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Abstract

There is an increasing drive to integrate machine learning (ML) tools into the
drug development pipeline, to improve success rates and efficiency in the clinical
development pathway. The ML regulatory framework being developed is closely
aligned with ML best practices. However, there remain significant and tangible
practical gaps in translating best practice standards into a real-world clinical trial
context.
To illustrate the practical challenges to regulating ML in this context, we present
a theoretical oncology trial in which a ML tool is applied to support toxicity
monitoring in patients. We explore the barriers in the highly regulated clinical trial
environment to implementing data representativeness, model interpretability, and
model usability.

1 Introduction

As regulators begin to set standards for ML deployment across a range of industries, there is
an increasing need to address the operational gap between high-level guidance and the practical
constraints of specific real-world use cases of ML. This paper illustrates the operational gaps which
arise when applying potential regulatory guidance to a hypothetical real-world use case of ML in
clinical trials. We focus on the EMA discussion paper on regulation in the AI-medicine’s lifecycle.
We outline a hypothetical case in which a ML tool is integrated into a clinical trial to predict patient
risk of developing acute kidney injury (AKI).

Despite its potential for positive impact on patient care, the tool’s levels of transparency, data
representativeness, prospective validation, interpretability, data protection, and performance testing
all fall short of the baseline standards set out by the EMA’s proposal. Whilst ML can significantly
improve the quality of patient care in clinical trials, our case vignette illustrates why it can be
infeasible for ML to achieve the model and data requirements that regulators might expect. It is
imperative to strike a context-sensitive balance that enables the beneficent value of adopting ML and
maintains baseline standards for ML adoption. We propose this case as a thought experiment for the
ML community to consider how to collaborate with regulators in an optimally balanced manner.

2 Clinical Trial Development

Clinical trials are designed to test whether a new type of treatment, the ’experimental therapy’, is
safe to administer to patients and if it is effective against treating a disease. The experimental therapy
is often a newly designed medicine which has completed extensive testing in the laboratory. The
clinical trial is often the first time in which the new chemical is given to humans. Therefore, clinical
trials operate under strict regulatory processes to ensure the research is appropriate and that no undue
harm is caused to trial participants.
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Clinical trials can be broadly classified into two main categories: early phase and late phase trials.
Early phase trials, particularly Phase 1 trials, are primarily designed to evaluate a drug’s safety profile.
Early phase trials are usually conducted in a small group of patients and determine whether an
experimental therapy can proceed to more extensive testing. Early phase trials in oncology are unique
in that cancer patients, rather than healthy volunteers, are recruited at the phase 1 stage. Conversely,
late phase trials involve larger patient cohorts and compare the experimental agent to treatments
already established in routine clinical care.

Clinical trials are expensive, lengthy, and resource intensive. There is an increasing drive to effectively
utilise ML tools to improve efficiency. A trial is more efficient when either the same clinical endpoint
is reached in a shorter period, when fewer patients are recruited to offer the same insight into an
experimental therapy, or when the safety monitoring process is streamlined. Such an outcome would
be considered a successful improvement on clinical trial design.

3 Existing Regulatory Guidance

We propose our thought experiment in the context of the development of regulation for ML in clinical
trials. Our thought experiment highlights a critical tension that regulators will have to navigate.

Legislation for AI/ML in general is currently nascent – the European Union’s AI Act is currently one
of the most advanced sector-agnostic proposed pieces of legislation and is still in negotiation at the
time of writing [1]. In general, the purpose of legislation and regulation is to reduce the incremental
risks that the adoption of ML introduces.

Since the risk profile of ML applications will differ between use cases, sectoral regulators are
increasingly scoping out regulation for their sectors. The European Medicines Agency (EMA) has
regulatory authority over medicine development in the EU. In July 2023, the EMA issued a reflection
paper [2]. The reflection paper discusses the uses of ML across the medicine development lifecycle.
Although it does not contain concrete suggestions for regulations, the paper outlines the standards
of best practice in ML with a view towards codifying the standards into regulation for ML in drug
development and clinical applications.

We agree with the aim and methodology of the discussion paper. It is imperative to set standards and
procedures for regulators to verify the safety of ML adoption, particularly where it affects patients. It
would be dangerous for practitioners to deploy ML without such standards or processes. It is also
important to establish clear guidance for practitioners, so that they can adjust their expectations and
practices accordingly.

