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ABSTRACT

Knowledge-based Visual Question Answering (VQA) requires retrievers to in-
corporate external knowledge, e.g., documents, to answer questions. Existing
retrievers are typically optimized with standard contrastive learning, which treats
all non-positive pairs as equally informative, leading to false negative bias and dif-
ficulties in hard negative mining. To overcome these issues, we propose Bayesian
Data Reweighting (BDR), a probabilistic framework that assigns learnable im-
portance weights to query-document pairs and performs Bayesian inference over
these weights. We derive closed-form posterior updates under conjugate priors and
develop an efficient EM algorithm for weight estimation. This approach adaptively
emphasizes informative pairs without explicit hard negative mining. Experiments
on two representative multimodal retrievers demonstrate consistent improvements,
with BDR achieving gains of up to 8.6 points on individual datasets and an average
recall of 68.6 across all M2KR datasets, surpassing the previous state-of-the-art. !

1 INTRODUCTION

Knowledge-based Visual Question Answering (KB-VQA) Marino et al. (2019); Schwenk et al. (2022)
extends the traditional VQA task by requiring models to incorporate external knowledge sources,
such as structured knowledge graphs Speer et al. (2017), unstructured textual corpora Vrandecié¢ &
Krotzsch (2014), or large-scale encyclopedic documents Mensink et al. (2023) to answer questions.
These questions often involve commonsense reasoning Zellers et al. (2019), fine-grained factual
knowledge Chen et al. (2023), or entity disambiguation Jian et al. (2024), which is often absent from
raw visual or linguistic input. As such, KB-VQA serves as a key benchmark for evaluating a model’s
ability to integrate perception with world knowledge Caffagni et al. (2024); Yan & Xie (2024), and
has significant implications for downstream applications in education, healthcare, and open-domain
dialog systems.

Recent advances in KB-VQA have primarily focused on designing efficient multimodal retrievers,
such as late interaction modules Lin et al. (2023; 2024), unified embedding architectures Jiang et al.
(2025); Wei et al. (2024); Lin et al. (2025), and their combination with advanced generators Lin &
Byrne (2022); Hu et al. (2023c). However, most existing retrievers Lin et al. (2023; 2024); Caffagni
et al. (2025); Jiang et al. (2025) are trained with the standard InfoNCE loss Oord et al. (2018),
which assumes that all non-positive samples in a batch are equally informative negatives. This
assumption introduces two major limitations. First, it fails to account for false negatives, samples that
are semantically relevant but incorrectly treated as negatives, thus pushing away potentially correct
document and degrading retrieval performance Chuang et al. (2020). Second, it lacks the ability to
distinguish hard negatives distractors that are highly similar but semantically incorrect—which can
collapse the structure of the embedding space if not properly handled Wang & Liu (2021).

To mitigate the impact of false and hard negatives that exist in standard contrastive learning, we
further introduce a novel Bayesian Data Reweighting (BDR) framework. Inspired by classical
importance sampling Katharopoulos & Fleuret (2018), we introduce an importance weight w; for each
unlabeled document d; to adjust semantic consistency among negatives. The difference between our
framework and the standard contrastive learning framework is illustrated in Figure 1. We transform
contrastive learning into a Bayesian reweighting problem by introducing latent importance weights
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Figure 1: Sampling strategies in KB-VQA retriever training. Traditional methods uniformly
sample negatives, treating all as equal (TN, HN, FN). Our Bayesian re-weighting instead assigns
dynamic weights based on difficulty and uncertainty, mitigating false negatives and emphasizing hard
negatives to refine the decision boundary.

over sample pairs. Through auxiliary variable augmentation, we achieve conditional conjugacy
and tractable posteriors for these weights. The shared priors over sample-wise weights enable the
model to automatically emphasize informative pairs and suppress noisy ones, without explicitly
identifying hard or false negatives. Furthermore, we develop a stochastic Expectation-Maximization
(EM) algorithm to jointly infer the latent variables and optimize the model parameters in a tractable
and efficient manner.

We conducted experiments on two representative multimodal retrievers, Pre-FLMR Lin et al. (2024)
and VLM2Vec Jiang et al. (2025), and found that applying BDR consistently improves performance.
With the ViT-L backbone, Pre-FLMR with BDR achieves a 6.8-point improvement on InfoSeek;
and with ViT-G, it achieves an 8.6-point improvement on LLaVA. For the VLM2Vec retriever, BDR
brings the largest gain of 7.2 points on OKVQA when using the Phi-3.5-V-3.8B backbone. Ultimately,
our best retriever, VLM2Vec with a Qwen2-VL-7B backbone, achieves an average recall of 68.6
with BDR, surpassing the previous state-of-the-art of 58.9 on this benchmark. Equipped with our
best retriever, we also achieve significant improvements in VQA accuracy across three downstream
KB-VQA tasks. These results clearly demonstrate the effectiveness of the proposed BDR method for
multimodal retrieval tasks. Our contributions are summarized as follows:

* We introduce Bayesian Data Reweighting (BDR), a probabilistic framework that assigns
importance weights to query-document pairs and performs Bayesian inference to adaptively
mitigate false negative bias and facilitate hard negative mining.

* We derive closed-form posterior updates under conjugate priors and propose an efficient
stochastic EM algorithm, enabling tractable and scalable optimization for scalable multi-
modal retrieval tasks.

 Extensive experiments on two representative retrievers demonstrate consistent and significant
improvements. In particular, BDR achieves gains of up to 8.6 points on individual dataset
and establishes a new state-of-the-art average recall of 68.6 on the M2KR benchmark.

2 RELATED WORK

Knowledge-based Visual Question Answering. Knowledge-based Visual Question Answering
(KB-VQA) extends traditional VQA by requiring external knowledge to answer questions that cannot
be resolved by visual content alone Marino et al. (2019); Schwenk et al. (2022). Recent progress has
shown the promise of retrieval-augmented generation (RAG) frameworks, where external textual
resources (e.g., Wikipedia or web documents) are retrieved and fed into large multimodal language
models (MLLMs) to enhance reasoning Caffagni et al. (2024); Yan & Xie (2024); Long et al. (2025).
Among these, ReAuSE Long et al. (2025) tightly integrates autoregressive retrieval into the generative
VQA pipeline, while Wiki-LLaVA Caffagni et al. (2024) employs a hierarchical passage retrieval
strategy to select knowledge from multimodal documents. EchoSight Yan & Xie (2024) further
introduces a visual retriever followed by multimodal reranking to better align visual cues with
encyclopedic content. Despite these advances, KB-VQA retrieval pipelines remain brittle. often
retrieving redundant or irrelevant knowledge Hao et al. (2024) or failing to capture fine-grained
entities within the visual scene Jian et al. (2024), which motivates the development of a more robust
and effective retriever.
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Learning to Reweight Samples in Contrastive Learning Contrastive learning has become a
powerful paradigm for multimodal retriever optimization Misra & Maaten (2020); He et al. (2020);
Chen et al. (2020); Liu et al. (2021). Existing methods typically treat paired samples as positives and
all others as negatives, which introduces false negatives due to semantic overlap or label ambiguity,
degrading retrieval robustness Chuang et al. (2020). Prior attempts to address this, such as hard
negative mining Schroff et al. (2015), debiased contrastive loss Chuang et al. (2020), and heuristic
weighting Zheng et al. (2019), often rely on fixed rules without modeling uncertainty. In contrast,
our work builds on importance sampling Katharopoulos & Fleuret (2018) but differs fundamentally:
(1) we introduce a Bayesian framework that infers stochastic local weights for both positives and
negatives, and (2) we design a latent variable augmentation scheme enabling conjugate inference and
tractable weight updates under common priors.

3 MULTIMODAL RETRIEVAL FRAMEWORK AND BAYESIAN REWEIGHTING

3.1 PRELIMINARIES

We aim to build a multimodal Retrieval-Augmented Generation (RAG) framework to enhance
Knowledge-based VQA by retrieving relevant documents as external knowledge. Specifically, given
an input query z, our framework retrieves a set of top-k documents Dy (x) = {d;,ds, . ..,dy} and
incorporates them as additional context to generate a target answer y. The overall formulation of the

framework is:

Py | x) = po(Di(x) | ) - po(y | 2, Di(x)) . M

retriever generator

The Retrieval-Augmented Generation (RAG) framework consists of two components: (1) Re-
triever pg(Dy(x) | x) with parameters 6, which denotes the retrieval process that selects the
top-k most relevant documents given a query = (i.e., Di(x) = TopK(pg(- | ))). (2) Generator
Pe(Yi | , Di (), y1.4—1) with parameters ¢, which generates the answer conditioned on the original
query z and the retrieved document set Dy (x). Specifically, the retriever pg(d | ) estimates the
relevance of each document d given query z, implemented by computing similarity scores between
their embeddings:

po(d|z) cexp(z'q), z=F.(d), q=F,), )
where F () denoting the document encoder and F,(-) denoting the query encoder, z and q are
the embeddings of a document d and a query x, respectively. We adopt Maximum Inner Product
Search (MIPS) Shrivastava & Li (2014) to compute query-document similarities in sub-linear time.
In multimodal RAG systems, the retriever is critical Lin & Byrne (2022), as it determines whether
relevant knowledge can be retrieved. Most prior works optimize retrievers with the InfoNCE loss Oord
et al. (2018), which increases similarity for positive pairs while separating negatives. Given a dataset
D = {(x;,d;)},, each (x;,d;) is a positive pair, and (x;,d;) with i # j is a negative pair. The
similarity scores are:s;+ = exp(cos(q,—,zi)/T), Sip- = exp(cos(qi, Zk)/T), 7 > 0. Here we
use the exponential cosine similarity, the contrastive loss is then defined as:

1 Si+
L(D:6) = —— log (Lx,), with L, & — 510 3)
(P:0) D Zx’iED ( Sit + Sohet Sik-

Challenges In contrastive learning it assumes that positive and negative pairs are clean and reliable.
However, in practice, negatives are randomly sampled within each batch, which may cause the False
Negative problem Chuang et al. (2020) and the Hard Negative problem Robinson et al. (2020). As
shown in Fig. 1, we illustrate these challenges with a multimodal query: given an image of the Statue
of Liberty and the question “What emergency number do you dial in this country?”, the correct
positive is Document A, which states that 911 is the U.S. emergency number. However, Document C
(“the fire department and ambulance services can be reached by dialing 9117) is semantically relevant
and thus a false negative, while Document D, which describes emergency services in Mexico,
is a hard negative. This example highlights the two key problems: False negative debiasing.
Document C should not be pushed away, as it conveys the same semantic meaning as the query. Hard
negative mining. Document D should be pushed further apart to maintain clear semantic separation
between the U.S. and Mexico. The quantitative analysis of False and Hard Negatives in Appendix D.7
also shows False Negatives and Hard Negatives are prevalent in M2KR Datasets.
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3.2 PROPOSED METHOD: BAYESIAN DATA REWEIGHTING (BDR)

Inspired by classical importance sampling Katharopoulos & Fleuret (2018), we introduce an impor-
tance weight w; for each unlabeled document d; to adjust semantic consistency among negatives. We
introduce local learnable weights {w;", w;, } associated with each positive and negative pair, resulting
in a weighted contrastive loss defined as:

1 w8+

LY(D;0) = —— log (L), L% & , 4)
D:6) D] inep (£x) Cwl s+ e wi s

where wj and w;,, represent the importance of the positive and negative pairs, respectively. Rea-
sonable weights should follow these principles: (1) If a negative sample x;, is actually a false
negative, w;, should be small (ideally zero) to avoid pushing apart true positives, thereby maintaining
alignment. False negatives can be treated as noise, and small weights cause the gradient in equation 4
to vanish, preventing the model from learning from noisy samples. (2) If x;, is a true negative, w;,,
should be large to push apart hard negatives and preserve uniformity. Larger weights increase the gra-
dient magnitude in equation 4, encouraging the model to learn decision boundaries between different
semantic classes. When all weights are set to one, this loss reduces to the standard contrastive loss.

Augmented Likelihood and Conditional Conjugacy The key challenge is how to assign rea-
sonable weights that satisfy the criteria discussed above. In our framework, local weights for data
pairs are inferred jointly with the global encoder parameters through Bayesian inference, without
relying on a clean validation set Ren et al. (2018) or per-sample gradients Katharopoulos & Fleuret
(2018). However, the weighted CL likelihood in equation 4 is generally non-conjugate under common
prior choices for w, which makes inference intractable. To address this issue, we introduce a data-
augmentation strategy that transforms the weighted CL likelihood into a conditionally conjugate form,
enabling efficient posterior updates of the weights. The auxiliary variable u; follows the classical
data-augmentation Tanner & Wong (1987) scheme as a latent variable to restore conjugacy.

First, we introduce auxiliary random variable u; ~ Exp()\;) associated with each data point, where
N = wi s + Zszl w;. 8;k— - Using the Laplace transform identity, we have
1 / 4 K
= [ expq — (w; s;+ + W1 Sif— ) Ui dU;. &)
w s+ + 21§=1 W, Sik— { ( t Zk:l e ) Z} '
Given the auxiliary variable u;, the conditional (unnormalized) likelihood of the sample weights
takes the following exponential-family form:

K
plwi, wi, | u;) oc wi s+ - exp ( - uiw;rsiJr) . szl exp ( - uiw;ks,;kf). 6)

Here, the first term wj' s;+ comes from the numerator of the original contrastive objective, while the

denominator after introducing an auxiliary variable u; yields exponential factors of the form exp[ —
u;(w;"s;+ + >, wisi- ). Hence, the joint likelihood in {w;",w;, } belongs to the exponential
family. We place priors on the positive/negative weights to encode different inductive biases:

.~ Gamma(ay,by), w;

7

-~ ~ Gamma(a_,b_) or Bernoulli(p_) or Ni(g,0?) (7)
——

Continuous weighting Selective gating Gaussian shrinkage

For the positive weights w;r , we adopt a Gamma prior because it is nonnegative, conjugate to the
augmented likelihood, and its exponential special case (a4 = 1) serves as a maximum-entropy prior
with simple shrinkage properties. For the negative weights w;, , we provide three flexible options:
(i) Gamma (continuous weighting), which supports values in (0,00) and is ideal for modeling
continuous difficulty levels of negative samples, allowing smooth and flexible weight adjustments.
(ii) Bernoulli (selective gating), whose outputs are restricted to {0, 1}, enabling a more aggressive
keep-or-drop mechanism. (iii) Gaussian (shrinkage around 1), This prior reflects the assumption
that most false-negative weights lie within a relatively stable interval and approximately follow a
symmetrical normal-like distribution. In practice, we use a truncated Gaussian to ensure that the
weights remain in the positive domain (0, 00).

Let the auxiliary variable have a Gamma prior u; ~ Gamma(a,,b,). Under the augmented
likelihood described above, the following conditional posteriors are obtained in closed form and
remain within their respective prior families.
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Theorem 3.1 (Conditional Conjugacy). Given the augmented likelihood with auxiliary variables w;,
the conditional posterior distributions of the weights are:

i | {w;', wiy, 0} ~ Gamma(auv bu +wfsie +) w;sk) : ®)
wit | {u;, 0} ~ Gamma(l + a, u;s;+ + by ), 9)
Gamma(a_, u;S;p— +b_), (continuous weighting)

—UiS;—

wiy, | {us, 0} ~ Bernoulli( p-c

. m — ), (selective gating) (10)
— P poe e

Ny (1= o?wisip-, 0?), (Gaussian shrinkage)
Proof. Detailed proof are provided in Appendix A.

Efficient Inference with Stochastic Expectation Maximization The local weights w;" and w;, are
sample-specific latent variables whose total number scales quadratically with the dataset size, making
storage and inference challenging. To address this, we propose a stochastic Expectation-Maximization
(EM) algorithm (detailed in Appendix C) that alternates between sampling the local random variables
on the fly and optimizing the global model parameters. Specifically, each EM iteration consists of: (i)
a simulation step, where we sample the auxiliary variables u; and reweighting variables w;~ and W,y
from their corresponding posteriors distribution. (ii) a stochastic approximation step, which updates
a surrogate objective ();(0) using a decaying step size schedule; and (iii) a maximization step, where
we update € via stochastic gradient descent. Crucially, marginalizing out the auxiliary variables
u from the augmented joint posterior p(8, u, {w;" }, {w;,} | D) recovers the original posterior

p(0, {w;"},{w;.} | D), so the augmentation leaves the target inference problem unchanged.

4 THEORETICAL ANALYSIS
We establish two key results for the proposed Bayesian Data Reweighting (BDR): (i) consistency

with supervised contrastive learning as the number of negatives grows, and (ii) a finite-sample error
bound quantifying the deviation at finite K.

4.1 CONSISTENCY WITH SUPERVISED CONTRASTIVE LEARNING

Theorem 4.1 (Consistency). Assume {Z;;}E_| are i.i.d. with finite second moment and Z;;, €
(0, Smax)- Then, as K — oo,

1 ol L -1 N
—log| ———= —log( — | .
S\ N A BN+ m,

. . 1 N; p- 1 _ N
Moreover, averaging over anchors yields 2] >, —log (Nﬁ-ﬁ““) — 7B > log(Nieri )

Proof Sketch See Appendix B.2 for the detailed proof.

4.2 FINITE-SAMPLE ERROR BOUND

Theorem 4.2 (Finite-Sample Error). Assume N; > Ny > 0 and Z;y, are i.i.d. sub-exponential
(e.g., Gamma weights with bounded s;;,- ). Then for any 6 € (0, 1), with probability at least 1 — 6,

N; N; 1 2 Var(Zig) log(2/8) 2w log(2/8
“tog — Hog(N_ ) < - \/ () log(2/0) , 20 1o8(2/0) )
NL—sz i T my min 3

where v is the sub-exponential proxy parameter of Z;i.. In particular, the deviation satisfies | . | =
Op(Kﬁl/z), uniformly over anchors with N; > Nyin.

Proof Sketch See Appendix B.3 for the detailed proof.
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5 EXPERIMENTS

Having established the theoretical guarantees of BDR, we next evaluate its effectiveness on knowledge-
intensive VQA benchmarks from two perspectives: (i) improvements in retrieval performance, and
(ii) improvements in answer generation performance enabled by better retrieval.

