

000 001 002 003 004 005 BAYESIAN DATA REWEIGHTING IMPROVES RETRIEVAL 006 IN KNOWLEDGE-BASED VQA 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

011 Knowledge-based Visual Question Answering (VQA) requires retrievers to in-
012 corporate external knowledge, e.g., documents, to answer questions. Existing
013 retrievers are typically optimized with standard contrastive learning, which treats
014 all non-positive pairs as equally informative, leading to false negative bias and dif-
015 ficulties in hard negative mining. To overcome these issues, we propose **Bayesian**
016 **Data Reweighting (BDR)**, a probabilistic framework that assigns learnable im-
017 portance weights to query-document pairs and performs Bayesian inference over
018 these weights. We derive closed-form posterior updates under conjugate priors and
019 develop an efficient EM algorithm for weight estimation. This approach adaptively
020 emphasizes informative pairs without explicit hard negative mining. Experiments
021 on two representative multimodal retrievers demonstrate consistent improvements,
022 with BDR achieving gains of up to 8.6 points on individual datasets and an average
023 recall of 68.6 across all M2KR datasets, surpassing the previous state-of-the-art.¹
024

025 1 INTRODUCTION 026

027 Knowledge-based Visual Question Answering (KB-VQA) Marino et al. (2019); Schwenk et al. (2022)
028 extends the traditional VQA task by requiring models to incorporate external knowledge sources,
029 such as structured knowledge graphs Speer et al. (2017), unstructured textual corpora Vrandečić &
030 Krötzsch (2014), or large-scale encyclopedic documents Mensink et al. (2023) to answer questions.
031 These questions often involve commonsense reasoning Zellers et al. (2019), fine-grained factual
032 knowledge Chen et al. (2023), or entity disambiguation Jian et al. (2024), which is often absent from
033 raw visual or linguistic input. As such, KB-VQA serves as a key benchmark for evaluating a model’s
034 ability to integrate perception with world knowledge Caffagni et al. (2024); Yan & Xie (2024), and
035 has significant implications for downstream applications in education, healthcare, and open-domain
036 dialog systems.

037 Recent advances in KB-VQA have primarily focused on designing efficient multimodal retrievers,
038 such as late interaction modules Lin et al. (2023; 2024), unified embedding architectures Jiang et al.
039 (2025); Wei et al. (2024); Lin et al. (2025), and their combination with advanced generators Lin &
040 Byrne (2022); Hu et al. (2023c). However, most existing retrievers Lin et al. (2023; 2024); Caffagni
041 et al. (2025); Jiang et al. (2025) are trained with the standard InfoNCE loss Oord et al. (2018),
042 which assumes that all non-positive samples in a batch are equally informative negatives. This
043 assumption introduces two major limitations. First, it fails to account for *false negatives*, samples that
044 are semantically relevant but incorrectly treated as negatives, thus pushing away potentially correct
045 document and degrading retrieval performance Chuang et al. (2020). Second, it lacks the ability to
046 distinguish *hard negatives* distractors that are highly similar but semantically incorrect—which can
047 collapse the structure of the embedding space if not properly handled Wang & Liu (2021).

048 To mitigate the impact of false and hard negatives that exist in standard contrastive learning, we
049 further introduce a novel **Bayesian Data Reweighting (BDR)** framework. Inspired by classical
050 *importance sampling* Katharopoulos & Fleuret (2018), we introduce an importance weight w_i for each
051 unlabeled document d_i to adjust semantic consistency among negatives. The difference between our
052 framework and the standard contrastive learning framework is illustrated in Figure 1. We transform
053 contrastive learning into a Bayesian reweighting problem by introducing latent importance weights

¹The code is available at <https://anonymous.4open.science/r/BRCL-4403/README.md>.

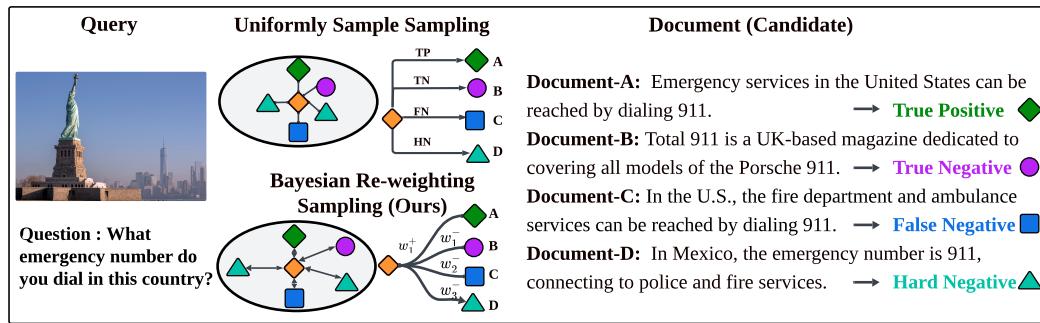


Figure 1: **Sampling strategies in KB-VQA retriever training.** Traditional methods uniformly sample negatives, treating all as equal (TN, HN, FN). Our Bayesian re-weighting instead assigns dynamic weights based on difficulty and uncertainty, mitigating false negatives and emphasizing hard negatives to refine the decision boundary.

over sample pairs. Through auxiliary variable augmentation, we achieve conditional conjugacy and tractable posteriors for these weights. The shared priors over sample-wise weights enable the model to automatically emphasize informative pairs and suppress noisy ones, without explicitly identifying hard or false negatives. Furthermore, we develop a stochastic Expectation-Maximization (EM) algorithm to jointly infer the latent variables and optimize the model parameters in a tractable and efficient manner.

We conducted experiments on two representative multimodal retrievers, Pre-FLMR Lin et al. (2024) and VLM2Vec Jiang et al. (2025), and found that applying BDR consistently improves performance. With the ViT-L backbone, Pre-FLMR with BDR achieves a 6.8-point improvement on InfoSeek; and with ViT-G, it achieves an 8.6-point improvement on LLaVA. For the VLM2Vec retriever, BDR brings the largest gain of 7.2 points on OKVQA when using the Phi-3.5-V-3.8B backbone. Ultimately, our best retriever, VLM2Vec with a Qwen2-VL-7B backbone, achieves an average recall of 68.6 with BDR, surpassing the previous state-of-the-art of 58.9 on this benchmark. Equipped with our best retriever, we also achieve significant improvements in VQA accuracy across three downstream KB-VQA tasks. These results clearly demonstrate the effectiveness of the proposed BDR method for multimodal retrieval tasks. Our contributions are summarized as follows:

- We introduce **Bayesian Data Reweighting (BDR)**, a probabilistic framework that assigns importance weights to query-document pairs and performs Bayesian inference to adaptively mitigate false negative bias and facilitate hard negative mining.
- We derive closed-form posterior updates under conjugate priors and propose an efficient stochastic EM algorithm, enabling tractable and scalable optimization for scalable multimodal retrieval tasks.
- Extensive experiments on two representative retrievers demonstrate consistent and significant improvements. In particular, BDR achieves gains of up to 8.6 points on individual dataset and establishes a new state-of-the-art average recall of 68.6 on the M2KR benchmark.

2 RELATED WORK

Knowledge-based Visual Question Answering. Knowledge-based Visual Question Answering (KB-VQA) extends traditional VQA by requiring external knowledge to answer questions that cannot be resolved by visual content alone Marino et al. (2019); Schwenk et al. (2022). Recent progress has shown the promise of *retrieval-augmented generation* (RAG) frameworks, where external textual resources (e.g., Wikipedia or web documents) are retrieved and fed into large multimodal language models (MLLMs) to enhance reasoning Caffagni et al. (2024); Yan & Xie (2024); Long et al. (2025). Among these, ReAuSE Long et al. (2025) tightly integrates autoregressive retrieval into the generative VQA pipeline, while Wiki-LLaVA Caffagni et al. (2024) employs a hierarchical passage retrieval strategy to select knowledge from multimodal documents. EchoSight Yan & Xie (2024) further introduces a visual retriever followed by multimodal reranking to better align visual cues with encyclopedic content. Despite these advances, KB-VQA retrieval pipelines remain brittle, often retrieving redundant or irrelevant knowledge Hao et al. (2024) or failing to capture fine-grained entities within the visual scene Jian et al. (2024), which motivates the development of a more robust and effective retriever.

108 **Learning to Reweight Samples in Contrastive Learning** Contrastive learning has become a
 109 powerful paradigm for multimodal retriever optimization Misra & Maaten (2020); He et al. (2020);
 110 Chen et al. (2020); Liu et al. (2021). Existing methods typically treat paired samples as positives and
 111 all others as negatives, which introduces false negatives due to semantic overlap or label ambiguity,
 112 degrading retrieval robustness Chuang et al. (2020). Prior attempts to address this, such as hard
 113 negative mining Schroff et al. (2015), debiased contrastive loss Chuang et al. (2020), and heuristic
 114 weighting Zheng et al. (2019), often rely on fixed rules without modeling uncertainty. In contrast,
 115 our work builds on importance sampling Katharopoulos & Fleuret (2018) but differs fundamentally:
 116 (1) we introduce a Bayesian framework that infers stochastic local weights for both positives and
 117 negatives, and (2) we design a latent variable augmentation scheme enabling conjugate inference and
 118 tractable weight updates under common priors.

119 3 MULTIMODAL RETRIEVAL FRAMEWORK AND BAYESIAN REWEIGHTING

120 3.1 PRELIMINARIES

123 We aim to build a multimodal Retrieval-Augmented Generation (RAG) framework to enhance
 124 Knowledge-based VQA by retrieving relevant documents as external knowledge. Specifically, given
 125 an input query x , our framework retrieves a set of top- k documents $\mathcal{D}_k(x) = \{d_1, d_2, \dots, d_k\}$ and
 126 incorporates them as additional context to generate a target answer y . The overall formulation of the
 127 framework is:

$$128 \quad p(y | x) = \underbrace{p_\theta(\mathcal{D}_k(x) | x)}_{\text{retriever}} \cdot \underbrace{p_\phi(y | x, \mathcal{D}_k(x))}_{\text{generator}}. \quad (1)$$

130 The Retrieval-Augmented Generation (RAG) framework consists of two components: (1) **Retriever**
 131 $p_\theta(\mathcal{D}_k(x) | x)$ with parameters θ , which denotes the retrieval process that selects the
 132 top- k most relevant documents given a query x (i.e., $\mathcal{D}_k(x) = \text{TopK}(p_\theta(\cdot | x))$). (2) **Generator**
 133 $p_\phi(y_i | x, \mathcal{D}_k(x), y_{1:i-1})$ with parameters ϕ , which generates the answer conditioned on the original
 134 query x and the retrieved document set $\mathcal{D}_k(x)$. Specifically, the retriever $p_\theta(d | x)$ estimates the
 135 relevance of each document d given query x , implemented by computing similarity scores between
 136 their embeddings:

$$137 \quad p_\theta(d | x) \propto \exp(\mathbf{z}^\top \mathbf{q}), \quad \mathbf{z} = \mathbf{F}_z(d), \quad \mathbf{q} = \mathbf{F}_q(x), \quad (2)$$

138 where $\mathbf{F}_z(\cdot)$ denoting the *document encoder* and $\mathbf{F}_q(\cdot)$ denoting the *query encoder*, \mathbf{z} and \mathbf{q} are
 139 the embeddings of a document d and a query x , respectively. We adopt Maximum Inner Product
 140 Search (MIPS) Shrivastava & Li (2014) to compute query-document similarities in sub-linear time.
 141 In multimodal RAG systems, the retriever is critical Lin & Byrne (2022), as it determines whether
 142 relevant knowledge can be retrieved. Most prior works optimize retrievers with the InfoNCE loss Oord
 143 et al. (2018), which increases similarity for positive pairs while separating negatives. Given a dataset
 144 $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{d}_i)\}_{i=1}^N$, each $(\mathbf{x}_i, \mathbf{d}_i)$ is a **positive** pair, and $(\mathbf{x}_i, \mathbf{d}_j)$ with $i \neq j$ is a **negative** pair. The
 145 similarity scores are: $s_{i+} \triangleq \exp(\cos(\mathbf{q}_i, \mathbf{z}_i)/\tau)$, $s_{ik-} \triangleq \exp(\cos(\mathbf{q}_i, \mathbf{z}_k)/\tau)$, $\tau > 0$. Here we
 146 use the exponential cosine similarity, the contrastive loss is then defined as:

$$148 \quad \mathcal{L}(\mathcal{D}; \theta) = -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x}_i \in \mathcal{D}} \log(\mathcal{L}_{\mathbf{x}_i}), \text{ with } \mathcal{L}_{\mathbf{x}_i} \triangleq \frac{s_{i+}}{s_{i+} + \sum_{k=1}^K s_{ik-}}. \quad (3)$$

149 **Challenges** In contrastive learning it assumes that positive and negative pairs are clean and reliable.
 150 However, in practice, negatives are randomly sampled within each batch, which may cause the False
 151 Negative problem Chuang et al. (2020) and the Hard Negative problem Robinson et al. (2020). As
 152 shown in Fig. 1, we illustrate these challenges with a multimodal query: given an image of the Statue
 153 of Liberty and the question “*What emergency number do you dial in this country?*”, the correct
 154 positive is Document A, which states that 911 is the U.S. emergency number. However, Document C
 155 (“the fire department and ambulance services can be reached by dialing 911”) is semantically relevant
 156 and thus a **false negative**, while Document D, which describes emergency services in Mexico,
 157 is a **hard negative**. This example highlights the two key problems: **False negative debiasing**.
 158 Document C should not be pushed away, as it conveys the same semantic meaning as the query. **Hard**
 159 **negative mining**. Document D should be pushed further apart to maintain clear semantic separation
 160 between the U.S. and Mexico. **The quantitative analysis of False and Hard Negatives in Appendix D.7**
 161 also shows False Negatives and Hard Negatives are prevalent in M2KR Datasets.

