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Abstract

Biological neural networks define the brain function and intelligence of humans
and other mammals, and form ultra-large, spatial, structured graphs. Their neuronal
organization is closely interconnected with the spatial organization of the brain’s
microvasculature, which supplies oxygen to the neurons and builds a complemen-
tary spatial graph. This vasculature (or the vessel structure) plays an important
role in neuroscience; for example, the organization of (and changes to) vessel
structure can represent early signs of various pathologies, e.g. Alzheimer’s disease
or stroke. Recently, advances in tissue clearing have enabled whole brain imaging
and segmentation of the entirety of the mouse brain’s vasculature. Building on
these advances in imaging, we are presenting an extendable dataset of whole-brain
vessel graphs based on specific imaging protocols. Specifically, we extract vascular
graphs using a refined graph extraction scheme leveraging the volume rendering
engine Voreen and provide them in an accessible and adaptable form through the
OGB and PyTorch Geometric dataloaders. Moreover, we benchmark numerous
state-of-the-art graph learning algorithms on the biologically relevant tasks of
vessel prediction and vessel classification using the introduced vessel graph dataset.
Our work paves a path towards advancing graph learning research into the field
of neuroscience. Complementarily, the presented dataset raises challenging graph
learning research questions for the machine learning community, in terms of incor-
porating biological priors into learning algorithms, or in scaling these algorithms
to handle sparse,spatial graphs with millions of nodes and edgesﬂ

1 Introduction

Human intelligence and brain function are defined by the cerebral biological neuronal network, the
so-called connectome. The entirety of all single neurons forms an ultra-large, spatial, hierarchical
and structured graph. Imaging and reconstructing these whole-brain graphs on a single-neuron
level is one of the key problems in neuroscience. Neuronal organization is closely linked to the
vascular network, as vessels supply the neurons with nutrients (e.g. oxygen). Specifically, the vessel
topology determines the maximum metabolic load and determines neural growth patterns [[1]]. Vascular
organisation, particularly in regards to vessel sizes and numbers of capillary links, varies substantially
between brain regions, see Supplementary Figure [5]and[6] Moreover, its organization and changes to
its structure are early signs for the development of specific diseases, e.g. Alzheimer’s disease [2} 3]
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Figure 1: Graphical Abstract of VesselGraph.

or even COVID-19 encephalopathy [4]. As an initial step towards understanding the neuronal and
vascular connectome (also known as the angiome [5]]), reliable imaging and segmentation methods
are required. To this day, whole-brain imaging and segmentation of all neurons in the brain remains
elusive. On the other hand, advances in tissue clearing and deep learning have enabled imaging and
segmentation of the whole murine brain vasculature down to the microcapillary level [6}[7].

Nonetheless, a binary segmentation of the vasculature is insufficient for a full, abstract description of
the vascular connectome. To enable a comprehensive hierarchical description of the spatial vessel
structure and anatomy, a graph representation of the brain with detailed features is required. This
work provides the first large-scale, reproducible graph dataset thereof.

We believe that such a graph representation can facilitate research and understanding in many fields.
The correction of imperfect vascular imaging and segmentation based on such an enhanced vascular
graph, could one day enable the simulation of blood-flow (hemodynamic modeling), the study of
vessel anatomy, connectivity, collateralization/anastomosis and structural abnormalities. Future
studies using enhanced datasets could find our approach useful to study pathologies associated with
neurovascular disorders, such as stroke and dementia, given that obstacles such as plaques would be
accounted for.

Evidently, the study of such spatial graphs with millions of nodes requires its own set of methods; we
believe that the recent rise of advanced machine learning methods for graphs will provide suitable
approaches to efficiently and accurately permit drawing deep insight from vascular graphs. This, in
turn, will foster the development of methods capable of dealing with massive, but sparsely connected
circular graphs, for inference on these graphs, and inference under structural and functional prior
constraints that are present in such spatial physical 3D networks.

In this work we benchmark two exemplary and biologically relevant tasks using both traditional
approaches and advanced graph learning. First, in order to improve the structure and anatomical
fidelity of the extracted graphs, we benchmark vessel (link) prediction. As a second task, we
benchmark vessel (node) classification into the three main classes (capillaries, arterioles/venules, and
arteries/veins), which represent biologically meaningful classifications by vessel size, and whose
relevance for hemodynamics has been demonstrated in stroke and oxygenation modeling [S].

