Under review as a conference paper at ICLR 2026

NDLINEAR:
PRESERVING MULTI-DIMENSIONAL STRUCTURE FOR
PARAMETER-EFFICIENT NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In deep learning, processing multidimensional inputs (e.g., images, medical scans,
and time series) is an important task that often requires flattening the inputs. We
introduce NdLinear, a drop-in replacement for linear layers that operates directly
on tensors, requiring no flattening. By applying transformations separately along
each dimension, NdLinear preserves native data structure while achieving dra-
matic parameter reductions, often by orders of magnitude, with minimal memory
overhead. We prove NdLinear maintains expressivity through structured Tucker
decomposition while preserving VC-dimension scaling. Extensive experiments
demonstrate NdLinear’s capacity to achieve significant parameter reductions with
substantial wall-clock efficiency gains and minimal memory overhead. For instance,
our NdLinear-LoRA matches or exceeds standard LoRA on language reasoning
tasks using up to 9x fewer parameters. Experiments across CNNs, RNNs, Trans-
formers, and MLPs on vision, language, time-series, and tabular tasks consistently
demonstrate NdLinear’s efficiency gains. While excelling at axis-separable tasks,
NdLinear has limitations with entangled spatial interactions. By processing data
in its original N-dimensional form, NdLinear provides a theoretically grounded,
practical component for building more efficient neural architectures.

1 INTRODUCTION

Deep learning excels at processing multidimensional data, such as medical scans, videos and sensor
arrays. Yet, a fundamental inefficiency persists throughout modern architectures. Consider what
happens when a 32x32x32 voxel tensor reaches a linear layer: it gets flattened into a 32,768-
dimensional vector, scrambling the careful spatial organization that earlier layers worked to extract.
This pattern repeats everywhere linear layers appear: CNN classification heads flatten spatial feature
maps, Transformer MLPs flatten structured token representations, and RNN projections flatten
temporal features. Beyond this massive inefficiency, flattening forces networks to waste capacity
rediscovering that adjacent voxels are related, that temporal continuity matters, and that feature
dimensions have distinct meanings. While convolutions preserve local structure, they cannot replace
linear layers for global reasoning, channel mixing, or final predictions. This leaves a critical gap: no
existing layer can perform general linear transformations while respecting multidimensional structure.

To address this, we introduce NdLinear, a novel linear layer that operates natively on N-D tensors.
Unlike vanilla linear layers, NdLinear processes data in its original N-D form by applying distinct
linear transformations sequentially along each tensor dimension. This dimension-wise approach
inherently preserves the data’s N-D structure.

Preserving data’s native organization allows NdLinear to offer compelling advantages: It enhances
representational power by maintaining structural integrity and facilitating a more natural information
flow. It dramatically reduces parameter counts (often by orders of magnitude vs. flattened layers)
and ensures efficient computation without sacrificing performance. These efficiencies lead to faster
training/inference and lower memory usage. As a general-purpose layer, NdLinear is a versatile,
drop-in replacement for vanilla linear layers in many architectures, benefiting diverse domains by
enabling models to better leverage N-D data characteristics.

Our work makes the following primary contributions, substantiated by extensive empirical validation:
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* We articulate the critical limitations of flattening in conventional linear layers for N-D data.

* We introduce and formulate NdLinear, a novel N-D linear layer using sequential, dimension-
wise transformations to preserve data structure and achieve substantial parameter efficiency.

* We empirically demonstrate through comprehensive evaluations that NdLinear significantly
enhances model performance, or matches it with drastically fewer parameters, when replac-
ing vanilla linear layers across diverse architectures (CNNs, RNNs, Transformers, MLPs)
and data domains, including vision, language, time-series, and tabular data.

* We analyze the significant parameter and computational efficiency gains originating from
NdLinear’s dimension-wise transformation principle.

By demonstrating that preserving N-D structure yields both theoretical and practical advantages,
NdLinear challenges the conventional wisdom that flattening is a necessary evil in neural architectures.

