 47.85
AugSelf-StyleGAN2 (Hou et al., 2023) Yes No 26.00 19.81 8.36 30.53 48.19
Projected GAN (Sauer et al., 2021) Yes Yes 11.21 15.80 3.98 18.01 17.88
EDM (Karras et al., 2022) Yes No 51.30 36.90 23.70 48.60 100.10
EDM + DA (Karras et al., 2022) Yes No 37.10 29.94 10.81 36.88 57.14
Patch Diffusion (Wang et al., 2023a) Yes No 41.47 30.89 13.25 43.71 72.17
StyleGAN2∗ (Karras et al., 2020b) Yes No 65.57 39.92 25.08 51.66 87.96
+ ATop-k Yes No 55.78 33.22 21.79 45.44 77.47
StyleGAN2 + Diff-Augment (Zhao et al., 2020) Yes No 46.87 27.08 12.06 42.44 58.85
+ ATop-k Yes No 40.96 26.22 10.28 37.74 51.29
StyleGAN2 + ADA (Karras et al., 2020a) Yes No 45.69 26.62 12.90 40.77 56.83
+ ATop-k Yes No 40.79 26.31 11.93 37.91 53.35
InsGen + ADA (Yang et al., 2021) Yes No 32.42 22.01 9.85 33.01 44.93
+ ATop-k Yes No 25.27 19.32 7.92 23.02 35.37
Diffusion-Projected GAN (Wang et al., 2023b) Yes Yes 10.54 15.13 3.39 17.86 17.22
+ ATop-k Yes Yes 9.92 14.36 3.27 17.01 16.74

Table 1: FID (Heusel et al., 2017) scores (lower is better) of different methods on 256×256 low-shot datasets.
MA means Massive Augmentation, i.e., xflipping, which consists of the same meaning in Genco (Cui et al.,
2022). For a fair comparison, FID is measured using 5K generated samples with the whole training dataset
as the reference distribution. The FIDs are averaged over three runs; all standard deviations are less than
1% relatively. The results of StyleGAN2∗ with MA, Projected GAN and Diffusion-Projected GAN are
obtained by running the official open source codes. The results of EDM are directly from Aghabozorgi et al.
(2023), and the results of EDM + DA and Patch Diffusion are obtained by running the official open-source
codes. The results of the different GAN baseline methods are as reported in FakeCLR (Li et al., 2022a) and
FreGAN (Yang et al., 2022b) for the StyleGAN2 and FastGAN backbones, respectively. Here, P represents
Pre-training.

Method Obama Grumpy Cat Panda AF-Cat AF-Dog
P R P R P R P R P R

Diffusion-Projected GAN 0.999 0.240 0.996 0.149 0.999 0.410 0.997 0.182 0.998 0.203
+ATop-k 0.999 0.247 0.997 0.152 0.999 0.422 0.998 0.185 0.998 0.208

Table 2: The comparison of Precision and Recall (higher is better) with Diffusion-Projected GAN (Wang
et al., 2023b) and Diffusion-Projected GAN + ATop-k on the 256 × 256 low-shot datasets. The Precision
(P) and Recall (R) are averaged over five runs; all standard deviations are less than 1% relatively.

According to Parmar et al. (2022), the data-resized method can influence the performance of GANs. For a fair
comparison, we follow the official open-source codes3 for preprocessing and resizing the FFHQ dataset. For

3https://github.com/NVlabs/stylegan2-ada-pytorch
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AnimalFace-cat FID 51.66

(a) StyleGAN2

AnimalFace-cat FID 45.44 (-6.22)

AnimalFace-dog FID 87.96 AnimalFace-dog FID 77.47 (-10.49)

(b) StyleGAN2 + ATop-k

100-shot Obama FID 65.57 100-shot Obama FID 55.78 (-9.79)

Figure 4: The comparison of generated results with StyleGAN2 and StyleGAN2 + ATop-k on 100-shot
Obama, AnimalFace-cat and AnimalFace-dog datasets. (a) Images generated by StyleGAN2. (b) Images
generated by StyleGAN2 + ATop-k. The decreasing value of FID in red color demonstrates the improvement
of StyleGAN2 + ATop-k compared with baseline StyleGAN2. Best viewed in color.

the experiments on low-shot datasets with StyleGAN2, StyleGAN + ADA and StyleGAN2 + Diff-Augment,
we set the batchsize as 4 and the overall training duration as 2000k images. For the experiments on low-shot
datasets with InsGen, we set the batchsize as 64 and the overall training duration as 25000k images. For the
experiments on low-shot datasets with Diffusion-Projected GAN, we set the batchsize as 64 and the overall
training duration as 100000k images. For the experiments on FFHQ datasets, we set the batchsize as 64 and
the overall training duration as 25000k images for all methods.