1.1 Whole brain vascular imaging and segmentation

Novel imaging methods, e.g. tissue-clearing-based methods [9-H12]], VesSAP [6], Tubemap [7] and
the work by diGiovanna et al. [13] have enabled the imaging of the full vascular structure on a
whole-brain scale [[1]].

The segmentation of the resulting ultra-large and unbalanced images with thousands of pixels in
each dimension (e.g. 3096 x 4719 x 1867 pixels [6]) is a challenging computer vision task which is
strongly affected by technical imaging imperfections. The best-performing segmentation approaches
rely on deep learning, e.g. using the U-Net architecture, and are only trained on selected, manually
annotated sub-volumes of the whole brain images [6l (7, [1]], leading to further imperfections in the
segmentation masks.



Figure 2: Left: 3D imaging of the whole mouse brain vasculature [6]] and right; the corresponding
rendering of our whole brain spatial vessel graphs; the edges (vessels) are rendered with the average
radius feature.

The process presented in our work commences with segmentations of whole-brain vessel images, for
which we use publicly available data from lightsheet microscopy (VesSAP), two-photon microscopy
and a synthetic blood vessel dataset. For details refer to Appendix [B:4] In the future, we will
continuously increase the dataset with whole-brain images and segmentation as they become publicly
available.

1.2 Graph learning

Machine learning on graphs is a highly relevant research field which aims to develop efficient machine
learning algorithms exploiting the unique properties of graphs, such as structure neighborhoods and
the sparse representation of complex systems. Our work concerns a particularly challenging domain
- spatial, structured and ultra large biological graphs. In this paper we utilize and benchmark two
fundamental graph learning tasks: node classification and link prediction to study the biological
properties of the vascular connectome.

A widely recognized concept for node classification is the adaption of deep learning techniques to
graphs via graph convolutional networks (GCN) [14]], a concept which was adapted and extended
for many of the algorithms that we implemented, such as such as GNNs, GCNs, and GAEs [15H23]].
A key approach for link prediction is a so-called labeling trick [24], which is a concept to generate
sensible training data. The SEAL labeling trick used in our work constructs a subgraph for two
candidate nodes (enclosing subgraph) and aims to learn a functional mapping on the subgraph to
predict link existence [23]).

1.3 Our contribution
Our main contributions are:

1. We extract a set of standardized whole-brain vessel graphs based on whole, segmented
murine brain images.

2. We publicly release said dataset in an easily accessible and adaptable format for use in
graph learning benchmarking by implementing the open graph benchmark (OGB) [26] and
PyTorch Geometric data loaders [27]).

3. In addition to our standard vessel graph, in which bifurcation points are nodes and vessels
are edges, we propose an alternative representation of the vascular connectome as a line



graph (where vessels become nodes), enabling the use of a multitude of advanced node
classification algorithms for vessel property prediction.

4. We extensively benchmark graph algorithms for the biologically important tasks of link
prediction and node classification, which can serve as baselines for further research efforts
in graph learning and neuroscience.

The rest of the paper is organized as follows: In Section[2] we describe our refined graph generation
process and provide implementation details for the used voreen framework and compare to other
graph generation methods. We introduce the structure of our 3D brain vessel graph and provide
statistics on the different extracted graphs from different brains in Section[3.1] We describe how we
generated an alternative line graph representation in Section[3.2} In Section 4] we benchmark the
link prediction task and in Section[5] we benchmark the node classification task on a multitude of
baseline algorithms. We conclude with a focused discussion of our contribution and outline future
perspectives and topics related to dataset maintenance.

2 Graph extraction from segmentations

Our graph extraction protocol begins with a given segmented whole-brain vascular dataset. In-
dependent of segmentation method used (deep learning or filter-based), we tested the following
state-of-the-art graph extraction algorithms: 1) the TubeMap method [[7] which uses pruning on a 27-
neighborhood skeletonization after a deep learning based tube-filling algorithm, based on a modified
Deep VesselNet architecture [28]]; 2) the metric graph reconstruction algorithm by Aanjaneya et al.
[29] which reduces linear connections of a skeleton to form a more compact and topologically correct
graph and 3) the Voreen vessel graph extraction method [30} [31]]. We tested the graph extraction
algorithms on different imaging modalities, varying brain areas, and the synthetically generated
vascular trees [32]].
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Figure 3: Extracted spatial vessel graph on a synthetic vessel volume [32]]; the graph is extracted
using the Voreen software [30]]; a) the original vascular segmentation rendered in rendered in grey;
b) depiction of the centerlines in red for a zoomed-in section; c) the nodes with a discrete colorbar
encoding their degree; d) depiction of the segmentation with the edges and a continuous colorbar
encoding the radius.