However, the aim of our paper is to draw out a tension in this regulatory process. Whilst the discussion
paper outlines agreeable standards of best practice for ML in drug development generally, these
standards – when applied broadly across the medicine lifecycle — are so stringent that they risk
prohibiting the applications of ML in domains of drug development in which adherence to these
general standards would be impracticable or impossible.

Our paper proceeds by outlining one such domain – clinical trials — in which the adoption of ML
could significantly improve patient welfare. The purpose of our paper is twofold: first, to suggest
potential resolutions to this conflict through permitting justified and context-specific deviations from
“gold standard” practices; second, to encourage the ML community to engage with this tension to
find a productive balance between setting clear industry standards and processes, and remaining
sufficiently flexible to permit welfare-improving ML applications.

4 Case Vignette

We present a theoretical study to highlight the practical gaps between existing regulations and typical
ML workflows. We discuss the findings raised from a theoretical clinical trial in which twenty patients
with advanced breast cancer receive an experimental therapy.

Clinical trials are designed and managed by a clinical development team, a specialist team of
clinicians, nurses, pharmacists, statisticians, and trial managers who are commonly based in academic
institutions or pharmaceutical companies. In our case vignette, the composition of the clinical
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development team is unusual in that it also includes ML engineers. During the trial, patients will
receive the therapy from a specialist clinical trials unit in a UK-based hospital.

The aim of the trial is to assess the safety profile of the experimental therapy and identify a safe
treatment dose for patients. The patients enrolled in the trial have exhausted all treatments available
as part of standard clinical care. In particular, they have received multiple rounds of previous
chemotherapy, which has reduced their baseline kidney function. Therefore, giving the experimental
therapy as part of the clinical trial has the increased risk of causing further kidney damage. If the
damage is significant, it may cause AKI. In extreme cases, AKI can be life-threatening.

The clinical development team decides to integrate an AKI monitoring tool into the planned trial.
Recruited patients receive the experimental therapy as per standard trial practice. In addition to
regular blood tests and clinical review, patients are reviewed with an AKI software monitoring tool.
The anticipation is that the ML-based tool will enable better resource allocation, by alerting clinicians
earlier to the onset of kidney damage which can be managed by simpler and less intense measures.
As part of our case study, the selected tool will be an approved ‘Software as a Medical Device’ and
will comply with the required software safety standards.

5 Data Representativeness

Data representativeness is one of the most important factors in any discussion about applying a model.
In clear alignment with this principle, the EMA advises that “performance should be tested with
prospectively generated data that is acquired in a setting or population representative of the intended
context of use” [2]. However, due to the complexity of human data, it is often impossible to find
perfectly representative datasets for a new clinical trial. In some cases, the gap between apparently
similar datasets is too wide to bridge. But, in other cases, appropriate care can be taken to re-purpose
a dataset. To enable this, we stress the need for a regulatory framework by which ML practitioners
can prove the appropriateness of models trained on “imperfect” data.

Recall that in our case study, the clinical development team includes ML engineers; during trial
design, these engineers explore possible models for predicting AKI risk. One of the highest-accuracy
models found in the literature is a recurrent neural network (RNN) trained on a retrospective clinical
dataset acquired from the US Department of Veteran Affairs (USDVA); for the reader’s reference,
this example is loosely based on the tool and datasets published by Tomasev et al.[3]. In addition, the
engineers develop their own random forest model, based on a similar existing model trained on a set
of local hospital records.

The multilayer RNN initially seems promising, due to its extensive documentation, as well as the fact
that it was successfully adopted for a previous clinical trial. However, the engineers note two major
issues affecting the representativeness of the data collected.

Firstly, they note that the data is collected from US military veterans, a population strongly enriched
for the male sex. In contrast, the trial is recruiting patients with breast cancer, a disease driven by
uncontrolled oestrogen signalling, and therefore enriched in females. There is evidence that rates of
AKI are higher in men compared to women [4]. If unaccounted for, this discrepancy could result in a
significantly higher false positive rate for AKI risk on the trial. The engineers also note differences in
the racial makeup of the US data against the theoretical UK patient base for the trial. This is more
difficult to precisely quantify but could lead to other unintended shifts in model behaviour.