4.2 Results on Low-shot Datasets

The results on 256 × 256 low-shot datasets are shown in Table 1. The proposed ATop-k improves the
performance of all DE-GANs, which demonstrates the generalization ability of ATop-k. More importantly,
Diffusion-Projected GAN applied DA, regularizations and pre-trained models to achieve state-of-the-art
performance on the low-shot datasets; adding ATop-k can further improve the performance. In addition,
following Aghabozorgi et al. (2023), we also report the results of several state-of-the-art diffusion models in
Table 1. It is clear that DE-GANs outperform diffusion models on low-shot datasets. To further show the
effectiveness of ATop-k, the compared Precision and Recall of adding ATop-k to Diffusion-Projected GAN
are shown in Table 2. ATop-k can further increase the Precision and Recall for Diffusion-Projected GAN.
Additionally, the compared generated images on StyleGAN2 and StyleGAN2 + ATop-k are shown in Figure
4. More generated images on low-shot datasets can be found in Appendix B.2.

4.3 Results on FFHQ Dataset

The results on the FFHQ dataset (256 × 256) are shown in Table 3. Following FakeCLR (Li et al., 2022a),
we conduct experiments on the FFHQ 100, FFHQ 1K, FFHQ 2K and FFHQ 5K subsets. The proposed
ATop-k increases the performance using five different DE-GANs, indicating the generalization ability of the
proposed ATop-k. Additionally, the comparison of Precision and Recall with Diffusion-Projected GAN and

10
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Method MA Pre-training FFHQ
100 1K 2K 5K

APA (Jiang et al., 2021a) Yes No 65.00 18.89 16.90 8.38
AugSelf-StyleGAN2+ (Hou et al., 2023) Yes No - 20.39 - 9.15
FakeCLR (Li et al., 2022a) Yes No 42.56 15.92 9.90 7.25
Projected GAN (Sauer et al., 2021) Yes Yes 26.25 11.12 8.25 6.85
EDM (Karras et al., 2022) Yes No 79.10 - - -
EDM + DA (Karras et al., 2022) Yes No 50.73 30.75 27.17 24.51
Patch Diffusion (Wang et al., 2023a) Yes No 44.45 28.03 25.32 22.63
StyleGAN2 (Karras et al., 2020b) No No 179.00 100.16 54.30 49.68
+ATop-k No No 121.96 66.37 40.98 21.75
StyleGAN2 + Diff-Augment (Zhao et al., 2020) Yes No 61.91 25.66 24.32 10.45
+ATop-k Yes No 55.24 22.98 16.12 10.15
StyleGAN2 + ADA (Karras et al., 2020a) Yes No 85.8 21.29 15.39 10.96
+ATop-k Yes No 69.92 20.71 15.09 10.71
InsGen (Yang et al., 2021) Yes No 45.75 18.21 11.47 7.83
+ATop-k Yes No 43.09 16.97 10.52 7.40
Diffusion-Projected GAN (Wang et al., 2023b) Yes Yes 25.47 8.76 7.99 6.59
+ATop-k Yes Yes 24.32 8.24 7.89 6.51

Table 3: FID scores (lower is better) of different methods on the 256 × 256 FFHQ dataset. Following
FakeCLR (Li et al., 2022a), the experiments are performed on 100, 1K, 2K and 5K subsets of the FFHQ
dataset. Massive Augmentation (MA) (Cui et al., 2022), i.e., xflipping, is applied in all of the methods. For
a fair comparison, the FIDs are averaged over five runs; all standard deviations are less than 1% relatively.
The results of the Projected GAN and Diffusion-Projected GAN are obtained by ourselves by running the
official open-source codes. The results of EDM are directly from Aghabozorgi et al. (2023), and the results
of EDM + DA and Patch Diffusion are obtained by ourselves via running the official open-source codes.