162 3.2 PROPOSED METHOD: BAYESIAN DATA REWEIGHTING (BDR)
163164 Inspired by classical *importance sampling* Katharopoulos & Fleuret (2018), we introduce an impor-
165 tance weight w_i for each unlabeled document d_i to adjust semantic consistency among negatives. We
166 introduce local learnable weights $\{w_i^+, w_{ik}^-\}$ associated with each positive and negative pair, resulting
167 in a weighted contrastive loss defined as:

168
$$\mathcal{L}^b(\mathcal{D}; \theta) = -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x}_i \in \mathcal{D}} \log(\mathcal{L}_{\mathbf{x}_i}^b), \quad \mathcal{L}_{\mathbf{x}_i}^b \triangleq \frac{w_i^+ s_{i+}}{w_i^+ s_{i+} + \sum_{k=1}^K w_{ik}^- s_{ik-}}, \quad (4)$$

169
170

171 where w_i^+ and w_{ik}^- represent the importance of the positive and negative pairs, respectively. Rea-
172 sonable weights should follow these principles: (1) If a negative sample x_{ik}^- is actually a false
173 negative, w_{ik}^- should be small (ideally zero) to avoid pushing apart true positives, thereby maintaining
174 alignment. False negatives can be treated as noise, and small weights cause the gradient in equation 4
175 to vanish, preventing the model from learning from noisy samples. (2) If x_{ik} is a true negative, w_{ik}^-
176 should be large to push apart hard negatives and preserve uniformity. Larger weights increase the gra-
177 dient magnitude in equation 4, encouraging the model to learn decision boundaries between different
178 semantic classes. When all weights are set to one, this loss reduces to the standard contrastive loss.
179180 **Augmented Likelihood and Conditional Conjugacy** The key challenge is how to assign rea-
181 sonable weights that satisfy the criteria discussed above. In our framework, local weights for data
182 pairs are inferred jointly with the global encoder parameters through Bayesian inference, without
183 relying on a clean validation set Ren et al. (2018) or per-sample gradients Katharopoulos & Fleuret
184 (2018). However, the weighted CL likelihood in equation 4 is generally non-conjugate under common
185 prior choices for w , which makes inference intractable. To address this issue, we introduce a data-
186 augmentation strategy that transforms the weighted CL likelihood into a conditionally conjugate form,
187 enabling efficient posterior updates of the weights. **The auxiliary variable u_i follows the classical**
188 ***data-augmentation* Tanner & Wong (1987) scheme as a latent variable to restore conjugacy.**189 First, we introduce auxiliary random variable $u_i \sim \text{Exp}(\lambda_i)$ associated with each data point, where
190 $\lambda_i = w_i^+ s_{i+} + \sum_{k=1}^K w_{ik}^- s_{ik-}$. Using the Laplace transform identity, we have
191

192
$$\frac{1}{w_i^+ s_{i+} + \sum_{k=1}^K w_{ik}^- s_{ik-}} = \int \exp\left\{-\left(w_i^+ s_{i+} + \sum_{k=1}^K w_{ik}^- s_{ik-}\right) u_i\right\} du_i. \quad (5)$$

193

194 Given the auxiliary variable u_i , the conditional (unnormalized) likelihood of the sample weights
195 takes the following exponential-family form:

196
$$\tilde{p}(w_i^+, w_{ik}^- | u_i) \propto w_i^+ s_{i+} \cdot \exp\left(-u_i w_i^+ s_{i+}\right) \cdot \prod_{k=1}^K \exp\left(-u_i w_{ik}^- s_{ik-}\right). \quad (6)$$

197

198 Here, the first term $w_i^+ s_{i+}$ comes from the numerator of the original contrastive objective, while the
199 denominator after introducing an auxiliary variable u_i yields exponential factors of the form $\exp[-$
200 $u_i(w_i^+ s_{i+} + \sum_k w_{ik}^- s_{ik-})]$. Hence, the joint likelihood in $\{w_i^+, w_{ik}^-\}$ belongs to the exponential
201 family. We place priors on the positive/negative weights to encode different inductive biases:

202
$$w_i^+ \sim \text{Gamma}(a_+, b_+), \quad w_{ik}^- \sim \underbrace{\text{Gamma}(a_-, b_-)}_{\text{Continuous weighting}} \quad \text{or} \quad \underbrace{\text{Bernoulli}(p_-)}_{\text{Selective gating}} \quad \text{or} \quad \underbrace{\mathcal{N}_+(\mu, \sigma^2)}_{\text{Gaussian shrinkage}} \quad (7)$$

203

204 For the positive weights w_i^+ , we adopt a Gamma prior because it is nonnegative, conjugate to the
205 augmented likelihood, and its exponential special case ($a_+ = 1$) serves as a maximum-entropy prior
206 with simple shrinkage properties. For the negative weights w_{ik}^- , we provide three flexible options:
207 (i) ***Gamma (continuous weighting)***, which supports values in $(0, \infty)$ and is ideal for modeling
208 ***continuous difficulty levels*** of negative samples, allowing smooth and flexible weight adjustments.
209 (ii) ***Bernoulli (selective gating)***, whose outputs are restricted to $\{0, 1\}$, enabling a more aggressive
210 ***keep-or-drop*** mechanism. (iii) ***Gaussian (shrinkage around μ)***, This prior reflects the assumption
211 that most false-negative weights lie within a relatively stable interval and approximately follow a
212 ***symmetrical normal-like distribution***. In practice, we use a truncated Gaussian to ensure that the
213 weights remain in the positive domain $(0, \infty)$.214 Let the auxiliary variable have a Gamma prior $u_i \sim \text{Gamma}(a_u, b_u)$. Under the augmented
215 likelihood described above, the following conditional posteriors are obtained in closed form and
remain within their respective prior families.

216 **Theorem 3.1** (Conditional Conjugacy). *Given the augmented likelihood with auxiliary variables u_i ,
 217 the conditional posterior distributions of the weights are:*

$$219 \quad u_i | \{w_i^+, w_{ik}^-, \theta\} \sim \text{Gamma}\left(a_u, b_u + w_i^+ s_{i+} + \sum_k w_{ik}^- s_{ik-}\right), \quad (8)$$

$$220 \quad w_i^+ | \{u_i, \theta\} \sim \text{Gamma}(1 + a_+, u_i s_{i+} + b_+), \quad (9)$$

$$222 \quad w_{ik}^- | \{u_i, \theta\} \sim \begin{cases} \text{Gamma}(a_-, u_i s_{ik-} + b_-), & \text{(continuous weighting)} \\ 223 \quad \text{Bernoulli}\left(\frac{p_- e^{-u_i s_{ik-}}}{1 - p_- + p_- e^{-u_i s_{ik-}}}\right), & \text{(selective gating)} \\ 224 \quad \mathcal{N}_+(\mu - \sigma^2 u_i s_{ik-}, \sigma^2), & \text{(Gaussian shrinkage)} \end{cases} \quad (10)$$

225 **Proof.** Detailed proof are provided in Appendix A.

226 **Efficient Inference with Stochastic Expectation Maximization** The local weights w_i^+ and w_{ik}^- are
 227 sample-specific latent variables whose total number scales quadratically with the dataset size, making
 228 storage and inference challenging. To address this, we propose a *stochastic Expectation-Maximization*
 229 (*EM*) algorithm (detailed in Appendix C) that alternates between sampling the local random variables
 230 on the fly and optimizing the global model parameters. Specifically, each EM iteration consists of: (i)
 231 a **simulation step**, where we sample the auxiliary variables u_i and reweighting variables w_i^+ and w_{ik}^-
 232 from their corresponding posteriors distribution. (ii) a **stochastic approximation step**, which updates
 233 a surrogate objective $Q_t(\theta)$ using a decaying step size schedule; and (iii) a **maximization step**, where
 234 we update θ via stochastic gradient descent. Crucially, marginalizing out the auxiliary variables
 235 \mathbf{u} from the augmented joint posterior $p(\theta, \mathbf{u}, \{w_i^+\}, \{w_{ik}^-\} | \mathcal{D})$ recovers the original posterior
 236 $p(\theta, \{w_i^+\}, \{w_{ik}^-\} | \mathcal{D})$, so the augmentation leaves the target inference problem unchanged.

237 4 THEORETICAL ANALYSIS

238 We establish two key results for the proposed Bayesian Data Reweighting (BDR): (i) consistency
 239 with supervised contrastive learning as the number of negatives grows, and (ii) a finite-sample error
 240 bound quantifying the deviation at finite K .

241 4.1 CONSISTENCY WITH SUPERVISED CONTRASTIVE LEARNING

242 **Theorem 4.1** (Consistency). *Assume $\{Z_{ik}\}_{k=1}^K$ are i.i.d. with finite second moment and $Z_{ik} \in$
 243 $(0, S_{\max}]$. Then, as $K \rightarrow \infty$,*

$$244 \quad -\log\left(\frac{N_i}{N_i + \hat{m}_i^{(K)}}\right) \xrightarrow{\text{p.}} -\log\left(\frac{N_i}{N_i + m_i}\right).$$

245 Moreover, averaging over anchors yields $\frac{1}{|\mathcal{D}|} \sum_i -\log\left(\frac{N_i}{N_i + \hat{m}_i^{(K)}}\right) \xrightarrow{\text{p.}} \frac{1}{|\mathcal{D}|} \sum_i -\log\left(\frac{N_i}{N_i + m_i}\right)$.

246 **Proof Sketch** See Appendix B.2 for the detailed proof.

247 4.2 FINITE-SAMPLE ERROR BOUND

248 **Theorem 4.2** (Finite-Sample Error). *Assume $N_i \geq N_{\min} > 0$ and Z_{ik} are i.i.d. sub-exponential
 249 (e.g., Gamma weights with bounded s_{ik-}). Then for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,*

$$250 \quad \left| -\log\left(\frac{N_i}{N_i + \hat{m}_i^{(K)}}\right) + \log\left(\frac{N_i}{N_i + m_i}\right) \right| \leq \frac{1}{N_{\min}} \left(\sqrt{\frac{2 \text{Var}(Z_{ik}) \log(2/\delta)}{K}} + \frac{2v \log(2/\delta)}{3K} \right),$$

251 where v is the sub-exponential proxy parameter of Z_{ik} . In particular, the deviation satisfies $|\cdot| =$
 252 $\mathcal{O}_{\mathbb{P}}(K^{-1/2})$, uniformly over anchors with $N_i \geq N_{\min}$.

253 **Proof Sketch** See Appendix B.3 for the detailed proof.

270

5 EXPERIMENTS

272 Having established the theoretical guarantees of BDR, we next evaluate its effectiveness on knowledge-
 273 intensive VQA benchmarks from two perspectives: (i) improvements in **retrieval performance**, and
 274 (ii) improvements in **answer generation performance** enabled by better retrieval.
 275

277

5.1 TASK 1: RETRIEVAL PERFORMANCE WITH BDR

279 **Benchmarks and Metrics.** Our experiments are conducted on the M2KR Lin et al. (2024) bench-
 280 mark, which integrates eight knowledge-intensive datasets such as OKVQA Marino et al. (2019),
 281 EVQA Mensink et al. (2023), and InfoSeek Chen et al. (2023), together with their external sup-
 282 port documents (see Appendix D.1 for details). We evaluate BDR on two representative retrievers:
 283 PreFLMR Lin et al. (2024), built on CLIP backbones (ViT-B, ViT-L, ViT-G), and VLM2Vec Jiang
 284 et al. (2025), based on LLM backbones (Qwen2-VL Wang et al. (2024), Phi-3.5-V Abdin et al.
 285 (2024)). Performance is measured by Recall@K (R@K), which checks whether the target document
 286 is among the top- K retrieved, and Pseudo Recall@K (PR@K), which checks whether any of the
 287 top- K documents contain the correct answer, following prior work.
 288

289 **Experimental Setup.** For the Pre-FLMR model, we trained the mapping network with a batch size of
 290 32; for the VLM2Vec model, we trained the LoRA parameters with a LoRA rank of 4. Regarding the
 291 prior settings of BDR, empirically, the best performance was achieved with **Gamma prior**, and the
 292 parameters are $a_u = b_u = 1$, $a^+ = 2$, $b^+ = 1$, and $a^- = 5$, $b^- = 10$. Detailed results are provided
 293 in Appendix D.3. All images were resized to 224×224 . Training was conducted for 2,000 steps
 294 using the Adam optimizer with a linear learning rate scheduler, starting from an initial learning rate of
 295 2×10^{-5} . All models were trained on 4 NVIDIA A100 GPUs, and training a single VLM2Vec-based
 296 retriever typically required about 2 days.
 297

298 **Table 1: Retrieval performance comparison on six knowledge-based VQA datasets from M2KR.**
 299 Results are reported in terms of Recall@5 (**R@5**) and Pseudo Recall@5 (**PR@5**). For OVEN and
 300 KVQA, we only report R@5, and for LLaVA, we only report R@1, to ensure comparability with
 301 previous baselines. **AVG** denotes the average over all metrics. Baselines are: CLIP Radford et al.
 302 (2021), ReT Caffagni et al. (2025), PreFLMR Lin et al. (2024), VLM2Vec Jiang et al. (2025). Our
 303 BDR method consistently improves over baselines across backbones and datasets.
 304