Secondly, they note that the clinical outcome in the data set is taken to be dialysis, an extreme
interventive treatment to replace kidney function altogether, while the kidneys recover. Whilst
appropriate for the USDVA’s use case, kidney injury requiring dialysis is already far too advanced
for this clinical trial: a much earlier warning is necessary to ensure the experimental therapy is safe.
Furthermore, some of the clinical thresholds referenced within the documentation do not match those
commonly used in UK hospitals. Even if dialysis were an appropriate endpoint, the model would
need to be re-trained against thresholds more appropriate for the trial at hand. The EMA proposal
recommends using "a priori defined thresholds for performance metrics" [2], but as shown here,
setting these metrics need to be context sensitive.

Concerned by their findings with this tool, the engineers also examine an in-house random forest
model, which is currently being used to predict cardiac risk. Despite this dramatically different
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endpoint, the engineers point out several promising aspects of the model and the data it was trained
on.

Firstly, the engineers note that although the model was trained to predict cardiac risk, the underlying
data set contains a diverse and complete panel of clinical tests and bloodwork. In particular, all the
necessary data to train against the appropriate AKI endpoint are present. With thorough documentation
on how the original ML pipeline was prospectively validated, including normalization, handling of
confounders, etc., it is immediately clear to the engineers how the pipeline could be easily adjusted to
model renal risk, rather than cardiac.

Secondly, the engineers note that the data set was collected from patients at UK hospitals. The patient
demography very closely aligns with the expected patient population for the trial. Furthermore, the
size of the dataset would allow for an appropriately sampled female-skewed population, to mirror the
likely design of the trial.

We turn to the question of what these ML engineers do now. Note that none of the data they found
was a perfect match for the trial being designed: both deviated from the ideal problem statement,
to varying degrees. The regulatory position on the first option should be clear: it is not sufficient.
The second option is better but leaves unanswered questions. To which principles can they adhere
to ensure work undertaken to train a new model would be sufficient from a regulatory perspective?
Could actionable guidelines have helped or accelerated their initial task of evaluating these datasets
and models? What evidence do regulators require to demonstrate the appropriateness of the tool?

We suggest that, although the examples here are simplistic for illustrative purposes, they reflect
common issues with real-world data representativeness. Because these issues vary so significantly
from problem to problem, we do not believe there can be a one-size-fits-all recommendation. Rather,
we stress the need for general regulatory principles to inform and guide the practical assessment
of data representativeness, but also for a framework in which individual trial teams can efficiently
engage with regulators to resolve queries specific to their circumstances.

Finally, it is worth noting that non-regulatory-based progress is also possible. One possibility would be
a coordinated effort to amass high-quality clinical datasets in a central repository, with caveats around
data collected during the 2020 – 2022 pandemic. Clinical management pathways changed suddenly
and significantly during the pandemic, creating bias specific to this period. Another possibility would
be a suite of representation learning approaches to formally quantify the differences between different
patient populations. Of course, these are both massive undertakings requiring prospective planning,
and cannot be achieved by an ad-hoc collection of datasets and models from non-standardised sources.
Additionally, the ultimate utility of these still relies on the relevant regulatory guidance and framework
in place.

6 Model Interpretability

The EMA encourages the use of black box models only when ’interpretable models show unsatisfac-
tory performance or robustness’ [2], and similar ideas are discussed in the ML community for various
human-facing applications of ML. Interpretability is an important safety aspect of ML tools used
in clinical trials. If, as in our case vignette, a model is generating a risk score, then the reviewing
clinician will need to understand which input features are driving the prediction and make a clinical
judgement on whether to accept or reject the model’s risk assessment. Furthermore, interpretability is
a central feature for regulatory purposes. When an investigational agent is discontinued for a patient,
clear documentation is required of the reasons for the decision to ensure it is a balanced decision
within the overall trial framework.

In an ideal scenario, the most highly performant model is an interpretable model. However, in practice
there is often a trade-off between model capacity and performance (e.g., deep neural networks) and
ease of interpreting the model (e.g., linear regression). This presents a dilemma for the community:
is it acceptable and appropriate for model interpretability to be available at the expense of model
performance? If so, what level of diminution of performance is acceptable?