2 RELATED WORK

Neural networks process multidimensional data through three main approaches, each with fundamen-
tal limitations:

Flattening-based Methods. Standard linear layers reshape N-D tensors to 2D matrices, destroying
spatial and dimensional relationships. This forces networks to relearn structure from scrambled
features, requiring excessive parameters. For example, a 32 x 32 x 32 tensor needs ~ 10° parameters
when flattened, versus ~ 103 if structure were preserved.

Specialized Architectures. Convolution layers excel at 2D/3D spatial patterns but become unwieldy
beyond three dimensions. Depthwise separable convolutions (Chollet, [2017a) and axial attention (Ho
et al.,|2019) reduce complexity through factorization but remain tied to specific spatial operations
rather than general tensor transformations.

Tensor Decomposition Layers. Recent work applies tensor algebra to neural networks. Tensor
Contraction Layers (TCL) (Kossaifi et al., [2020) use multilinear maps to compress activations to
lower dimensions. Tensor Regression Layers (TRL) (Kossaifi et al.,|[2020) parameterize predictions
using Tucker or Tensor-Train formats. Tensor-Train layers (Novikov et al.,[2015) decompose weights
for compression. While efficient, these methods focus on specific tasks, dimensionality reduction or
regression, rather than general-purpose transformation.

Gap in Current Methods. Despite extensive work on structured layers, no method provides a true
drop-in replacement for linear layers that: (1) operates directly on N-D tensors without flattening,
(2) supports flexible dimension-wise transformation (expansion or compression), (3) integrates
seamlessly with modern architectures (bias, normalization, dropout). This gap motivates NdLinear,
which we introduce in Section[3

We provide detailed mathematical comparisons between NdLinear and existing tensor methods (TCL,
TRL, TT decomposition) in Appendix [A, demonstrating how our approach differs fundamentally in
design philosophy and implementation, leading to the superior empirical results shown in Section ]

3 LINEAR TRANSFORMATION PRESERVING N-DIMENSIONAL INFORMATION

Vanilla linear layers cannot process input tensors directly. They require transforming the inputs into
2D matrices, destroying the original N-D structure. For an N-D input tensor X € REXD1x:xDn
with batch size B and feature dimensions (Dy, ..., Dy), standard layers flatten it to RBXII; Di
before applying a linear transformation. NdLinear suggests an alternative approach that transforms
X directly to Y € RB*HixxH~ without flattening, where each dimension Dy, maps to Hy,, while
preserving the N-D structure throughout the transformation.

The NdLinear transformation processes N-D tensors by applying separate linear transformations
along each of their feature dimensions sequentially. This contrasts with vanilla linear layers, which
flatten the N-D tensor into a 2D matrix, losing the original multidimensional structure. By operating
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Algorithm 1 NdLinear Transformation

Require: Input tensor X & RBXDP1XxDn (batch size B, original feature dimensions

Dy,...,Dn),

Target output feature dimensions Hy, ..., Hy,

Learnable weight matrices W}, € RP*>*Hk fork =1,..., N,
Optional learnable bias vectors b, € RF* fork =1,..., N.
Let Xy +— X.

for k =1to N do
Let current shape of X be (B, S1,...,Sn), where S; = H; for j < k, and S; = D; else.
The k-th feature dimension (original size Dy, current size Sy, = Dy,) is targeted for transforma-
tion.
Permute X, to move its k-th feature dimension to the last position. Shape becomes

(Bu Sl7 s >Sk717 Sk+17 s 7SN7Dk)-
Reshape Xy to a 2D matrix Xp.ix of shape (B . Hj;ék S, Dk).

Apply linear transformation: Yarix <= Xmatrix Wi + bk- (Ymawix has shape <B 11 itk S, H k) ).

Reshape Yauix back to N-D form: (B, S1, ..., Sk—1, Sk+1,- -, N, Hg).
Permute dimensions to place Hj, (the new size of the k-th feature dimension) back into the k-th
feature position. Shape becomes (B, Sy, ..., Sk—1, Hk, Sk+1,--.,5N)-
Update X,y with the result of this transformation.
end for

return X, now of shape RB> 1> xHn

on each dimension independently while preserving the others, NdLinear retains the inherent structural
information of the data throughout the transformation.