Method FFHQ-100 FFHQ-1K FFHQ-2K FFHQ-5K
P R P R P R P R

Diffusion-Projected GAN 0.737 0.002 0.720 0.189 0.713 0.243 0.710 0.299
+ATop-k 0.746 0.003 0.725 0.206 0.716 0.244 0.710 0.301

Table 4: The comparison of Precision and Recall (higher is better) with Diffusion-Projected GAN (Wang
et al., 2023b) and Diffusion-Projected GAN + ATop-k on the 256 × 256 FFHQ dataset. The Precision (P)
and Recall (R) are averaged over five runs; all standard deviations are less than 1% relatively.

Diffusion-Projected GAN + ATop-k are shown in Table 4. Adding ATop-k can improve the performance
compared with Diffusion-Projected GAN, which further demonstrates the effectiveness of the proposed ATop-
k. To further show the superiority of ATop-k, the images generated on the FFHQ dataset can be found in
Appendix B.2.

4.4 Comparative Experiments

ATop-k v.s. Fixed Top-k. To show the effectiveness of the proposed ATop-k, we conduct an ablation
study by selecting different fixed Top-k values on the 100-shot Obama dataset with StyleGAN2 + Diff-
Augment method. We select fixed values of k as 3, 5, and 10, respectively, and the results are shown in Table
5. Although applying fixed Top-k in DE-GANs can throw away the bad samples during training, selecting
lower values of k in the early training stage can lead to G being updated with fewer meaningful fake samples,
thus leading to undesired performance.
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StyleGAN2 + Diff-Augment FID (100-shot Obama)
+ fixed Top-k (k=3) 47.14
+ fixed Top-k (k=5) 45.91
+ fixed Top-k (k=10) 45.78
+ ATop-k 40.96

Table 5: Experiments of applying different fixed Top-k in DE-GANs. We select fixed values of k as 3, 5 and
10 on the 100-shot Obama dataset with StyleGAN2 + Diff-Augment for the ablation study. The FIDs are
averaged over three runs, all standard deviations are less than 1% relatively.

Method FID
StyleGAN2 + Linear Top-k 63.41
StyleGAN2 + ATop-k 55.78
StyleGAN2 + Diff-Augment + Linear Top-k 44.87
StyleGAN2 + Diff-Augment + ATop-k 40.96
Diffusion-Projected GAN + Linear Top-k 10.46
Diffusion-Projected GAN + ATop-k 9.92

Table 6: FID scores (lower is better) of different methods on the 256 × 256 100-shot Obama dataset. We
select StyleGAN-based and FastGAN-based methods for comparison. The FIDs are averaged over three
runs, all standard deviations are less than 1% relatively.

ATop-k v.s. Linear Top-k. Top-k GAN (Sinha et al., 2020) proposes a linear decrease k approach for
the Top-k method in GANs and sets the minimum value of k as the 0.75 × batchsize. We also compare the
proposed ATop-k with this Linear Top-k strategy on the 100-shot Obama dataset with different DE-GANs
methods, and the results are shown in Table 6. According to Figure 3 and Table 6, although the Linear
Top-k strategy can slightly benefit the training of DE-GANs, it cannot effectively avoid D being overly
confident. In contrast, ATop-k can better prevent D from becoming overly confident (see Figure 3 (a)), thus
maintaining the overlapping parts and leading to better performance.

5 Conclusion

In this paper, we unveil a novel insight in DE-GANs training, regarding the significance of useful gradients
of G. To further understand this novel insight, we apply this to existing methods and point out that
these methods focus on D to prevent D from becoming overfitting thus indirectly resulting in more useful
gradients for G during training. Driven by this novel insight, we propose a simple yet effective general
training strategy for DE-GANs to directly provide more useful gradients for G by selecting fake samples
to update G during training, namely adaptive Top-k (ATop-k). Extensive experiments on several datasets
demonstrate that ATop-k can effectively improve the training of DE-GANs and achieve better performance
on different DE-GANs backbones.
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A Proofs

A.1 The Proof of Lemma 1

Lemma 1. For the hinge loss in FastGAN, the optimal discriminator D∗(x) is given by

D∗(x) = sign(PR(x) − PG(x)), ∀x ∈ M ∪ P, (13)

where sign() indicates the sign function that returns +1 for a non-negative input; −1, otherwise. M and P
are the supports of PR and PG, respectively. D∗(x) = +1 in the equality case PR(x) = PG(x).

Proof. For hinge loss, the discriminator aims to maximize

VD(D, G) = Ex∼PR
[min(0, −1 + D(x))]

+ Ex∼PG
[min(0, −1 − D(x))].

