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ABSTRACT

Multimodal Large Language Models (MLLMs) integrate the linguistic capabili-
ties of LLMs with the ability to process multimodal data, enabling them to address
a wider array of tasks. However, a comprehensive and standardized benchmark for
evaluating MLLMs’ complex visual reasoning performance in multimodal tasks
has yet to be established. We introduce GridAgent, a versatile 2D grid-based
framework that serves as a benchmark for assessing five essential capabilities of
MLLMs: execution, perception reasoning, memory, learning, and planning.
The framework includes twelve unique game tasks specifically designed to avoid
overlap with the model’s pre-training corpus. Each task targets at least one core
competency and is enriched with diverse semantic information. Additionally, the
game layouts are randomly generated, ensuring a more rigorous and authentic
assessment of the MLLMs’ capabilities. Experimental results indicate that al-
though certain MLLMs excel in specific capabilities, none exhibit a comprehen-
sive skill set comparable to the human baseline. Our work can be seen at: https:
//iclr2025gridagent.github.io/GridAgent-website/.

1 INTRODUCTION

(a) Classification (b) Counting (c) Sorting (d) Puzzle (e) Selection

(f) Maze (g) Maze* (h) Placement (i) Filling (j) Decode

Figure 1: The various game preview in GridAgent, arranged from top left to bottom right are:
Classification, Counting, Sorting, Puzzle, Selection, Maze, Maze*, Placement, Filling and Decode.

Large language models (LLMs) have demonstrated significant success across language-based
tasks (Brown et al., 2020; Sharan et al., 2023), laying a strong foundation for advancements in
artificial intelligence. Following this success, multimodal large language models (MLLMs), which
integrate multiple data modalities such as images (Wang et al., 2024e), videos (Cai et al., 2024; Wang
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et al., 2024b) and speech (Çoban et al., 2024; Cappellazzo et al., 2024), are also experiencing rapid
growth and development. By fusing diverse information sources, MLLMs enable AI to learn and
reason (Gao et al., 2024) across different modalities, bringing it closer to human-like cognition (Du
et al., 2024). This cross-modal learning capability (Li et al., 2022) enhances the flexibility and gen-
eralization of AI systems, potentially leading to more comprehensive decision-making (Chen et al.,
2024a) and transfer learning (Wu et al., 2024b), which are viewed as important steps toward the
realization of artificial general intelligence (AGI) (Morris et al., 2024).

While research on large LLMs has increasingly concentrated on evaluating and improving their
advanced capabilities, such as reasoning (Hendrycks et al., 2020; Shinn et al., 2023), problem-
solving (Zhong et al., 2023; Park et al., 2023), and long-tern planning (Hong et al., 2023; Ahn
et al.), much of the MLLM research still primarily focuses on the effectiveness of these models in
understanding images and other non-text modalities. There is currently no comprehensive and uni-
fied benchmark to evaluate whether MLLMs, after acquiring such multimodal understanding, can
demonstrate the same remarkable capabilities across multimodal tasks as LLMs do in natural lan-
guage processing (Radford et al., 2019; Nasution & Onan, 2024). The absence of such a benchmark
hampers the ability to systematically assess and compare the performance of different MLLMs,
making it challenging to identify their strengths and weaknesses. This lack of standardization may
also slow down progress in the field, as researchers and practitioners lack clear metrics to guide their
work, ultimately hindering the development of more capable and versatile AI systems.

In this work, we introduce GridAgent, a benchmark specifically designed for evaluating MLLM
agents. To assess the gap between MLLMs and human-level capabilities (Lake et al., 2016; Xie
et al., 2024; Koh et al., 2024), we draw inspiration from the widely recognized human intelligence
test (Smith & Gasser, 2005), Wechsler Intelligence Scales (Guertin et al., 1966; Zhu et al., 2004; Park
& Demakis, 2017), and propose five essential abilities that MLLMs require: execution, perception
reasoning, memory, learning and planning. We design a series of tasks to evaluate the individual
capabilities of MLLMs, alongside composite tasks that assess more complex abilities, such as the
integration of memory and planning (Xu et al., 2024b). Our tasks also feature varying difficulty
levels to test the performance of more advanced MLLMs. Additionally, we pre-configure a variety
of background images containing semantic information and incorporate different types of game
items to construct specific semantic scenes. To ensure variability, each game is initialized with a
randomized layout. This multi-dimensional evaluation framework aims to assess the generalization
and robustness of MLLMs, offering a more comprehensive measure of their performance beyond
reliance on pre-training data (Zhang et al., 2024b).

Experimental results show that GPT-4o (OpenAI, 2024) outperforms other models, achieving the
highest success rate across most tasks and demonstrating a significant advantage in planning-related
tasks. Other models exhibit strengths in specific areas; for instance, Qwen2 (Yang et al., 2024) excels
in abstract perception reasoning tasks. However, no MLLM currently possesses a comprehensive
capability comparable to that of humans, with some models even performing worse than random
baselines, falling well below human benchmarks.

Our contributions are as follows:

• We propose five key abilities, inspired by the Wechsler Intelligence Test, to evaluate both
the individual and composite capabilities of MLLMs.

• We introduce GridAgent, the first unified game benchmark specifically designed for
MLLMs, featuring diverse semantic environments, randomized layouts, and varying dif-
ficulty levels to ensure a generalizable and robust assessment.

• We conducted standard tests on seven MLLMs, and our empirical results highlighted the
current capability deficiencies in these models.