304 Retriever	305 Backbones	306 EVQA		307 OKVQA		308 InfoSeek		309 OVEN		310 LLaVA		311 KVQA		312 Avg	
		313 R@5	314 PR@5	315 R@5	316 PR@5	317 R@5	318 PR@5	319 R@5	320 PR@5	321 R@5	322 PR@5	323 R@1	324 PR@5	325 R@5	326 PR@5
CLIP (Feature Fusion)	CLIP (ViT-B)	21.2	40.5	9.6	56.0	19.3	40.4	59.8	58.0	22.0	36.3				
PreFLMR + InfoNCE	CLIP (ViT-B)	55.2	66.6	25.2	65.6	25.7	49.4	45.9	66.9	29.7	47.8				
PreFLMR + BDR (Ours)	CLIP (ViT-B)	55.5	66.8	29.2	68.2	26.3	49.8	49.8	69.7	32.2	49.7				
Δ		+0.3	+0.2	+4.0	+2.6	+0.6	+0.4	+3.9	+2.8	+2.5	+1.9				
CLIP (Feature Fusion)	CLIP (ViT-L)	35.6	52.6	12.1	59.4	38.2	54.7	76.0	63.6	47.5	48.9				
PreFLMR + InfoNCE	CLIP (ViT-L)	60.7	71.0	27.8	67.5	36.0	56.4	59.8	72.0	42.9	54.9				
PreFLMR + BDR (Ours)	CLIP (ViT-L)	60.9	71.4	31.6	70.5	42.8	59.2	65.8	74.8	46.6	58.2				
Δ		+0.2	+0.4	+3.8	+3.0	+6.8	+2.8	+6.0	+2.8	+3.7	+3.3				
ReT	OpenCLIP (ViT-G)	48.6	60.2	19.0	63.8	52.0	62.5	84.0	79.2	60.6	58.9				
PreFLMR + InfoNCE	OpenCLIP (ViT-G)	62.0	72.0	30.2	67.4	39.2	57.7	64.3	72.6	41.9	56.4				
PreFLMR + BDR (Ours)	OpenCLIP (ViT-G)	62.1	72.1	32.5	67.8	43.8	59.1	67.6	81.2	49.8	59.6				
Δ		+0.1	+0.1	+2.3	+0.4	+4.6	+1.4	+3.3	+8.6	+7.9	+3.2				
VLM2Vec (Zero-shot)	Qwen-2-VL-2B	10.9	29.3	9.4	32.0	10.2	20.6	41.0	51.0	28.9	25.9				
VLM2Vec + InfoNCE	Qwen-2-VL-2B	50.4	63.9	24.8	58.7	58.5	53.7	75.6	84.2	51.0	57.9				
VLM2Vec + BDR (Ours)	Qwen-2-VL-2B	51.2	64.2	26.6	59.7	60.5	56.7	78.3	88.7	55.6	60.2				
Δ		+0.8	+0.3	+1.8	+1.0	+2.0	+3.0	+2.7	+4.5	+4.6	+2.3				
VLM2Vec (Zero-shot)	Phi-3.5-V-3.8B	18.8	41.2	13.3	58.5	12.0	25.8	51.3	71.5	34.9	36.3				
VLM2Vec + InfoNCE	Phi-3.5-V-3.8B	45.1	60.3	35.1	65.3	40.8	44.3	71.5	91.4	52.6	56.3				
VLM2Vec + BDR (Ours)	Phi-3.5-V-3.8B	49.2	62.2	42.3	69.1	43.8	47.5	74.7	91.6	57.7	59.8				
Δ		+4.1	+1.9	+7.2	+3.8	+3.0	+3.2	+3.2	+0.2	+5.1	+3.5				
VLM2Vec (Zero-shot)	Qwen2-VL-7B	18.2	42.8	13.4	58.0	14.3	29.8	63.8	50.1	42.2	36.9				
VLM2Vec + InfoNCE	Qwen2-VL-7B	62.0	70.8	41.4	68.7	64.6	58.4	80.9	90.0	63.2	66.6				
VLM2Vec + BDR (Ours)	Qwen2-VL-7B	64.3	73.1	43.5	69.9	66.7	60.5	83.4	91.0	65.3	68.6				
Δ		+2.3	+2.3	+2.1	+1.2	+2.1	+2.1	+2.5	+1.0	+2.1	+2.0				

324
 325
 326
 327
 328
 329
 Table 2: **Answer generation performance comparison on InfoSeek and EVQA.** We report VQA
 330 Accuracy, Exact Match (EM), BLEU-1, and **BERT Matching (BEM)**. The Oracle Retriever retrieves
 331 all ground-truth documents. Our BDR retriever consistently outperforms PreFLMR Lin et al. (2024)
 332 and ReT Caffagni et al. (2025), approaching the Oracle upper bound.
 333
 334

Generator (Frozen)	Retriever	R@5	InfoSeek			EVQA				
			VQA_Acc	EM	BLEU_1	R@5	VQA_Acc	EM	BLEU_1	BEM
LLaVA-1.6-13B	X	-	5.4	5.3	11.9	-	2.7	7.4	8.9	69.8
LLaVA-1.6-13B	PreFLMR	39.2	12.9	12.4	21.2	62.0	8.7	20.5	26.2	74.3
LLaVA-1.6-13B	ReT	52.0	17.3	17.2	28.9	48.6	6.5	14.6	19.2	73.2
LLaVA-1.6-13B	VLM2Vec-BDR (Ours)	66.7	20.8	20.9	34.0	64.3	9.1	21.2	26.9	77.2
LLaVA-1.6-13B	Oracle Retriever	-	37.5	39.5	56.4	-	16.1	37.7	46.1	86.7
Qwen2.5-VL-7B	X	-	14.4	14.5	25.2	-	4.6	12.0	14.3	65.2
Qwen2.5-VL-7B	PreFLMR	39.2	21.5	16.1	24.1	62.0	11.5	29.0	34.7	68.3
Qwen2.5-VL-7B	ReT	52.0	25.9	21.5	32.2	48.6	10.8	22.7	28.1	67.9
Qwen2.5-VL-7B	VLM2Vec-BDR (Ours)	66.7	32.1	27.5	41.3	64.3	14.4	30.1	37.1	71.2
Qwen2.5-VL-7B	Oracle Retriever	-	46.2	41.3	61.9	-	23.3	46.8	57.8	89.1

340
 341 **Main Results.** For CLIP-based architectures, **applying our BDR method consistently improves**
 342 **the performance of Pre-FLMR**, as shown in Table 1. Specifically, with the ViT-B backbone, our
 343 BDR brings a +4.0 gain in on OKVQA; with ViT-L, it yields a +6.8 Recall@5 gain on InfoSeek;
 344 and with ViT-G, it achieves the largest improvement of +8.6 on LLaVA. For the LLM-based retriever
 345 **VLM2Vec, BDR also delivers notable improvements across different LLM backbones:** Qwen2-
 346 VL-2B achieves +4.6 on KVQA, Qwen2-VL-7B achieves +2.3 on EVQA, and Phi-3.5-V-3.8B
 347 achieves the largest gain of +7.2 on OKVQA. These results demonstrate that BDR consistently
 348 enhances retrieval performance across diverse architectures. Moreover, **our best retriever with**
 349 **BDR establishes a new state of the art on the M2KR benchmark**, where VLM2Vec + BDR
 350 (Qwen2-VL-7B) achieves an average recall of 68.6, **surpassing the previous best result by PreFLMR**
 351 **Lin et al. (2024) (56.4) and ReT Caffagni et al. (2025) (58.9)**. These experiments clearly validate the
 352 effectiveness of the proposed BDR method for multimodal retrieval tasks.
 353

354 5.2 TASK 2: ANSWER GENERATION PERFORMANCE WITH BDR

355 **Experimental Setup.** To evaluate the performance of different retrievers on downstream VQA tasks,
 356 we conduct experiments on three benchmarks: InfoSeek, EVQA, and OKVQA. We use LLaVA-1.6-
 357 13B Liu et al. (2023a) and Qwen2.5-VL-7B Team (2025) as generators in combination with different
 358 retrievers, and adopt three evaluation metrics like VQA Accuracy, Exact Match (EM), BLEU-1 and
 359 **BERT Matching (BEM)** to measure how well the generated answers align with the ground-truth.
 360

361 **Results.** On the answer generation task in the InfoSeek and EVQA datasets, **the generator also**
 362 **achieves significant improvements due to our BDR retriever.** Table 2 reports the results on
 363 the InfoSeek and EVQA benchmarks. Without retrievers, both models perform poorly across all
 364 metrics, highlighting **the necessity of external knowledge retrieval for knowledge-intensive VQA**.
 365 Incorporating PreFLMR or ReT yields consistent improvements, but their gains remain limited. In
 366 contrast, **our proposed BDR retriever achieves substantial performance boosts** on both datasets.
 367 Specifically, with LLaVA-1.6-13B as the generator, our BDR yields a +3.5 gain (17.3 → 20.8) in
 368 VQA Accuracy on InfoSeek, with Qwen2.5-VL-7B as the generator, it improves VQA Accuracy by
 369 +6.2 (25.9 → 32.1) on InfoSeek. **Moreover, on the EVQA benchmark, our BDR retriever achieves the**
 370 **best BEM scores among all non-oracle retrievers (e.g., 77.2 vs. 74.3/73.2 with LLaVA-1.6-13B and**
 371 **71.2 vs. 68.3/67.9 with Qwen2.5-VL-7B)**, demonstrating substantially stronger knowledge grounding.
 372 Compare with the Oracle Retriever, **our method significantly narrows the gap with the oracle**
 373 **retriever**, demonstrating the effectiveness of BDR retriever in enhancing knowledge-intensive VQA.
 374

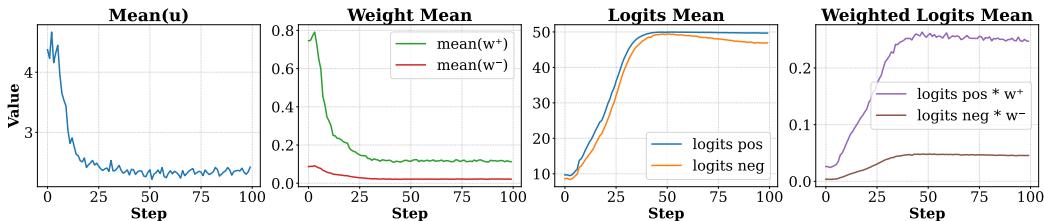
375 On the answer generation task in the OKVQA dataset, equipped with our best BDR retriever, **a**
 376 **medium-scale LLM generator outperforms both fine-tuned generators and large LLM-based**
 377 **generators** such as GPT-4V, as shown in Table 3. Traditional methods combining fine-tuned
 378 generators with DPR retrievers achieve moderate performance (58 VQA-Acc), while large proprietary
 379 LLMs such as Flamingo-80B and GPT-4V reach 64.3 without retrievers but incur prohibitive costs.
 380 In contrast, combining medium-scale generators (Qwen2.5-VL-7B and LLaVA-1.6-13B) with our
 381 proposed **VLM2Vec-BDR** retriever yields substantial gains, improving VQA-Acc by +4.3 points
 382

378
379
380
381
382
383
384 **Table 3: Answer generation performance comparison on OKVQA.** We report and VQA Accuracy
385 (VQA-Acc). Baselines are divided into two categories: (i) fine-tuned generators and (ii) large
386 language models used without fine-tuning. With our BDR retriever, a medium-scale LLM (Qwen2.5-
387 VL-7B or LLaVA-1.6-13B) achieves superior performance, surpassing both fine-tuned generators
388 and large LLM-based generators such as GPT-4V.

Generator	Generator FT	Retriever	PR@5	Knowledge Source	VQA-Acc
TRiG Gui et al. (2021)	✓	DPR	-	Wikipedia	50.5
RA-VQA Lin & Byrne (2022)	✓	DPR	-	Google Search	51.2
KAT Gui et al. (2021)	✓	✗	-	Wikipedia + GPT-3	54.4
TWO Si et al. (2023)	✓	DPR	-	VQAv2 + Wikipedia	56.7
REVIVE Lin et al. (2022)	✓	✗	-	Wikipedia + GPT-3	58.0
Flamingo-80B Alayrac et al. (2022)	✗	✗	-	Chinchilla	57.8
PromptCap-175B Hu et al. (2023b)	✗	✗	-	GPT3	60.4
Prophet-175B Shao et al. (2023)	✗	✗	-	GPT3	61.1
GPT4-V Achiam et al. (2023)	✗	✗	-	-	64.3
Qwen2.5-VL-7B	✗	✗	-	-	62.4
Qwen2.5-VL-7B	✗	PreFLMR	67.4	Google Search	64.3
Qwen2.5-VL-7B	✗	VLM2Vec-BDR (Ours)	69.9	Google Search	66.7
LLaVA-1.6-13B	✗	✗	-	-	61.9
LLaVA-1.6-13B	✗	PreFLMR	67.4	Google Search	65.5
LLaVA-1.6-13B	✗	VLM2Vec-BDR (Ours)	69.9	Google Search	68.0

397
398 (62.4 → 66.7) and +6.1 points (61.9 → 68.0), respectively. These results surpass PreFLMR baselines
399 and even outperform some ultra-large LLMs, demonstrating that our retriever provides an efficient
400 and effective alternative to scaling model size for knowledge-intensive VQA.
401

402 403 5.3 WHY THE BAYESIAN DATA REWEIGHTING FRAMEWORK WORKS?



413
414 **Figure 2: Training dynamics of weighted contrastive learning.** From left to right: (1) Mean of u ;
415 (2) Mean of weights w^+ and w^- ; (3) Mean of positive and negative logits; (4) Mean of weighted
416 logits. These curves show how learned weights shape the contrastive signal during training.

417 Our experimental results demonstrate that BDR effectively addresses both **false negatives** and
418 **hard negatives** in contrastive learning, showing in Figure 2. Specifically, the auxiliary variable
419 u rapidly decreases and stabilizes in the early training phase, providing global regularization and
420 ensuring convergence for subsequent weight updates. The positive and negative weights, w^+ and w^- ,
421 then exhibit distinct dynamics: false negatives are suppressed with near-zero w^- , minimizing their
422 interference, while truly informative hard negatives retain moderate weights, allowing the model to
423 learn discriminative features. Most importantly, when applying these weights, **the margin between**
424 **weighted positive and negative logits is significantly enlarged**, even when the raw logits are close,
425 thus maintaining a **stable and clear decision boundary**.

426 427 5.4 ANALYSIS OF THE IMPACT OF TOP-K RETRIEVAL

428
429 In general, **increasing the number of retrieved documents improves answer generation, but**
430 **the gain saturates quickly**. As shown in Figure 3, Qwen2.5-VL-7B reaches its best performance
431 with Top-5 document retrieval on InfoSeek and OKVQA, while results on EVQA remain largely
unaffected. This underscores that retriever performance is more important than document quantity.