We believe that the ideal balance between model accuracy and model interpretability cannot be set by
globally defined regulatory standards. Instead, this trade-off needs to be decided on a case-by-case
basis by an interdisciplinary clinical development team, including at the very least clinicians and
ML engineers. A real-world ready regulatory framework for ML in clinical trials would need to
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avoid generic requirements for interpretability, and instead allow justified deviations from idealistic
“ML best practices”, where appropriate. We encourage a conversation between the ML community,
regulators, clinicians and AI ethicists on how the conflicting needs of high model performance and
model interpretability should be balanced.

Notably, in cases where black box models must be used for performance considerations, the EMA
advises integrating interpretability methods, such as SHAP and/or LIME analysis into black box
models [2]. However, requiring such explicitly listed interpretability methods and metrics is overly
prescriptive, and does not necessarily achieve the intended outcome of improving the safety and
trustworthiness of ML tools in clinical trials. We caution against the indiscriminate use of inter-
pretability methods to solely satisfy a regulatory requirement, rather than providing clinical insights.
Furthermore, by allowing ML developers with domain expertise to choose the current state of the art
interpretability methods, rather than prescribing specific methods/metrics that may soon be outdated,
the EMA would future-proof their regulation.

6.1 Incorporating model interpretability into clinical trial design

One approach to improve the safety and accountability of ML tools in clinical trials that sidesteps
model interpretability is the use of human-interpretable features on a model which may otherwise be
considered “uninterpretable”, such as a deep neural network. Human-interpretable features as model
inputs, intermediate model representations, and/or model outputs will provide reassuring transparency
for clinicians using the tool.

We propose that a well-designed clinical workflow around a model, such as using a human-in-the-
loop to sanity check the model’s use of human-interpretable features, may achieve the necessary
interpretability and traceability of a clinical decision even with a black box model. It should also
greatly increase the safety and trustworthiness of clinical ML tools, not just for clinicians but also for
patients.

When appropriately supported by flexible regulatory guidance, an interdisciplinary clinical develop-
ment team with both clinical and ML expertise will be best placed to select the optimal interpretability
solution to ensure meaningful human oversight. Any interpretability tool should be identified prospec-
tively and defined as part of the trial protocol in a manner aligned with individual trial requirements.

7 Additional Considerations for Real-World Usability

Real-world usability is too broad to be discussed in detail within a single article, but four specific
points are worth mentioning that bear on the complexity of applying and regulating ML in the clinical
trial context.

The first concerns the requirements for clinically stable performance of an ML model. In our vignette,
clinically relevant physiological processes could have been represented in a multimodal fashion
to avoid assay-dependent and clinician-dependent decision thresholds. It is important to avoid
over-reliance on a small panel of blood tests, which may be vulnerable to spurious data artefacts
and differences in clinical judgement. Instead, an expanded kidney-specific feature set could be
constructed consisting of a wider panel of blood tests, urine output, measures of urine quality and
kidney imaging scans. In this way, the ML model can better replicate the manner in which doctors
conduct clinical assessments, since patients are reviewed and clinical management decisions made by
gathering results from multiple complementary axes of information.

The second point concerns the logistical complexities of regulating a ML-integrated clinical trial,
given the difficulties with introducing a novel tool to an established clinical framework. Integrating a
large tool into a hospital compute system creates a logistical obstacle that exposes the performance of
the tool to external risk. If, for instance, a hospital-wide update causes the model to fail, this would
require a "bridge re-evaluation" per the EMA paper, but such a re-evaluation might be infeasible
in the context of an active clinical trial and can result in the suspension of the clinical trial in the
absence of a contingent clinical protocol. A possible solution here would be to define a non-ML
based pathway as part of the trial protocol in the case of failure. Clinicians’ management of the
ML tool creates further logistical obstacles: if clinicians over-rely on the results of the tool, this
impedes the holistic evaluation of the patient and the interpretability of the model results. To avoid
this, clinicians with extensive trial experience can be assigned to interpret model results as a matter
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of trial protocol; ML and clinical development teams can collaborate to optimise model usability; the
tool’s user interface can be optimised for non-technical users; and generated reports can be structured
to contain only information relevant to clinician review.