2 RELATED WORKS

2.1 MULTIMODAL LARGE LANGUAGE MODELS

LLMs (Ouyang et al., 2022; Touvron et al., 2023; Chung et al., 2024) have evolved from processing
solely text-based inputs to exhibiting multimodal capabilities. This advancement has significantly
expanded the applicability of MLLMs in areas such as image description (Liu et al., 2016; Tan et al.,
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2024), image reasoning (Ilievski & Feng, 2017; Wang et al., 2024d; Xiao et al., 2024), and visual
question answering (VQA) (Gaur et al., 2024; Wang et al., 2024a), bringing us closer to the ultimate
goal of AI research: general artificial intelligence (AGI) (Zhong et al., 2024), which aims to develop
systems capable of matching or surpassing human-level performance across diverse domains.

2.2 MLLM BENCHMARK

Many benchmarks have been introduced to assess the capabilities and performance of MLLMs.
However, most of them primarily focus on evaluating MLLMs’ ability to process and understand
multi-modal data, such as image comprehension and analysis (Li et al., 2023; Xu et al., 2023; Yin
et al., 2023; Yu et al., 2023; Fu et al., 2024). In addition to these, some benchmarks specifically
evaluate MLLMs’ capacity for human-level planning (Chen et al., 2024b), while others focus on
improving the models’ ability to make embodied decisions (Chen et al., 2023). While these assess-
ments offer valuable insights into MLLMs’ performance on individual tasks, there is currently no
comprehensive benchmark, akin to GLUE (Wang et al., 2019; Sarlin et al., 2020) for LLMs, that
evaluates MLLMs across a diverse range of tasks. Furthermore, existing benchmarks lack a system-
atic definition of MLLMs’ capabilities and do not offer a well-defined classification of assessment
tasks, as seen in HELM (Liang et al., 2023) and BIG-Bench (Srivastava et al., 2023).

Using games (Bellemare et al., 2018; Juliani et al., 2019; Samvelyan et al., 2021; Gan et al., 2021;
Chevalier-Boisvert et al., 2023) as benchmarking tools offers a unique approach to assessing LLM
capabilities. For example, SmartPlay (Wu et al., 2024d) integrates six classic games, including
Minecraft (Johnson et al., 2016) and Crafter (Hafner, 2021). It converts game scenarios into text-
based descriptions to evaluate core LLM abilities, such as instruction following and error correction.
GameBench (Costarelli et al., 2024) utilizes tabletop games to assess reasoning skills. Additionally,
concurrent studies have explored the use of board games (Topsakal et al., 2024) and open-ended
wargames (Hogan & Brennen, 2024) for benchmarking LLMs. While these benchmarks have sig-
nificantly advanced LLM development, they primarily focus on text-based evaluations and are not
well-suited for MLLMs.

Given that MLLMs are still in the early stages of development, game benchmarks based on existing
entertainment-focused games often overwhelm these models with excessive “redundant” details (Li
et al., 2024; Zhang et al., 2024a). While complex visual elements such as intricate character de-
signs, background scenery, and narrative dialogue enhance the experience for human players, they
do not meaningfully contribute to the models’ reasoning and problem-solving processes. Further-
more, many existing games have been documented extensively, which can give an unfair advantage
to MLLMs that have been pre-trained on data containing information about these games. As a result,
a benchmark that presents well-designed tasks with limited redundant visual complexity, avoids re-
liance on pre-documented games, and focuses on testing MLLMs’ reasoning, problem-solving, and
generalization abilities across novel, unseen scenarios would offer a more accurate and meaningful
evaluation of their capabilities (Wu et al., 2024a; Zhu et al., 2024).

To address this gap, we develop an original benchmark with well-defined objectives and metrics
(see Section 4) specifically designed for evaluating MLLMs. Our framework adopts the Gym in-
terface (Brockman et al., 2016) and introduces a set of game environments that strike an appropri-
ate balance between complexity and semantic richness. These environments are structured around
twelve pre-defined tasks (see Section 5) that are carefully designed to target and evaluate MLLMs’
core abilities. By incorporating five key abilities derived from human intelligence tests (see Sec-
tion 3), our benchmark allows for a precise assessment of the strengths and weaknesses of MLLMs,
offering a more focused and effective evaluation of their capabilities.

3 CAPABILITIES

The cognitive development of human provides essential insights for creating truly flexible and in-
telligent agents (Wu et al., 2024c; Sumers et al., 2024). By borrowing concepts from Wechsler
Intelligence Scales, a well-established framework for assessing children’s intelligence, we identify
five key abilities crucial for MLLMs.

3
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Exuction: All human actions originate from intentions (Searle, 1983). Similarly, MLLMs also
needs to transform their understanding of goals into actions to achieve meaningful outcomes. We
define execution as the ability of MLLMs to carry out tasks based on their understanding of goals
and requirements. Whether navigating a virtual environment, manipulating objects, or interacting
with other agents, strong execution is crucial for MLLMs to turn abstract goals into real-world or
simulated behaviors, ensuring that their understanding of tasks translates into successful outcomes
by effectively carrying out the intended actions.