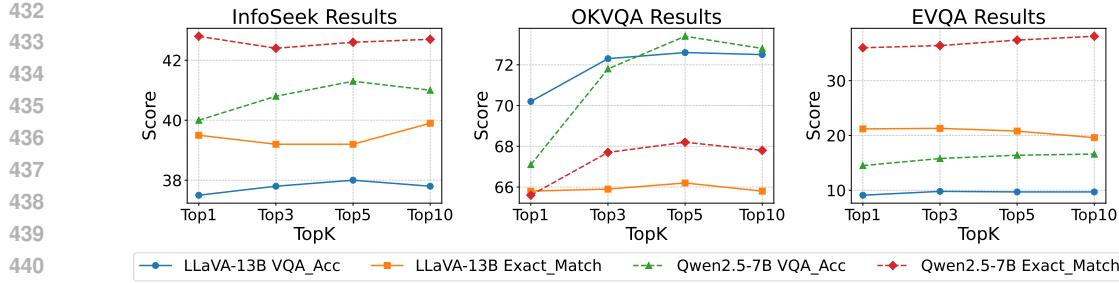


Figure 3: **Impact of retrieved Top-K documents on VQA performance.** We report VQA Accuracy (VQA-Acc) and Exact Match (EM) on InfoSeek (left) and OKVQA (right).

5.5 ANALYSIS OF MODEL EFFICIENCY

Training Efficiency. BDR adds only lightweight computations to InfoNCE. Each SAEM iteration includes: (i) an *E-step* that samples u_i, w_i^+, w_i^- with element-wise closed-form updates costing $O(BK)$; (ii) a *stochastic approximation step* with negligible $O(1)$ cost; and (iii) an *M-step* identical to the standard InfoNCE encoder forward-backward pass. Thus, the total complexity per iteration is $O(\text{Encoder}) + O(BK)$, and since $O(\text{Encoder}) \gg O(BK)$ in modern vision and LLM-based retrievers, the overhead introduced by SAEM is negligible. We further validate this by training the retriever on the OKVQA dataset for one epoch and measuring total runtime. As shown in Table 4, BDR exhibits runtime and memory usage nearly identical to InfoNCE, confirming that the SAEM updates do not affect overall training speed.

Table 4: **Model training efficiency comparison.** We report training steps and total time for VLM2Vec with InfoNCE and BDR. Note that increasing the batch size does not significantly increase memory usage, thanks to the GradCache mechanism Jiang et al. (2025) in VLM2Vec which decouples encoder backpropagation from the contrastive loss.

Batch Size = 32				
Model	Backbone	Steps	GPU (GB)	Time (h)
InfoNCE	Phi-3.5-V	521	19.9	3.17
BDR (Ours)	Phi-3.5-V	521	20.0	3.22
InfoNCE	Qwen2-VL-7B	521	32.8	2.01
BDR (Ours)	Qwen2-VL-7B	521	32.9	2.05
Batch Size = 128				
Model	Backbone	Steps	GPU (GB)	Time (h)
InfoNCE	Phi-3.5-V	131	19.8	3.16
BDR (Ours)	Phi-3.5-V	131	20.3	3.18
InfoNCE	Qwen2-VL-7B	131	32.8	2.00
BDR (Ours)	Qwen2-VL-7B	131	32.9	2.02

Table 5: **Retrieval efficiency comparison.** We report query encoding, passage encoding, and retrieval time for different retrievers. VLM2Vec-BDR (Qwen2-VL-2B) achieves the best trade-off between speed and accuracy.

Model	Backbone	Qry (s)	Psg (s)	Ret (s)	Total (s)	Recall
P-FLMR	CLIP-B	213	2174	62	2449	47.8
P-FLMR	CLIP-L	256	2163	61	2479	54.9
P-FLMR	CLIP-G	442	2174	61	2677	56.4
BDR (Ours)	Qwen-7B	172	2903	17	3091	68.6
BDR (Ours)	Phi-3.5V	301	2689	14	3004	59.8
BDR (Ours)	Qwen-2B	69	1209	8	1285	60.2

Inference Efficiency. Our lightweight VLM2Vec-BDR model achieves a strong balance between speed and accuracy. As the first to apply an LLM-based retriever to KB-VQA, we also evaluate its inference efficiency. The retrieval statistics on EVQA are shown in Table 5. Using the Qwen2-VL-2B backbone, VLM2Vec-BDR reduces total retrieval time to **1285s**, nearly half the cost of traditional P-FLMR retrievers, while maintaining a high average recall of **60.2**. This demonstrates that VLM2Vec-BDR offers a practical and efficient solution for knowledge-intensive VQA.

6 CONCLUSION

In this work, we introduced **Bayesian Data Reweighting (BDR)**, a principled framework that addresses the limitations of standard contrastive learning in multimodal retrieval. By inferring stochastic importance weights for positives and negatives, BDR naturally mitigates false negatives and emphasizes hard negatives through a Bayesian inference mechanism. Extensive experiments on the M2KR benchmark demonstrate consistent gains across both CLIP- and LLM-based retrievers. Furthermore, integrating BDR with VLM2Vec significantly boosts knowledge-intensive VQA performance, surpassing strong baselines. These results highlight BDR as a robust and efficient solution for advancing multimodal retrieval and knowledge-based answering.

486 REFERENCES
487

488 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
489 Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
490 capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024.

491 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
492 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
493 *arXiv preprint arXiv:2303.08774*, 2023.
494

495 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
496 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
497 model for few-shot learning. *Advances in Neural Information Processing Systems*, 35:23716–
498 23736, 2022.

499 Russell Bent and Pascal Van Hentenryck. Online stochastic and robust optimization. In *Annual Asian
500 Computing Science Conference*, pp. 286–300. Springer, 2004.
501

502 Emanuele Bugliarello, Fangyu Liu, Jonas Pfeiffer, Siva Reddy, Desmond Elliott, Edoardo Maria
503 Ponti, and Ivan Vulić. Iglue: A benchmark for transfer learning across modalities, tasks, and
504 languages. In *International Conference on Machine Learning*, pp. 2370–2392. PMLR, 2022.

505 Davide Caffagni, Federico Cocchi, Nicholas Moratelli, Sara Sarto, Marcella Cornia, Lorenzo Baraldi,
506 and Rita Cucchiara. Wiki-llava: Hierarchical retrieval-augmented generation for multimodal llms.
507 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
508 1818–1826, 2024.
509

510 Davide Caffagni, Sara Sarto, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Recurrence-
511 enhanced vision-and-language transformers for robust multimodal document retrieval. In *Pro-
512 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
513 2025.

514 Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big
515 self-supervised models are strong semi-supervised learners. *Advances in Neural Information
516 Processing Systems*, 33:22243–22255, 2020.
517

518 Yang Chen, Hexiang Hu, Yi Luan, Haitian Sun, Soravit Changpinyo, Alan Ritter, and Ming-Wei
519 Chang. Can pre-trained vision and language models answer visual information-seeking questions?
520 In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
(EMNLP)*, 2023.

521 Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Stefanie Jegelka. Debi-
522 ased contrastive learning. *Advances in Neural Information Processing Systems*, 33:8765–8775,
523 2020.

524 Liangke Gui, Borui Wang, Qiuyuan Huang, Alex Hauptmann, Yonatan Bisk, and Jianfeng Gao. Kat:
525 A knowledge augmented transformer for vision-and-language. *arXiv preprint arXiv:2112.08614*,
526 2021.

527 Dongze Hao, Qunbo Wang, Longteng Guo, Jie Jiang, and Jing Liu. Self-bootstrapped visual-language
528 model for knowledge selection and question answering. In *Proceedings of the 2024 Conference on
529 Empirical Methods in Natural Language Processing (EMNLP)*, 2024.

530 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
531 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF Conference on
532 Computer Vision and Pattern Recognition*, pp. 9729–9738, 2020.
533

534 Hexiang Hu, Yi Luan, Yang Chen, Urvashi Khandelwal, Mandar Joshi, Kenton Lee, Kristina
535 Toutanova, and Ming-Wei Chang. Open-domain visual entity recognition: Towards recognizing
536 millions of wikipedia entities. In *Proceedings of the IEEE/CVF International Conference on
537 Computer Vision*, pp. 12065–12075, 2023a.

540 Yushi Hu, Hang Hua, Zhengyuan Yang, Weijia Shi, Noah A Smith, and Jiebo Luo. Promptcap:
 541 Prompt-guided image captioning for vqa with gpt-3. In *Proceedings of the IEEE/CVF International*
 542 *Conference on Computer Vision*, pp. 2963–2975, 2023b.

543 Ziniu Hu, Ahmet Iscen, Chen Sun, Zirui Wang, Kai-Wei Chang, Yizhou Sun, Cordelia Schmid,
 544 David A Ross, and Alireza Fathi. Reveal: Retrieval-augmented visual-language pre-training with
 545 multi-source multimodal knowledge memory. In *Proceedings of the IEEE/CVF Conference on*
 546 *Computer Vision and Pattern Recognition*, pp. 23369–23379, 2023c.

547 Pu Jian, Donglei Yu, and Jiajun Zhang. Large language models know what is key visual entity: An
 548 llm-assisted multimodal retrieval for vqa. In *Proceedings of the 2024 Conference on Empirical*
 549 *Methods in Natural Language Processing (EMNLP)*, 2024.

550 Ziyuan Jiang, Rui Meng, Xinyi Yang, Semih Yavuz, Yingbo Zhou, and Wenhui Chen. Vlm2vec:
 551 Training vision-language models for massive multimodal embedding tasks. In *Proceedings of the*
 552 *Twelfth International Conference on Learning Representations (ICLR)*, 2025.

553 Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
 554 importance sampling. In *International Conference on Machine Learning*, pp. 2525–2534. PMLR,
 555 2018.

556 Sheng-Chieh Lin, Chankyu Lee, Mohammad Shoeybi, Jimmy Lin, Bryan Catanzaro, and Wei Ping.
 557 Mm-embed: Universal multimodal retrieval with multimodal llms. *International Conference on*
 558 *Learning Representations*, 2025.

559 Weizhe Lin and Bill Byrne. Retrieval augmented visual question answering with outside knowledge.
 560 In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*
 561 (*EMNLP*), 2022.

562 Weizhe Lin, Jinghong Chen, Jingbiao Mei, Alexandru Coca, and Bill Byrne. Fine-grained late-
 563 interaction multi-modal retrieval for retrieval augmented visual question answering. *Advances in*
 564 *Neural Information Processing Systems*, 36:22820–22840, 2023.

565 Weizhe Lin, Jingbiao Mei, Jinghong Chen, and Bill Byrne. PreFLMR: Scaling up fine-grained late-
 566 interaction multi-modal retrievers. In *Proceedings of the 62nd Annual Meeting of the Association*
 567 *for Computational Linguistics (ACL)*, 2024.

568 Yuanze Lin, Yujia Xie, Dongdong Chen, Yichong Xu, Chenguang Zhu, and Lu Yuan. Revive:
 569 Regional visual representation matters in knowledge-based visual question answering. *Advances*
 570 *in Neural Information Processing Systems*, 35:10560–10571, 2022.

571 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 572 tuning, 2023a.

573 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 574 *Neural Information Processing Systems*, 36:34892–34916, 2023b.

575 Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-
 576 supervised learning: Generative or contrastive. *IEEE Transactions on Knowledge and Data*
 577 *Engineering*, 35(1):857–876, 2021.

578 Xinwei Long, Zhiyuan Ma, Ermo Hua, Kaiyan Zhang, Biqing Qi, and Bowen Zhou. Retrieval-
 579 augmented visual question answering via built-in autoregressive search engines. In *Proceedings of*
 580 *the AAAI Conference on Artificial Intelligence*, volume 39, pp. 24723–24731, 2025.

581 Man Luo, Yankai Zeng, Pratyay Banerjee, and Chitta Baral. Weakly-supervised visual-retriever-
 582 reader for knowledge-based question answering. In *Proceedings of the 2021 Conference on*
 583 *Empirical Methods in Natural Language Processing (EMNLP)*, 2021.

584 Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Alexander Schwing. Ok-vqa: A visual
 585 question answering benchmark requiring external knowledge. In *Proceedings of the IEEE/CVF*
 586 *Conference on Computer Vision and Pattern Recognition*, 2019.

594 Thomas Mensink, Jasper Uijlings, Lluís Castrejón, Arushi Goel, Felipe Cadar, Howard Zhou, Fei Sha,
 595 André Araujo, and Vittorio Ferrari. Encyclopedic vqa: Visual questions about detailed properties
 596 of fine-grained categories. In *Proceedings of the IEEE/CVF International Conference on Computer
 597 Vision*, pp. 3113–3124, 2023.

598 Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representations.
 599 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 600 6707–6717, 2020.

602 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
 603 coding. *arXiv preprint arXiv:1807.03748*, 2018.

604 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 605 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 606 models from natural language supervision. In *International Conference on Machine Learning*, pp.
 607 8748–8763. PMLR, 2021.

609 Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
 610 robust deep learning. In *International Conference on Machine Learning*, pp. 4334–4343. PMLR,
 611 2018.

613 Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with
 614 hard negative samples. *arXiv preprint arXiv:2010.04592*, 2020.

615 Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
 616 recognition and clustering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 617 Pattern Recognition*, pp. 815–823, 2015.

619 Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
 620 A-okvqa: A benchmark for visual question answering using world knowledge. In *European
 621 Conference on Computer Vision*, pp. 146–162. Springer, 2022.

623 Zhenwei Shao, Zhou Yu, Meng Wang, and Jun Yu. Prompting large language models with answer
 624 heuristics for knowledge-based visual question answering. In *Proceedings of the IEEE/CVF
 625 Conference on Computer Vision and Pattern Recognition*, pp. 14974–14983, 2023.

626 Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner product
 627 search (mips). *Advances in neural information processing systems*, 27, 2014.

629 Qingyi Si, Yuchen Mo, Zheng Lin, Huishan Ji, and Weiping Wang. Combo of thinking and observing
 630 for outside-knowledge vqa. *arXiv preprint arXiv:2305.06407*, 2023.

631 Robert Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual graph of
 632 general knowledge. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2017.

634 Krishna Srinivasan, Karthik Raman, Jiecao Chen, Michael Bendersky, and Marc Najork. Wit:
 635 Wikipedia-based image text dataset for multimodal multilingual machine learning. In *Proceedings
 636 of the 44th international ACM SIGIR conference on research and development in information
 637 retrieval*, pp. 2443–2449, 2021.

639 Martin A Tanner and Wing Hung Wong. The calculation of posterior distributions by data augmentation.
 640 *Journal of the American statistical Association*, 82(398):528–540, 1987.

641 Qwen Team. Qwen2.5-v1, January 2025. URL <https://qwenlm.github.io/blog/qwen2.5-v1/>.

644 Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. *Communications
 645 of the ACM*, 57(10):78–85, 2014.