The third point concerns the risk-benefit profile of an ML tool for a clinical trial. In our vignette, the
AKI tool for a clinical trial would be used by clinicians in a similar way to an AKI tool applied in
the non-trial setting. The key distinction is that different clinical contexts have different risk-benefit
profiles. The experimental therapy investigated as part of a clinical trial has an incomplete toxicity
profile, whereas the toxicity profile of routinely used treatments is well-described. Therefore, patients
in a clinical trial face greater uncertainty in their toxicity exposure, which could potentially be greater.
The benefits offered by better toxicity monitoring when treatment side-effects are uncertain outweighs
some of the potential risks associated with a new tool. The nuanced determination of risk-benefit
profiles should be decided jointly by the ML engineers and clinicians using the tool. The clinicians
can present short clinical case studies to their collaborating ML engineers, which would serve as
a springboard from which they can jointly decide appropriate thresholds for sensitivity, specificity,
positive predictive value and/or negative predictive value, relevant for the clinical context at hand.
We believe this engagement between clinicians and engineers would be enforced through regulation
and would be an iterative process, which should run throughout the ML development process.

The fourth point concerns clinical trial training requirements. The standards should be relevant and
replicable across different countries and encompassed within the existing ’Good Clinical Practice
(GCP) for clinical trials’ training courses. All members of the clinical development team, including
ML engineers, will be required to complete GCP training for regulatory compliance. There is also a
statutory requirement to notify the supervising regulatory body of serious breaches of GCP or the
trial protocol

8 Discussion

We have used a theoretical case study to illustrate some of the practical challenges in regulating
ML in the context of clinical trials. Since the regulation in question is not yet in place, there are no
real-world case studies that could serve as examples for a vignette. As a next best solution, we have
based the case study on both existing ML-tools [3] and parameters that are common in oncology trials.
The hypothetical nature of the case study is intended to focus attention on the general principles
and challenges of ML deployment in clinical trials. Although the more detail-oriented reader will
(somewhat understandably) be unsatisfied with the lack of methodological detail present within the
examples, we strongly encourage them to continue to apply that rigor in the communal discussion we
hope to spark.

Above all, our case vignette has demonstrated that the responsible deployment of ML-based tools in
clinical trials must be informed by the unique context of the trial in question. This will allow us to find
an appropriate trade-off between the conflicting values of strict adherence to ML best practices and a
more pragmatic approach that aims to do the best for patients under suboptimal conditions. Trying to
specify such context-sensitive trade-offs in general, via prescriptive regulation, would be prohibitively
difficult. On the other hand, the primary purpose of a strict regulatory framework is to protect patients
from ignorance, negligence, or even bad intentions; an overly flexible regulatory framework would
fail to achieve this. This is particularly the case when decisions on ML practices lie in the hands of
the tool’s developers alone. Specifically: given the circumstances of a particular trial, ML engineers
may occasionally need to adapt ML best practices. And, whilst it should remain possible for them to
decide on an appropriate approach, it will be absolutely essential for an independent panel of ML
experts, reporting to the regulatory authority, to ratify that approach. Furthermore, publishing the
results and justifications of these reviews would provide transparency and could act as exemplars to
guide clinical development teams and ML engineers in the development and deployment of future
ML-based clinical tools.

Related legislative and regulatory developments already suggest one possible method for achieving
the requisite balance between control and flexibility. For example, the National Institute for Standards
in Technology (NIST) has published a Risk Management Framework (RMF) for the adoption of
ML [5]. The RMF does not prescribe practical standards, but rather outlines a process for clarifying
and mapping risks and mitigation strategies. The nascent US AI Accountability Bill, rather than
prescribing general standards for ML, requires that providers develop reports on the risks and
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mitigation of their ML applications in consultation with experts and stakeholders, and that regulators
assess these reports [6]. Similarly, the EU AI Act requires that providers of ML applications submit
conformity assessments to regulatory bodies which detail the system’s risk management system,
identify and mitigate known and foreseeable risks, and record adequate testing and validation,
considering these measures in light of the intended purpose and design choices in the development
process [1].

These regulatory proposals suggest a set of possible mechanisms for balancing regulation and
flexibility by standardizing a reporting and assessment process overseen by regulators. This process-
oriented regulation allows regulators to make more granular judgments about the risk-benefit profile
of a ML application. Such a mechanism can be deployed alongside a set of baseline standards
providing a minimum threshold for responsible ML development. Moreover, as regulators review
more applications, they can develop a body of precedent and principles that, like a body of case law,
can give developers more certainty.