Perception Reasoning: Human cognition relies heavily on the ability to perceive and interpret
sensory information, forming the basis for reasoning and decision-making. In traditional reasoning,
particularly as it relates to LLMs, the focus is primarily on language, where reasoning processes
involve constructing thoughts and inferences articulated through linguistic constructs. In contrast,
we define perception reasoning as the ability of MLLMs to derive inferences and make decisions
directly from visual information, such as images. This process goes beyond merely understanding
images; it involves analyzing and reasoning about visual data to form logical conclusions, predict
outcomes, and guide actions. Perception reasoning is crucial because many future AGI challenges
will require handling multi-modal information (Guan et al., 2024), where reasoning directly from
visual inputs and integrating them with other sensory data is key to making comprehensive and
accurate decisions.

Memory: Humans utilize memory systems to store information and knowledge from past expe-
riences and apply them to current situations (Atkinson & Shiffrin, 1968). In MLLMs, memory
serves a similar role by allowing them to retain information (Wang et al., 2024c), build context, and
improve decision-making over time.” Memory allows MLLMs to integrate past observations and
learned knowledge into their reasoning process, which is essential for tasks that require an under-
standing of historical data or sequential patterns.

Learning: Learning is a fundamental aspect of human cognition, enabling individuals to acquire
new information, rules, and knowledge, and apply them to solve novel problems. Similarly, learning
in MLLMs refers to their capacity to absorb new information or rules and effectively utilize this
knowledge in decision-making and problem-solving scenarios. A key challenge arises when the
new information contradicts or contrasts with previously learned knowledge. For MLLMs, this is
particularly difficult when the model has not been fine-tuned on data containing these new rules, as
they need to reconcile conflicting knowledge without explicit retraining. Despite these challenges,
the ability to adapt to new information is crucial for AGI. Complex real-world problems often evolve
over time, requiring MLLMs to learn, adjust, and apply new knowledge dynamically, without re-
lying solely on pre-existing data or frequent fine-tuning, which can be expensive and slow. This
adaptability is essential for ensuring that MLLMs remain flexible and robust in diverse, changing
environments.

Planning: In human intelligence, planning plays a crucial role by allowing individuals to predict
future outcomes, devise strategies, and arrange actions in a structured sequence to achieve specific
objectives. In the context of MLLMs, planning refers to the capability to organize and prioritize
tasks, anticipate the consequences of actions, and execute multi-step strategies to address complex
problems. This ability extends beyond reactive decision-making, as it requires foresight, where
the model must account for long-term goals and carefully weigh the trade-offs between immediate
actions and future outcomes.

4 GAME MECHANICS

The games in GridAgent has been specifically designed with several mechanisms (see Figure 2) that
take into account both the strengths and weaknesses of MLLMs.

Diverse Semantic Scenes: In real-world applications, tasks of the same type often vary based on
their contextual scenarios. For example, a classification task might involve categorizing items such
as “placing apples and bananas into different baskets” in a supermarket, or “placing hamburgers
and sandwiches onto separate plates” in a canteen. While these scenarios differ in context, the
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Figure 2: A frame in GridAgent consists of a game scene map, a backpack, and a hint bar. We
provide a variety of agent appearances, diverse backgrounds, and a wide range of game items tailored
to each semantic scene. The backpack and items are labeled with different alphabetic letters and
numbers correspondingly to facilitate identification by MLLMs.

underlying behavioral logic remains the same. To capture these variations, we have designed a range
of environments, including supermarkets, canteens, and farms, along with corresponding game items
to create immersive, context-rich scenarios. This diversity in semantic scenes is crucial for assessing
the generalization and robustness of MLLMs. By testing the model across varying contexts, we can
evaluate whether it has developed the targeted abilities and can apply them effectively in different
scenarios, rather than relying solely on memorization of pre-training data.

Randomness: In addition to diverse semantic scenes, variability in game layouts plays a crucial
role in assessing the robustness of MLLMs. While semantic diversity introduces new contexts for
each task, randomness focuses on generating different layouts within the same task and scene. Each
game is initialized with a randomized arrangement of elements, such as game item placement or
agent starting positions, ensuring that no two game instances are identical. This randomness helps
reduce the variance in evaluating MLLMs’ abilities and ensure more consistent task performance.
By introducing layout variability, we can more accurately assess the adaptability and generalization
of MLLMs across repeated scenarios with the same underlying goals.

Backpack: Current MLLMs often struggle to maintain contextual consistency, especially when
handling hidden details not explicitly depicted in visual information. For example, an agent may
“pick up the key” in one step but fail to recall possessing it in later steps. To address this, we have
designed a backpack area as part of the game state, allowing agents to store and access important
state information over time. This feature helps MLLMs preserve memory of past actions, enhancing
their understanding of environmental changes and optimizing their reasoning abilities.”

High-level Actions: LLMs are not well-suited for executing atomic actions such as “go one step
forward” or “turn left” in games requiring high operability, partly because they take relatively long
to process each command in real-time interactive scenes (Gallotta et al., 2024). In contrast, LLMs
are better suited for handling abstract concepts and executing higher-level actions because they are
more likely to perform better at reasoning, decision-making, and planning over longer time horizons.
Based on this, each task in GridAgent provides LLMs with high-level actions. For example, the
agent can directly perform “pick up the basketball” rather than navigating step-by-step to its location
and interacting with it. This reduction in operational granularity not only alleviates computational
load, leading to more efficient processing and faster decision-making, but also ensures the model
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Table 1: Twelve games are included in GridAgent, each designed to evaluate at least one of the
MLLM’s capabilities in Appendix 3. Some tasks provide multiple difficulty levels to challenge
more advanced agents. The abbreviations A,Fo, Fr, T, S.E. refer to “Animal”, “Food”, “Fruit”,
“Toy” and “Specialized Environment” respectively.