5.1 TASK 1: RETRIEVAL PERFORMANCE WITH BDR

Benchmarks and Metrics. Our experiments are conducted on the M2KR Lin et al. (2024) bench-
mark, which integrates eight knowledge-intensive datasets such as OKVQA Marino et al. (2019),
EVQA Mensink et al. (2023), and InfoSeek Chen et al. (2023), together with their external sup-
port documents (see Appendix D.1 for details). We evaluate BDR on two representative retrievers:
PreFLMR Lin et al. (2024), built on CLIP backbones (ViT-B, ViT-L, ViT-G), and VLM2Vec Jiang
et al. (2025), based on LLM backbones (Qwen2-VL Wang et al. (2024), Phi-3.5-V Abdin et al.
(2024)). Performance is measured by Recall@K (R@K), which checks whether the target document
is among the top-K retrieved, and Pseudo Recall@K (PR @K), which checks whether any of the
top-K documents contain the correct answer, following prior work.

Experimental Setup. For the Pre-FLMR model, we trained the mapping network with a batch size of
32; for the VLM2Vec model, we trained the LoRA parameters with a LoRA rank of 4. Regarding the
prior settings of BDR, empirically, the best performance was achieved with Gamma prior, and the
parameters are a,, = b, = 1,a™ = 2,bT = 1,and a~ = 5, b~ = 10. Detailed results are provided
in Appendix D.3. All images were resized to 224 x 224. Training was conducted for 2,000 steps
using the Adam optimizer with a linear learning rate scheduler, starting from an initial learning rate of
2 x 10~°. All models were trained on 4 NVIDIA A100 GPUs, and training a single VLM2Vec-based
retriever typically required about 2 days.

Table 1: Retrieval performance comparison on six knowledge-based VQA datasets from M2KR.
Results are reported in terms of Recall@5 (R@5) and Pseudo Recall@5 (PR@5). For OVEN and
KVQA, we only report R@5, and for LLaVA, we only report R@1, to ensure comparability with
previous baselines. AVG denotes the average over all metrics. Baselines are: CLIP Radford et al.
(2021), ReT Caffagni et al. (2025), PreFLMR Lin et al. (2024), VLM2Vec Jiang et al. (2025). Our
BDR method consistently improves over baselines across backbones and datasets.

EVQA OKVQA InfoSeek OVEN LLaVA KVQA Avg

Retriver Backbones R@5 PR@5 R@5 PR@5 R@5 PR@5 R@5 R@l1 R@5 -

CLIP (Feature Fusion)  CLIP (ViT-B) 212 405 9.6 56.0 193 404 59.8 58.0 22.0 363
PreFLMR + InfoNCE CLIP (ViT-B) 552 66.6 252 656 257 494 459 66.9 29.7 47.8
PreFLMR + BDR (Ours) CLIP (ViT-B) 555 668 29.2 68.2 263 49.8 498 69.7 32.2 49.7
A +0.3 +0.2 +4.0 +26 +0.6 +04 +39 +2.8 +2.5 +19
CLIP (Feature Fusion)  CLIP (ViT-L) 356 52.6 12.1 594 382 547 760 63.6 47.5 489
PreFLMR + InfoNCE CLIP (ViT-L) 60.7 71.0 27.8 67.5 360 564 59.8 72.0 429 549
PreFLMR + BDR (Ours) CLIP (ViT-L) 609 714 31.6 705 428 59.2 658 74.8 46.6 58.2
A +0.2 +04 +3.8 +3.0 +6.8 +2.8 +6.0 +2.8 +3.7 +3.3
ReT OpenCLIP (VIT-G) 48.6 60.2 19.0 63.8 520 625 84.0 792 60.6 589

PreFLMR + InfoNCE OpenCLIP (VIT-G) 62.0 72.0 302 674 392 577 643 72.6 419 564
PreFLMR + BDR (Ours) OpenCLIP (ViT-G) 62.1 72.1 325 678 438 59.1 67.6 81.2 49.8 59.6
A +0.1 +0.1 +23 +04 +4.6 +14 433 +8.6 +7.9 +3.2
VLM2Vec (Zero-shot) Qwen-2-VL-2B 109 293 94 320 102 206 41.0 51.0 289 259
VLM2Vec + InfoNCE Qwen-2-VL-2B 504 639 248 58.7 585 537 75.6 84.2 51.0 579
VLM2Vec + BDR (Ours) Qwen-2-VL-2B 51.2 642 26.6 59.7 60.5 56.7 783 88.7 55.6 60.2
A +0.8 +0.3 +1.8 +1.0 +2.0 +3.0 +2.7 +4.5 +4.6 +2.3
VLM2Vec (Zero-shot)  Phi-3.5-V-3.8B 188 412 133 585 120 258 51.3 71.5 349 363
VLM2Vec + InfoNCE Phi-3.5-V-3.8B 45.1 603 351 653 40.8 443 715 91.4 52.6 563
VLM2Vec + BDR (Ours) Phi-3.5-V-3.8B 49.2 622 423 69.1 438 47,5 747 91.6 57.7 59.8
A +4.1 +19 +72 +38 +3.0 +32 432 +0.2 +5.1 +3.5
VLM2Vec (Zero-shot) Qwen2-VL-7B 182 428 134 58.0 143 298 63.8 50.1 422 369
VLM2Vec + InfoNCE Qwen2-VL-7B 62.0 70.8 414 68.7 64.6 584 809 90.0 63.2 66.6
VLM2Vec + BDR (Ours) Qwen2-VL-7B 643 731 435 699 66.7 60.5 834 91.0 65.3 68.6
A +2.3 423 2.1 +1.2 +2.1 421 +25 +1.0 +2.1 +2.0
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Table 2: Answer generation performance comparison on InfoSeek and EVQA. We report VQA
Accuracy, Exact Match (EM), BLEU-1, and BERT Matching (BEM). The Oracle Retriever retrieves
all ground-truth documents. Our BDR retriever consistently outperforms PreFLMR Lin et al. (2024)
and ReT Caffagni et al. (2025), approaching the Oracle upper bound.

InfoSeek EVQA
Generator (Frozen) Retriever R@5|VQA_Acc EM BLEU_1|R@5 VQA_Acc EM BLEU_1 BEM
LLaVA-1.6-13B X - 54 53 11.9 - 2.7 74 8.9 69.8
LLaVA-1.6-13B PreFLMR 39.2 12.9 124 212 ]62.0 8.7 20.5 262 743
LLaVA-1.6-13B ReT 52.0 17.3 172 289 |48.6 6.5 146 192 732
LLaVA-1.6-13B VLM2Vec-BDR (Ours) 66.7 20.8 209 34.0 |643 9.1 212 269 772
LLaVA-1.6-13B Oracle Retriever - 37.5 395 564 - 16.1 377  46.1 86.7
Qwen2.5-VL-7B X - 14.4 145 252 - 4.6 12.0 143 65.2
Qwen2.5-VL-7B PreFLMR 39.2 21.5 16.1 24.1 62.0 11.5 29.0 347 68.3
Qwen2.5-VL-7B ReT 52.0 25.9 21.5 322 |486 10.8 22.7  28.1 67.9
Qwen2.5-VL-7B VLM2Vec-BDR (Ours) 66.7 321 275 413 | 643 14.4 30.1  37.1 71.2
Qwen2.5-VL-7B Oracle Retriever - 46.2 413 619 - 233 46.8 57.8 89.1

Main Results. For CLIP-based architectures, applying our BDR method consistently improves
the performance of Pre-FLMR, as shown in Table 1. Specifically, with the ViT-B backbone, our
BDR brings a +4.0 gain in on OKVQA; with ViT-L, it yields a +6.8 Recall@5 gain on InfoSeek;
and with ViT-G, it achieves the largest improvement of 4+-8.6 on LLaVA. For the LLM-based retriever
VLM2Vec, BDR also delivers notable improvements across different LLM backbones: Qwen2-
VL-2B achieves +4.6 on KVQA, Qwen2-VL-7B achieves +2.3 on EVQA, and Phi-3.5-V-3.8B
achieves the largest gain of 7.2 on OKVQA. These results demonstrate that BDR consistently
enhances retrieval performance across diverse architectures. Moreover, our best retriever with
BDR establishes a new state of the art on the M2KR benchmark, where VLM2Vec + BDR
(Qwen2-VL-7B) achieves an average recall of 68.6, surpassing the previous best result by PreFLMR
Lin et al. (2024) (56.4) and ReT Caffagni et al. (2025) (58.9). These experiments clearly validate the
effectiveness of the proposed BDR method for multimodal retrieval tasks.

5.2 TASK 2: ANSWER GENERATION PERFORMANCE WITH BDR

Experimental Setup. To evaluate the performance of different retrievers on downstream VQA tasks,
we conduct experiments on three benchmarks: InfoSeek, EVQA, and OKVQA. We use LLaVA-1.6-
13B Liu et al. (2023a) and Qwen2.5-VL-7B Team (2025) as generators in combination with different
retrievers, and adopt three evaluation metrics like VQA Accuracy, Exact Match (EM), BLEU-1 and
BERT Matching (BEM) to measure how well the generated answers align with the ground-truth.