(14)

Let f(D) = a[min(0, −1+D)]+b[min(0, −1−D)], where D = D(x) is the output of discriminator, a = PR(x)
and b = PG(x). According to Geometric GAN (Lim & Ye, 2017), hinge loss in GANs replaces the label y
in the hinge loss of SVM as D. In hinge loss, label y > 1 and y < −1 can not provide the gradient for
the loss function. Thus, considering with non-negative loss value in theory, the value of D in hinge loss is
−1 ≤ D ≤ 1. Then, there exist the following cases.

Case 1: a > b. In this case, f(D) = −a−b+(a−b)D, because a > b, then argmax
D

f(D) = 1 for maximizing
the f(D).

Case 2: a = b. Based on Theorem 3.1 in the Geometric GAN (Lim & Ye, 2017), then argmax
D

f(D) = 1 for
maximizing the f(D).

Case 3: a < b. In this case, f(D) = −a − b + (a − b)D, because a < b, then argmax
D

f(D) = −1 for
maximizing the f(D).

To conclude, argmax
D

f(D) = sign(a − b). Notice that for each x, PR(x) and PG(x) correspond to a and b,
respectively. Then, we can obtain that

D∗(x) = sign(PR(x) − PG(x)), ∀x ∈ M ∪ P, (15)

where the equality case PR(x) = PG(x) yields D∗(x) = +1. That concludes our proof.

A.2 The Proof of Lemma 2

Lemma 2. Let Gθ(z) be a differentiable function that induces a distribution PG. Let D be a differentiable
discriminator. For an optimal discriminator in Lemma 1 D∗ : X → (−∞, +∞), the perfect discrimination
theorems in Arjovsky & Bottou (2017) is still satisfied. Let ∥D − D∗∥ < ϵ and EGθ(z)∼PG

[∥JθGθ(z)∥2
2] ≤ M2

(Arjovsky & Bottou, 2017), then

∥∥▽θEGθ(z)∼PG
[D(Gθ(z))]

∥∥
2 < Mϵ. (16)

Proof. With the optimal discriminator D∗ in Lemma 1, for ∀x ∈ (−∞, +∞), if the PG and PR consist of
the support contained on two disjoint compact subsets, D∗(x) has accuracy 1 and ▽xD∗(x) = 0 (this is
because the ▽xsign(x) ≡ 0). In this case, the perfect discrimination theorems in Arjovsky & Bottou (2017)
is still satisfied under D∗ : X → (−∞, +∞). Then, following the ∥D∥ denoted in §2.2.1 as in Arjovsky &
Bottou (2017), then, using Jensen’s inequality and the chain rule on this support, we have
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∥∥▽θEGθ(z)∼PG
[D(Gθ(z))]

∥∥2
2

≤ EGθ(z)∼PG
[∥▽θD(Gθ(z))∥2

2]
≤ EGθ(z)∼PG

[∥▽xD(Gθ(z))∥2
2 ∥JθGθ(z)∥2

2]
< EGθ(z)∼PG

[(∥▽xD∗(Gθ(z))∥2 + ϵ)2 ∥JθGθ(z)∥2
2]

= EGθ(z)∼PG
[∥JθGθ(z)∥2

2 ϵ2]
≤ M2ϵ2,

(17)

where ∥JθGθ(z)∥2 is the norm of the Jacobian matrix which depends on the PG and is defined as in Arjovsky
& Bottou (2017).

Taking square root of Eq.(17), we then get

∥∥▽θEGθ(z)∼PG
[D(Gθ(z))]

∥∥
2 < Mϵ. (18)

That concludes our proof.

A.3 The Proof of Lemma 3

Lemma 3. For two supports of the distributions PG and PR consisting of overlapping parts, if there exists
one sample x ∈ PG ∩ PR, for ∀ augmentation T , T (x) ∈ P T

G ∩ P T
R .

Proof. Based on §3.2 in the main paper, applying data augmentation in DE-GANs transforms the dis-
tribution of generated samples (PG) and the distribution of real samples (PR) to augmented distributions
P T

G and P T
R with a certain augmentation T . Thus, we can conclude that [x ∈ PG ∩ PR] ⇒ [x ∈ PG and

x ∈ PR] ⇒ [T (x) ∈ P T
G and T (x) ∈ P T

R ] ⇒ [T (x) ∈ P T
G ∩P T

R ]. That concludes our proof.