Task Type Required Capacity Difficulty Levels Semantic Envs

Classification (CL) Execution L1/L2/L3 A,Fo, Fr, T
Selection (SE) Memory L1/L2/L3 A,Fo, Fr, T
Decode (DE) Learning L1/L2/L3 A,Fo, Fr, T
Maze (MA) Planning L1/L2/L3 S.E.
Filling (FI) Perception Reasoning L1/L2/L3 A,Fo, Fr, T
Puzzle (PU) Perception Reasoning (Abstract) L1/L2/L3 S.E.

Maze* (MA*) Planning + Memory L1/L2/L3 S.E.
Decode* (DE*) Learning + Memory L1/L2/L3 A,Fo, Fr, T

Sorting (SO) Learning + Planning L1/L2/L3 A,Fo, Fr

Filling* (FI*) Perception Reasoning + Memory L1/L2/L3 A,Fo, Fr, T
Placement (PL) Perception Reasoning + Learning L1/L2/L3 A,Fo, Fr, T
Counting (CO) Perception Reasoning + Planning L1/L2/L3 Fo, Fr

focuses on actions directly tied to meaningful game outcomes, avoiding the complexity of low-level
controls.

Identification: Each game scene item and the items in the agent’s backpack are assigned unique
numerical and alphabetical identifiers. These identifiers enable the MLLMs to associate visual el-
ements with text-based descriptions in high-level actions or goals, such as “put the object from
backpack A into object number 2.” This setup helps evaluate the models ability to link visual infor-
mation with contextual understanding and execute precise actions. These labels not only optimize
information retrieval but also reduce ambiguity in task execution, ensuring that the agent interprets
and interacts with the environment accurately. The combination of identification and high-level ac-
tions serves as a test of the MLLM’s ability to comprehend and reason about images in relation to
the game’s objectives.

5 TASKS IN GRIDAGENT

We design a series of tasks to evaluate the individual and composite abilities of MLLMs. Tasks
vary in difficulty to challenge both basic and advanced models, while randomized layouts and di-
verse semantic scenes further enhance the assessment of generalization and robustness. Detailed
information specifics for each task can be found in Appendix G.

5.1 SINGLE CAPACITY TASK

Classification (CL): In this task, the agent is required to place each item into its designated container
based on specific instructions, such as “placing the cherry in the yellow basket” and “placing the
peach in the blue basket” (see Figure 1a). It is designed to evaluate the MLLM’s Execution ability,
which involves translating an understanding of goals into effective actions. The agent’s performance
in this task measures its accuracy in following instructions within a structured environment. The task
is designed with varying difficulty levels, where more difficult tasks involve an increased number of
items and placement operations. By increasing the complexity of the task, we further assess how
well the MLLM can adapt to more demanding scenarios that require precise execution.

Filling (FI): During the filling task, the agent will be presented with an image in which a quarter
section has been removed, such as “a goldfish with a missing head” (see Figure 1i). Then it needs
to restore the image by selecting the correct missing piece from a set of distractors in the backpack.
This task primarily evaluates the MLLM’s Perception Reasoning ability, as it requires the agent to
develop a holistic understanding of the image and infer the missing part.
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Puzzle (PU): A target image composed of four puzzle pieces is displayed in the hint bar (see Fig-
ure 1j), and the agent needs to assemble the scattered puzzle pieces from its backpack to reconstruct
the target image. This task primarily evaluates the MLLM’s Perception Reasoning ability in ab-
stract visual mode, as it requires the agent to grasp the image’s overall structure, which cannot be
easily conveyed through language.

Selection (SE): In Selection, before the game start, some random items will appear in the left hint
bar (see Figure 1e). Once the game starts, these items will be hidden from players. The agent need to
select the items appeared in the hint bar before. This task evaluates the MLLM’s Memory capability
by requiring it to remember and recall the items previously shown. As the difficulty increases, the
number of items the agent is required to remember also rises.

Decode (DE): The agent is provided with a code table, which contains a certain number of associ-
ation rules between different items (see Figure 1j). The agent needs to first learn these correspon-
dences. When a target item appears in the top left corner of the frame, then the agent is required
to select the item that corresponds to the target based on the learned associations. This task pri-
marily assesses the MLLM’s Learning capability, as it requires the agent to understand the new
relationships presented in the code table and apply that knowledge to make an informed decision.
As the task difficulty increases, the complexity of the correspondences the agent must remember
also increases.

Maze (MA): This game is inspired by Procegon (Cobbe et al., 2019), where agent must obtain the
diamond in a maze with several locked doors. The agent needs to collect and use the corresponding
colored keys to unlock these doors (see Figure 1f). This task primarily evaluates the MLLM’s
Planning ability. Not every door needs to be opened, so the agent should carefully devise a strategy
to reach the diamond in as few steps as possible. As the difficulty increases, the number of necessary
doors to unlock also rises, and each action taken can significantly influence the agent’s subsequent
decisions.

5.2 COMPOSITE CAPACITY TASK

Maze* (MA*): This task follows the same rules as the “Maze” described in Section 5.1, with an
added challenge. Before the game begins, the agent is shown the location of the diamond, but
once the game starts, the diamond is hidden among several treasure chests. To succeed, the agent
must correctly open the chest containing the diamond (see Figure 1g). This task primarily assesses
the MLLM’s Memory and Planning abilities, as the agent must recall the diamond’s location and
devise an effective strategy to retrieve it.