Results. On the answer generation task in the InfoSeek and EVQA datasets, the generator also
achieves significant improvements due to our BDR retriever. Table 2 reports the results on
the InfoSeek and EVQA benchmarks. Without retrievers, both models perform poorly across all
metrics, highlighting the necessity of external knowledge retrieval for knowledge-intensive VQA.
Incorporating PreFLMR or ReT yields consistent improvements, but their gains remain limited. In
contrast, our proposed BDR retriever achieves substantial performance boosts on both datasets.
Specifically, with LLaVA-1.6-13B as the generator, our BDR yields a +3.5 gain (17.3 — 20.8) in
VQA Accuracy on InfoSeek, with Qwen2.5-VL-7B as the generator, it improves VQA Accuracy by
+6.2 (25.9 — 32.1) on InfoSeek. Moreover, on the EVQA benchmark, our BDR retriever achieves the
best BEM scores among all non-oracle retrievers (e.g., 77.2 vs. 74.3/73.2 with LLaVA-1.6-13B and
71.2 vs. 68.3/67.9 with Qwen2.5-VL-7B), demonstrating substantially stronger knowledge grounding.
Compare with the Oracle Retriever, our method significantly narrows the gap with the oracle
retriever, demonstrating the effectiveness of BDR retriver in enhancing knowledge-intensive VQA.

On the answer generation task in the OKVQA dataset, equipped with our best BDR retriever, a
medium-scale LLM generator outperforms both fine-tuned generators and large LLM-based
generators such as GPT-4V, as shown in Table 3. Traditional methods combining fine-tuned
generators with DPR retrievers achieve moderate performance (58 VQA-Acc), while large proprietary
LLMs such as Flamingo-80B and GPT-4V reach 64.3 without retrievers but incur prohibitive costs.
In contrast, combining medium-scale generators (Qwen2.5-VL-7B and LLaVA-1.6-13B) with our
proposed VLM2Vec-BDR retriever yields substantial gains, improving VQA-Acc by +4.3 points
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Table 3: Answer generation performance comparison on OKVQA. We report and VQA Accuracy
(VQA-Acc). Baselines are divided into two categories: (i) fine-tuned generators and (ii) large
language models used without fine-tuning. With our BDR retriever, a medium-scale LLM (Qwen2.5-
VL-7B or LLaVA-1.6-13B) achieves superior performance, surpassing both fine-tuned generators
and large LLM-based generators such as GPT-4V.

Generator Generator FT Retriever PR@5 Knowledge Source VQA-Acc
TRiG Gui et al. (2021) v DPR - Wikipedia 50.5
RA-VQA Lin & Byrne (2022) v DPR - Google Search 51.2
KAT Gui et al. (2021) v X - Wikipedia + GPT-3 54.4
TWO Si et al. (2023) v DPR - VQAV2 + Wikipedia ~ 56.7
REVIVE Lin et al. (2022) v X - Wikipedia + GPT-3 58.0
Flamingo-80B Alayrac et al. (2022) X X - Chinchilla 57.8
PromptCap-175B Hu et al. (2023b) X X - GPT3 60.4
Prophet-175B Shao et al. (2023) X X - GPT3 61.1
GPT4-V Achiam et al. (2023) X X - - 64.3
Qwen2.5-VL-7B X X - - 62.4
Qwen2.5-VL-7B X PreFLMR 67.4 Google Search 64.3
Qwen2.5-VL-7B X VLM2Vec-BDR (Ours) 69.9 Google Search 66.7
LLaVA-1.6-13B X X - - 61.9
LLaVA-1.6-13B X PreFLMR 67.4 Google Search 65.5
LLaVA-1.6-13B X VLM2Vec-BDR (Ours) 69.9 Google Search 68.0

(62.4 — 66.7) and +6.1 points (61.9 — 68.0), respectively. These results surpass PreFLMR baselines
and even outperform some ultra-large LLMs, demonstrating that our retriever provides an efficient
and effective alternative to scaling model size for knowledge-intensive VQA.

5.3 WHY THE BAYESIAN DATA REWEIGHTING FRAMEWORK WORKS?
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0.8 50
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Figure 2: Training dynamics of weighted contrastive learning. From left to right: (1) Mean of u;
(2) Mean of weights w™ and w™; (3) Mean of positive and negative logits; (4) Mean of weighted
logits. These curves show how learned weights shape the contrastive signal during training.

Our experimental results demonstrate that BDR effectively addresses both false negatives and
hard negatives in contrastive learning, showing in Figure 2. Specifically, the auxiliary variable
u rapidly decreases and stabilizes in the early training phase, providing global regularization and
ensuring convergence for subsequent weight updates. The positive and negative weights, w* and w™—,
then exhibit distinct dynamics: false negatives are suppressed with near-zero w™, minimizing their
interference, while truly informative hard negatives retain moderate weights, allowing the model to
learn discriminative features. Most importantly, when applying these weights, the margin between
weighted positive and negative logits is significantly enlarged, even when the raw logits are close,
thus maintaining a stable and clear decision boundary.

5.4 ANALYSIS OF THE IMPACT OF TOP-K RETRIEVAL

In general, increasing the number of retrieved documents improves answer generation, but
the gain saturates quickly. As shown in Figure 3, Qwen2.5-VL-7B reaches its best performance
with Top-5 document retrieval on InfoSeek and OKVQA, while results on EVQA remain largely
unaffected. This underscores that retriever performance is more important than document quantity.
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InfoSeek Results

OKVQA Results

EVQA Results

D pumm——— P -
30
g
o
O
& 20
_____ )
-
10{er-—o—o o
o e Topl  Top3  Top5  ToplO Topl  Top3_  Tops  Topl0
TopK Topk o

—e— LLaVA-13B VQA_Acc

LLaVA-13B Exact_Match

--+- Qwen2.5-7B VQA_Acc -+- Qwen2.5-7B Exact_Match

Figure 3: Impact of retrieved Top-K documents on VQA performance. We report VQA Accuracy
(VQA-Acc) and Exact Match (EM) on InfoSeek (left) and OKVQA (right).

5.5 ANALYSIS OF MODEL EFFICIENCY

Training Efficiency. BDR adds only
lightweight computations to InfoNCE. Each
SAEM iteration includes: (i) an E-step that
samples u;, w;r, w;,;, with element-wise closed-
form updates costing O(BK); (ii) a stochastic-
approximation step with negligible O(1) cost;
and (iii) an M-step identical to the stan-
dard InfoNCE encoder forward-backward
pass. Thus, the total complexity per iter-
ation is O(Encoder) + O(BK), and since

Table 4: Model training efficiency comparison. We
report training steps and and total time for VLM2Vec
with InfoNCE and BDR. Note that increasing the
batch size does not significantly increase memory
usage, thanks to the GradCache mechanism Jiang
et al. (2025) in VLM2Vec which decouples encoder
backpropagation from the contrastive loss.

Batch Size = 32

. .. Model Backbone Steps GPU (GB) Time (h)

O(Encoder) > O(BK) in modern vision and : P

LLM-based retrievers, the overhead introduced gllf)(ﬁ\](col?lrs) gﬁiggg ggi ;g'g :; Z
by SAEM is negligible. We further validate InfoNCE Qwer1.2—VL—7B 521 3.8 201
this by training the retriver on the OKVQA BDR (Ours) Qwen2-VL-7B 521 329 2.05
dgtaset for one epoch and measuring FoFal run- Batch Size = 128
t}me. As shown in Table 4, BDR exhlblts run- foNCE  Phi-3.5.V 51 98 316
time and memory usage nearly identical to In-  BpR (Ours) Phi-3.5-V 131 203 318
foNCE, confirming that the SAEM updates do InfoNCE ~ Qwen2-VL-7B 131 328 2.00
not affect overall training speed. BDR (Ours) Qwen2-VL-7B 131 329 2.02

Inference Efficiency. Our lightweight
VLM2Vec-BDR model achieves a strong bal-
ance between speed and accuracy. As the first
to apply an LLM-based retriever to KB-VQA,
we also evaluate its inference efficiency. The
retrieval statistics on EVQA are shown in Ta-
ble 5. Using the Qwen2-VL-2B backbone,

Table 5: Retrieval efficiency comparison. We
report query encoding, passage encoding, and re-
trieval time for different retrievers. VLM2Vec-BDR
(Qwen2-VL-2B) achieves the best trade-off between
speed and accuracy.

. . Model Backbone Qry (s) Psg(s) Ret(s) Total (s) Recall

VLM2Vec-BDR reduces total retrieval time @y (5) Pog &) Rets) ©
to 1285s, nearly half the cost of traditional ~P-FLMR — CLIP-B 213 2174 62 2449 478
. . . . P-FLMR  CLIP-L 256 2163 61 2479 549
P-FLMR retrievers, Whlle. malntalmng a hlgh P-FLMR CLIP-G 442 2174 61 2677 56.4
average recall of 60.2. This demonstrates that  BDR (Ours) Qwen-7B 172 2903 17 3091  68.6
) : : BDR (Ours) Phi-3.5V 301 2689 14 3004 59.8
VLM2Vec-BDR offers a practical and efficient BDR (Ow) Owen?B 60 1209 8 1285 602

solution for knowledge-intensive VQA.

