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ABSTRACT

Inferring Gene Regulatory Networks (GRNs) from gene expression data is crucial
for understanding biological processes. While supervised models are reported
to achieve high performance for this task, they rely on costly ground truth (GT)
labels and risk learning gene-specific biases—such as class imbalances of GT
interactions—rather than true regulatory mechanisms. To address these issues,
we introduce InfoSEM, an unsupervised generative model that leverages textual
gene representations as informative priors, improving GRN inference without GT
labels. InfoSEM can also integrate GT labels as an additional prior when available,
avoiding biases and further enhancing performance. Additionally, we propose
a biologically motivated benchmarking framework that better reflects real-world
applications such as biomarker discovery and reveals learned biases of existing
supervised methods. InfoSEM outperforms existing models by 38.5% across four
datasets using textual embeddings prior and further boosts performance by 11.1%
when integrating labeled data as priors.

1 INTRODUCTION

Gene Regulatory Networks (GRNs) govern cellular processes by capturing regulatory relationships
essential for gene expression, differentiation, and identity (Karlebach & Shamir, 2008). Represented
as directed graphs, they typically feature transcription factors (TFs) regulating target genes (TGs),
with non-coding RNAs also playing key roles. GRNs have diverse applications, including mapping
molecular interactions (Basso et al., 2005), identifying biomarkers (Dehmer et al., 2013), and advanc-
ing drug design (Ghosh & Basu, 2012). Single-cell RNA sequencing (scRNA-seq) has revolutionized
GRN inference by enabling high-resolution profiling of cell-specific regulatory interactions. How-
ever, scRNA-seq data are noisy, sparse, and high-dimensional (Pratapa et al., 2020; Wagner et al.,
2016; Dai et al., 2024), requiring advanced computational approaches. Methods have evolved from
co-expression frameworks (Chan et al., 2017; Kim, 2015) to cutting-edge machine learning (ML) and
deep learning (DL) models (Yuan & Bar-Joseph, 2019; Wang et al., 2024; Anonymous, 2024; Shu
et al., 2021), with further improvements leveraging complementary but hard to obatin perturbation
experiments, RNA velocity, and chromatin accessibility inputs (Chevalley et al., 2022; Atanackovic
et al., 2024; Yuan & Duren, 2024).

GRN inference methods can be broadly classified as supervised or unsupervised. Supervised models
use experimentally derived ground truth (GT) labels, such as ChIP-seq data, where known TF-TG
interactions guide learning. While they achieve high performance (AUPRC ∼0.85) (Chen & Liu,
2022; Wang et al., 2023), their reliance on costly GT labels limits applicability. Unsupervised
methods which infer regulatory relationships directly from gene expression data without using any
known interactions, present an attractive alternative but typically lag in performance compared to
supervised models (Chen & Liu, 2022; Wang et al., 2023; Mao et al., 2023). Bridging this gap
requires advancing unsupervised GRN inference methods.

To address this, we introduce InfoSEM, an unsupervised generative framework trained with vari-
ational Bayes that leverages textual gene embeddings as informative priors. By integrating prior
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biological knowledge, InfoSEM substantially improves GRN inference over existing models. More-
over, InfoSEM can incorporate GT labels as an additional prior when available, rather than using them
for direct supervision, avoiding dataset (gene-specific) biases and improving performance further.

Beyond model development, reliably evaluating GRN inference methods is equally important. Exist-
ing supervised learning based GRN inference benchmarks typically assume all genes are represented
in both the training and test sets, and only the regulatory links in the test set differ from those seen
during training (unseen interactions between seen genes, Section 4). While suitable for predicting
interactions among well-characterized genes, this setup does not reflect many real-world applications
such as biomarker discovery and rare cell-type studies (Lotfi Shahreza et al., 2018; Ahmed et al.,
2020), which often involve genes whose interactions are completely absent from the training data
(interactions between unseen genes in Section 4), thus requiring models to generalize beyond the set
of genes encountered during training.

To bridge this gap, we propose a biologically motivated benchmarking framework evaluating in-
teractions between unseen genes, better aligning with many real-world applications. This shift in
evaluation perspective also inadvertently highlights that, in prior benchmarks, supervised models
may have relied on gene-specific biases of the dataset, e.g., class imbalance in known interactions
for each gene. This underscores the need for careful evaluation to distinguish between performance
gains driven by genuine biological insights from scRNA-seq and those influenced by dataset biases.