Decode* (DE*): This task follows the same rules as “Decode” in Section 5.1. The agent must addi-
tionally remember the relationships indicated in the code table, which will disappear once the game
starts. This task primarily evaluates the LLM’s abilities in Memory and Learning, as it requires the
agent to retain and utilize the information from the code table to make accurate selections.

Sorting (SO): In the sorting task, the agent is presented with a rule that may contradict real-world
knowledge. For instance, the agent might be instructed that “the faster the animal, the heavier it is”.
The agent is then expected to correctly rank the animals based on this given rule. This task evaluates
the MLLM’s Learning and Planning abilities, as it requires the agent to not only comprehend and
integrate novel logic that may conflict with its prior knowledge but also apply it accurately in the
sorting process.

Filling* (FI*): This task follows the same rule as “Filling” in Section 5.1. The agent must addi-
tionally remember the target image, which will disappear once the game starts. This task primarily
evaluates the LLM’s abilities in Perception Reasoning and Memory, as it necessitates recognizing
the overall image structure and recalling specific details to identify the correct piece.

Placement (PL): The agent is required to place the item in the opposite position based on the given
goal. For instance, if the rule states “place the toy car on the north side of the toy train” (see
Figure 1h), the agent actually need to place it on the “south” side. This task primarily evaluates the
MLLM’s abilities in Perception Reasoning and Learning, as it necessitates an understanding of
placement rules and the awareness of spatial orientation.

7
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Counting (CO): The scene contains several piles of items, with quantities ranging from 1 to 3
(see Figure 1b). At the start of the game, the agent is given a target number and must collect
exactly that number of items. As the difficulty increases, more piles of items are introduced and
the target number grows, requiring the agent to gather more items from multiple piles. This task
primarily evaluates the MLLM’s Perception Reasoning and Planning abilities, focusing on the
agent’s awareness of item quantities and its strategic decision-making regarding how many items to
collect at once.

6 EXPERIMENTAL RESULT

We selected seven prominent MLLMs for a comprehensive evaluation, including GPT-4o (OpenAI,
2024), Gemini-1.5-flash (Team, 2024b), Qwen2-VL-7b (Yang et al., 2024), LLaVA-v1.6-Mistral-
7b (Liu et al., 2024), Deepseek-v1-7b (Team, 2024a), InternLM-XComposer2-7b (Zhang et al.), Phi-
v3.5-Vision (Abdin et al., 2024), and InternVL-Chat-v1.5 (Chen et al., 2024c). To ensure a robust
assessment, we first created 500 rounds of games for each task and tested all the above models on
the same set. We selected the option with the highest probability from the models’ outputs. Aligned
with the mainstream MLLM benchmarks (Chen et al., 2024b), we evaluate MLLM’s capabilities
through multiple-choice questions. This format facilitates the convenient calculation of accuracy as
an objective metric. Moreover, it enables us to thoughtfully design incorrect options to control the
quality and difficulty of our benchmark. We have included a detailed explanation of the evaluation
procedure in Appendix C of the appendix.

6.1 QUANTITATIVE ANALYSIS

We observed that most MLLMs performed reliably only at Level 1, with performance dropping sig-
nificantly, often approaching the random baseline at Levels 2 and 3 (see Appendix B.4). Therefore,
we focused on Level 1 results in this section to highlight scenarios where the models demonstrated
meaningful capabilities.

MLLMs still have considerable potential for enhancement as agents. For humans, these game
tasks are relatively easy to complete (see Appendix D). However, as shown in Tables 2 and 3, while
GPT-4o’s performance is impressive, a significant gap still exists between GPT-4o and the human
baseline, with GPT-4o achieving a normalized score above 90% only on MA/MA*/DE* tasks. Most
MLLMs, however, performed close to the random baseline across various tasks and still have a long
way to go to catch up with GPT-4o.

Different MLLMs exhibit significant variations in their abilities across different tasks. De-
spite the overall suboptimal performance, the data reveal that different MLLMs exhibit distinct
strengths. For example, GPT-4o excels in MA (1.00) and MA* (0.99) tasks that require strong plan-
ning abilities, while Deepseek surpasses other models in the PL(0.26) task. Additionally, InternVL

Table 2: Comparison of the normalized score (see specific calculation method in Appendix D.3) of
different MLLMs on single capacity test: Classification, Selection, Decode, Maze, Filling, Puzzle.

Level1 CL SE DE MA FI PU

Human 1.00 1.00 1.00 1.00 1.00 1.00
GPT-4o 0.88 0.48 0.72 1.00 0.52 0.26
Gemini 0.97 0.26 0.52 0.99 0.45 0.24
Qwen2 0.70 0.41 0.34 0.71 0.50 0.25
Internvl 0.61 0.32 0.26 0.90 0.38 0.22

DeepSeek 0.49 0.24 0.35 0.89 0.41 0.27
Phi3.5 0.42 0.26 0.25 0.83 0.38 0.25
Llava 0.37 0.25 0.25 0.88 0.34 0.25

InternLM 0.66 0.25 0.25 0.92 0.45 0.25
Random ≈ 0.67 0.25 0.25 ≈0.79 ≈0.27 0.25

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Comparison of the normalized score of different MLLMs on multiple capacity test: Maze*,
Decode*, Sorting, Filling*, Placement, Counting.