B Experiment

B.1 More details on the Experiments

Experimental setup. (1) The StyleGAN2-based results in the main paper are trained by an NVIDIA DGX
workstation with four Tesla V100 (4 × 32G) GPUs. The operating system is CentOS 7. To replicate our
experimental environment, we recommend referring to the official open-source codes3 for instructions in order
to obtain the necessary software and Python libraries. (2) The FastGAN-based results in the main paper are
trained by a workstation with CPU i9-10980XE, 128G ECC memory and four TITAN RTX GPUs (4×24G).
The operating system is Ubuntu 18.04. To replicate our experimental environment, we recommend referring
to the official open-source codes4 for instructions in order to obtain the necessary software and Python
libraries.

Pretrained models with test codes. The pre-trained Diffusion-Projected GAN + ATop-k model with
test code can be found in the anonymous Google Drive link5. We will release all training codes once the
paper is accepted.

B.2 More Generated Images

According to the main paper, more generated results on low-shot datasets with StyleGAN2 + Diff-Augment
+ ATop-k, StyleGAN2 + ADA + ATop-k, InsGen + ATop-k and Diffusion-Projected GAN + ATop-k are
shown in Figures 5, 6, 7 and 8, respectively. More generated results on FFHQ datasets with StyleGAN2
+ ATop-k, StyleGAN2 + Diff-Augment + ATop-k, StyleGAN2 + ADA + ATop-k, InsGen + ATop-k and
Diffusion-Projected GAN + ATop-k are shown in Figures 9, 10, 11, 12 and 13, respectively.

4https://github.com/autonomousvision/projected-gan
5https://drive.google.com/file/d/176adFIzD3iq9-FQE1_F1WDL4xk12PKn-/view?usp=sharing
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(d)

FID 37.74 (-4.70)

(a)

FID 40.96 (-5.91) FID 10.28 (-1.78)

(b)

FID 26.22 (-0.86)

(c) (e)

FID 51.29 (-7.56)

Figure 5: Images generated by StyleGAN2 + Diff-Augment + ATop-k on (a) 100-shot Obama dataset, (b)
100-shot Panda dataset, (c) 100-shot Grumpy-cat dataset, (d) AnimalFace-cat dataset and (e) AnimalFace-
dog dataset. The decreasing value of FID in red color demonstrates the improvement of StyleGAN2 +
Diff-Augment + ATop-k compared with baseline StyleGAN2 + Diff-Augment. Best viewed in color.

(d)

FID 37.91 (-2.86)

(a)

FID 40.79 (-4.90) FID 11.93 (-0.97)

(b)

FID 26.31 (-0.31)

(c) (e)

FID 53.35 (-3.48)

Figure 6: Images generated by StyleGAN2 + ADA + ATop-k on (a) 100-shot Obama dataset, (b) 100-
shot Panda dataset, (c) 100-shot Grumpy-cat dataset, (d) AnimalFace-cat dataset and (e) AnimalFace-dog
dataset. The decreasing value of FID in red color demonstrates the improvement of StyleGAN2 + ADA +
ATop-k compared with baseline StyleGAN2 + ADA. Best viewed in color.

(d)

FID 23.02 (-9.99)

(a)

FID 25.27 (-7.15) FID 7.92 (-1.93)

(b)

FID 19.32 (-2.69)

(c) (e)

FID 35.37 (-9.56)

Figure 7: Images generated by InsGen + ATop-k on (a) 100-shot Obama dataset, (b) 100-shot Panda
dataset, (c) 100-shot Grumpy-cat dataset, (d) AnimalFace-cat dataset and (e) AnimalFace-dog dataset. The
decreasing value of FID in red color demonstrates the improvement of InsGen + ATop-k compared with
baseline InsGen. Best viewed in color.
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(d)

FID 17.01 (-0.85)

(a)

FID 9.92 (-0.62) FID 3.27 (-0.12)

(b)

FID 14.36 (-0.77)

(c) (e)

FID 16.74 (-0.48)

Figure 8: Images generated by Diffusion-Projected GAN + ATop-k on (a) 100-shot Obama dataset, (b)
100-shot Panda dataset, (c) 100-shot Grumpy-cat dataset, (d) AnimalFace-cat dataset and (e) AnimalFace-
dog dataset. The decreasing value of FID in red color demonstrates the improvement of Diffusion-Projected
GAN + ATop-k compared with baseline Diffusion-Projected GAN.