After expert-level evaluation of the extracted graphs in terms of feature quality, graph robustness and
pipeline parameters, and of the algorithms in terms of scalability, runtime and resource constraints, we



selected Voreen [31]] for our graph generation. For details and comparisons we refer to Supplementary
section

Voreen (Volume Rendering Engine) is a general framework for multi-modal volumetric dataset
visualization and analysis purposes. One key advantage of Voreen compared to other graph generation
algorithms, is that its graph extraction process is deterministic, robust and scalable. It has successfully
been applied to cosmological visualization [33]], visualization of large volumetric multi-channel
microscopy data [34], 3D visualization of the lymphatic vasculature [35], 3D histopathology of
lymphatic malformations [36] and velocity mapping of the aortic flow in mice [37].

Our graph extraction follows a four-stage protocol:

1. Skeletonization: The binary segmentation volume is reduced to a skeleton based representa-
tion by applying a standard topological thinning algorithm by Lee et al. [38].

2. Topology Extraction: memory efficient algorithms extract the vessel centerlines [39]. Voreen
allows to store this intermediate representation in a combination with the graph.

3. Voxel-Branch Assignment: Computing of mapping between the so-called protograph (i.e.
the initial graph) and the voxels of the binary segmentation.

4. Feature Extraction: On basis of the protograph and the mapping, several features can be
computed from the foreground segmentation.

Multiple iterations of the four-stage protocol refine and improve the graph quality and prune small,
spurious branches. The key optimization parameter for the graph structure in terms of node rep-
resentation, and node statistics is the bulge size. Expert neuroscientists determined the parameter
(bulge size = 3, a parameter choice in line with previous work [31]) by statistically comparing the
resulting graphs, and visually interpreting the vascular connections in varying brain regions (compare
Supplementary Figure 6). Still, known limitations of topological thinning-based methods for graph
extraction exist [31]], motivating our first baseline task, presented in SectionE}

3 3D vessel graph dataset

Complete Datasets

Name Number of Nodes | Num of Edges Node Degree
BALBcl [6] 3,538,495 5,345,897 3.02
BALBc2 3,451,306 5,193,775 3.01
BALBc3 2,850,347 4,097,953 2.88
C57BL/6-1 3,820,133 5,614,677 2.94
C57BL/6-2 3,439,962 5,070,439 2.95
C57BL/6-3 3,318,212 4,819,208 2.90
CDI-E-1 3,645,963 5,791,309 3.18
CD1-E-2 1,664,811 2,150,326 2.58
CDI1-E-3 2,295,360 3,130,650 2.73
C57BL/6-K18 [1]] 4,284,051 6,525,881 3.05
C57BL/6-K19 3,948,612 5,999,958 3.04
C57BL/6-K20 4,165,085 6,317,179 3.03
Synth. Graph 1 [32] || 3159 3234 2.05
Synth. Graph 2 3349 3421 2.04
Synth. Graph 3 3227 3310 2.05
Synth. Graph 4 3178 3251 2.05
Synth. Graph 5 3294 3376 2.05

Table 1: Total number of edges, nodes and average node degree for the different whole brain graphs.

Our 3D vessel dataset features 17 graphs from 2 different imaging modalities as well as 5 sets of
synthetic vascular graphs. We found the smaller synthetic graphs useful for prototyping since they are
smaller in size and cover all three classes of vessels (arteries, arterioles and capillaries). For all real
vessel graphs, the full 3D images and binary segmentations are also publicly available. An overview
of the notation used throughout the following sections alongside typical values can be found in Table



3.1 Vessel graph G

The output of the Voreen graph extraction pipeline represents our primary unweighted and undirected
graph or “intuitive” vessel graph. Let this graph be denoted as G = (V, ), where V is the set of
nodes and £ is the set of all the edges of the graph.