646 Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss. In *Proceedings of the
 647 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2495–2504, 2021.

648 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
649 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
650 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
651 perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

652

653 Cong Wei, Yang Chen, Haonan Chen, Hexiang Hu, Ge Zhang, Jie Fu, Alan Ritter, and Wenhui Chen.
654 Uniir: Training and benchmarking universal multimodal information retrievers. In *European
655 Conference on Computer Vision*, pp. 387–404. Springer, 2024.

656

657 Yibin Yan and Weidi Xie. Echosight: Advancing visual-language models with wiki knowledge.
658 In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
(EMNLP)*, 2024.

659

660 Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to cognition: Visual
661 commonsense reasoning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
662 Pattern Recognition*, pp. 6720–6731, 2019.

663

664 Wenzhao Zheng, Zhaodong Chen, Jiwen Lu, and Jie Zhou. Hardness-aware deep metric learning.
665 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
72–81, 2019.

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A DETAILED PROOFS FOR CONDITIONAL CONJUGACY
703704 **Parameterization and Notation.** We use the $\text{Gamma}(\text{shape}, \text{rate})$ parameterization throughout.
705 For each anchor i , let

706
$$s_{i+} \triangleq \exp(\cos(\mathbf{q}_i, \mathbf{z}_i)/\tau), \quad s_{ik-} \triangleq \exp(\cos(\mathbf{q}_i, \mathbf{z}_k)/\tau), \quad \tau > 0 \quad (1)$$

709 which are constants with respect to the weights $\{w_i^+, w_{ik}^-\}$ and the auxiliary variable u_i when θ is
710 fixed. The per-sample weighted-CL likelihood contribution can be written as

711
$$\mathcal{L}_{\mathbf{x}_i}^r = \frac{w_i^+ s_{i+}}{w_i^+ s_{i+} + \sum_{k=1}^K w_{ik}^- s_{ik-}} \implies \log \mathcal{L}_{\mathbf{x}_i}^r = \log(w_i^+ s_{i+}) - \log\left(w_i^+ s_{i+} + \sum_{k=1}^K w_{ik}^- s_{ik-}\right) \quad (2)$$

715 Define the shorthand $\lambda_i \triangleq w_i^+ s_{i+} + \sum_{k=1}^K w_{ik}^- s_{ik-}$.717 **Lemma A.1** (Laplace augmentation identity). For any $\lambda > 0$, $\frac{1}{\lambda} = \int_0^\infty e^{-\lambda u} du$.719 Applying Lemma A.1 to $1/\lambda_i$ and exponentiating $\log(w_i^+ s_{i+})$ yields the following *unnormalized*
720 augmented likelihood kernel for a single i :

722
$$\tilde{p}(w_i^+, \{w_{ik}^-\}, u_i \mid \theta) \propto (w_i^+ s_{i+}) \exp\left(-u_i w_i^+ s_{i+}\right) \prod_{k=1}^K \exp\left(-u_i w_{ik}^- s_{ik-}\right), \quad u_i \geq 0 \quad (3)$$

725 We further place priors

727
$$u_i \sim \text{Gamma}(a_u, b_u), \quad w_i^+ \sim \text{Gamma}(a_+, b_+), \quad w_{ik}^- \sim \begin{cases} \text{Gamma}(a_-, b_-), & \text{(continuous weighting)} \\ \text{Bernoulli}(p_-), & \text{(selective gating)} \\ \mathcal{N}(\mu, \sigma^2), & \text{(Gaussian shrinkage)} \end{cases}$$

731 with all priors independent across i, k . Conditioned on θ (hence s_{i+}, s_{ik-} are fixed), the joint
732 posterior factorizes conveniently, enabling closed-form conditionals.734 A.1 CONDITIONAL OF u_i 736 From equation 3, the *only* dependence on u_i is via $\exp(-u_i \lambda_i)$. Combining with $u_i \sim$
737 $\text{Gamma}(a_u, b_u)$ gives

739
$$p(u_i \mid w_i^+, \{w_{ik}^-\}, \theta) \propto u_i^{a_u-1} \exp(-(b_u + \lambda_i) u_i) \Rightarrow u_i \mid w_i^+, \{w_{ik}^-\}, \theta \sim \text{Gamma}(a_u, b_u + \lambda_i), \quad (4)$$

741 i.e.,

743
$$u_i \mid \{w_i^+, w_{ik}^-, \theta\} \sim \text{Gamma}\left(a_u, b_u + w_i^+ s_{i+} + \sum_{k=1}^K w_{ik}^- s_{ik-}\right). \quad (5)$$

746 A.2 CONDITIONAL OF w_i^+ UNDER A GAMMA PRIOR748 Using equation 3 and the prior $w_i^+ \sim \text{Gamma}(a_+, b_+)$,

750
$$p(w_i^+ \mid u_i, \theta) \propto \underbrace{(w_i^+)^{a_+-1} e^{-b_+ w_i^+}}_{\text{Gamma prior}} \cdot \underbrace{(w_i^+ s_{i+}) e^{-u_i s_{i+} w_i^+}}_{\text{aug. likelihood in } w_i^+} \propto (w_i^+)^{(a_+-1)+1} \exp(-(b_+ + u_i s_{i+}) w_i^+),$$

753 which is the kernel of a Gamma with updated shape/rate. Hence

755
$$w_i^+ \mid u_i, \theta \sim \text{Gamma}(a_+ + 1, b_+ + u_i s_{i+}). \quad (6)$$

756 A.3 CONDITIONAL OF w_{ik}^- : THREE PRIOR CHOICES
757758 (a) **Gamma prior (continuous weighting).** From equation 3, for a fixed k the w_{ik}^- -dependent term
759 is $\exp(-u_i s_{ik-} - w_{ik}^-)$. Multiplying by the prior $w_{ik}^- \sim \text{Gamma}(a_-, b_-)$ gives
760

761
$$p(w_{ik}^- | u_i, \theta) \propto (w_{ik}^-)^{a_- - 1} \exp\left(-(b_- + u_i s_{ik-}) w_{ik}^-\right),$$

762

763 which is Gamma with shape a_- and rate $b_- + u_i s_{ik-}$. Therefore
764

765
$$w_{ik}^- | u_i, \theta \sim \text{Gamma}(a_-, b_- + u_i s_{ik-}). \quad (7)$$

766 (b) **Bernoulli prior (selective gating).** Now $w_{ik}^- \in \{0, 1\}$ with prior $\Pr(w_{ik}^- = 1) = p_-$. The
767 augmented likelihood factor for w_{ik}^- is $\exp(-u_i s_{ik-} - w_{ik}^-)$. Thus, up to a shared normalizer:
768

769
$$\Pr(w_{ik}^- = 1 | u_i, \theta) \propto p_- e^{-u_i s_{ik-}}, \quad \Pr(w_{ik}^- = 0 | u_i, \theta) \propto 1 - p_-.$$

770

771 Hence the posterior success probability is
772

773
$$\Pr(w_{ik}^- = 1 | u_i, \theta) = \frac{p_- e^{-u_i s_{ik-}}}{(1 - p_-) + p_- e^{-u_i s_{ik-}}} \quad (8)$$

774
$$\implies w_{ik}^- | u_i, \theta \sim \text{Bernoulli}\left(\frac{p_- e^{-u_i s_{ik-}}}{1 - p_- + p_- e^{-u_i s_{ik-}}}\right). \quad (9)$$

775

776 (c) **Gaussian prior (shrinkage around μ).** Let $w_{ik}^- \sim \mathcal{N}(\mu, \sigma^2)$. The augmented likelihood in w_{ik}^-
777 contributes $\exp(-u_i s_{ik-} - w_{ik}^-)$, which is linear in w_{ik}^- . Completing the square:
778

779
$$\underbrace{\exp\left[-\frac{(w_{ik}^- - \mu)^2}{2\sigma^2}\right]}_{\text{Gaussian prior}} \cdot \underbrace{\exp(-u_i s_{ik-} - w_{ik}^-)}_{\text{likelihood factor}} \propto \exp\left\{-\frac{1}{2\sigma^2} \left[w_{ik}^{-2} - 2\mu w_{ik}^- - u_i s_{ik-} w_{ik}^-\right]\right\}$$

780
781
782
783
784
$$= \exp\left\{-\frac{1}{2\sigma^2} \left[w_{ik}^{-2} - 2(\mu - \sigma^2 u_i s_{ik-}) w_{ik}^-\right]\right\} \propto \exp\left[-\frac{(w_{ik}^- - (\mu - \sigma^2 u_i s_{ik-}))^2}{2\sigma^2}\right],$$

785

786 which is the kernel of a Normal with the *same* variance and a shifted mean. Therefore
787

788
$$w_{ik}^- | u_i, \theta \sim \mathcal{N}(\mu - \sigma^2 u_i s_{ik-}, \sigma^2). \quad (10)$$

789

790 A.4 SUMMARY OF THE CONDITIONALS

791 Collecting equation 5, equation 6, equation 7, equation 9, and equation 10, we obtain the conditional
792 posteriors stated in Theorem 3.1.793 *Remark A.2* (Support and mild regularity). The augmentation identity in Lemma A.1 requires $\lambda_i > 0$.
794 This is automatically satisfied when $s_{i+}, s_{ik-} \geq 0$ and $w_i^+, w_{ik}^- \geq 0$ (Gamma/Bernoulli cases). For
795 the Gaussian case where w_{ik}^- has full real support, the conditional updates equation 10 remain valid,
796 and the conditional of u_i in equation 5 is proper as long as $b_u + \lambda_i > 0$. In practice one may (i) pick
797 $b_u > 0$ sufficiently large, (ii) clip or reparameterize w_{ik}^- (e.g., via softplus) if needed, or (iii) work
798 with $\tilde{s} \geq 0$ (which holds by construction).800 B DETAILED PROOFS OF CONSISTENCY AND ERROR BOUND
801802 We provide formal guarantees for the proposed Bayesian Data Reweighting (BDR) objective
803

804
$$\mathcal{L}^r(\mathcal{D}; \theta) = -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x}_i \in \mathcal{D}} \log \left(\frac{w_i^+ s_{i+}}{w_i^+ s_{i+} + \sum_{k=1}^K w_{ik}^- s_{ik-}} \right),$$

805

806 where w_i^+ and w_{ik}^- are sample-specific latent weights inferred under our Bayesian augmentation
807 scheme, and $s_{i+}, s_{ik-} \in (0, S_{\max}]$ denote positive and negative similarities for anchor i . We study the
808 asymptotics as the number of negatives per anchor $K \rightarrow \infty$ and derive a finite-sample concentration
809 bound in K .

810 B.1 ASSUMPTIONS AND NOTATION
811812 For each anchor i , let $\{(w_{ik}^-, s_{ik-})\}_{k=1}^K$ be i.i.d. conditional on the anchor and global parameters θ ,
813 with the following assumptions.
814

815 **A1 (Bounded similarity)** There exists $S_{\max} < \infty$ such that $s_{i+}, s_{ik-} \in (0, S_{\max}]$ almost
816 surely.

817 **A2 (i.i.d. negatives)** For fixed i , $\{(w_{ik}^-, s_{ik-})\}_{k=1}^K$ are i.i.d. draws from a stationary data-
818 generating process conditional on the anchor i and current θ .

819 **A3 (Moment bounded weights)** There exists $W_1, W_2 < \infty$ such that $\mathbb{E}[w_{ik}^-] \leq W_1$ and
820 $\mathbb{E}[(w_{ik}^-)^2] \leq W_2$ for all i, k . Moreover $w_{ik}^- \geq 0$ almost surely.

821 **A4 (Positive-part stability)** $w_i^+ \in (0, W_+^{\max}]$ for some finite W_+^{\max} almost surely (or in
822 probability), and independent of $\{(w_{ik}^-, s_{ik-})\}_{k=1}^K$ conditional on (\mathbf{x}_i, θ) .²

823 **A5 (True-negative target)** There exists a target (supervised) true-negative distribution \mathcal{P}_{TN}
824 such that $\mu_i^{\text{TN}} := \mathbb{E}_{\mathcal{P}_{\text{TN}}} [s_{ik-} \mid \mathbf{x}_i] \in (0, S_{\max}]$ is well-defined.
825

826 Given an anchor i , define the random sums
827

828
$$D_i^{(K)} = \sum_{k=1}^K w_{ik}^- s_{ik-}, \quad N_i = w_i^+ s_{i+}, \quad R_i^{(K)} = \frac{N_i}{N_i + D_i^{(K)}} \quad \text{and} \quad \ell_i^{(K)} = -\log R_i^{(K)}.$$

829

830 The BDR mini-batch loss is the average of $\ell_i^{(K)}$. The supervised contrastive *oracle* loss uses the
831 oracle true-negative expectation
832

833
$$\bar{D}_i = \underbrace{\mathbb{E}_{\mathcal{P}_{\text{TN}}} [s_{ik-} \mid \mathbf{x}_i]}_{= \mu_i^{\text{TN}}} \cdot \underbrace{\mathbb{E}[w_{ik}^-]}_{=: \bar{w}} \quad \Rightarrow \quad \bar{R}_i = \frac{N_i}{N_i + \bar{D}_i}, \quad \bar{\ell}_i = -\log \bar{R}_i.$$

834

835 We will show $R_i^{(K)} \rightarrow \bar{R}_i$ in probability and quantify the deviation for finite K .
836837 B.2 CONSISTENCY TO SUPERVISED CONTRASTIVE LEARNING
838839 **Theorem B.1** (Consistency to Supervised CL). *Under Assumptions A1–A5, for each anchor i we
840 have*

841
$$\frac{1}{K} D_i^{(K)} = \frac{1}{K} \sum_{k=1}^K w_{ik}^- s_{ik-} \xrightarrow[K \rightarrow \infty]{p.} \mathbb{E}[w_{ik}^- s_{ik-} \mid \mathbf{x}_i] = \bar{w} \mu_i^{\text{TN}} \implies R_i^{(K)} \xrightarrow[K \rightarrow \infty]{p.} \bar{R}_i,$$