6 CONCLUSION

In this work, we introduced Bayesian Data Reweighting (BDR), a principled framework that ad-
dresses the limitations of standard contrastive learning in multimodal retrieval. By inferring stochastic
importance weights for positives and negatives, BDR naturally mitigates false negatives and empha-
sizes hard negatives through a Bayesian inference mechanism. Extensive experiments on the M2KR
benchmark demonstrate consistent gains across both CLIP- and LLM-based retrievers. Furthermore,
integrating BDR with VLM2Vec significantly boosts knowledge-intensive VQA performance, sur-
passing strong baselines. These results highlight BDR as a robust and efficient solution for advancing
multimodal retrieval and knowledge-based answering.
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A  DETAILED PROOFS FOR CONDITIONAL CONJUGACY

Parameterization and Notation. We use the Gamma(shape, rate) parameterization throughout.
For each anchor 7, let

s+ = exp(cos(qi,zi)/T), Sip- = exp(cos(qi7zk)/7)7 >0 (1

which are constants with respect to the weights {w;" ,w;,. } and the auxiliary variable u; when 6 is
fixed. The per-sample weighted-CL likelihood contribution can be written as

+ K
w,; S;+ _
Ly, = " L Kz — = logLly, = log(wj'sﬁ) — log(w;"sﬁ + E wiksikf)
w; S+ + Zk:1 Wi Sik— k=1

@)

Define the shorthand \; 2 w;Fs;+ + S0 w sk

1 oo
Lemma A.1 (Laplace augmentation identity). For any A > 0, N / e M du.
0

Applying Lemma A.1 to 1/); and exponentiating log(w; s+ ) yields the following unnormalized
augmented likelihood kernel for a single ¢:

K
plwf {w; }ui | 0) o< (w;s;+) exp( — Uy szﬁ) H exp( — U w;ksik_>, u; >0 (3)
k=1
We further place priors
Gamma(a_,b_), (continuous weighting)
u; ~ Gamma(a,, b,), w; ~ Gamma(ay,bi), w;, ~ { Bernoulli(p_), (selective gating)

N(u,o?), (Gaussian shrinkage)

with all priors independent across ¢, k. Conditioned on 6 (hence s;+, s;,— are fixed), the joint
posterior factorizes conveniently, enabling closed-form conditionals.

A.1 CONDITIONAL OF u;

From equation 3, the only dependence on wu; is via exp( — u; )\i). Combining with u; ~
Gammal(a,, b,) gives

p(ui | wi, {w;},0) o« uf“_lexp<—(bu+)\i) uz) = u; |w, {w;}, 0 ~ Gamma(ay, b,+X;),
4)

ie.,

K
u; | {wy, w;, 0} ~ Gamma (au, by +wi s + Zk:l w:ﬁm) . 5)

A.2  CONDITIONAL OF w;” UNDER A GAMMA PRIOR
Using equation 3 and the prior w;” ~ Gamma(a, by),

p(w; | u;, 0) o (w;r)a*_le_bw)i+ : (szﬁ)e_uis“’wi+ o (w;h)(es—DH! EXP(—(5++UiSi+)U’¢+)>

aug. likelihood in w}

Gamma prior
which is the kernel of a Gamma with updated shape/rate. Hence

wi | u;, 0 ~ Gamma<a+ +1, by + uisH). 6)
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A.3  CONDITIONAL OF w;,: THREE PRIOR CHOICES

(a) Gamma prior (continuous weighting). From equation 3, for a fixed % the w;, -dependent term
is exp(—u;5;,-w;;, ). Multiplying by the prior w;, ~ Gamma(a_,b_) gives

p(wiy | i, 0) oc (wy,)* ! exp( —(b-+ uisilr)w;k)7
which is Gamma with shape a_ and rate b_ + w;s;;—. Therefore

wyy | ui, @ ~ Gamma(a_, b_ +u’i3ik*)- %

(b) Bernoulli prior (selective gating). Now w,, € {0,1} with prior Pr(w, = 1) = p_. The
augmented likelihood factor for w;, is exp(—u;s;,-w;; ). Thus, up to a shared normalizer:

Pr(w;, =1|u;0) o p_e "k, Pr(w;, =0]u;,0) o< 1 —p_.
Hence the posterior success probability is
Pr(wy, = 1] u;,0) = ——~ " @®)

(L p) +pe -

3 ) pie—ubsm_
= wy, | u;, 0 ~ Bernoulli e )

(¢) Gaussian prior (shrinkage around ;). Letw;, ~ N (u, o2). The augmented likelihood in Wy
contributes exp(—u;5;,-w;,, ), which is linear in w;, . Completing the square:

(wgp, — 1)* _ 1 -
exp {—’“202 -exp(—uisik_ wik) X exp o 2[ 2#”%] — Uy Sp- Wiy,

likelihood factor

Gaussian prior
1 B B (w;, — (p — o2uisin-))?
— exp{w |:wik2 _ 2(/‘ _ 02uisik7 ) wik} } X exp { ik 5o iS4 ’

which is the kernel of a Normal with the same variance and a shifted mean. Therefore

Wy, | ui, 0 NN( — Uik 702)- (10)

A.4 SUMMARY OF THE CONDITIONALS

Collecting equation 5, equation 6, equation 7, equation 9, and equation 10, we obtain the conditional
posteriors stated in Theorem 3.1.

Remark A.2 (Support and mild regularity). The augmentation identity in Lemma A.1 requires \; > 0.
This is automatically satisfied when s;+, s;,—- > 0 and w+ ,w;;, > 0 (Gamma/Bernoulli cases). For

the Gaussian case where w;,, has full real support, the conditional updates equation 10 remain valid,
and the conditional of u; in equatlon 5 is proper as long as b,, + A; > 0. In practice one may (i) pick
b, > 0 sufficiently large, (ii) clip or reparameterize w;; (e.g., via softplus) if needed, or (iii) work
with § > 0 (which holds by construction).

B DETAILED PROOFS OF CONSISTENCY AND ERROR BOUND

We provide formal guarantees for the proposed Bayesian Data Reweighting (BDR) objective

’w+s+
L"(D; Zlg< - >

x;ED ’LU Si+ + Zk 1 wzkslk7

where wj and w;, are sample-specific latent weights inferred under our Bayesian augmentation
scheme, and s;+, ;- € (0, Smax] denote positive and negative similarities for anchor . We study the
asymptotics as the number of negatives per anchor K — oo and derive a finite-sample concentration
bound in K.
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B.1 ASSUMPTIONS AND NOTATION

For each anchor 4, let {(w;,, s;5- ) }X_,; bei.i.d. conditional on the anchor and global parameters 6,
with the following assumptions.

Al (Bounded similarity) There exists Spax < 00 such that s;+, s;,- € (0, Smax) almost
surely.

A2 (i.i.d. negatives) For fixed i, {(w;,, s, )}, are i.i.d. draws from a stationary data-
generating process conditional on the anchor ¢ and current 6.

A3 (Moment bounded weights) There exists W, W, < oo such that E[w;, | < W; and
E[(w;;,)?] < W, for all 4, k. Moreover w;, > 0 almost surely.

A4 (Positive-part stability) w;” € (0, Wirx] for some finite TW}*** almost surely (or in
probability), and independent of {(w;,, s;,— )1, conditional on (x;, 8).>

AS (True-negative target) There exists a target (supervised) true-negative distribution Py
such that uIN := Ep, [ s~ | Xi] € (0, Smax] is well-defined.

Given an anchor 7, define the random sums

N;

and EEK) = flogREK).
N;+ D

)
K3

K
DEK) = sz_k Sik—» N; = wi s, REK) =
=1

The BDR mini-batch loss is the average of 41{)' The supervised contrastive oracle loss uses the
oracle true-negative expectation

D; = Epylsi- | xi]-E[wy,] = R, = N.+D, l; = —logR;.

= MIN =:w
We will show R\") — R; in probability and quantify the deviation for finite K.

B.2 CONSISTENCY TO SUPERVISED CONTRASTIVE LEARNING

Theorem B.1 (Consistency to Supervised CL). Under Assumptions AI1-AS, for each anchor i we

have
L o _ 1 ZK (K)
K — p- — — TN K p- D
— ‘Di = — 2 W, Sik— m) E[wiksik_ | Xi] = w W, - Rz m} RZ,

and hence ZgK) 2y, by the continuous mapping theorem. Moreover, averaging over anchors,
L2 oo = E[f;] as K — oo.

Proof. By A2 and A3, {w;, s,,- }&_, are i.i.d. with finite first and second moments, since 0 <
Sik- < Smax and wy;, > 0 with E[(w};)?] < cc. Hence, by the weak law of large numbers,

K

1 _ . _
? Zwiksilr p_> E[wiksikf | Xi]~
k=1

Furthermore, by independence in A4, N; is stochastically bounded and independent of {(w;, s;x-)}
conditional on (x;, 8). Therefore

Rz K - - ’
N, + K- % D kg WipSik— Ni+ K -E[w;, sk | Xi]

2This holds for the Gamma posterior draws in our augmented model under mild hyperprior choices; alterna-
tively one may work with their posterior expectations.
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where the right-hand side converges (as a continuous function of the sample mean) to
. N; N;
lim — =
K—o0 Ni"'K'E[wikSik* |Xl] N1+OO

=0 ifE[w;,.s;x- | %] >0.
To match the supervised contrastive per-anchor construction (which compares expectations per nega-

tive rather than inflated totals), we reparameterize the denominator by its per-negative expectation:
RUO _ N; N; p. N;

.
K — — —N
Ni +Zk:l wikSik— N n . 1 iw_s. Nz +K’U}[,LZ

l k=1 o

7

L> u’)u}‘N
Consequently, the normalized BDR ratio
BK) N S(K) P N; _ B
1 _ 1 luz
N; + K Z Wi Sik—

k=1

L) ID}L-{N
Because — log(+) is continuous on (0, 1], ng) = —log ﬁgK) 2y 7,, and averaging over anchors

yields L — £ in probability.