Level1 MA* DE* SO FI* PL CO

Human 1.00 1.00 1.00 1.00 1.00 1.00
GPT-4o 0.99 0.95 0.70 0.81 0.08 0.51
Gemini 1.02 0.80 0.57 0.52 0.22 0.42
Qwen2 0.11 0.38 0.87 0.39 0.19 0.50
Internvl 0.46 0.27 1.16 0.31 0.15 0.49

DeepSeek 0.17 0.26 0.69 0.27 0.26 0.42
Phi3.5 0.18 0.26 0.67 0.40 0.17 0.43
Llava 0.19 0.24 0.51 0.30 0.17 0.42

InternLM 0.19 0.26 0.54 0.19 0.24 0.44
Random ≈ 0.09 ≈ 0.25 0.60 0.28 0.17 ≈ 0.43

demonstrates an ability to quickly understand new rules, achieving a high score (1.16) beyond the
human baseline.

MLLMs have error correction capability and can learn from interactions. For tasks requiring
multiple steps, as shown in Table 3, the agent was initially provided with more steps than necessary
to complete the task, but this allowance was removed in the secondary test. Judging from the results,
when the temperature of all models was set to 0 and no indication was given that the MLLM had
made a wrong choice, the test with the maximum number of steps showed a significantly higher pass
rate. This demonstrates that even when an error occurs during interaction with the environment, the
MLLM can adjust its subsequent choices based on environmental feedback, rather than repeatedly
selecting an invalid action.

Some MLLMs perform better in the memory counterpart of certain tasks. GPT-4o and
Qwen2-VL exhibit better performance in DE* and FI* tasks compared to their non-memory counter-
parts, which appears counter-intuitive. However, in our evaluation, most MLLMs acquire memory
capabilities by treating previous information as history and concatenating it with the current state as
input for inference. Consequently, both the image to be remembered and the image representing the
problem state are provided in the prompt. This effectively allows MLLMs to “re-read” the problem,
potentially providing an advantage in inference, as observed in Xu et al. (2024a), where repeating a
question improves performance. A similar pattern is not seen in SE* and its counterpart, likely due
to the confusing information present in SE*’s problem state (e.g., extra fake treasure chests), which
undermines the effectiveness of the re-reading strategy.

6.2 QUALITATIVE ANALYSIS

MLLMs’ training data lacks image-only perception training. The PU task showed the low-
est success rate among all single-ability tasks, primarily because it relies solely on abstract image
perception. The task description only instructs participants to restore the target image without pro-
viding clear guidance on the restoration process. This separation between abstract visual content
and textual instructions makes the task inherently more difficult.

It is difficult for MLLMs to learn knowledge contradict ones from training data. Most
MLLMs perform poorly in the Sorting and Placement tasks, where they are required to learn new
knowledge that may contradict prior knowledge from their training data. For instance, in the PL
task, the best-performing MLLM achieved only 0.27 score, a result that falls within the fluctuation
range of random selection. This suggests that MLLMs struggle to adapt to novel or conflicting
information, particularly when it requires overriding existing knowledge embedded during training.
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Figure 3: The five-dimensional capability radar map testing against a human baseline, GPT-4o per-
formed the best, while the combined performance of the other models was relatively similar.

6.3 RADAR CAPABILITY CHART

To provide further understanding of the individual agent capabilities of MLLM, as discussed in
Section 3, we calculated the capability scores and generate a five-dimensional radar chart for each
MLLM (see in Figure 3).

For each MLLM, we compute the score for a given capability c by evaluating its performance across
all tasks ti associated with that capability (see in Appendxi F). The score is calculated as:

Sc =
1

n

n∑
i=1

Rti

7 CONCLUSION

In this work, we introduce GridAgent, a 2D grid-based game environment framework and a unified
benchmark for evaluating LLMs as agents. Leveraging the current strengths and weaknesses of
MLLMs, our environment provides a rich semantic context, random layouts, high-level actions, and
multiple-choice questions. It also offers user-friendly interfaces for developers to easily create game
environments tailored to MLLM training.

Building on criteria referenced in human intelligence tests, we propose five novel dimensions to
evaluate an MLLM’s ability to solve tasks: execution, perception reasoning, memory, learning, and
planning. Additionally, our initial release of GridAgent includes twelve goal-oriented tasks designed
to assess these capabilities.

We believe GridAgent will offer new datasets and tasks for the MLLM research community, con-
tributing to the continued development and enhancement of AGI.
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Arbi Haza Nasution and Aytuğ Onan. Chatgpt label: Comparing the quality of human-generated and
llm-generated annotations in low-resource language nlp tasks. IEEE Access, 12:71876–71900,
2024. doi: 10.1109/ACCESS.2024.3402809.

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

JoonSung Park, JosephC. O’Brien, CarrieJ. Cai, MeredithRingel Morris, Percy Liang, and
MichaelS. Bernstein. Generative agents: Interactive simulacra of human behavior. Apr 2023.

Sydney E. Park and George J. Demakis. Wechsler Intelligence Scale for Children,
pp. 1–4. Springer International Publishing, Cham, 2017. ISBN 978-3-319-28099-
8. doi: 10.1007/978-3-319-28099-8 1035-1. URL https://doi.org/10.1007/
978-3-319-28099-8_1035-1.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019. URL https://api.
semanticscholar.org/CorpusID:160025533.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, et al. Minihack the planet: A sandbox for open-
ended reinforcement learning research. CoRR, abs/2109.13202, 2021. URL https://arxiv.
org/abs/2109.13202.