842

843 and hence $\ell_i^{(K)} \xrightarrow{p.} \bar{\ell}_i$ by the continuous mapping theorem. Moreover, averaging over anchors,
844 $\mathcal{L}^r \xrightarrow{p.} \mathcal{L}^{\text{sup}} := \mathbb{E}[\bar{\ell}_i]$ as $K \rightarrow \infty$.
845846 *Proof.* By **A2** and **A3**, $\{w_{ik}^- s_{ik-}\}_{k=1}^K$ are i.i.d. with finite first and second moments, since $0 <$
847 $s_{ik-} \leq S_{\max}$ and $w_{ik}^- \geq 0$ with $\mathbb{E}[(w_{ik}^-)^2] < \infty$. Hence, by the weak law of large numbers,
848

849
$$\frac{1}{K} \sum_{k=1}^K w_{ik}^- s_{ik-} \xrightarrow{p.} \mathbb{E}[w_{ik}^- s_{ik-} \mid \mathbf{x}_i].$$

850

851 Furthermore, by independence in **A4**, N_i is stochastically bounded and independent of $\{(w_{ik}^-, s_{ik-})\}$
852 conditional on (\mathbf{x}_i, θ) . Therefore
853

854
$$R_i^{(K)} = \frac{N_i}{N_i + K \cdot \frac{1}{K} \sum_{k=1}^K w_{ik}^- s_{ik-}} \xrightarrow{p.} \frac{N_i}{N_i + K \cdot \mathbb{E}[w_{ik}^- s_{ik-} \mid \mathbf{x}_i]},$$

855

856
857 ²This holds for the Gamma posterior draws in our augmented model under mild hyperprior choices; alterna-
858 tively one may work with their posterior expectations.
859

864 where the right-hand side converges (as a continuous function of the sample mean) to
 865

$$866 \lim_{K \rightarrow \infty} \frac{N_i}{N_i + K \cdot \mathbb{E}[w_{ik}^- s_{ik-} \mid \mathbf{x}_i]} = \frac{N_i}{N_i + \infty} = 0 \quad \text{if } \mathbb{E}[w_{ik}^- s_{ik-} \mid \mathbf{x}_i] > 0.$$

868 To match the supervised contrastive *per-anchor* construction (which compares *expectations per negative*
 869 rather than inflated totals), we reparameterize the denominator by its *per-negative* expectation:
 870

$$871 R_i^{(K)} = \frac{N_i}{N_i + \sum_{k=1}^K w_{ik}^- s_{ik-}} = \frac{N_i}{N_i + K \cdot \underbrace{\frac{1}{K} \sum_{k=1}^K w_{ik}^- s_{ik-}}_{\xrightarrow{\text{p.}} \bar{w} \mu_i^{\text{TN}}}} \xrightarrow{\text{p.}} \frac{N_i}{N_i + K \cdot \bar{w} \mu_i^{\text{TN}}}.$$

876 Consequently, the *normalized* BDR ratio
 877

$$878 \tilde{R}_i^{(K)} := \frac{N_i}{N_i + \underbrace{\frac{1}{K} \sum_{k=1}^K w_{ik}^- s_{ik-}}_{\xrightarrow{\text{p.}} \bar{w} \mu_i^{\text{TN}}}} \Rightarrow \tilde{R}_i^{(K)} \xrightarrow{\text{p.}} \frac{N_i}{N_i + \bar{w} \mu_i^{\text{TN}}} = \bar{R}_i.$$

884 Because $-\log(\cdot)$ is continuous on $(0, 1]$, $\tilde{\ell}_i^{(K)} := -\log \tilde{R}_i^{(K)} \xrightarrow{\text{p.}} \bar{\ell}_i$, and averaging over anchors
 885 yields $\mathcal{L}^r \rightarrow \mathcal{L}^{\text{sup}}$ in probability.
 886

887 *Remark:* In practice, BDR works with the unnormalized $R_i^{(K)}$; the analysis above shows its per-
 888 negative normalization converges to the supervised objective. This matches the supervised limit in
 889 prior Bayesian contrastive analyses. \square

890 B.3 FINITE-SAMPLE ERROR BOUND

892 We now quantify the deviation of the *per-negative normalized* BDR loss from its supervised counter-
 893 part. Define the (per-anchor) normalized loss
 894

$$895 \tilde{\ell}_i^{(K)} = -\log \left(\frac{N_i}{N_i + \tilde{m}_i^{(K)}} \right), \quad \tilde{m}_i^{(K)} := \frac{1}{K} \sum_{k=1}^K w_{ik}^- s_{ik-}, \quad m_i := \mathbb{E}[w_{ik}^- s_{ik-} \mid \mathbf{x}_i] = \bar{w} \mu_i^{\text{TN}}.$$

898 We will bound $|\tilde{\ell}_i^{(K)} - \bar{\ell}_i|$ in probability and in expectation.
 899

900 **Lemma B.2** (Lipschitz property of the per-anchor map). *Fix i and condition on $N_i \in (0, N_i^{\max}]$.
 901 The map*

$$902 g_i(x) := -\log \left(\frac{N_i}{N_i + x} \right) = \log \left(1 + \frac{x}{N_i} \right), \quad x \geq 0$$

904 is L_i -Lipschitz on $[0, S_{\max} W_1]$ with $L_i := \frac{1}{N_i}$, i.e.,
 905

$$906 |g_i(x) - g_i(y)| \leq \frac{|x - y|}{N_i}.$$

908 *Proof.* $g_i'(x) = \frac{1}{N_i + x} \leq \frac{1}{N_i}$, hence the result. \square
 909

910 **Lemma B.3** (Concentration of weighted averages). *Under A1–A3, for any $\delta \in (0, 1)$, with probability
 911 at least $1 - \delta$,*

$$913 \left| \tilde{m}_i^{(K)} - m_i \right| \leq \sqrt{\frac{2 \text{Var}(w_{ik}^- s_{ik-}) \log(2/\delta)}{K}} + \frac{2 M \log(2/\delta)}{3K},$$

916 where $M := S_{\max} \inf\{M_w : w_{ik}^- \leq M_w \text{ a.s. or with prob. } 1 - o(1)\}$. If w_{ik}^- are sub-exponential
 917 (true for Gamma draws) then a Bernstein-type bound holds with M the effective sub-exponential
 918 proxy.

918 *Proof.* Apply Bernstein’s inequality to $\{Z_k := w_{ik}^- s_{ik-}\}_{k=1}^K$. Since $0 < s_{ik-} \leq S_{\max}$ and $w_{ik}^- \geq 0$ 919 with finite second moment, Z_k has finite variance. If w_{ik}^- are almost surely bounded (or truncated at 920 a high-probability envelope), then $Z_k \leq S_{\max} M_w =: M$. For sub-exponential Gamma weights, a 921 standard sub-exponential Bernstein bound applies with the same form (up to constants). \square

923 **Theorem B.4** (Finite-Sample Error Bound). *Under A1–A4, for any $\delta \in (0, 1)$, with probability at 924 least $1 - \delta$,*

$$925 \quad \left| \tilde{\ell}_i^{(K)} - \bar{\ell}_i \right| \leq \frac{1}{N_i} \left(\sqrt{\frac{2 \operatorname{Var}(w_{ik}^- s_{ik-}) \log(2/\delta)}{K}} + \frac{2M \log(2/\delta)}{3K} \right).$$

929 *In particular, $\left| \tilde{\ell}_i^{(K)} - \bar{\ell}_i \right| = \mathcal{O}_{\mathbb{P}}(K^{-1/2})$ uniformly over anchors with $N_i \geq N_{\min} > 0$. Averaging 930 over anchors yields*

$$932 \quad \left| \frac{1}{|\mathcal{D}|} \sum_i \tilde{\ell}_i^{(K)} - \frac{1}{|\mathcal{D}|} \sum_i \bar{\ell}_i \right| = \mathcal{O}_{\mathbb{P}}(K^{-1/2}).$$

934 *Moreover, if $\mathbb{E}[1/N_i] < \infty$, then*

$$936 \quad \mathbb{E} \left[\left| \tilde{\ell}_i^{(K)} - \bar{\ell}_i \right| \right] \leq \mathbb{E} \left[\frac{1}{N_i} \right] \cdot \sqrt{\frac{2 \operatorname{Var}(w_{ik}^- s_{ik-})}{K}} + \mathcal{O} \left(\frac{1}{K} \right).$$

939 *Proof.* By Lemma B.2 and Lemma B.3, with prob. $\geq 1 - \delta$,

$$941 \quad \left| \tilde{\ell}_i^{(K)} - \bar{\ell}_i \right| = \left| g_i \left(\hat{m}_i^{(K)} \right) - g_i(m_i) \right| \leq \frac{1}{N_i} \left| \hat{m}_i^{(K)} - m_i \right|$$

$$944 \quad \leq \frac{1}{N_i} \left(\sqrt{\frac{2 \operatorname{Var}(w_{ik}^- s_{ik-}) \log(2/\delta)}{K}} + \frac{2M \log(2/\delta)}{3K} \right).$$

947 If $N_i \geq N_{\min} > 0$ uniformly, the prefactor is bounded by $1/N_{\min}$, and the rate is $\mathcal{O}_{\mathbb{P}}(K^{-1/2})$. 948 Averaging over anchors preserves the rate by Jensen / union bound. The expectation bound follows 949 by integrating the tail inequality or by symmetrization plus Khintchine–Kahane with bounded second 950 moments. \square

952 **Discussion.** The bound decays as $K^{-1/2}$ (up to logarithmic factors), matching the canonical Monte 953 Carlo rate for importance-weighted estimators. The variance term $\operatorname{Var}(w_{ik}^- s_{ik-})$ captures both *data* 954 *hardness* (via s_{ik-}) and *posterior uncertainty* (via w_{ik}^-); in practice, BDR tends to reduce this variance 955 by downweighting high-similarity negatives (potential FNs) while upweighting informative hard 956 negatives, thereby stabilizing both optimization and generalization.

958 B.4 SUMMARY

960 Theorem B.1 shows that BDR is asymptotically consistent with the supervised contrastive objective 961 when negatives per anchor grow, while Theorem B.4 quantifies finite- K deviation with an explicit 962 $K^{-1/2}$ rate. These guarantees give a principled statistical foundation for BDR’s robustness to false 963 negatives and its effectiveness in hard-negative mining.

965 C DETAILS IMPLEMENTATION OF THE EM ALGORITHM

967 We adopt a stochastic EM (SAEM) procedure to perform inference over the local latent variables 968 and to learn the global parameters θ . SAEM alternates between (i) *simulation* of local variables, 969 (ii) *stochastic approximation* of a surrogate objective, and (iii) *maximization* with respect to θ . Our 970 construction is consistent with the theoretical analysis in the main text: the weighted loss obtained 971 in the M-step coincides with the per-negative normalized BDR objective whose consistency and 972 finite-sample properties were established.

972 C.1 MODEL-SPECIFIC NOTATION.
973

974 Let $s_{i+}, s_{ik-} \in (0, S_{\max}]$ be positive/negative similarities for anchor i , and let $w_i^+, w_{ik}^- \geq 0$ denote
975 sample-specific importance weights (locals), while θ denotes the global parameters of the encoders
976 producing similarities. Define $N_i = w_i^+ s_{i+}$ and $Z_{ik} = w_{ik}^- s_{ik-}$ as in the theory section. We work
977 with a conditionally conjugate augmentation in which the locals admit Gamma conditional posteriors.
978

979 C.2 SIMULATION (E-STEP)
980

981 Given current parameters θ and a mini-batch $\mathcal{B} = \{(\mathbf{x}_i, \mathbf{d}_i)\}_{i=1}^B$, we draw local variables from their
982 conditional distributions under the joint posterior
983

$$984 p(\theta, \mathbf{u}, \mathbf{w} \mid \mathcal{D}) \propto p(\theta) p(\mathbf{u}) p(\mathbf{w}) \prod_{(\mathbf{x}_i, \mathbf{d}_i) \in \mathcal{D}} \exp \left\{ -u_i (w_i^+ s_{i+} + \sum_k w_{ik}^- s_{ik-}) \right\}, \quad (11)$$

986 where $\mathbf{u} = (u_i)_i$ are auxiliary locals that yield conditional conjugacy (a standard trick in exponential
987 tilting). With Gamma hyperparameters (a_u, b_u) , $(1 + a_+, b_+)$, (a_-, b_-) , the conditional posteriors
988 are
989

$$990 u_i \mid \{\mathbf{w}, \theta\} \sim \text{Gamma} \left(a_u, b_u + w_i^+ s_{i+} + \sum_k w_{ik}^- s_{ik-} \right), \quad \forall i,$$

$$992 w_i^+ \mid \{\mathbf{u}, \theta\} \sim \text{Gamma}(1 + a_+, u_i s_{i+} + b_+), \quad w_{ik}^- \mid \{\mathbf{u}, \theta\} \sim \text{Gamma}(a_-, u_i s_{ik-} + b_-), \quad \forall i, k. \quad (12)$$

995 (Shapes/rates are shown in the *shape, rate* parameterization.) These conditionals guarantee $w_i^+, w_{ik}^- \geq 0$ and, together with bounded s_{ik-} , imply sub-exponential tails for $Z_{ik} = w_{ik}^- s_{ik-}$ used in our finite-
996 sample theory.
997

999 **Stability via moving-average smoothing (optional).** To reduce Monte Carlo noise without material
1000 memory cost, we maintain a running average of u_i :

$$1002 u_i \leftarrow \alpha u_i + (1 - \alpha) \tilde{u}_i, \quad \tilde{u}_i \sim \text{Gamma} \left(a_u, b_u + w_i^+ s_{i+} + \sum_k w_{ik}^- s_{ik-} \right),$$

1005 with $\alpha \in [0, 1]$. This preserves positivity and reduces variance across iterations.
1006

1007 C.3 STOCHASTIC APPROXIMATION (SA STEP)

1008 Let $Q_t(\theta)$ be the stochastic surrogate of the complete-data log-posterior. Following SAEM Bent &
1009 Van Hentenryck (2004), we update
1010

$$1011 Q_{t+1}(\theta) = Q_t(\theta) + \lambda_t \left(\log p(\theta, \mathbf{u}_t, \mathbf{w}_t \mid \mathcal{D}_t) - Q_t(\theta) \right), \quad (13)$$