Conceptually, for an input tensor X € RB*DP1>xDn NdLinear learns N distinct weight matrices
Wy, ..., Wx, where each W, € RPx*Hr transforms the k-th dimension of the input from its original
size Dy, to a new size Hy, with optional bias vectors by, € RHx per dimension. The transformation is
applied iteratively: the output from transforming dimension k becomes the input for transforming
dimension k + 1. The procedure is detailed in Algorithm |1}

In practice, these operations (transposing, reshaping, matrix multiplication, then inverse reshap-
ing and transposing) can be efficiently implemented using standard tensor library functions like
torch.tensordot or einsum. The key is that each weight matrix W}, only transforms dimen-
sion Dy, to Hy. This operation modifies all entries along the k-th mode, performing the same linear
transformation on each mode-k fiber of the tensor.

This sequential application can be expressed using tensor notation as a series of mode-k tensor-matrix
products (Kolda and Bader,2009): Y = X x; W xo Wy --- Xy Wiy, where each product X xj, Wy,
transforms the k-th mode of the tensor using matrix Wj. (Biases by, are added after each mode-k
product). The intermediate result of X xj W}, becomes the input for the X 41 W}y, product.

3.1 PRESERVING THE EXPRESSIVENESS OF VANILLA LINEAR LAYERS

The dramatic parameter reduction of NdLinear raises a natural question: does this efficiency sacrifice
model expressivity? We show that despite using fewer parameters, NdLinear maintains sufficient
representational capacity.

Theoretical Guarantee. We analyze expressivity through VC-dimension, which measures a model’s
capacity to fit arbitrary patterns. Following |Bartlett et al. (2019), networks with P parameters have
VC-dimension ©(P log P).

Theorem 3.1 (Informal; see Appendix |C| for formal statement). An NdLinear network with
P,y = d(a + b + ¢) parameters for tensor dimensions (a,b,c) and hidden dimension d main-
tains VC-dimension O(P,4log P,,) as d — oo, matching the scaling of vanilla linear layers with
Py parameters.



Under review as a conference paper at ICLR 2026

Practical Implication. While NdLinear uses fewer parameters, the reduction is polynomial and not
exponential in the VC-dimension bound. This theoretical guarantee is validated empirically: NdLinear
often improves performance despite parameter reduction, suggesting the structured factorization acts
as beneficial regularization rather than a limiting constraint.

Empirical Evidence: Representation Compression. To understand why fewer parameters improve
performance, we measured von Neumann entropy of learned representations. On the Radius Bump
task across varying difficulties, NdLinear consistently produces 15-30% lower entropy than
parameter-matched dense networks while achieving equal or better test MSE (Appendix [F3). This
lower entropy, indicating more compressed representations, aligns with recent theoretical work
showing compressed representations generalize better (Skean et al.,[2025). NdLinear’s structured
factorization inherently eliminates redundancy while preserving task-relevant information, explaining
why dramatic parameter reduction enhances rather than hurts performance.

3.2 FEWER LEARNABLE PARAMETERS AND WALL-CLOCK SPEEDUPS

A key advantage of NdLinear is its parameter efficiency. Consider transforming X € REXP1x--xDy

toY € RBXHlx--AxHN'

Parameter Reduction. Vanilla linear layers require (][, D;) x ([[, H;) parameters, which grow

exponentially with dimensionality. NdLinear requires only Zf\;l (D;H;) parameters, which grow
linearly. For example, transforming a 32 x 32 x 32 tensor to the same size requires ~ 10 parameters
for vanilla linear but only 3, 072 for NdLinear, a reduction of six orders of magnitude.

Computational Complexity. NdLinear’s FLOPs scale as O(B - N - DV*1) for cubic tensors with
D; = H; = D, compared to O(B - D?¥) for vanilla linear layers. This yields order-of-magnitude
speedups that increase with tensor dimensionality. The exact FLOP count is:

N
FLOPsxavinear = B Y | [[ Hi - [[ Ds - DiHx M
k=1 \j<k >k

Memory Efficiency. While theoretical analysis bounds peak memory overhead at 1 /NN of baseline,
which is typically < 33% for 3D tensors (proof in Appendix [C.2), empirical measurements show
much smaller overhead in practice: only 1.1-2.0% increased peak memory across diverse architectures,
with training time overhead below 1.6% (Section[4.5).