Remark: In practice, BDR works with the unnormalized RZ(K); the analysis above shows its per-
negative normalization converges to the supervised objective. This matches the supervised limit in
prior Bayesian contrastive analyses. O

B.3 FINITE-SAMPLE ERROR BOUND

We now quantify the deviation of the per-negative normalized BDR loss from its supervised counter-
part. Define the (per-anchor) normalized loss

K
N; 1
EEK) = —log [ ——— |, 7/7\7/1(-1() = — ) WS-, m; = Elwsp- | xi] = wop.
No+ P -

We will bound @K) — £;] in probability and in expectation.
Lemma B.2 (Lipschitz property of the per-anchor map). Fix i and condition on N; € (0, N #x].

The map
N; ;
gi(z) == _1Og<N-—;x> :log<1+;\;) , >0

is L;-Lipschitz on [0, SmaxW1] with L; := <+, i.e.,

N‘L’
T —
(@)~ 0ty < 22
Proof. gi(x) = Ni1+$ < N%, hence the result. O

Lemma B.3 (Concentration of weighted averages). Under AI-A3, for any § € (0, 1), with probability
at least 1 — 6,

(k)
1

‘m

—m;

< 2 Var(w;, s;- ) 1log(2/6) n 2 M log(2/6)
- K 3K ’

where M := Syax inf{M,, : w;, < M, a.s. or with prob. 1 —o(1)}. If w;, are sub-exponential
(true for Gamma draws) then a Bernstein-type bound holds with M the effective sub-exponential
Proxy.
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Proof. Apply Bernstein’s inequality to {Z, := w;; s~ }i_,. Since 0 < 83— < Smax and wy;, > 0
with finite second moment, Z, has finite variance. If w;,, are almost surely bounded (or truncated at
a high-probability envelope), then Z; < SpyaxM,, =: M. For sub-exponential Gamma weights, a
standard sub-exponential Bernstein bound applies with the same form (up to constants). O

Theorem B.4 (Finite-Sample Error Bound). Under A1-A4, for any 6 € (0, 1), with probability at

least 1 — 0,
| o< 1 2 Var(w;, s;,-) 1log(2/6) n 2 M log(2/6)
¢ ‘I = N; K 3K
In particular, EEK) — Zi‘ = OP(K_1/2) uniformly over anchors with N; > Ny, > 0. Averaging

over anchors yields

= Op(K'/?).

1 S(K) 1 -
— 0 — — l;
Dt T D

Moreover, if E[1/N;] < oo, then
1 2 Var(w,, ;.- ) 1
< B —| .4/ 2T Tk ek — ).
= ols] TR o(z)

Proof. By Lemma B.2 and Lemma B.3, with prob. > 1 — §,

9i (ﬁ%(-K)) - gi(mi)

B8 -7,

1
< —

oy
N;

= (K)
i 2‘ = m; T —my

1 2 Var(w;,s;—) log(2/0) N 2 M log(2/96)
=N K 3K

If N; > Npin > 0 uniformly, the prefactor is bounded by 1/Npn, and the rate is Op(K ~1/2).
Averaging over anchors preserves the rate by Jensen / union bound. The expectation bound follows
by integrating the tail inequality or by symmetrization plus Khintchine—Kahane with bounded second
moments. O

Discussion. The bound decays as K /2 (up to logarithmic factors), matching the canonical Monte
Carlo rate for importance-weighted estimators. The variance term Var(w,, s;,— ) captures both data
hardness (via s;;,—) and posterior uncertainty (via w;,); in practice, BDR tends to reduce this variance
by downweighting high-similarity negatives (potential FNs) while upweighting informative hard
negatives, thereby stabilizing both optimization and generalization.

B.4 SUMMARY

Theorem B.1 shows that BDR is asymptotically consistent with the supervised contrastive objective
when negatives per anchor grow, while Theorem B.4 quantifies finite- K deviation with an explicit
K ~'/2 rate. These guarantees give a principled statistical foundation for BDR’s robustness to false
negatives and its effectiveness in hard-negative mining.

C DETAILS IMPLEMENTATION OF THE EM ALGORITHM

We adopt a stochastic EM (SAEM) procedure to perform inference over the local latent variables
and to learn the global parameters 8. SAEM alternates between (i) simulation of local variables,
(ii) stochastic approximation of a surrogate objective, and (iii) maximization with respect to 8. Our
construction is consistent with the theoretical analysis in the main text: the weighted loss obtained
in the M-step coincides with the per-negative normalized BDR objective whose consistency and
finite-sample properties were established.
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C.1 MODEL-SPECIFIC NOTATION.

Let s;+, s;5- € (0, Smax| be positive/negative similarities for anchor ¢, and let w;r ,w;;, > 0 denote
sample-specific importance weights (locals), while 8 denotes the global parameters of the encoders
producing similarities. Define N; = w;“si+ and Z;;, = w;; 8, as in the theory section. We work
with a conditionally conjugate augmentation in which the locals admit Gamma conditional posteriors.

C.2 SIMULATION (E-STEP)

Given current parameters 6 and a mini-batch B = {(x;,d;)}Z ,, we draw local variables from their
conditional distributions under the joint posterior

p(6,u,w | D) < p(0)p(u)p(w) H exp{ —u;(w; s+ + Zw;ksikf)}, (11)
(xi,d;)eD k

where u = (u;); are auxiliary locals that yield conditional conjugacy (a standard trick in exponential
tilting). With Gamma hyperparameters (a,, b, ), (1 + a4, b1), (a—, b_), the conditional posteriors
are

u; | {wﬁ} ~ Gamma(au, by +wi s + Zwiksik—> , Vi,
k

w;t | {u,B} ~ Gamma(l + ay, u;$;+ +by), wy | {u,@} ~ Gamma(a_, u;S;,- +b_), Vi, k.
(12)

(Shapes/rates are shown in the shape, rate parameterization.) These conditionals guarantee w2+ J Wy >
0 and, together with bounded s, , imply sub-exponential tails for Z;;, = w;, s, used in our finite-
sample theory.

Stability via moving-average smoothing (optional). To reduce Monte Carlo noise without material
memory cost, we maintain a running average of u;:

u; —au; + (1 —a)a;, u; ~Gamma <au, by + w;"siJr + sz_kszk> ,
k

with « € [0, 1]. This preserves positivity and reduces variance across iterations.

C.3 STOCHASTIC APPROXIMATION (SA STEP)

Let (Q;(0) be the stochastic surrogate of the complete-data log-posterior. Following SAEM Bent &
Van Hentenryck (2004), we update

Qt-‘rl(e) = Qf(e) + At(logp(07utawt |Dt) - Qt(0)>7 (13)

where (u;, w;) are the simulated locals for the current mini-batch D;, and (\;); satisfies the Rob-
bins-Monro conditions Y, A = 00, >, A7 < co. Unrolling equation 13 gives the exponentially
weighted average

t

t
Qut1(0) = > Alogp(6,ur,w, [ Do), A=A [ (1=Aw), (14)

7=0 t'=7+1

which downweights stale batches and smooths Monte Carlo noise.

C.4 MAXIMIZATION (M STEP)

At iteration t+1, we update 6 by (stochastic) ascent on Q;1(0):
0 < 0 +n:VeQi11(0),
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initialized from the previous iterate. To further reduce variance, we optimize a marginal surrogate by
analytically integrating out u in the local joint log p(8, u, w | D) (feasible due to Gamma conjugacy).
This yields a mini-batch objective of the form

1 wis;
L' (Dy;0) = “ID) > 10g<w+ = >7 (15)

x:€Ds i Sit T Dg Wik Sin-

i.e., the weighted contrastive loss. In practice—and to align with our theory—we equivalently
optimize its per-negative normalized counterpart obtained by replacing the sum with its sample mean:

K
N; (k) 1 Z

_IOg<A(K)> ’ T Zit-
m; k=1

This normalization is what guarantees (i) asymptotic consistency and (ii) the Op(K ~'/?) finite-
sample deviation proved in the main text.

Algorithm 1 Bayesian Reweighted Contrastive Learning via SAEM

1: Initialize @; choose step-sizes {\;}, learning-rates {n; }; sett < 0

2: while training do

3: Sample a mini-batch B; = {(x;,d;)} 2 ;; compute similarities s;+ and s;;,—
+

4 Initialize (or reuse) locals: w;” < 1, w;;, < 1 (warm-start is allowed)

5 for m = 1to M do > Small number of inner SAEM draws (e.g., M=1 ~ 2)
6: Sample u; ~ Gamma(ay, b, +w; s;+ + >, Wi Sik-)

7: Optionally smooth: u; < cu; + (1 — a)u; with u; as above

8: Sample w;” ~ Gamma(l+a, u;s;++b.)

9: for each negative k do
10: Option 1 (Gamma weighting): w;, ~ Gamma(a_, u;$;,-+b_)
11: Option 2 (Bernoulli gating): w;, ~ Bernoulli(%)

12: Option 3 (Gaussian shrinkage): w;, ~ N (u — o?u;s;;—, 02)

13: end for

14: end for

15: Form N; = wj'sﬁ and Z;;, = w;; 8- ; compute T/)’\Ll(»K) = % Yok Zik

16: SA update of surrogate (J;;1 via equation 13 (or its unrolled form equation 14)

17: Compute per-negative normalized loss ZEK) =— log(ﬁ) and its batch average

18: Gradient step: 6 < 0 —n; Vg (% 5, ZEK))
19: t—t+1
20: end while

Remarks on complexity and convergence. (1) The locals are scalars per (anchor, negative) and
incur O(BK') memory and time per step; M=1 is typically sufficient. (2) Under standard SAEM
conditions (Robbins—Monro step-sizes and smoothness of the surrogate), the iterates track stationary
points of the marginal likelihood; the per-negative normalization used here is the variant for which our
consistency and concentration results apply. (3) The Gamma choice ensures Z;;, are sub-exponential
when s;;,— are bounded, matching the concentration assumptions in our finite-sample theorem.