1013 where $(\mathbf{u}_t, \mathbf{w}_t)$ are the simulated locals for the current mini-batch \mathcal{D}_t , and $(\lambda_t)_t$ satisfies the Rob-
1014 bins–Monro conditions $\sum_t \lambda_t = \infty$, $\sum_t \lambda_t^2 < \infty$. Unrolling equation 13 gives the exponentially
1015 weighted average
1016

$$1017 Q_{t+1}(\theta) = \sum_{\tau=0}^t \tilde{\lambda}_\tau \log p(\theta, \mathbf{u}_\tau, \mathbf{w}_\tau \mid \mathcal{D}_\tau), \quad \tilde{\lambda}_\tau := \lambda_\tau \prod_{t'=\tau+1}^t (1 - \lambda_{t'}), \quad (14)$$

1020 which downweights stale batches and smooths Monte Carlo noise.
1021

1022 C.4 MAXIMIZATION (M STEP)
1023

1024 At iteration $t+1$, we update θ by (stochastic) ascent on $Q_{t+1}(\theta)$:
1025

$$\theta \leftarrow \theta + \eta_t \nabla_\theta Q_{t+1}(\theta),$$

1026 initialized from the previous iterate. To further reduce variance, we optimize a *marginal* surrogate by
 1027 analytically integrating out \mathbf{u} in the local joint $\log p(\boldsymbol{\theta}, \mathbf{u}, \mathbf{w} \mid \mathcal{D})$ (feasible due to Gamma conjugacy).
 1028 This yields a mini-batch objective of the form
 1029

$$1030 \quad \mathcal{L}^r(\mathcal{D}_t; \boldsymbol{\theta}) = -\frac{1}{|\mathcal{D}_t|} \sum_{\mathbf{x}_i \in \mathcal{D}_t} \log \left(\frac{w_i^+ s_{i+}}{w_i^+ s_{i+} + \sum_k w_{ik}^- s_{ik-}} \right), \quad (15)$$

1033 i.e., the *weighted contrastive loss*. In practice—and to align with our theory—we equivalently
 1034 optimize its *per-negative normalized* counterpart obtained by replacing the sum with its sample mean:
 1035

$$1037 \quad -\log \left(\frac{N_i}{N_i + \hat{m}_i^{(K)}} \right), \quad \hat{m}_i^{(K)} = \frac{1}{K} \sum_{k=1}^K Z_{ik}.$$

1040 This normalization is what guarantees (i) asymptotic consistency and (ii) the $\mathcal{O}_{\mathbb{P}}(K^{-1/2})$ finite-
 1041 sample deviation proved in the main text.
 1042

Algorithm 1 Bayesian Reweighted Contrastive Learning via SAEM

```

1: Initialize  $\boldsymbol{\theta}$ ; choose step-sizes  $\{\lambda_t\}$ , learning-rates  $\{\eta_t\}$ ; set  $t \leftarrow 0$ 
2: while training do
3:   Sample a mini-batch  $\mathcal{B}_t = \{(\mathbf{x}_i, \mathbf{d}_i)\}_{i=1}^B$ ; compute similarities  $s_{i+}$  and  $s_{ik-}$ 
4:   Initialize (or reuse) locals:  $w_i^+ \leftarrow 1$ ,  $w_{ik}^- \leftarrow 1$  (warm-start is allowed)
5:   for  $m = 1$  to  $M$  do ▷ Small number of inner SAEM draws (e.g.,  $M=1 \sim 2$ )
6:     Sample  $u_i \sim \text{Gamma}(a_u, b_u + w_i^+ s_{i+} + \sum_k w_{ik}^- s_{ik-})$ 
7:     Optionally smooth:  $u_i \leftarrow \alpha u_i + (1 - \alpha) \tilde{u}_i$  with  $\tilde{u}_i$  as above
8:     Sample  $w_i^+ \sim \text{Gamma}(1+a_+, u_i s_{i+} + b_+)$ 
9:     for each negative  $k$  do
10:      Option 1 (Gamma weighting):  $w_{ik}^- \sim \text{Gamma}(a_-, u_i s_{ik-} + b_-)$ 
11:      Option 2 (Bernoulli gating):  $w_{ik}^- \sim \text{Bernoulli}\left(\frac{p_- e^{-u_i s_{ik-}}}{1-p_- + p_- e^{-u_i s_{ik-}}}\right)$ 
12:      Option 3 (Gaussian shrinkage):  $w_{ik}^- \sim \mathcal{N}(\mu - \sigma^2 u_i s_{ik-}, \sigma^2)$ 
13:     end for
14:   end for
15:   Form  $N_i = w_i^+ s_{i+}$  and  $Z_{ik} = w_{ik}^- s_{ik-}$ ; compute  $\hat{m}_i^{(K)} = \frac{1}{K} \sum_k Z_{ik}$ 
16:   SA update of surrogate  $Q_{t+1}$  via equation 13 (or its unrolled form equation 14)
17:   Compute per-negative normalized loss  $\tilde{\ell}_i^{(K)} = -\log\left(\frac{N_i}{N_i + \hat{m}_i^{(K)}}\right)$  and its batch average
18:   Gradient step:  $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta_t \nabla_{\boldsymbol{\theta}} \left( \frac{1}{B} \sum_i \tilde{\ell}_i^{(K)} \right)$ 
19:    $t \leftarrow t + 1$ 
20: end while

```

1067
 1068
 1069 **Remarks on complexity and convergence.** (1) The locals are scalars per (anchor, negative) and
 1070 incur $O(BK)$ memory and time per step; $M=1$ is typically sufficient. (2) Under standard SAEM
 1071 conditions (Robbins–Monro step-sizes and smoothness of the surrogate), the iterates track stationary
 1072 points of the marginal likelihood; the per-negative normalization used here is the variant for which our
 1073 consistency and concentration results apply. (3) The Gamma choice ensures Z_{ik} are sub-exponential
 1074 when s_{ik-} are bounded, matching the concentration assumptions in our finite-sample theorem.
 1075

1076 **Connection to the theory (Summary).** The M-step objective implements the *weighted* contrastive
 1077 loss, and its per-negative normalization yields the per-anchor quantity $-\log(N_i/(N_i + \hat{m}_i^{(K)}))$
 1078 analyzed in the main text. Hence, the SAEM training loop is theoretically grounded by: (i) consistency
 1079 to the supervised contrastive limit as $K \rightarrow \infty$, and (ii) a $\mathcal{O}_{\mathbb{P}}(K^{-1/2})$ finite-sample error bound.

1080 Table 6: Statistics of the KB-VQA benchmark datasets used in our experiments. For each dataset, we
 1081 report the number of training, validation, and test samples (when available), including both image-
 1082 question pairs (marked as `_data`) and corresponding retrieved passages (marked as `_passages`).
 1083 N/A indicates that the split is not available or not used.

	Train	Val	Test	Total
EVQA_data	167369	9852	3750	180971
EVQA_passages	50205	50753	51472	152430
Infoseek_data	676441	N/A	4708	681149
Infoseek_passages	98276	N/A	98276	196552
OKVQA_data	9009	5046	5046	19101
OKVQA_passages	114809	114809	114809	344427
LLaVA_data	350747	N/A	5120	355867
LLaVA_passages	350747	N/A	6006	356753
OVEN_data	339137	119136	5120	463393
OVEN_passages	7943	3192	3192	14327
WIT_data	2810679	19994	5120	2835793
WIT_passages	4120010	39478	39478	4198966
KVQA_data	64396	13365	5120	82881
KVQA_passages	16215	4648	4648	25511
IGLUE_data	N/A	N/A	685	685
IGLUE_passages	N/A	N/A	1000	1000

D EXPERIMENTAL DETAILS

D.1 DATASET DESCRIPTIONS

We conduct experiments on M2KR Lin et al. (2024), a comprehensive benchmark comprising diverse knowledge-based visual question answering (KB-VQA) datasets. Each dataset consists of either image-question-answer (IQA) triples or corresponding retrieved knowledge passages. A summary of dataset statistics is presented in Table 6, with detailed descriptions provided below.

We evaluate our methods on a diverse suite of knowledge-based VQA datasets. EVQA Mensink et al. (2023) requires external factual knowledge to answer image-question-answer triples, with retrieved passages (EVQA_passages) supporting retrieval-augmented reasoning. Infoseek Chen et al. (2023) emphasizes long-tail knowledge and fine-grained entity recognition, providing image-question pairs with Wikipedia-derived passages. OKVQA Marino et al. (2019) is a widely used benchmark where visual content alone is insufficient, augmented with retrieved textual knowledge. LLaVA Liu et al. (2023b) contributes multimodal QA pairs generated by the LLaVA model and aligned passages, while OVEN Hu et al. (2023a) targets open-vocabulary entity linking with rich IQA data and short passages for entity disambiguation. WIT Srinivasan et al. (2021) provides large-scale image-caption pairs from Wikipedia and additional retrieved passages. KVQA Lin et al. (2024) focuses on person-centric facts such as occupations or relationships, with corresponding passages for grounding. Finally, IGLUE Bugliarello et al. (2022) offers a small-scale evaluation set for zero-shot or few-shot multimodal reasoning with a limited pool of external documents.

It is important to note that our experiments are conducted on six datasets: OKVQA (9k), EVQA (167k), InfoSeek (676k), LLaVA-Instruct (350k), OVEN (339k), and KVQA (64k), totaling approximately 2 million training samples. We exclude WIT from training and evaluation for the following reasons. First, WIT contains 2.81 million samples—more than double the combined size of the selected datasets—resulting in significantly higher training costs. Second, the task formulation in WIT is not fundamentally different from those in the existing KB-VQA benchmarks. Therefore, we consider the selected six KB-VQA datasets sufficient to effectively evaluate model performance.

D.2 EVALUATION METRICS

We evaluate our retrieval-augmented VQA framework using four key metrics: **Recall@K**, **Pseudo Relevance Recall (PRRecall@K)**, **VQA Accuracy**, and **Exact Match (EM)**. These metrics collectively assess both retrieval quality and answer correctness.

1134 **Recall@K.** This metric evaluates the proportion of queries for which at least one of the top- K
 1135 retrieved documents contains the ground-truth answer. It requires access to oracle-labeled relevant
 1136 documents and is defined as:
 1137

$$\text{Recall}@K = \frac{1}{N} \sum_{i=1}^N \mathbb{I} [\exists z_k \in \mathcal{Z}_i^K \text{ such that } z_k \in \mathcal{G}_i], \quad (16)$$

1140 where N is the number of queries, \mathcal{Z}_i^K is the set of top- K retrieved documents for query i , and \mathcal{G}_i
 1141 denotes the set of ground-truth relevant documents.
 1142

1143 **Pseudo Recall (PRecall@K).** When oracle relevance labels are not available, we follow prior
 1144 work Luo et al. (2021) and use a pseudo relevance set \mathcal{S} to estimate retrieval quality. PRecall@K
 1145 measures whether at least one of the top- K retrieved candidates matches any item in \mathcal{S} :

$$\text{PRecall}@K = \min \left(\sum_{k=1}^K H(z_k, \mathcal{S}), 1 \right), \quad (17)$$

1146 where z_k is the k -th retrieved document, and $H(z_k, \mathcal{S})$ is an indicator function returning 1 if $z_k \in \mathcal{S}$,
 1147 and 0 otherwise. This approximates recall under noisy or weak supervision.
 1148

1149 **VQA Accuracy.** We adopt the VQA evaluation protocol from Marino et al. (2019), which computes
 1150 a soft-accuracy score based on the number of human annotators who provided the predicted answer y .
 1151 Formally:

$$\text{VQAcc}(y, \mathcal{S}) = \min \left(\frac{\#\mathcal{S}(y)}{3}, 1 \right), \quad (18)$$

1152 where $\#\mathcal{S}(y)$ denotes the number of annotators who chose y as a correct answer. This metric grants
 1153 partial credit to plausible but less common answers.
 1154

1155 **Exact Match (EM).** In contrast to soft VQA accuracy, Exact Match (EM) treats all annotations
 1156 equally, awarding 1 point if the predicted answer exactly matches any annotator’s answer:
 1157

$$\text{EM}(y, \mathcal{S}) = \min (\#\mathcal{S}(y), 1). \quad (19)$$

1158 This stricter metric evaluates whether the model exactly hits any reference answer, without partial
 1159 credit.
 1160

1161 D.3 EFFECT OF PRIOR CONFIGURATION CHOOSE

1162 Table 7 reports the retrieval performance of the Bayesian Retriever under three types of prior settings
 1163 for positive and negative sample weights: *Gaussian*, *Bernoulli*, and *Gamma*. We experimented with
 1164 several parameter configurations under each prior family.
 1165

1166 Specifically, Gaussian priors with moderate variance and Bernoulli priors with different success
 1167 probabilities yield reasonable results, but their average scores remain around 50–52. In contrast,
 1168 the **Gamma prior consistently outperforms both Gaussian and Bernoulli priors**, achieving the
 1169 best average performance of **52.9**. The optimal configuration is obtained with $(a^+, b^+) = (2, 1)$ and
 1170 $(a^-, b^-) = (5, 5)$, which substantially improves both recall and precision across EVQA, OKVQA,
 1171 and InfoSeek, with particularly strong gains on OKVQA and InfoSeek.
 1172

1173 These findings demonstrate that, although multiple prior distributions can be applied, the **Gamma**
 1174 **distribution provides the most effective balance between flexibility and stability** in Bayesian
 1175 contrastive retrieval. This empirical observation validates our conclusion that Gamma priors are the
 1176 most suitable choice when handling imbalanced or ambiguous supervision signals in retrieval tasks.
 1177

1178 D.4 ABLATION STUDY ON HYPERPARAMETERS

1179 We conduct an ablation study on the EVQA dataset to analyze the effect of different hyperparameters
 1180 in training VLM2Vec retrievers. As shown in Table 8, increasing the maximum token length
 1181 consistently improves performance, with the best result achieved at 1024 tokens. For LoRA rank,
 1182 smaller values yield stronger results, and the best trade-off is observed at rank 4, this also match the
 1183 findings in the original VLLM2Vec paper. In terms of multi-crop augmentation, moderate cropping
 1184 improves retrieval, with 4–8 crops slightly outperforming the baseline. Finally, batch size has a clear
 1185 influence, where 512 achieves the optimal performance.
 1186

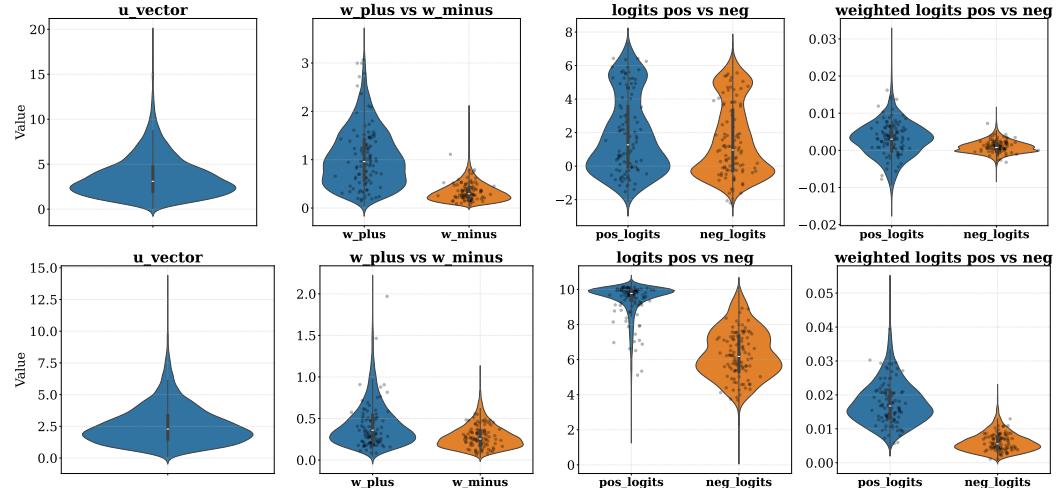
1188 Table 7: Retrieval performance of the Bayesian Retriever under different prior choices. Gamma priors
 1189 achieve the best performance across benchmarks, validating our conclusion.