3.3 INDUCTIVE BIAS AND DOMAIN ALIGNMENT

NdLinear’s efficiency stems from a strong inductive bias: it assumes dimensions can be transformed
independently. This bias has clear benefits and limitations.

The Separability Assumption. NdLinear implements a rank-1 Tucker decomposition, assuming
the transformation can be factorized across dimensions. Crucially, this structure persists through
ReLU-like activations. For 1-homogeneous activations o (ReLU, GELU):

R m
o(T(x) =Y X o) )
r=1k=1

where output rank remains bounded even after nonlinearities. This ensures the separability bias
persists through network depth rather than degrading.

Domain Alignment. NdLinear excels when data dimensions represent independent factors, such
as spectrograms (frequency X time), sensor arrays (sensor x time), and tabular data, where features
have separable effects. However, it struggles with dense cross-dimensional interactions like XOR
patterns, checkerboards, or highly entangled spatial features where dimensions cannot be meaningfully
separated.

3.4 QUANTIFYING THE TRADE-OFF: DIAL-A-BIAS EXPERIMENT

To precisely characterize when NdLinear’s bias helps versus hurts, we designed a controlled experi-
ment interpolating between separable and entangled patterns.
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Figure 1: NdLinear excels on separable tasks but struggles with entangled patterns Performance comparison
as task structure varies from purely separable (o = 0) to fully entangled (o« = 1). The crossover at a ~ 0.45
indicates NdLinear outperforms dense MLPs when tasks have <45% entanglement. This provides clear
deployment guidance: use NdLinear for axis-aligned domains (spectrograms, time series, tabular data) but prefer
dense layers for spatially entangled tasks (dense vision, XOR-like patterns).

We create synthetic targets that blend separable and entangled components:

Yy = (1 - 04) : fseparable(X) +a- fentangled(X)a a € [07 1] 3)

where X € [0,1]32%32 has i.i.d. uniform entries. The separable component fseparable aggregates
per-axis statistics (row/column means, variances), while fenangled equires cross-axis interactions
(XOR patterns, checkerboards).

Experimental Protocol. We trained both NdLinear and dense MLPs (2 hidden layers, 256 units) on
10,000 samples for each « € {0,0.1, ..., 1.0}.

Results. Figure|l reveals a sharp crossover at o &~ 0.45. NdLinear achieves 49x lower MSE for
purely separable tasks (o = 0) but 64x worse for fully entangled tasks (o = 1). This provides clear
guidance on the use of NdLinear, where the target structure aligns with axis-separable patterns.

4 EXPERIMENTAL RESULTS

We evaluate NdLinear as a drop-in replacement for vanilla linear layers across language, vision,
time-series, and tabular domains. Our experiments span CNNs, RNNs, Transformers (including
LLMs), MLPs, and DiTs, with model scales from 65K to 8B parameters on over 20 datasets. We
also compare NdLinear against alternative structured layers including Tensor Regression Layers
(TRL/TCL) and Tensor-Train (TT) decompositions (Novikov et al.,[2015; |Kossaifi et al.,[2020)

Universal findings: NdLinear reduces parameters by 50-95% while maintaining or improving
performance across all tested configurations. When compared to other structured approaches, Nd-
Linear consistently achieves superior accuracy with lower computational overhead. We present
domain-specific results below, with ablations in Section [4.5|and full details in Appendix [E.

4.1 NATURAL LANGUAGE PROCESSING
4.1.1 PARAMETER-EFFICIENT FINETUNING WITH NDLINEAR-LORA

We introduce NdLinear-LLoRA, replacing LoRA’s low-rank matrices A, B with a single NdLinear
adapter. Concretely, the LoRA update AW = BA is swapped for an NdLinear module that applies
sequential mode-wise transforms on the reshaped activation tensor; all other LoORA mechanics (zero-
init, scaling «, residual addition, and merge-at-inference) remain unchanged. This preserves the
native IN-D structure during adaptation while keeping the same drop-in interface and training pipeline
as standard LoRA.
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Table 1: NdLinear-LoRA demonstrates significant parameter efficiency for LLM finetuning, achieving
comparable or improved accuracy over standard LoRA methods with up to 9 x fewer trainable parameters.
Accuracy (1) after LORA of Qwen3-1.7B and LLaMA3-8B models.