Nodes: From a biological perspective, each node n € V in our graph either represents end points
of the vessel branches or the bifurcation of vessel branches, (see Figure d)). Bifurcation points are
the points where a larger vessel branches into two or more smaller vessels (in case of an artery) or
smaller vessels merge into a large vessel (in case of a vein). The number of vessels branching from
a bifurcation point defines the degree of that particular node. Bifurcation points have node degree
of 3 or higher. In some cases, our graphs also have vessel endpoints, which are encoded as nodes
of degree 1. Further, degree 2 nodes are generated by the graph extraction in cases when vessels
exhibit a large curvature. These nodes are important to preserve the vessel curvature in its graph
representation. For a statistical evaluation of the node degree please see Supplementary Figure 0]

Feature Overview

Name Feature Type Value Description

Tn node feature 178,3096| * x-coordinate

Un node feature 808,4719] * y-coordinate

Zn node feature 0, 1866] * z-coordinate

an node feature {0,1}"* Allen mouse brain atlas region
i edge feature 0.5, 38.65 mean of minimum radii
oy edge feature 0.0,12.49 std. of minimum radii
Hij edge feature [0.79, 38.65] mean of average radii
o5 edge feature [0.0,11.99] std. of minimum radii
uf% edge feature [0.91,44.12] mean of maximum radii
O’é edge feature 0.0, 23.64 std. of minimum radii
i edge feature 0.04,1.99 mean of roundness

() edge feature 0.0,1.0] std. of roundness

lij edge feature 2,322.81] vessel length

dij edge feature 1.77,300.36] | shortest distance

Pij edge feature 0.18,27.43] curvature

o edge feature 0.29,1587.49] | mean crosssection area
Vij edge feature 1.0,119459] Volume of vessel

nV;; edge feature 0.0,256] NN | no. of voxel in vessel
v edge feature 1,14]NN degree of n; of edge e;;
Vg- edge feature [1,14] NN degree of n; of edge e;;

Table 2: Systematic overview of the notation of the existing node and edge features in our spatial
vessel graphs. All features besides the Allen brain atlas region and the node degree are spatial
and extracted using Voreen, discrete ranges are given for the Balbcl brain (* subject to imaging
resolution).

Node features: We extract two important features for the nodes of graph G. For each node, the key
features are the physical location in the coordinate space and the anatomical location in reference
to the Allen brain atlas [40]]. For the physical location feature, we denote real valued coordinates
[Ty Yn, 2n] € R3 VN € V where [2,, Yn, 2,] is the location of node n in 3D space. Further, multiple
prior works have shown that regional differences in vessel geometry can be observed in different
brain regions [, 41} 16]. This motivates us to include anatomical location features for the nodes.
Hence, we register the whole segmentation volume to the Allen brain atlas. Our reference Atlas
uses the ontology the Allen mouse brain atlas (CCFv3 201710). We use the average template.
After appropriate downsampling of the Allen brain atlas and the images, we apply a two-step-rigid
and deformable registration using elastix. Our protocol is thus identical to the Vessap paper[6].
Subsequently, we assign the brain region where a particular node is located in the brain atlas as
anatomical node location feature, see Supplementary Figure[/| Formally, the anatomical location
feature a,, = ¢ Vn € Vif [y, Yn, 2n] € Ac, Where A, is the ¢™ region of the brain atlas. The atlas
includes 71 brain regions which are hierarchically clustered from > 2000 subregions. The anatomical
location feature is embedded as a one-hot encoded vector.
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Figure 4: Depiction of an exemplary vessel tree with the the spatial vessel Graph G(V, £) with nodes
(V) and edges (&); additionally, a line graph L(G) of the spatial vessel graph G ; where each node
(bifurcation point) becomes an edge; two nodes of L(G) are adjacent if and only if their edges are
incident in G.

Edges: Each edge ¢;; € £ in our graph represents vessels or vessel segments which connect two
nodes V, see Figure ] These edges (vessels) determine the structure of the whole brain network
and represent the core aspect of our research questions. The edges exhibit the following rich set of
features, which are extracted based on the shape and topology of the given segmented images.