Connection to the theory (Summary). The M-step objective implements the weighted contrastive
loss, and its per-negative normalization yields the per-anchor quantity — log(Ni /(N; + mgK)))
analyzed in the main text. Hence, the SAEM training loop is theoretically grounded by: (i) consistency
to the supervised contrastive limit as K — oo, and (ii) a Op(K -1/ 2) finite-sample error bound.
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Table 6: Statistics of the KB-VQA benchmark datasets used in our experiments. For each dataset, we
report the number of training, validation, and test samples (when available), including both image-
question pairs (marked as _data) and corresponding retrieved passages (marked as _passages).
N/A indicates that the split is not available or not used.

Train Val Test Total
EVQA_data 167369 9852 3750 180971
EVQA_passages 50205 50753 51472 152430
Infoseek_data 676441 N/A 4708 681149
Infoseek_passages 98276 N/A 98276 196552
OKVQA_data 9009 5046 5046 19101
OKVQA_passages 114809 114809 114809 344427
LLaVA_data 350747 N/A 5120 355867
LLaVA_passages 350747 N/A 6006 356753
OVEN_data 339137 119136 5120 463393
OVEN_passages 7943 3192 3192 14327
WIT_data 2810679 19994 5120 2835793
WIT_passages 4120010 39478 39478 4198966
KVQA_data 64396 13365 5120 82881
KVQA _passages 16215 4648 4648 25511
IGLUE_data N/A N/A 685 685
IGLUE_passages N/A N/A 1000 1000

D EXPERIMENTAL DETAILS

D.1 DATASET DESCRIPTIONS

We conduct experiments on M2KR Lin et al. (2024), a comprehensive benchmark comprising diverse
knowledge-based visual question answering (KB-VQA) datasets. Each dataset consists of either
image-question-answer (IQA) triples or corresponding retrieved knowledge passages. A summary of
dataset statistics is presented in Table 6, with detailed descriptions provided below.

We evaluate our methods on a diverse suite of knowledge-based VQA datasets. EVQA Mensink
et al. (2023) requires external factual knowledge to answer image-question-answer triples, with
retrieved passages (EVQA_passages) supporting retrieval-augmented reasoning. Infoseek Chen
et al. (2023) emphasizes long-tail knowledge and fine-grained entity recognition, providing image-
question pairs with Wikipedia-derived passages. OKVQA Marino et al. (2019) is a widely used
benchmark where visual content alone is insufficient, augmented with retrieved textual knowledge.
LLaVA Liu et al. (2023b) contributes multimodal QA pairs generated by the LLaVA model and
aligned passages, while OVEN Hu et al. (2023a) targets open-vocabulary entity linking with rich IQA
data and short passages for entity disambiguation. WIT Srinivasan et al. (2021) provides large-scale
image-caption pairs from Wikipedia and additional retrieved passages. KVQA Lin et al. (2024)
focuses on person-centric facts such as occupations or relationships, with corresponding passages for
grounding. Finally, IGLUE Bugliarello et al. (2022) offers a small-scale evaluation set for zero-shot
or few-shot multimodal reasoning with a limited pool of external documents.

It is important to note that our experiments are conducted on six datasets: OKVQA (9k), EVQA
(167k), InfoSeek (676k), LLaVA-Instruct (350k), OVEN (339k), and KVQA (64k), totaling approxi-
mately 2 million training samples. We exclude WIT from training and evaluation for the following
reasons. First, WIT contains 2.81 million samples—more than double the combined size of the
selected datasets—resulting in significantly higher training costs. Second, the task formulation in
WIT is not fundamentally different from those in the existing KB-VQA benchmarks. Therefore, we
consider the selected six KB-VQA datasets sufficient to effectively evaluate model performance.

D.2 EVALUATION METRICS

We evaluate our retrieval-augmented VQA framework using four key metrics: Recall @K, Pseudo
Relevance Recall (PRRecall@K), VQA Accuracy, and Exact Match (EM). These metrics collec-
tively assess both retrieval quality and answer correctness.
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Recall@K. This metric evaluates the proportion of queries for which at least one of the top-K
retrieved documents contains the ground-truth answer. It requires access to oracle-labeled relevant
documents and is defined as:
N
1
Recall @K = > 13z € Z[ such that 2, € G, (16)

i=1

where N is the number of queries, ZX is the set of top-K retrieved documents for query 4, and G;
denotes the set of ground-truth relevant documents.

Pseudo Recall (PRecall@K). When oracle relevance labels are not available, we follow prior
work Luo et al. (2021) and use a pseudo relevance set S to estimate retrieval quality. PRecall@K
measures whether at least one of the top-K retrieved candidates matches any item in S:

K

PRecall @K = min <Z H(z,,S), 1) , (17)
k=1

where zj, is the k-th retrieved document, and H (2, S) is an indicator function returning 1 if z;, € S,

and O otherwise. This approximates recall under noisy or weak supervision.

VQA Accuracy. We adopt the VQA evaluation protocol from Marino et al. (2019), which computes
a soft-accuracy score based on the number of human annotators who provided the predicted answer y.
Formally:

VQAcc(y, S) = min (#83@) , 1) , (18)

where #S5(y) denotes the number of annotators who chose y as a correct answer. This metric grants
partial credit to plausible but less common answers.

Exact Match (EM). In contrast to soft VQA accuracy, Exact Match (EM) treats all annotations
equally, awarding 1 point if the predicted answer exactly matches any annotator’s answer:

EM(y,S) = min (#S(y), 1) . (19)

This stricter metric evaluates whether the model exactly hits any reference answer, without partial
credit.

D.3 EFFECT OF PRIOR CONFIGURATION CHOOSE

Table 7 reports the retrieval performance of the Bayesian Retriever under three types of prior settings
for positive and negative sample weights: Gaussian, Bernoulli, and Gamma. We experimented with
several parameter configurations under each prior family.

Specifically, Gaussian priors with moderate variance and Bernoulli priors with different success
probabilities yield reasonable results, but their average scores remain around 50-52. In contrast,
the Gamma prior consistently outperforms both Gaussian and Bernoulli priors, achieving the
best average performance of 52.9. The optimal configuration is obtained with (a™,b") = (2, 1) and
(a=,b7) = (5, 5), which substantially improves both recall and precision across EVQA, OKVQA,
and InfoSeek, with particularly strong gains on OKVQA and InfoSeek.

These findings demonstrate that, although multiple prior distributions can be applied, the Gamma
distribution provides the most effective balance between flexibility and stability in Bayesian
contrastive retrieval. This empirical observation validates our conclusion that Gamma priors are the
most suitable choice when handling imbalanced or ambiguous supervision signals in retrieval tasks.

D.4 ABLATION STUDY ON HYPERPARAMETERS

We conduct an ablation study on the EVQA dataset to analyze the effect of different hyperparameters
in training VLM2Vec retrievers. As shown in Table 8, increasing the maximum token length
consistently improves performance, with the best result achieved at 1024 tokens. For LoRA rank,
smaller values yield stronger results, and the best trade-off is observed at rank 4, this also match the
findings in the original VLLM2Vec paper. In terms of multi-crop augmentation, moderate cropping
improves retrieval, with 4-8 crops slightly outperforming the baseline. Finally, batch size has a clear
influence, where 512 achieves the optimal performance.

22



Under review as a conference paper at ICLR 2026

Table 7: Retrieval performance of the Bayesian Retriever under different prior choices. Gamma priors
achieve the best performance across benchmarks, validating our conclusion.

Prior Type EVQA OKVQA InfoSeek AVG
R@1 R@5 PR@1 PR@5|R@1 R@5 PR@1 PR@5|R@1 R@5 PR@1 PR@5
Gaussian Prior

pn=1, ¢2=0.2 41.6 752 478 78.0 | 11.1 30.2 323 573 |444 859 448 752 [52.03

uw=0.5 02 =0.05 428 75.1 48.6 775 [105 279 308 553 [472 860 473 754 [51.98
Bernoulli Prior

p=0.2 404 734 460 76.1 [11.0 27.7 313 550 [42.0 864 427 755 [50.61

p = 0.05 375 724 438 748 [11.5 303 329 574 |40.7 823 426 73.4 |49.96

Gamma Prior (Ours, Best)
at =2, bT=1;a" =5,b" =5 419 743 477 766 |12.8 320 347 58.6 |46.1 879 465 757 [52.94
at =5, b7 =10; a= =5, b~ =10[41.9 743 477 766 128 320 347 586 |46.1 879 465 757 |51.89

Table 8: Ablation study results across different settings: (a) Maximum query length, (b) LoRA rank,
(c) Number of crops, and (d) Batch size.