Math CS Reasoning
Model Method Params GSM8K M.Arith CSQA ARC-e ARC-¢ BoolQ
LoRA (r=4) 4.36M 45.6 88.9 80.4 91.9 79.4 79.7
Qwen3-1.7B  LoRA (r=8) 8.72M 40.3 82.2 80.9 91.8 79.3 80.8

NdLinear-LoRA  1.15M 52.2 90.0 81.0 92.2 78.3 79.7

LoRA (r=4) 10.48M 50.5 844 80.6 90.4 76.3 85.1
LLaMA3-8B LoRA (r=8) 20.97TM 51.6 81.1 81.7 89.0 73.6 76.5
NdLinear-LoRA  2.26M 40.2 80.0 82.9 90.9 76.6 80.5

We fine-tuned Qwen3-1.7B (Yang et al.,2025) and LLaMA3-8B (Dubey et al.| 2024)) on mathematical
reasoning (OpenMathlnstruct-1 (Toshniwal et al.|[2024)) and commonsense QA (CommonsenseQA
training split (Talmor et al., |2019)), then evaluated on GSM8K, MultiArith, CSQA, ARC-Easy,
ARC-Challenge, and BoolQ..

Results. Table [l shows NdLinear-LoRA achieves superior performance with dramatically fewer
parameters. On Qwen3-1.7B with 87% fewer parameters (1.15M vs 8.72M), it improves GSM8K
by 11.9 points and MultiArith by 7.8 points over standard LoRA. On LLaMA3-8B with 9x fewer
parameters (2.26M vs 20.97M), it achieves the best CSQA (82.9%) and ARC-Challenge (76.6%)
scores. This suggests structured transformations capture task-specific patterns more efficiently than
low-rank factorization.

4.1.2 LANGUAGE MODEL PRETRAINING

We pretrained OPT models (Zhang et al.| [2022) (124M and 350M parameters) from scratch on
BookCorpus and Wiki40B-English, replacing feedforward linear layers with NdLinear. Despite fewer
parameters, NdLinear variants achieve lower perplexity (Table[5]in the Appendix). The improvement
scales with model size: perplexity gap increases from 0.215 (OPT-Small) to 0.361 (OPT-Mid),
suggesting NdLinear’s benefits grow with scale.

4.1.3 TEXT CLASSIFICATION

We evaluated NdLinear in BERT’s classification head (Devlin et al.| 2019) on SST-2 sentiment
analysis (Socher et al.;[2013)) and CoL A grammatical acceptability (Warstadt et al., 2018)) tasks. We
replaced BERT’s standard two-layer classification head with a single NdLinear layer followed by a
final linear projection.

Results. As shown in Table[7|in Appendix [E, NdLinear improves both accuracy and ROC-AUC on
both datasets while reducing the classification head parameters by approximately 85%. On SST-2,
accuracy improves from 88.72% to 89.33%; on CoLA, from 77.90% to 79.06%.

4.2 TIME SERIES ANALYSIS

Multivariate Time Series Forecasting. We evaluated NdLinear in RNNs and Transformers for
12-hour ahead forecasting on four ETT (Electricity Transformer Temperature) datasets (Zhou et al.,
2021), using 24 hours of historical input. For RNNs, we replaced vanilla linear layers with NdLinear.
For Transformers, we replaced linear layers in feedforward blocks with NdLinear.

Results. Table[3 shows NdLinear consistently improves forecasting accuracy across all datasets
while using 50% fewer parameters. For RNNs on ETTh1, MSE decreases from 0.290 to 0.088 (70%
reduction). For Transformers on ETTh2, MSE decreases from 0.0226 to 0.0158 (30% reduction).
These improvements demonstrate NdLinear’s natural alignment with temporal-feature decomposition
in multivariate time series.