In summary, our work makes the following contributions:

• We present InfoSEM, an unsupervised generative framework that leverages textual gene embeddings
as priors and can seamlessly integrate GT labels as an additional prior (when available), avoiding
dataset biases and improving GRN inference.

• We reveal limitations in existing supervised learning based GRN inference benchmarks, showing
that supervised models may exploit dataset biases, such as class imbalance of each gene, rather
than capturing true biological mechanisms from scRNA-seq.

• We propose a new evaluation framework focused on regulatory interactions between unseen genes,
better aligning with real-world applications such as biomarker discovery.

• Finally, we show that our InfoSEM improves GRN inference by 38.5% over models without priors
and achieves state-of-the-art performance, even surpassing supervised models. Integrating GT
labels as an additional prior further boosts performance by 11.1% while mitigating dataset biases.

2 GRN INFERENCE PROBLEM

Let G = (V, Y ) represent a GRN, where V = {v1, . . . , vP } denotes the set of P genes (nodes),
including transcription factors (TFs) and target genes (TGs). The adjacency matrix Y ∈ {0, 1}P×P

encodes regulatory interactions, where yik = 1 indicates that TF vi regulates TG vk. We assume
access to scRNA-seq gene expression data and the goal is to infer the adjacency matrix Y , a setup
commonly used in recent studies (Shu et al., 2021; Anonymous, 2024; Chen & Liu, 2022; Chen
& Zou, 2024; Haury et al., 2012; Moerman et al., 2019). The scRNA-seq gene expression data,
comprising P genes and N cells, is represented as X ∈ RP×N , where xij ∈ R denotes the expression
of gene vi in cell j, and xi is the i-th row of X , corresponding to the expression profile of vi across
all cells.

2.1 SUPERVISED GRN INFERENCE

When partial information about the adjacency matrix Y is available from sources like ChIP-seq or
databases such as the Gene Transcription Regulation Database (Yevshin et al., 2019), GRN inference
can be framed as a supervised learning (SL) task, where the model is trained on labeled data with
known interactions in Y serving as labels. The model learns to predict the probability of an interaction
yik being true based on observed data by minimizing a cross-entropy loss, i.e., assuming a Bernoulli
likelihood. Specifically, SL methods aggregate representations of genes i and k, denoted as si and
sk, which could be a function of their expression profile xi and xk, and predict the probability of
interaction yik using a function fsl on the aggregated representation:

pik = fsl(agg(si, sk)), yik ∼ Bernoulli(pik). (1)
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Deep learning methods such as CNNC (Yuan & Bar-Joseph, 2019), DeepDRIM (Chen et al., 2021),
and GENELink (Chen & Liu, 2022) leverage CNNs, GNNs, or transformers to aggregate pairwise
gene expressions or their deep representations for interaction prediction (Wang et al., 2023; Mao
et al., 2023; Xu et al., 2023). The SL framework can also flexibly incorporate pre-trained embeddings,
such as BioBERT embeddings in scGREAT (Wang et al., 2024) or scBERT embeddings combined
with GENELink representations in scTransNet (Kommu et al., 2024).

2.2 UNSUPERVISED GRN INFERENCE

Unsupervised learning (USL) methods infer gene relationships without labeled data, relying solely
on gene expression data and more closely mirroring real-world scenarios (Pratapa et al., 2020) where
labeled data is unavailable. Approaches include information theory-based methods (e.g., partial
Pearson correlation (Kim, 2015), mutual information (Margolin et al., 2006), and PIDC (Chan et al.,
2017)) and self-regression models, which predict a gene’s expression based on the expressions of all
other genes.

xi = fi(x1, . . . ,xi−1,xi+1, . . . ,xP ) + zi, (2)

where zi is Gaussian noise term. The feature importance of xk in fi indicates the interaction effect
from gene k to i. TIGRESS (Haury et al., 2012) solves a linear regression for each fi in Eq.2,