Below we discuss two examples to showcase how one may find appropriate trade-offs between
regulatory requirements and flexibility in two very different contexts: late phase vs early phase
clinical trials.

8.0.1 Example trade-off 1: interpretability in late phase clinical trials

Finding the right trade-off between model performance and model interpretability is a high priority
in the late phase clinical trial setting, where it ensures the model’s prediction is aligned with the
established pathophysiological understanding of the disease process. Late phase trials, such as phase
3 trials, compare a standard routinely delivered clinical treatment with a novel treatment. If the
novel treatment shows superior efficacy to the standard treatment during the trial, it will then become
standard of care for all in-scope patients. Therefore, in such a high-stakes context, being able to
interpret the model’s prediction will be critical for developing clinician and regulatory confidence in
the model’s real-world utility.

What complicates the issue of interpretability in clinical applications of ML is that there are multiple
stakeholder groups – researchers, ML engineers, legislators, clinicians and patients – all of which
will likely need different types of explanation, appropriate for the nature of their expertise [7]. On
the one hand, regulators may be primarily interested in gaining sufficient insight into a "black-box
model" to perform a risk assessment of its application in a clinical trial. Clinicians, on the other hand,
may want to identify which clinically relevant features drive model predictions.

Thus, when regulators ask for interpretability, it is unclear how different, potentially conflicting,
interpretability needs should be met. A good compromise for legislators might be to allow the clinical
development team to prioritize the interpretability needs of one stakeholder group over another, but
to review the justification to do so on a case-by-case basis. For example, in late-stage clinical trials
interpretability of predictive features may be essential for clinicians who need to take model outputs
into account when making treatment decisions. Therefore, when developing the model, ML engineers
need to focus on feature-based interpretability. Whether this is achieved through an inherently
interpretable model, hand-crafted human-interpretable features or post-hoc feature-based methods
such as LIME, should be a joint decision of developers and clinicians, balancing interpretability
requirements with model performance where necessary.

In practice, this raises an interesting ML problem: different interpretability methods are often
discordant with each other [8]. In contrast, different clinical features often represent the same
underlying physiological system. For example, creatinine and eGFR are common blood tests used to
monitor kidney function. From a clinician’s perspective, they are equivalent features and are both
equally valid ways to represent the urinary organ system. Specifically, an interpretability method
which top ranks creatinine has the same meaning for a clinician as an interpretability method which top
ranks eGFR. This equivalence of features for clinicians stands in stark contrast to the ‘interpretability
disagreement’ [8] of different interpretability metrics. We encourage the ML community to engage
with clinicians to learn about such issues and develop new methods that address them.

8.0.2 Example trade-off 2: representativeness in early phase trials

In the early phase setting, data representativeness is the primary challenge. Patient numbers in an
early phase trial are low, generally in the range of 10 – 30 patients. Therefore, any ML model would

7



ideally be trained and validated on a larger, non-trial dataset and then applied to the early phase
trial context. It will be essential to assess the representativeness of the training dataset, including
leveraging domain experts to ensure the training dataset can sufficiently capture the key physiological
characteristics of the clinical trial population.

Because of the unique nature of clinical trial populations, the representativeness of training datasets
will never be perfect and the use of domain adaptation (DA) methods to improve the representativeness
between trial and non-trial clinical populations is yet to be demonstrated. The work on DA by Guo
and colleagues [9] illustrates this challenge. Although their data is collected outside a clinical trial
setting, the findings and principles are still highly relevant for our clinical trial case vignette.

Guo et al explored the well-known MIMIV-IV database from intensive care unit (ICU) patients at the
same clinical unit in the same hospital, but at different historical periods (2008 – 2019). Patient cohorts
were generated from consecutive three-year time blocks; clinical features such as blood test results,
ICU patient monitoring charts and patient diagnoses were extracted; and four clinically meaningful
prediction tasks, including the development of sepsis, were defined. To learn data-invariant properties
for each task, domain generalisation (DG) and unsupervised domain adaptation (UDA) algorithms like
including correlation alignment (CORAL), maximum mean discrepancy (MMD), domain adversarial
learning (AL), invariant risk minimisation (IRM) and group distributionally robust optimisation
(GroupDRO) were applied to a baseline deep neural network.