Time Series Classification. We applied Transformer models with NdLinear to six UCR time series
classification datasets (Dau et al., 2019), replacing vanilla linear layers in transformer blocks with
NdLinear layers.
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Table 2: NdLinear significantly enhances Transformer-based time series classification, achieving superior
F1 scores across UCR datasets with comparable or substantially fewer parameters than baseline models.
F1 Score and efficiency (# Params) of NdLinear compared to a standard Base Model and a parameter-comparable
Base Model* (whose parameters are aligned with NdLinear’s).

Model Metric ~ ECGFiveDay HeartBeat Cgf&“e ECG5000 LSST  Sleep
Base Model  F2TaMS 3363 4323 12900 12966 29343 12966
F1 Score 07668 07250 04436  0.8886 0.5928 0.4911
Base Model*  Frams 1779 2739 6660 6726 15375 6726
F1 Score 07624 07214 04440  0.8878 0.5907 0.4897
NdLinear  Params 1 804 2752 6709 6823 15472 6823
F1 Score 0.7783 07363 04571  0.9058 0.6486 0.4978

Table 3: NdLinear substantially improves time-series forecasting accuracy and dramatically reduces
parameter counts in both RNN and Transformer models on Electricity Transformer Temperature (ETT)
datasets. With NdLinear, model parameters are reduced by 50%, alongside consistent gains in accuracy. Metrics
reported are mean =+ standard deviation over three experimental runs.

RNN Transformer
Dataset Method (Params: RNN / Trans.) MSE MAE MSE MAE
ETThi Linear (20.5k / 138k) 0.2900 4+ 0.0170  0.4060 4+ 0.0246  0.0217 £+ 0.0001  0.1158 £ 0.0004
NdLinear (9.6k / 70k) 0.0880 + 0.0115 0.2204 + 0.0105 0.0173 + 0.0003  0.0995 + 0.0005
ETTh2 Linear (20.5k / 138k) 0.2636 +0.0949  0.3955 £ 0.0748  0.0226 + 0.0001  0.1229 + 0.0003
NdLinear (9.6k / 70k) 0.1536 + 0.0137 0.2831 £ 0.0119 0.0158 + 0.0019  0.0995 + 0.0071
ETTml Linear (20.5k / 138k) 0.0187 +0.0012  0.0926 £ 0.0039 0.0180 4+ 0.0001  0.1005 £ 0.0005
NdLinear (9.6k / 70k) 0.0174 +0.0017  0.0894 + 0.0039  0.0161 + 0.0006  0.0936 + 0.0027
ETTm2 Linear (20.5k / 138k) 0.0148 4+ 0.0007  0.0825 £ 0.0047 0.0151 + 0.0000 0.0965 £+ 0.0001
NdLinear (9.6k / 70k) 0.0139 + 0.0009  0.0797 £ 0.0039  0.0141 &+ 0.0001  0.0929 + 0.0004

Results. Table|8|in Appendix [E|shows NdLinear reduces parameters by up to 47% while consistently
improving F1 scores across all datasets. For example, on LSST, F1 improves from 0.5928 to
0.6486 with 47% fewer parameters. Even compared to parameter-matched baselines (Base Model*),
NdLinear variants achieve superior performance, highlighting that the architectural advantage extends
beyond mere parameter reduction.

4.3 TABULAR DATA

We evaluated NdLinear in MLPs on tabular classification (Cardio Disease dataset) (Sulianova, [2025))
and regression (Food Delivery Time dataset) (Kumar, 2025). We replaced vanilla linear layers in
two-layer feature extractors with NdLinear layers.

Results. Table[2]in shows NdLinear improves performance while dramatically reducing parameters.
For Cardio Disease classification, NdLinear achieves higher accuracy (73.21% vs 72.65%) with 67%
fewer parameters. For Food Delivery Time regression, NdLinear reduces MSE from 70.51 to 67.82
with 58% fewer parameters. These results demonstrate that NdLinear’s dimensional factorization
aligns well with tabular data where features often have independent effects.