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superglue:
Learning feature matching with graph neural networks, 2020. URL https://arxiv.org/
abs/1911.11763.

John Searle. Intentionality: an essay in the philosophy of mind. Cambridge University Press, 1983.

13

http://arxiv.org/abs/1604.00289
http://arxiv.org/abs/1604.00289
https://arxiv.org/abs/2311.17092
https://arxiv.org/abs/2311.17092
https://arxiv.org/abs/2012.15409
https://arxiv.org/abs/2407.02392
https://arxiv.org/abs/2407.02392
https://arxiv.org/abs/2211.09110
https://doi.org/10.1145/2964284.2973831
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2311.02462
https://arxiv.org/abs/2303.08774
https://doi.org/10.1007/978-3-319-28099-8_1035-1
https://doi.org/10.1007/978-3-319-28099-8_1035-1
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/2109.13202
https://arxiv.org/abs/2109.13202
https://arxiv.org/abs/1911.11763
https://arxiv.org/abs/1911.11763


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

S P Sharan, Francesco Pittaluga, Vijay Kumar B G, and Manmohan Chandraker. Llm-assist: En-
hancing closed-loop planning with language-based reasoning, 2023. URL https://arxiv.
org/abs/2401.00125.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. Mar 2023.

Linda Smith and Michael Gasser. The development of embodied cognition: Six lessons from babies.
Artificial Life, 11(1-2):13–29, 2005. doi: 10.1162/1064546053278973.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, et al. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models, 2023. URL https://arxiv.org/
abs/2206.04615.

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive archi-
tectures for language agents, 2024. URL https://arxiv.org/abs/2309.02427.

Wentan Tan, Changxing Ding, Jiayu Jiang, Fei Wang, Yibing Zhan, and Dapeng Tao. Harnessing
the power of mllms for transferable text-to-image person reid. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17127–17137, June 2024.

DeepSeek-AI Team. Deepseek llm: Scaling open-source language models with longtermism, 2024a.
URL https://arxiv.org/abs/2401.02954.

Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of con-
text, 2024b. URL https://arxiv.org/abs/2403.05530.

Oguzhan Topsakal, Colby Jacob Edell, and Jackson Bailey Harper. Evaluating large language mod-
els with grid-based game competitions: An extensible llm benchmark and leaderboard, 2024.
URL https://arxiv.org/abs/2407.07796.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding, 2019.
URL https://arxiv.org/abs/1804.07461.

Guanqun Wang, Xinyu Wei, Jiaming Liu, Ray Zhang, Yichi Zhang, Kevin Zhang, Maurice Chong,
and Shanghang Zhang. Mr-mllm: Mutual reinforcement of multimodal comprehension and vision
perception, 2024a. URL https://arxiv.org/abs/2406.15768.

Han Wang, Yanjie Wang, Yongjie Ye, Yuxiang Nie, and Can Huang. Elysium: Exploring object-level
perception in videos via mllm, 2024b. URL https://arxiv.org/abs/2403.16558.

Hengyi Wang, Haizhou Shi, Shiwei Tan, Weiyi Qin, Wenyuan Wang, Tunyu Zhang, Akshay Nambi,
Tanuja Ganu, and Hao Wang. Multimodal needle in a haystack: Benchmarking long-context
capability of multimodal large language models, 2024c. URL https://arxiv.org/abs/
2406.11230.

Zefeng Wang, Zhen Han, Shuo Chen, Fan Xue, Zifeng Ding, Xun Xiao, Volker Tresp, Philip Torr,
and Jindong Gu. Stop reasoning! when multimodal llm with chain-of-thought reasoning meets
adversarial image, 2024d. URL https://arxiv.org/abs/2402.14899.

Zhenyu Wang, Aoxue Li, Zhenguo Li, and Xihui Liu. Genartist: Multimodal llm as an agent
for unified image generation and editing, 2024e. URL https://arxiv.org/abs/2407.
05600.

Jiannan Wu, Muyan Zhong, Sen Xing, Zeqiang Lai, Zhaoyang Liu, Wenhai Wang, Zhe Chen,
Xizhou Zhu, Lewei Lu, Tong Lu, Ping Luo, Yu Qiao, and Jifeng Dai. Visionllm v2: An end-
to-end generalist multimodal large language model for hundreds of vision-language tasks, 2024a.
URL https://arxiv.org/abs/2406.08394.

14

https://arxiv.org/abs/2401.00125
https://arxiv.org/abs/2401.00125
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2309.02427
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2407.07796
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2406.15768
https://arxiv.org/abs/2403.16558
https://arxiv.org/abs/2406.11230
https://arxiv.org/abs/2406.11230
https://arxiv.org/abs/2402.14899
https://arxiv.org/abs/2407.05600
https://arxiv.org/abs/2407.05600
https://arxiv.org/abs/2406.08394


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Qiong Wu, Weihao Ye, Yiyi Zhou, Xiaoshuai Sun, and Rongrong Ji. Not all attention is needed:
Parameter and computation efficient transfer learning for multi-modal large language models,
2024b. URL https://arxiv.org/abs/2403.15226.

Siyu Wu, Alessandro Oltramari, Jonathan Francis, C. Lee Giles, and Frank E. Ritter. Cognitive
llms: Towards integrating cognitive architectures and large language models for manufacturing
decision-making, 2024c. URL https://arxiv.org/abs/2408.09176.