In all experiments, no DG or UDA method fully mitigated the temporal data drift and they did
not improve model robustness [9]. Although the published results are from an ICU setting, the
general principles and nature of application are similar to our clinical trial vignette. In both settings,
standard clinical results with a focus on bloodwork are being used to predict the risk of future clinical
deterioration of a patient. The factors accounting for the time- and location-dependent drift in clinical
datasets are similar, with both types of drift arising due to evolutions in medical practice, changes
in population demographics, and possibly differences in data collection and recording practices. Of
these, changes in medical practice, such as healthcare professionals recognising sepsis and starting
treatment earlier [10], are likely the largest contributor to clinical data drift.

The study underlines the complexity and nuances of clinical data and suggests that a straightforward
‘plug-and-play’ of DA methods would likely be ineffectual. Instead, regulators should outline general
criteria by which DA methods can be safely and effectively used in clinical datasets. It is then up
to the ML practitioner to decide on which specific DA method to apply and to demonstrate that the
selected method fulfils the regulatory criteria.

The examples above demonstrate that regulations must be consistently applicable to the smallest
groups and the largest companies. However, this consistency is difficult to achieve given the pace at
which machine learning evolves. If guidelines are too specific, they will need near-constant revision
to keep pace with the current ML landscape. If, on the other hand, they are too general, individual
cases carry an undesirable ambiguity.

This is a tremendously difficult problem to solve, and no satisfactory solution currently exists, but we
believe progress can only be made by attempting to find a middle ground. We need appropriately
detailed principles by which data and models should be evaluated, but to allow flexibility-within-
limits in the way these principles are proved. Correctly balanced principles can only be derived by a
collaboration of clinicians, ML experts, and regulators. The same is true for defining the “rules of
evidence": it should be clear upfront to all parties involved what needs to be proved, with any given
approach. Although new model frameworks will emerge, requiring different specific considerations,
we feel that it should always be possible to tether the discussion to foundational principles, which
evolve manageably slowly, if at all.

8.1 Looking ahead

We have discussed above how the tension between strict regulation based on ML best practices and
the practical demands of clinical trials on ML-based tools can be resolved. To support ML researchers,
engineers and clinical development teams in finding case-by-case solutions, we suggest that this
topic should be discussed more in ML forums. We encourage a move away from a competition-style
approach to ML research that focuses on marginal performance gains on large, curated – and largely
unrealistic datasets – towards reality-centric AI, i.e., focusing efforts on and rewarding impact of ML
methods in the real world.
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Furthermore, the example of DA methods in the late-stage trial calls for two parallel paths of action.
Firstly, it is essential for ML engineers to repeat benchmarking exercises as in Guo et al [9] on
datasets which reflect diverse types of clinical practice, e.g. oncology datasets of patient-specific
treatment pathways mapped to survival outcomes or population-based cardiovascular datasets. A
wide range of realistic benchmark experiments will allow the community to quantify both the deficit
in the currently available armamentarium of ML methods with respect to clinical applications, as well
as allow researchers to identify specific contexts where the current methods may offer real-world
utility.

Secondly, the findings underscore the need to develop alternative approaches where deficits are
identified. For example, for DA methods, there is an evolving consensus that the diversity of the
large datasets used to train foundation models provide inductive biases, which may lead to improved
extrapolation on a downstream prediction task [11]. At the same time, regulation on foundation
models is nascent [1] [5] [12]. By engaging in dialogue with regulators and providing evidence for
the benefits as well as the risks on specific ML methods, the ML community can positively contribute
to the evolving ML regulatory guidance.

Finally, taking a step back, a long-term priority for the ML and healthcare community should be
to collect large datasets that represent as many health contexts as possible and that will allow ML
practitioners to build better models based on them.

9 Conclusion

In summary, we present a case study in applying ML tools to an oncology clinical trial to demon-
strate the gap between ML best practices and regulatory guidance and the real-world challenges
of implementing these standards. We focus on what we consider are the three domains critical
for ML engineers developing tools in clinical trials: data representativeness, model interpretability
and real-world usability. These areas raise practical regulatory concerns, often without a single
generalisable solution.

Ultimately, ML for clinical development is a process designed to benefit patients. Our experience is
that patients are open to the option of incorporating ML into their clinical care. It is imperative for the
community and regulatory agencies to collaborate with a pragmatic mindset to achieve incremental
and thoughtful progress for patients.
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