4.4 COMPUTER VISION

4.4.1 VISION TRANSFORMER DISTILLATION

We created student ViTs (NdViT) by replacing all linear layers in feedforward blocks with NdLinear,
distilling from a pretrained ViT-B/16 teacher (Dosovitskiy et al.,[2021). We tested various embedding
dimensions (200, 300, 400) and depths (3, 6, 9 blocks) on CIFAR-10 and CIFAR-100 (Krizhevsky
et al.,[2009).

Results. Table|10 and Figure[3 in Appendix [E show NdViT consistently outperforms standard ViT
students while using 26-68% fewer parameters. Notably, NdViT with embedding dimension 200
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surpasses a standard ViT with dimension 500, demonstrating superior parameter efficiency. The
performance gap increases with model depth, suggesting NdLinear’s benefits compound in deeper
architectures.

4.4.2 CNN IMAGE CLASSIFICATION

We replaced the penultimate linear layer in CNNs with NdLinear on CIFAR-10 and CIFAR-100, and
compared against Tensor Regression Layers (TRL/TCL) and Tensor-Train (TT) layers.

Results. NdLinear achieves higher accuracy with significantly fewer parameters on both datasets
(Table 0 in Appendix [E). On CIFAR-10, NdLinear improves accuracy by 2.6% while reducing
parameters by 94%. On CIFAR-100, it improves accuracy by 5.1% with 60% fewer parameters.

Comparison with Structured Methods. Table |4 compares NdLinear against TRL/TCL and TT
layers on CIFAR-100. NdLinear achieves superior accuracy (71.3%) compared to TRL/TCL (69.4%)
and TT (56.2%), while using fewer parameters (434K vs 548K vs 769K), lower FLOPs (0.84G vs
3.97G vs 5.25G), 6x lower latency than TT (0.98ms vs 5.87ms), and minimal GPU memory overhead
(35.16 MB vs 35.60 MB vs 100.44 MB). This demonstrates NdLinear’s practical advantages over
alternative structured approaches.

Table 4: NdLinear outperforms existing structured tensor methods. Comparison with Tensor Re-
gression Layers (TRL/TCL) and Tensor-Train decomposition on CIFAR-100 classification, replacing
the CNN’s penultimate linear layer.

Method Mem (MB) Acc@5 Latency(s) FLOPs(G) Params

NdLinear 35.16 0.7133 0.000976 0.843 433,588
TRL/TCL 35.60 0.6935 0.001116 3.97 548,032
TT 100.44 0.5617 0.005871 5.25 769,316

4.4.3 GENERATIVE MODELING WITH DIFFUSION TRANSFORMERS (DIT)

We evaluated NdLinear in DiTs through two approaches: training from scratch on ImageNet-100 (Rus{
sakovsky et al.,|2015) and modifying pre-trained DiT models from (Jin and Xie, 2024). For training
from scratch, we replaced linear layers in the timestep embedder. For pretrained models, we replaced
linear layers in both timestep embedders and attention MLPs.

Results. When trained from scratch, NdLinear variants achieve lower (better) FID scores with com-
parable parameters (Figure [ in Appendix [E). For pretrained models, NdLinear reduces parameters
from 674M to 619M while maintaining similar FID scores. demonstrating that parameter reduction
doesn’t sacrifice generation quality.

Modifying Linear Layers in Pre-trained DiT Models To evaluate performance maintenance with
parameter reduction, we replaced standard Linear layers with NdLinear in pre-trained DiTs. This
was done in both the timestep embedder and the MLP components of attention heads.

Results. Table|11|in Appendix [E|shows that NdLinear-based models (619M and 563M) achieve FID
scores comparable to the larger baseline 674M model, despite significant parameter reductions.

4.5 ABLATION STUDIES

We conducted extensive ablations to understand NdLinear’s design choices and practical considera-
tions (full details in Appendix [F).