Token Length R@5 PR@5 LoRA Rank R@5 PR@5 Crops of Images R@5 PR@5 Batch Size R@5 PR@5

256 59.7 70.0 4 56.5 68.4 1 56.5 68.4 256 60.1 70.6
512 61.1 71.1 4 50.8 64.6 2 56.0 67.8 512 61.1 71.1
1024 61.3 713 16 39.2 55.8 4 56.9 68.1 1024 59.1  69.5
2048 60.8 70.9 32 18.5 394 8 57.0 68.8 2048 56.5 68.4
D.5 TRAINING DYNAMIC ANALYSIS
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Figure 4: Distributions of learned importance and contrastive weights. Top row: distributions
sampled from the first 5,000 training steps (early stage); Bottom row: distributions sampled from
the last 5,000 steps (late stage). From left to right: (1) Distribution of the sampled importance scalar
u; (2) Positive and negative contrastive weights w™ and w™; (3) Unweighted positive and negative
logits; (4) Weighted logits w™ - logit,,,, and w™ - logit,,. Each violin illustrates the estimated density
and variability, helping visualize the dynamic behavior of importance sampling and reweighting.

Figure 4 illustrates the evolution of sampled importance and contrastive weights under BDR. In the
early stage, the auxiliary variable w is large and broadly distributed, reflecting high uncertainty, while
positive weights w™ are wide and skewed to emphasize under-aligned positives and negative weights
w™ remain near zero to suppress false negatives. As training progresses, all distributions sharpen: u
decreases, indicating higher confidence; w™ contracts, reducing the need for positive reweighting;
and w~ becomes more dispersed, enabling finer control of hard negatives. Correspondingly, logits
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evolve from weakly separated to clearly distinguishable, with weighted logits further amplifying this
margin. These dynamics confirm that BDR adaptively balances exploration and stability, suppressing
noise while enhancing discriminability throughout training.

D.6 QUALITATIVE COMPARISON

Question: In

which part of the |

world does this
animal live?

Question: How
do these animals

catch their prey?

Question: What
is the habitat of
this animal?

ReT

Multimodal Retriever (Ours)

Groundtruth

"WikiWeb_Oreaster reticulatus_0",
"WikiWeb_Coscinasterias muricata_3",
"WikiWeb_Mellita quinquiesperforata_0",|
"WikiWeb_Aplysia vaccaria_1",
"WikiWeb_Phyllopteryx taeniolatus_1"

"WikiWeb_Dermasterias imbricata_0",

"WikiWeb_Patiriella regularis_0",

"WikiWeb_Asterias rubens_2",
"WikiWeb_Henricia leviuscula_0",
"WikiWeb_Mellita quinquiesperforata_0"

"WikiWeb_Patiriella
regularis_0"

Answer:

new zealand

"WikiWeb_Austracantha minax_8",
"WikiWeb_Cyrtophora citricola_7",
"WikiWeb_Pholcus phalangioides_5",
"WikiWeb_Zygiella x-notata_0",
"WikiWeb_Austracantha minax_6"

"WikiWeb_Argiope argentata_6",
"WikiWeb_Pholcus phalangioides_12",
"WikiWeb_Argiope bruennichi_1",
"WikiWeb_Araneus diadematus_3",
"WikiWeb_Pholcus phalangioides_10"

"WikiWeb_Argiope
bruennichi_1"
Answer:

immobilise its prey

by wrapping

"WikiWeb_Texas toad_3",
"WikiWeb_Incilius nebulifer_0",
"WikiWeb_Texas toad_1",
"WikiWeb_Anaxyrus speciosus_1",

"WikiWeb_Anaxyrus quercicus_2",
"WikiWeb_Hyla squirella_3",
"WikiWeb_Incilius nebulifer_0",
"WikiWeb_Scaphiopus holbrookii_5",

"WikiWeb_Scaphiopus
holbrookii_5"
Answer:

longleaf pine ecosystems

"WikiWeb_Western toad_7" "WikiWeb_Gastrophryne olivacea_2"

Figure 5: Comparison of ReT and our Multimodal Retriever. For each question, the Top-5
retrieved document IDs are shown from both models. Green indicates the groundtruth document ID,
and Orange denotes the correct answer that can be generated from the corresponding document.

Figure 5 compares the Top-5 retrieved documents from ReT and our Retriever. In all three cases, our
method successfully retrieves the correct document, while ReT does not. These results highlight the
effectiveness of our multimodal retriever for improving retrieval performance compare to baseline

model.
Qwen2.5-VL-7B

Question 1: How long does this animal live?

w/o Retriever: (No supporting document) =P 7 years

w/ PreFLMR: “The zebra is an African equid known

Sor its distinctive black-and-white striped coat.” P 15 years

w/ Our Retriever: “In the wild, zebras typically live = 2() years
around 20 years.”

Question 2: What city is this in? LLaVA-1.6-13B
w/o Retriever: (No supporting document) =P Chicago

s w/ PreFLMR: “New York City has many famous

water taxis operating across its rivers.” = New York City

w/ Our Retriever: “Venice is an Italian city where .
boats and water taxis are the main mode of transport.” » Venice

Figure 6: Qualitative examples of retrieval-augmented VQA. Our retriever provides more relevant
evidence compare to no retriver and PreFLMR, enabling generators to produce correct answers.

These qualitative examples in Figure 6 highlight how retrieval quality directly impacts VQA per-
formance. Without retrieval, the models often fail due to missing external knowledge. PreFLMR
retrieves related but insufficient evidence, leading to partially correct or misleading answers. In con-
trast, our retriever supplies precise contextual sentences (e.g., zebra lifespan, Venice transportation),
which guide the generator toward the correct response. This demonstrates the importance of accurate
retrieval in bridging knowledge gaps for VQA.

D.7 QUANTITATIVE ANALYSIS OF FALSE AND HARD NEGATIVES

False Negatives and Hard Negatives Are Prevalent in M2KR Datasets. To better understand the
structure of negative samples in multimodal knowledge retrieval (M2KR), we conduct a quantitative
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analysis over three KB-VQA datasets: EVQA, OKVQA, and InfoSeek. For each query—document
pair (x,d ), we compute the cosine similarity s(z,d™) and characterize negative pairs based on the
similarity distribution of ground-truth positives. Specifically, we estimate the positive-pair mean fipos
and standard deviation o7, and define two data-driven thresholds:

TFN = Mpos — 0~5Up057 THN = [pos — 1-50'pos-

Negatives with similarity s(x, d~) > 7ry are labeled as False Negatives (FNs), capturing semantically
relevant or near-miss documents. Negatives with s(x,d”) € (mn, 7en) are categorized as Hard
Negatives (HNs), representing challenging yet useful contrasting signals. Remaining negatives are
treated as True Negatives (TNs).

We apply this procedure to 10k negative pairs sampled from each dataset. As shown in Table 9, all
three datasets contain a non-trivial amount of FNs and HNs. EVQA exhibits 9.8% FNs and 6.7% HN:ss,
while OKVQA contains even more high-similarity negatives (17.6% FNs and 15.6% HNs). InfoSeek
demonstrates a similarly large FN proportion (19.6%), though its HN proportion is relatively smaller
(5.7%). These findings clearly indicate that the negative sample space is highly heterogeneous—a
significant portion of “negatives” are semantically related to the query or highly confusable with the
ground-truth evidence.

This empirical evidence highlights the necessity of an adaptive weighting mechanism: treating
all negatives equally, as in standard contrastive learning, risks over-penalizing false negatives and
under-utilizing informative hard negatives.

Table 9: Statistics of False Negatives (FN), Hard Negatives (HN), and True Negatives (TN). We
report the proportion of each type among all negative query—document pairs.

Dataset FN (%) HN (%) TN (%)

EVQA 9.8 6.7 83.5
OKVQA 17.6 15.6 66.8
InfoSeek 19.6 5.7 74.7

D.8 PERFORMANCE COMPARISON WITH PRIOR CONTRASTIVE LOSSES

We adopt VLM2Vec-Qwen2-VL-7B as the backbone and evaluate all contrastive objectives on the
EVQA, OKVQA, and InfoSeek datasets. As shown in Table 10, both Debiased Contrastive Loss
and Hard Negative Mining outperform the vanilla InfoNCE baseline, demonstrating the importance
of addressing sampling bias and negative hardness. However, our BRCL objective achieves the
best performance across all three datasets and yields the highest overall average score (65.4 AVG).
Unlike heuristic hardness-based mining or global debiasing rules, BRCL performs instance-level
Bayesian reweighting that automatically suppresses false negatives and up-weights informative hard
negatives. This adaptive mechanism consistently leads to stronger retrieval accuracy, more stable
optimization, and improved generalization across diverse knowledge-intensive VQA benchmarks.

Table 10: Comparison of contrastive objectives using VLM2Vec-Qwen2-VL-7B as the backbone.
Note that this evaluation is conducted on a subset of the full document set (specifically, only the
documents containing all ground-truth evidence are used as the evaluation set). As a result, the
retrieval accuracy values for each dataset differ slightly from the results in previous evaluation setting.

Method EVQA OKVQA InfoSeek AVG
R@5 PR@5 R@5 PR@5 R@5 PR@5
InfoNCE Loss Oord et al. (2018) 639 678 272 433 831 69.1 59.1

Debiased Contrastive Loss Chuang et al. (2020) 64.8  71.0 29.7 453 83.6 69.8 60.7
Hard Negative Mining Loss Zheng et al. (2019) 64.7 704 343 502 839 71.8 625
BDR Contrastive Loss (Ours) 693 746 350 53.6 859 737 654
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