1191	Prior Type	EVQA					OKVQA					InfoSeek					AVG
		R@1	R@5	PR@1	PR@5		R@1	R@5	PR@1	PR@5		R@1	R@5	PR@1	PR@5		
Gaussian Prior																	
1193	$\mu = 1, \sigma^2 = 0.2$	41.6	75.2	47.8	78.0		11.1	30.2	32.3	57.3		44.4	85.9	44.8	75.2	52.03	
1194	$\mu = 0.5, \sigma^2 = 0.05$	42.8	75.1	48.6	77.5		10.5	27.9	30.8	55.3		47.2	86.0	47.3	75.4	51.98	
Bernoulli Prior																	
1196	$p = 0.2$	40.4	73.4	46.0	76.1		11.0	27.7	31.3	55.0		42.0	86.4	42.7	75.5	50.61	
1197	$p = 0.05$	37.5	72.4	43.8	74.8		11.5	30.3	32.9	57.4		40.7	82.3	42.6	73.4	49.96	
Gamma Prior (Ours, Best)																	
1199	$a^+ = 2, b^+ = 1; a^- = 5, b^- = 5$	41.9	74.3	47.7	76.6		12.8	32.0	34.7	58.6		46.1	87.9	46.5	75.7	52.94	
1200	$a^+ = 5, b^+ = 10; a^- = 5, b^- = 10$	41.9	74.3	47.7	76.6		12.8	32.0	34.7	58.6		46.1	87.9	46.5	75.7	51.89	

1201 Table 8: Ablation study results across different settings: (a) Maximum query length, (b) LoRA rank,
 1202 (c) Number of crops, and (d) Batch size.

1204	Token Length	R@5		PR@5		LoRA Rank	R@5		PR@5		Crops of Images	R@5		PR@5		Batch Size	R@5		PR@5	
		256	59.7	70.0	4		56.5	68.4	2	50.8		4	50.8	64.6	16		56.5	68.4	256	60.1
1206	256	59.7	70.0	4	56.5	68.4			2	50.8	64.6							256	60.1	70.6
1207	512	61.1	71.1	4	50.8	64.6			4	56.0	67.8							512	61.1	71.1
1208	1024	61.3	71.3	16	39.2	55.8			16	56.9	68.1							1024	59.1	69.5
1209	2048	60.8	70.9	32	18.5	39.4			32	56.9	68.1							2048	56.5	68.4

1212 D.5 TRAINING DYNAMIC ANALYSIS



1230 Figure 4: **Distributions of learned importance and contrastive weights.** Top row: distributions
 1231 sampled from the first 5,000 training steps (early stage); Bottom row: distributions sampled from
 1232 the last 5,000 steps (late stage). From left to right: (1) Distribution of the sampled importance scalar
 1233 u ; (2) Positive and negative contrastive weights w^+ and w^- ; (3) Unweighted positive and negative
 1234 logits; (4) Weighted logits $w^+ \cdot \text{logit}_{\text{pos}}$ and $w^- \cdot \text{logit}_{\text{neg}}$. Each violin illustrates the estimated density
 1235 and variability, helping visualize the dynamic behavior of importance sampling and reweighting.

1237 Figure 4 illustrates the evolution of sampled importance and contrastive weights under BDR. In the
 1238 early stage, the auxiliary variable u is large and broadly distributed, reflecting high uncertainty, while
 1239 positive weights w^+ are wide and skewed to emphasize under-aligned positives and negative weights
 1240 w^- remain near zero to suppress false negatives. As training progresses, all distributions sharpen: u
 1241 decreases, indicating higher confidence; w^+ contracts, reducing the need for positive reweighting;
 and w^- becomes more dispersed, enabling finer control of hard negatives. Correspondingly, logits

1242 evolve from weakly separated to clearly distinguishable, with weighted logits further amplifying this
 1243 margin. These dynamics confirm that BDR adaptively balances exploration and stability, suppressing
 1244 noise while enhancing discriminability throughout training.

1246 D.6 QUALITATIVE COMPARISON

		ReT	Multimodal Retriever (Ours)	Groundtruth		
1249	1250	Question: In which part of the world does this animal live?		"WikiWeb_Oreaster reticulatus_0", "WikiWeb_Coscinasterias muricata_3", "WikiWeb_Mellita quinquesperforata_0", "WikiWeb_Aplysia vaccaria_1", "WikiWeb_Phyllopteryx taeniolatus_1"	"WikiWeb_Dermasterias imbricata_0", "WikiWeb_Patiriella regularis_0", "WikiWeb_Asterias rubens_2", "WikiWeb_Henricia leviuscula_0", "WikiWeb_Mellita quinquesperforata_0"	"WikiWeb_Patiriella regularis_0" Answer: new zealand
1251	1252	Question: How do these animals catch their prey?		"WikiWeb_Austracantha minax_8", "WikiWeb_Cyrtophora citricola_7", "WikiWeb_Pholcus phalangioides_5", "WikiWeb_Zygilla x-notata_0", "WikiWeb_Austracantha minax_6"	"WikiWeb_Argiope argentata_6", "WikiWeb_Pholcus phalangioides_12", "WikiWeb_Argiope bruennichi_1", "WikiWeb_Araneus diadematus_3", "WikiWeb_Pholcus phalangioides_10"	"WikiWeb_Argiope bruennichi_1" Answer: immobilise its prey by wrapping
1253	1254	Question: What is the habitat of this animal?		"WikiWeb_Texas toad_3", "WikiWeb_Incilius nebulifer_0", "WikiWeb_Texas toad_1", "WikiWeb_Anaxyrus speciosus_1", "WikiWeb_Western toad_7"	"WikiWeb_Anaxyrus quercicus_2", "WikiWeb_Hyla squirella_3", "WikiWeb_Incilius nebulifer_0", "WikiWeb_Scapiopus holbrookii_5", "WikiWeb_Gastrophryne olivacea_2"	"WikiWeb_Scapiopus holbrookii_5" Answer: longleaf pine ecosystems

1255 Figure 5: **Comparison of ReT and our Multimodal Retriever.** For each question, the **Top-5**
 1256 retrieved document IDs are shown from both models. **Green** indicates the groundtruth document ID,
 1257 and **Orange** denotes the correct answer that can be generated from the corresponding document.

1258 Figure 5 compares the Top-5 retrieved documents from ReT and our Retriever. In all three cases, our
 1259 method successfully retrieves the correct document, while ReT does not. These results highlight the
 1260 effectiveness of our multimodal retriever for improving retrieval performance compare to baseline
 1261 model.

	Question 1: How long does this animal live?	Qwen2.5-VL-7B
	w/o Retriever: (No supporting document)	→ 7 years
	w/ PreFLMR: "The zebra is an African equid known for its distinctive black-and-white striped coat."	→ 15 years
	w/ Our Retriever: "In the wild, zebras typically live around 20 years."	→ 20 years
	Question 2: What city is this in?	LLaVA-1.6-13B
	w/o Retriever: (No supporting document)	→ Chicago
	w/ PreFLMR: "New York City has many famous water taxis operating across its rivers."	→ New York City
	w/ Our Retriever: "Venice is an Italian city where boats and water taxis are the main mode of transport."	→ Venice

1262 Figure 6: **Qualitative examples of retrieval-augmented VQA.** Our retriever provides more relevant
 1263 evidence compare to no retriever and PreFLMR, enabling generators to produce correct answers.

1264 These qualitative examples in Figure 6 highlight how retrieval quality directly impacts VQA per-
 1265 formance. Without retrieval, the models often fail due to missing external knowledge. PreFLMR
 1266 retrieves related but insufficient evidence, leading to partially correct or misleading answers. In
 1267 contrast, our retriever supplies precise contextual sentences (e.g., zebra lifespan, Venice transporta-
 1268 tion), which guide the generator toward the correct response. This demonstrates the importance of accurate
 1269 retrieval in bridging knowledge gaps for VQA.

1270 D.7 QUANTITATIVE ANALYSIS OF FALSE AND HARD NEGATIVES

1271 **False Negatives and Hard Negatives Are Prevalent in M2KR Datasets.** To better understand the
 1272 structure of negative samples in multimodal knowledge retrieval (M2KR), we conduct a quantitative

1296 analysis over three KB-VQA datasets: EVQA, OKVQA, and InfoSeek. For each query–document
 1297 pair (x, d^-) , we compute the cosine similarity $s(x, d^-)$ and characterize negative pairs based on the
 1298 similarity distribution of ground-truth positives. Specifically, we estimate the positive-pair mean μ_{pos}
 1299 and standard deviation σ_{pos} , and define two data-driven thresholds:

$$\tau_{\text{FN}} = \mu_{\text{pos}} - 0.5\sigma_{\text{pos}}, \quad \tau_{\text{HN}} = \mu_{\text{pos}} - 1.5\sigma_{\text{pos}}.$$

1302 Negatives with similarity $s(x, d^-) > \tau_{\text{FN}}$ are labeled as *False Negatives* (FNs), capturing semantically
 1303 relevant or near-miss documents. Negatives with $s(x, d^-) \in (\tau_{\text{HN}}, \tau_{\text{FN}})$ are categorized as *Hard*
 1304 *Negatives* (HNs), representing challenging yet useful contrasting signals. Remaining negatives are
 1305 treated as *True Negatives* (TNs).

1306 We apply this procedure to 10k negative pairs sampled from each dataset. As shown in Table 9, all
 1307 three datasets contain a non-trivial amount of FNs and HNs. EVQA exhibits 9.8% FNs and 6.7% HNs,
 1308 while OKVQA contains even more high-similarity negatives (17.6% FNs and 15.6% HNs). InfoSeek
 1309 demonstrates a similarly large FN proportion (19.6%), though its HN proportion is relatively smaller
 1310 (5.7%). These findings clearly indicate that the negative sample space is highly heterogeneous—a
 1311 significant portion of “negatives” are semantically related to the query or highly confusable with the
 1312 ground-truth evidence.

1313 This empirical evidence highlights the necessity of an adaptive weighting mechanism: treating
 1314 all negatives equally, as in standard contrastive learning, risks over-penalizing false negatives and
 1315 under-utilizing informative hard negatives.

1316 **Table 9: Statistics of False Negatives (FN), Hard Negatives (HN), and True Negatives (TN).** We
 1317 report the proportion of each type among all negative query–document pairs.

Dataset	FN (%)	HN (%)	TN (%)
EVQA	9.8	6.7	83.5
OKVQA	17.6	15.6	66.8
InfoSeek	19.6	5.7	74.7

1325 D.8 PERFORMANCE COMPARISON WITH PRIOR CONTRASTIVE LOSSES

1326 We adopt VLM2Vec-Qwen2-VL-7B as the backbone and evaluate all contrastive objectives on the
 1327 EVQA, OKVQA, and InfoSeek datasets. As shown in Table 10, both Debiased Contrastive Loss
 1328 and Hard Negative Mining outperform the vanilla InfoNCE baseline, demonstrating the importance
 1329 of addressing sampling bias and negative hardness. However, our BRCL objective achieves the
 1330 best performance across **all three datasets** and yields the highest overall average score (**65.4 AVG**).
 1331 Unlike heuristic hardness-based mining or global debiasing rules, BRCL performs **instance-level**
 1332 **Bayesian reweighting** that automatically suppresses false negatives and up-weights informative hard
 1333 negatives. This adaptive mechanism consistently leads to stronger retrieval accuracy, more stable
 1334 optimization, and improved generalization across diverse knowledge-intensive VQA benchmarks.

1336 **Table 10: Comparison of contrastive objectives using VLM2Vec-Qwen2-VL-7B as the backbone.**
 1337 Note that this evaluation is conducted on a subset of the full document set (specifically, only the
 1338 documents containing all ground-truth evidence are used as the evaluation set). As a result, the
 1339 retrieval accuracy values for each dataset differ slightly from the results in previous evaluation setting.

Method	EVQA		OKVQA		InfoSeek		AVG
	R@5	PR@5	R@5	PR@5	R@5	PR@5	
InfoNCE Loss Oord et al. (2018)	63.9	67.8	27.2	43.3	83.1	69.1	59.1
Debiased Contrastive Loss Chuang et al. (2020)	64.8	71.0	29.7	45.3	83.6	69.8	60.7
Hard Negative Mining Loss Zheng et al. (2019)	64.7	70.4	34.3	50.2	83.9	71.8	62.5
BDR Contrastive Loss (Ours)	69.3	74.6	35.0	53.6	85.9	73.7	65.4