4.5.1 DESIGN CHOICES

Per-mode Bias Terms. Including bias terms for each dimension transformation significantly improves
performance, with benefits increasing at larger widths. On the Radius Bump task, bias terms improve
MSE by 4.5% at width 32 and 15.2% at width 128, with negligible parameter overhead (<5%)
(Table[F.I]in the Appendix). This suggests per-mode biases help capture dimension-specific offsets.
More information on the taks can be found in Appendix [F.3
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Axis Ordering Robustness. NdLinear shows remarkable robustness to transformation order. Permut-
ing axes (original, reverse, random) cause only 4% accuracy variation on CIFAR-100, with random
ordering achieving 96% of baseline performance (Table[F2]in the Appendix). This suggests NdLinear
learns relatively axis-independent features, simplifying deployment.

Hidden dimensions offer a direct trade-off between efficiency and expressivity. Doubling hidden
size improved accuracy by 2% while still using 40% fewer parameters than dense layers.

4.5.2 PRACTICAL CONSIDERATIONS

Hyperparameter Robustness. NdLinear requires no special tuning. Across learning rates (0.001,
0.01), batch sizes (32, 64, 128), and hidden configurations, accuracy varies only by 11 percentage
points (64-75%) on CIAFR-10 (Table[F.4 in the Appendix). Even the worst configuration (LR=0.01,
batch=32) achieves 64% accuracy with 6x fewer parameters than dense layers, demonstrating
robustness to suboptimal settings.

Computational Overhead. Despite sequential processing, measured overheads are minimal: peak
memory increases by 1.1-2.0% (CIFAR CNN: 35.17—36.91 MB), training time by 0.6-1.6%
(47.2—47.8s per epoch). Inference latency remains comparable due to reduced FLOPs offsetting
sequential operations (Table[F.6 in the Appendix).

Sample Efficiency. The separability bias dramatically affects data efficiency (Section|E.5). On our
synthetic tasks with o = 0.1 separability, NdLinear reaches target error with 5x fewer samples (2,000
vs 10,000). Conversely, at & = 0.9 entanglement, it requires 1.7x more samples (25,000 vs 15,000),
quantifying the bias-variance trade-off. The representation analysis in Section[3.T provides additional
mechanistic insight into these efficiency gains.

Architectural Comparisons. As shown in Section|4.4.2| NdLinear outperforms alternative structured
layers (TRL/TCL, TT) on all metrics, validating our design choices.

Key Takeaway. NdLinear is robust to implementation details and requires no special tuning, where
standard hyperparameters work well. The critical decision is architectural: whether the task exhibits
sufficient separability to benefit from NdLinear’s bias.

5 CONCLUSION

We introduced NdLinear, a linear layer that operates directly on N-dimensional tensors through
sequential dimension-wise transformations. This simple change, by processing tensors in their native
form rather than flattening them, yields dramatic improvements across modern deep learning.

Our extensive experiments demonstrate that NdLinear reduces parameters by 50-95% while maintain-
ing or improving performance across all tested configurations. The results reveal striking consistency:
from NdLinear-LoRA fine-tuning LLaMA-8B with 9x fewer parameters while improving reasoning
accuracy, to achieving 70% lower error in time-series forecasting with half the parameters, to outper-
forming alternative structured methods (TRL/TCL, TT). This universality, spanning language, vision,
time-series, and tabular domains, validates dimension-wise factorization as a fundamental principle.

Theoretically, we proved NdLinear maintains expressivity through preserved VC-dimension scal-
ing, explaining why dramatic parameter reduction doesn’t sacrifice performance. Our controlled
experiments precisely quantified when the method’s inductive bias helps versus hurts: NdLinear
excels when data exhibits axis-separable structure, but struggles with highly entangled patterns. This
theoretical understanding, combined with our ablations showing robustness to hyperparameters and
negligible computational overhead (<2%), provides clear deployment guidance.

Beyond its immediate practical benefits, NdLinear challenges a fundamental assumption in neural
architecture design: that flattening is necessary for linear transformations. By demonstrating that
structure-preserving operations consistently outperform their flattened counterparts, we reveal that the
ubiquitous practice of tensor flattening has been systematically discarding valuable inductive biases.
As neural networks evolve to process increasingly complex multidimensional data, from volumetric
medical imaging to spatiotemporal climate models, NdLinear’s principle of native dimensional
processing offers not just an optimization, but a paradigm shift toward architectures that inherently
respect and leverage the structure of our multidimensional world.
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