Edge features: We extract geometric properties for each of the edges. For that, we determine
the maximum diameter inscribed circle, least square reference circle, and minimum circumscribed
circle on the discretized cross-section of a vessel branch and compute their radius as {ry;}, {7}

and {Rfj} where £ = 1 : K for K number of cross section of the edge e;;, respectively. From this,
we compute the mean and standard deviation of the minimum, average and maximum radius for
each edge e;; as follows. Specifically, 11;;, 07; denotes the mean and standard deviation of minimum

radius of edge e;;. We extend the same notation for mean and standard deviation for {Ffj} and {Rfj}
k

r 7 R , R ; ; ko Tij
as pi;, 055, Wiy Hi; respectively. We compute the roundness of each cross section as o;; = R We

ij

denote the mean and standard deviation of roundness as 417; and o7, respectively. Further, we extract
. lis

the vessel length [;;, shortest distance between two nodes of an edge d;;, curvature p;; = 75, mean
¥

cross section are o;;. Moreover, we use the degree of the nodes n; and n; for an edge e;; as v; and

v;, respectively. The complete set of edge features can be found in Table Q

3.2 Line vessel graph L(G)

As an alternative representation of whole brain vessel graphs, we convert our vessel graphs G to a
corresponding line-graph representation, L(G)[42]]. A line graph (depicted in Figure is a graph
where the edges of the base graph G become nodes and an edge between the new nodes is created
if and only if their edges are incident in £. Edges are the most important aspects in our graph &
because of their one-to-one correspondence to the vessels. Therefore, we wish to apply another set of
graph-learning algorithms, namely node classification algorithms, to study their biological properties
based on the rich set of vessel features. Hence, we construct an alternative representation with the
help of line graph L(G). We formally define L(G) := (V',£’) where V' = € and £’ = {{e;;, eir} if
3 (61'3', eik) S 5}

Nodes: Now, the nodes in the line graph )’ represent vessels or vessel segments, see Figure

Node features: Thus, all edge features of G can now be used as node features for L(G), see Table
One of the key advantages of constructing the line graph is that we can now leverage a large number



of prior techniques presented in node classification literature such as the use of vessel features in
message passing.

Edges: Edges are defined as pairwise adjacencies of two nodes (vessels) if and only if the corre-
sponding edges in G are connected to a node V. In practice, this means that nodes in G which are of
degree 1 disappear in L(G) and that each node in G with a degree > 2 will create multiple edges in
L(G).

Edge features: The spatial location given as node features in G can now be added as an edge
feature.

4 Benchmarking link prediction

The formal goal of link prediction is to train a classifier / which predicts links in Spre J a8 positive

and negative labels, it can be formalized as follows F : &, ,,q — {0,1}.

From a biological perspective this task is relevant to correct missing and imperfect vessel graph
connections, because the extracted graph may be over- or under-connected, due to artifacts and
shortcoming of the segmentation and network extraction.

In order to provide initial baselines for vessel (link) prediction, we implemented 10 models. The
following graph learning baselines were trained without edge features: the GCN by Kipf et al. [14], a
GNN using the GraphSAGE operator [[17] and the SEAL GNN, a network aiming to learn general
graph structure features from the local subgraph [25]]. Furthermore, we trained a multilayer perceptron
(MLP) on full batches based on Node2Vec features [43]]. Apart from these, more traditional, heuristic-
based methods were implemented for the task of link prediction, which include the Katz index [44],
Common Neighbour, Page Rank and Adamic Adar [45]], a measure which computes the closeness of
nodes. These traditional methods make predictions based on the graph structure itself.

4.1 Dataset curation - SEAL

Link sampling strategy: The curation of a balanced training dataset requires the introduction
of two types of edges. Similar to the SEAL paper [25], we use the notion of positive edges and
negative edges. Generally, positive edges are random samples of existing links and negative edges
are samples of non-existent links between randomly chosen nodes of the dataset (which are included
in the adjacency matrix). For positive edges, we utilize random samples of the existing edges of each
graph. However, since our dataset includes 3D coordinates as the node features, their spatial nature
makes selecting negative samples more challenging. A trivial random selection, which has been used
in other state-of-the-art methods such as SEAL, would lead to biologically implausible edges, e.g. an
edge between two nodes in different brain hemispheres. These can be easily distinguished based on
the coordinates and thus would not provide useful information to the model. As such, models trained
with trivial random sampling struggle with the link prediction task. To address this issue, we restrict
negative edge sampling to a coordinate space which spatially surrounds the source node, and choose
the target node by randomly selecting nodes that are located within the following cubic space around
the source node: § = E + 20, where E denotes the average vessel length in G. We note that this
link sampling strategy is a first baseline and could be improved upon in future work.