Yue Wu, Xuan Tang, Tom M. Mitchell, and Yuanzhi Li. Smartplay: A benchmark for llms as
intelligent agents, 2024d. URL https://arxiv.org/abs/2310.01557.

Yijia Xiao, Edward Sun, Tianyu Liu, and Wei Wang. Logicvista: Multimodal llm logical reasoning
benchmark in visual contexts, 2024. URL https://arxiv.org/abs/2407.04973.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Sil-
vio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments, 2024. URL https://arxiv.
org/abs/2404.07972.

Peng Xu, Wenqi Shao, Kaipeng Zhang, Peng Gao, Shuo Liu, Meng Lei, Fanqing Meng, Siyuan
Huang, Yu Qiao, and Ping Luo. Lvlm-ehub: A comprehensive evaluation benchmark for large
vision-language models, 2023. URL https://arxiv.org/abs/2306.09265.

Xiaohan Xu, Chongyang Tao, Tao Shen, Can Xu, Hongbo Xu, Guodong Long, Jian guang Lou,
and Shuai Ma. Re-reading improves reasoning in large language models, 2024a. URL https:
//arxiv.org/abs/2309.06275.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional abil-
ity? an investigation into limitations and scalability. In ICLR 2024 Workshop on Mathematical
and Empirical Understanding of Foundation Models, 2024b. URL https://openreview.
net/forum?id=4XPeF0SbJs.

An Yang, Baosong Yang, Binyuan Hui, et al. Qwen2 technical report, 2024. URL https://
arxiv.org/abs/2407.10671.

Zhenfei Yin, Jiong Wang, Jianjian Cao, Zhelun Shi, Dingning Liu, Mukai Li, Lu Sheng, Lei Bai,
Xiaoshui Huang, Zhiyong Wang, Jing Shao, and Wanli Ouyang. Lamm: Language-assisted multi-
modal instruction-tuning dataset, framework, and benchmark, 2023. URL https://arxiv.
org/abs/2306.06687.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities, 2023.
URL https://arxiv.org/abs/2308.02490.

Pan Zhang, Xiaoyi Dong, Bin Wang, et al. Internlm-xcomposer: A vision-language large model
for advanced text-image comprehension and composition. URL https://arxiv.org/abs/
2309.15112.

Xiaofeng Zhang, Chen Shen, Xiaosong Yuan, Shaotian Yan, Liang Xie, Wenxiao Wang, Chaochen
Gu, Hao Tang, and Jieping Ye. From redundancy to relevance: Enhancing explainability in mul-
timodal large language models, 2024a. URL https://arxiv.org/abs/2406.06579.

Xingxuan Zhang, Jiansheng Li, Wenjing Chu, Junjia Hai, Renzhe Xu, Yuqing Yang, Shikai Guan, Ji-
azheng Xu, and Peng Cui. On the out-of-distribution generalization of multimodal large language
models, 2024b. URL https://arxiv.org/abs/2402.06599.

Tianyang Zhong, Zhengliang Liu, Yi Pan, et al. Evaluation of openai o1: Opportunities and chal-
lenges of agi, 2024. URL https://arxiv.org/abs/2409.18486.

Wanjun Zhong, Ruixiang Cui, and Yiduo ohters Guo. Agieval: A human-centric benchmark for
evaluating foundation models. 2023.

15

https://arxiv.org/abs/2403.15226
https://arxiv.org/abs/2408.09176
https://arxiv.org/abs/2310.01557
https://arxiv.org/abs/2407.04973
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2306.09265
https://arxiv.org/abs/2309.06275
https://arxiv.org/abs/2309.06275
https://openreview.net/forum?id=4XPeF0SbJs
https://openreview.net/forum?id=4XPeF0SbJs
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2306.06687
https://arxiv.org/abs/2306.06687
https://arxiv.org/abs/2308.02490
https://arxiv.org/abs/2309.15112
https://arxiv.org/abs/2309.15112
https://arxiv.org/abs/2406.06579
https://arxiv.org/abs/2402.06599
https://arxiv.org/abs/2409.18486


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Jianjun Zhu, Lawrence G Weiss, Aurelio Prifitera, and Diane Coalson. The wechsler intelligence
scales for children and adults. Comprehensive handbook of psychological assessment, 1:51–75,
2004.

King Zhu, Qianbo Zang, Shian Jia, Siwei Wu, Feiteng Fang, Yizhi Li, Shawn Gavin, Tuney Zheng,
Jiawei Guo, Bo Li, Haoning Wu, Xingwei Qu, Jian Yang, Zachary Liu, Xiang Yue, J. H. Liu,
Chenghua Lin, Min Yang, Shiwen Ni, Wenhao Huang, and Ge Zhang. Lime: Less is more for
mllm evaluation, 2024. URL https://arxiv.org/abs/2409.06851.

Enis Berk Çoban, Michael I. Mandel, and Johanna Devaney. What do mllms hear? examining
reasoning with text and sound components in multimodal large language models, 2024. URL
https://arxiv.org/abs/2406.04615.

16

https://arxiv.org/abs/2409.06851
https://arxiv.org/abs/2406.04615

	Introduction
	Related Works
	Multimodal Large Language Models
	MLLM Benchmark

	Capabilities
	Game Mechanics
	Tasks in GridAgent
	Single Capacity Task
	Composite Capacity Task

	Experimental Result
	Quantitative Analysis
	Qualitative Analysis
	Radar Capability Chart

	Conclusion