(d)

FID 21.75 (-27.93)

(a)

FID 121.96 (-57.04) FID 66.37 (-33.79)

(b)

FID 40.98 (-13.32)

(c)

Figure 9: Images generated by StyleGAN2 + ATop-k on (a) FFHQ-100 dataset, (b) FFHQ-1K dataset, (c)
FFHQ-2K dataset and (d) FFHQ-5K dataset. The decreasing value of FID in red color demonstrates the
improvement of StyleGAN2 + ATop-k compared with baseline StyleGAN2. Best viewed in color.

(d)

FID 10.15 (-0.30)

(a)

FID 55.24 (-6.67) FID 22.98 (-2.68)

(b)

FID 16.12 (-8.20)

(c)

Figure 10: Images generated by StyleGAN2 + Diff-Augment + ATop-k on (a) FFHQ-100 dataset, (b)
FFHQ-1K dataset, (c) FFHQ-2K dataset and (d) FFHQ-5K dataset. The decreasing value of FID in red
color demonstrates the improvement of StyleGAN2 + Diff-Augment + ATop-k compared with baseline
StyleGAN2 + Diff-Augment. Best viewed in color.
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(d)

FID 10.71 (-0.25)

(a)

FID 69.92 (-15.88) FID 20.71 (-0.58)

(b)

FID 15.09 (-0.30)

(c)

Figure 11: Images generated by StyleGAN2 + ADA + ATop-k on (a) FFHQ-100 dataset, (b) FFHQ-
1K dataset, (c) FFHQ-2K dataset and (d) FFHQ-5K dataset. The decreasing value of FID in red color
demonstrates the improvement of StyleGAN2 + ADA + ATop-k compared with baseline StyleGAN2 +
ADA. Best viewed in color.

(d)

FID 7.40 (-0.43)

(a)

FID 43.09 (-2.66) FID 16.97 (-1.24)

(b)

FID 10.52 (-0.95)

(c)

Figure 12: Images generated by InsGen + ATop-k on (a) FFHQ-100 dataset, (b) FFHQ-1K dataset, (c)
FFHQ-2K dataset and (d) FFHQ-5K dataset. The decreasing value of FID in red color demonstrates the
improvement of InsGen + ATop-k compared with baseline InsGen. Best viewed in color.

(d)

FID 6.51 (-0.08)

(a)

FID 24.32 (-1.15) FID 8.24 (-0.52)

(b)

FID 7.89 (-0.10)

(c)

Figure 13: Images generated by Diffusion-Projected GAN + ATop-k on (a) FFHQ-100 dataset, (b) FFHQ-
1K dataset, (c) FFHQ-2K dataset and (d) FFHQ-5K dataset. The decreasing value of FID in red color
demonstrates the improvement of Diffusion-Projected GAN + ATop-k compared with baseline Diffusion-
Projected GAN.

20



Under review as submission to TMLR

Method 100-shot Animal-Face
Obama Grumpy Cat Panda Cat Dog

Diffusion-Projected GAN (Wang et al., 2023b) 1.67 1.47 1.00 2.28 15.32
+ ATop-k 1.68 1.48 1.01 2.35 15.61

Table 7: The comparison of Inception scores (higher is better) with Diffusion-Projected GAN (Wang et al.,
2023b) and Diffusion-Projected GAN + ATop-k on low-shot datasets (256 × 256). We follow the setting
as in (Zhao et al., 2020). Massive Augmentation (Cui et al., 2022) is applied to all of the methods. For a
fair comparison, the Inception Scores are averaged over three runs; all standard deviations are less than 1%
relatively.

Method MA 100% CIFAR-10 20% CIFAR-10 10% CIFAR-10
IS FID IS FID IS FID

StyleGAN2 + Diff-Augment (Zhao et al., 2020) Yes 9.40 9.89 9.21 12.15 8.84 14.50
+ATop-k Yes 9.43 9.72 9.27 11.87 8.99 13.98

Table 8: A comparison of the results on the CIFAR-10 dataset (100%, 20% and 10%) with StyleGAN2 +
Diff-Augment. Inception Score (IS) and FID are measured using 10k samples; the test set is the reference
distribution. For a fair comparison, Massive Augmentation (MA) is applied to all the methods. Results are
averaged over five evaluation runs; all standard deviations are less than 1% relatively.