Experiment: For our GCN based architectures we did an extensive grid-search of hyper-parameter
combinations on a subset of the whole brain graph. We subsequently trained on the whole brain
graphs. This intermediate step was necessary because exploring thousands of hyper-parameter
combinations on the whole brain dataset is computationally infeasible. Implementation details and
details on the hyperparameter search are indicated in supplementary Table [5]

For the main experiment we sample all edges from one whole brain graph as positive edges G(V, &)
(BALBc-1, Vessap, see Table [[)and randomly assign these to the training, validation and test set
(80/10/10 split). Moreover, we sample an identical number of negative edges, i.e. non-existent but
theoretically probable links according to the curation criterion described above. Next, we randomly
shuffle all negative edges. Thus, we mitigate any bias in the negative train, validation and test splits
and ensure a region-independent distribution. Subsequently, we randomly assign the negative edges



to the train, validation and test set (80/10/10 split). This provides us with a balanced datast in regards
to positive and negative edges.

We choose to only use the spatial node features for our experiment: x,,, ¥, z,. This task is very
hard because the algorithm essentially has to learn the vascular graph hierarchy purely on undirected
relational and spatial information.

Table 3: Results for the link prediction baselines.

Algorithm ROC AUC
validation test

Adamic Adar 48.49 48.49
Common Neighbors 48.50 48.49
Resource Allocation 48.49 48.50
Matrix Factorization 50.07 50.08
MLP 57.98 58.02
GCN GCN 50.69 50.72
GCN GCN + embeddings 51.32 51.13
GCN SAGE + embeddings 52.81 52.88
GCN SAGE 59.37 59.23
SEAL 91.01 90.96

Generally, traditional methods and simple GCN models performed poorly. Among the traditional
methods tested, the MLP performed best. On the other hand, the SEAL implementation reached
a superior performance and a strong inductive bias (ROC AUC > 90%). This improvement is in
line with recent literature [24]], which found a considerable performance improvement as a result of
the employed labeling trick. This highlights that complex, dedicated graph-learning concepts need
to be developed to address biologically inspired spatial graph challenges. A detailed experimental
description and interpretation can be found in the Supplementary material, section[D.T]

5 Benchmarking vessel attribute classification

Our formal goal of node classification is to train a classifier 7 which predicts a class label Y out of a
set of possible classes NV,, of a node V, it can be formalized as follows F : V — Y € N,,.

Biologically, this task is relevant because the vessel radius is one of the most important parameters
for blood flow; any task associated with flow modelling (such as stroke diagnosis and treatment) is
heavily dependent on the diameter of the affected vessel. For example in stroke, a different treatment
option is chosen based on the size of the vessel in the context of its local network topology. Therefore,
reliably classifying vessel segments into categories such as arteries/veins, arterioles/venules and
capillaries is relevant.

For the secondary task of vessel radius (node) classification we implemented 7 graph and non-graph
learning baselines discussed in the OGB paper [26]. Among them node classification using an
MLP initialized on N2Vec [43]], a simple GCN [14], a GNN using the GraphSAGE operator [17],
the GraphSAINT algorithm which includes a mini-batch GCN[16], the Scalable Inception Graph
Neural Networks (SIGN)[18] and the Cluster-GCN algorithm[20]. Furthermore we implemented
SpecMLP-W + C&S and SpecMLP-W + C&S + N2Vec, which use shallow models ignoring graph
structure and standard label propagation techniques from semi-supervised learning methods [22]].

Experiment: We split our three classes according to the minimum radius feature 4.;; into classes of
pi; < 15um; 15—40um and > 40pm. Defined by the anatomy and properties of oxygen distribution
these three classes are highly imbalanced. E.g. for the Vessap datasets the distribution is roughly
95%, 4% and 1%. Similarly to the link prediction task we carried out a grid search for optimal
hyper-parameters, see Supplementary Table[6] We randomly split the nodes into train, validation and
test sets of (80/10/10) of one whole mouse brain (BALBc-1, Vessap, see Table EI) ‘We choose to use
the following node features for our experiment: /;; , d;; and p;;.

For node classification, we find acceptable to high performance in our baselines by all the methods
we tested. More complex graph models such as GraphSAGE and Cluster-GCN outperform simple
GCNs on average over all metrics. According to the metrics which account for class imbalance i.e.



Table 4: Results of the implemented node classification baselines. The performance scores are the
weighted F1 score, one versus rest ROC AUC, class balanced accuracy and total accuracy (ACC).

F1 Score ROC AUC Balanced ACC ACC
valid test valid test valid test valid test
GCN 75.74 75.75 67.23 66.46 58.38 56.83 62.94 62.92
GraphSAGE 81.98 8198 | 77.35 | 77.18 | 71.82 | 71.33 | 72.02 71.98
GraphSAINT 77.46 77.40 71.38 70.71 63.74 62.51 64.88 64.84
SIGN 74.46 74.49 67.26 66.04 57.90 55.88 61.25 61.27
Cluster-GCN 86.10 | 86.06 | 77.91 | 77.43 | 72.23 | 7T1.87 | 77.47 | 7741
MLP 76.11 76.11 58.08 57.79 42.36 41.72 63.65 63.61
SpecMLP-W + C&S 84.48 84.55 58.12 58.54 | 42.20 42.93 75.84 75.91
SpecMLP-W + + N2Vec 80.53 80.63 66.69 66.20 59.04 57.90 69.99 70.10

ROC AUC and balanced ACC, graph neural networks outperform non-graph learning methods, for a
detailed interpretation see Supplementary[D.2]

6 Discussion

In this work, we introduce and make publicly available a large dataset of vessel graphs representing
the most comprehensive and highest resolution representation of the whole vascular connectome
to-date. We provide this set of graphs as a new “baseline dataset” for machine learning on graphs and
make it re-usable and easily accessible by leveraging widely employed open standards, such as the
OGB and PyTorch Geometric dataloaders.

To provide an example for the utilization of our dataset and to promote graph machine learning
research in neuroscience, we provide two benchmarks: First, we benchmark vessel (link) prediction
to improve the vascular connectome; second, we implement vessel (node) classification into three
main anatomical categories on the line graph. We thus show that graph learning-based methods
outperform traditional methods for vessel (node) classification. Moreover, we demonstrate that link
prediction based solely on the spatial organization is a difficult task for most algorithms. However,
we provide evidence that the combination of an appropriately chosen, complex GNN model (SEAL)
with a labeling trick can achieve high accuracy on this task, paving the way for dedicated machine
learning research on spatial (biological) graphs as a key to unlocking biological insight.

Dataset bias: While the dataset and the evaluation we provide are thorough, we note the following
bias in our work: Our vascular graphs are constrained by the technical bias and limitations inherent to
experimental imaging, such as artifacts in the clearing protocol and physical limitations concerning
the resolution and isotropy of the microscopy. All specimen imaged in this study are males. Moreover,
even state-of-the-art deep learning methods for segmentation presented in literature are only trained
on incomplete sets of labeled data, leading to a model bias in segmentation. Further problems can
occur from the known limitations of topological thinning-based methods for graph extraction [31].

Limitations: The sum of these effects and bias can impair the usefulness of our dataset for certain,
highly specialised tasks, such as flow simulations using the Navier-Stokes equations, which are
strongly dependent on accurate radius measurements.

Moreover, benchmarking all available features, data and concepts was beyond the scope of our work.
For instance, an extension to heterogeneous graph representations [46, |47]], the utilization of more
features, the inclusion of more than one graph or of weighted graphs, where e.g. all edges (vessels)
are weighted depending on an embedding of their radius, may facilitate an improved interpretation. In
summary, we are convinced that both the machine learning concepts and the biological insight arising
from our work can be translated to other tasks, such as graph extraction and refinement on different
vascular or neuronal imaging techniques, artery and vein classification, and even vessel classification
in inherently different medical imaging protocols such as angiography for stroke diagnosis. We are
thus hopeful that our provision of high-quality data and strong baselines will stimulate future research
in this area.
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