B.3 More Experiments Results with Inception Score (IS)

To further show the superiority of the proposed ATop-k, we also report the experiment results using another
commonly-used GANs evaluation metric, i.e., Inception Score (IS) (Salimans et al., 2016). The results on
low-shot datasets compared with the state-of-the-art method, i.e., Diffusion-Projected GAN, are shown in
Table 7. Diffusion-Projected GAN + ATop-k can achieve higher IS, demonstrating the superiority of the
proposed ATop-k.

B.4 More Experiments Results on CIFAR-10/100 Datasets

To further demonstrate the superiority of the proposed ATop-k, we also conduct experiments on CIFAR-
10/100 datasets compared with StyleGAN2 + Diff-Augment (Zhao et al., 2020). The results are shown in
Tables 8 and 9. StyleGAN2 + Diff-Augment + ATop-k achieves better performance on the CIFAR-10/100
datasets.

Method MA 100% CIFAR-100 20% CIFAR-100 10% CIFAR-100
IS FID IS FID IS FID

StyleGAN2 + Diff-Augment (Zhao et al., 2020) Yes 10.04 15.22 9.82 16.65 9.06 20.75
+ATop-k Yes 10.09 15.06 9.91 16.37 9.22 20.02

Table 9: A comparison of the results on the CIFAR-100 dataset (100%, 20% and 10%) with StyleGAN2 +
Diff-Augment. Inception Score (IS) and FID are measured using 10k samples; the test set is the reference
distribution. For a fair comparison, Massive Augmentation (MA) is applied to all the methods. Results are
averaged over five evaluation runs; all standard deviations are less than 1% relatively.
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Method Seconds per 1K images
Diffusion-Projected GAN 12.13
+ATop-k 12.17

Table 10: The training time on the 100-shot Obama dataset (256 × 256) with or without ATop-k using
Diffusion-Projected GAN backbone. The results are calculated by averaging over ten times on the four
NVIDIA RTX TITAN GPUs with batch size 64. All standard deviations are less than 1% relatively.

B.5 Computational Cost

The results of the training time on the 100-shot Obama dataset with or without ATop-k using Diffusion-
Projected GAN have been demonstrated in Table 10. The proposed ATop-k only results in an negligible
increase in computational cost.

B.6 The value of k evolves during training

To demonstrate how the value of k evolves during training, we present its value over a small subset of
iterations (50 iterations) for both the early (at 4000 iterations) and late stages (at 50,000 iterations) of the
training process. These experiments were conducted on the 100-shot Obama dataset using StyleGAN2 with
a batch size of 4, and the results are shown in Figure 14. Furthermore, to further demonstrate the impact
of k on the overall training process, in every 4k fake samples shown to D, we present the average number of
fake samples selected by ATop-k for updating G during training. The results in Figure 15 show that applying
Atop-k can select fewer and fewer fake samples to update G during training.

(a) (b)

Figure 14: The curves of the values of k during a small subset of iterations. (a) The values of k in the early
training stage, from iterations 4000 to 4050. (b) The values of k in the late training stage, from iterations
50,000 to 50,050.

C Discussion of Datasets in Experiments

This paper applies the 100-shot Obama dataset, i.e., the dataset consists of Obama faces, in the experiment
section. This dataset is widely and commonly used without limitations in DE-GANs research. Furthermore,
a lot of recent studies (Zhao et al., 2020; Cui et al., 2022; Chen et al., 2021; Li et al., 2022a; Zhang et al., 2024)
on DE-GANs have applied this dataset in their experiments, demonstrating its application is reasonable and
does not raise any ethical issues.
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Figure 15: The curves of an average number of fake samples selected by ATop-k for updating G in every 4k
fake samples shown to D during training. The experiments are conducted on the 100-shot obama dataset
using StyleGAN2 with batchsize 4.
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D Limitation and Broader Impact

This paper proposes a novel insight of DE-GANs theoretically and seeks to inform future studies on DE-
GANs. Driven by this, we propose a simple yet effective method called adaptive Top-k (ATop-k) that can
benefit the practical deployment of DE-GANs. The technical contributions of this paper do not raise any
particular ethical challenges. However, because technology is usually a double-edged sword, our work may
also bring potential social risks when applying GANs with limited data. For example, it may make it easier
to generate fake media using only limited data.
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