X = ATX + Z, (3)

where all diagonal elements in the weighted adjacency matrix A ∈ RP×P are 0 and an L1

regularization is applied on A. A post-hoc threshold, e.g., only keeping the top 1% interactions, can
be further applied on weighted adjacency matrix A to obtain adjacency matrix Y . GENIE3 (Huynh-
Thu et al., 2010) and GRNBoost2 (Moerman et al., 2019) use random forests and gradient boosting
to enhance model flexibility and feature importance representation. Equation 3 resembles the linear
structural equation model (SEM) in Bayesian networks (Zheng et al., 2018), with an added acyclicity
constraint on A. However, classical GRNBoost2 still outperforms even the latest Directed Acyclic
Graphs (DAG) learning algorithms due to feedback effects (Chevalley et al., 2022). DeepSEM (Shu
et al., 2021) extends Eq.3 by modeling gene expression in a latent space without the acyclicity
constraint, using β−variational autoencoder (VAE) to denoise data, and outperforming traditional
USL methods (Shu et al., 2021; Zhu & Slonim, 2024; Pratapa et al., 2020). However, it lacks support
for incorporating external priors, which have shown to provide accuracy improvements for recent SL
methods (Anonymous, 2024; Wang et al., 2024; Kommu et al., 2024).

3 INFOSEM: INFORMATIVE PRIORS FOR DEEPSEM

Inspired by DeepSEM, we carefully design InfoSEM, a novel and principled generative model that
incorporates multimodal informative priors: textual gene embeddings from pre-trained foundation
models and known regulatory interactions (when available). InfoSEM is designed for scenarios both
with and without labeled interactions, addressing limitations in the original DeepSEM framework.
We begin by reviewing DeepSEM and then detail our approach to integrating these priors.

3.1 INTRODUCTION TO DEEPSEM

The linear SEM model in Eq. 3 can be viewed as a generative model: it generates the dataset X with
a GRN structure specified by a weighted adjacency matrix A by first generating random noise Z, and
then solving X = (I−AT )−1Z (Yu et al., 2019). Similarly, DeepSEM defines a generative model,
shown in Figure 1 (a), as follows:

A ∼ p(A), Z ∼ p(Z), Ẑ = (I−AT )−1Z, X ∼ pθ(X|Ẑ), (4)

where the GRN structure, represented by A, is modeled on the latent space Ẑ of X , rather than
directly on X . Both X and Ẑ share the same GRN structure. We use X ∼ pθ(X|Z,A) to simplify
the notation of generating X from Z and A in Eq.4. All distributions in Eq.4 are fully factorized:

p(A) =
∏
i,k

Laplace(aik; 0, σa), p(Z) =
∏
i,j

N (zij ; 0, σ
2
z), pθ(X|Ẑ) =

∏
i,j

N (xij ; fθ(ẑij), gθ(ẑij)), (5)
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Figure 1: (a) Generative model of DeepSEM; (b) Inference model of DeepSEM; (c) Generative
model of InfoSEM-B: InfoSEM with BioBERT gene-embedding priors H on interaction effects;
(d) Generative model of InfoSEM-BC: InfoSEM with both BioBERT gene-embedding priors on
interaction effects Ae and known interactions (e.g.-ChIP-seq) priors on logit of the probability of
interactions Al. Solid and dashed lines represent stochastic and deterministic relations respectively.
where aik represents the interaction effect from gene i to gene k and zij is the corresponding latent
variable of xij , i.e., the expression of gene i in cell j. A Laplace prior is given to A to encourage
sparsity where the hyper-parameter σa controls the sparsity level. Similar to the vanilla VAE (Kingma,
2013), a zero-mean Gaussian prior with standard deviation σz is applied to the latent variable Z and
both the mean and variance of the Gaussian likelihood of X are given by the generation networks
fθ(·) and gθ(·) parametrized by θ. To learn DeepSEM, an inference network (shown in Figure 1 (b))
that approximates the posterior of Z, Z ∼ qϕ(Z|X,A), is introduced as follows:

Ẑ ∼ qϕ(Ẑ|X) =
∏
i,j

N (ẑij ; fϕ(xij), gϕ(xij)), Z = (I−AT )Ẑ, (6)

where qϕ(Ẑ|X) is also fully factorized. All model parameters, A, θ, ϕ are optimized by maximizing
a lower-bound of the likelihood, i.e., evidence lower-bound (ELBO), as shown in Appendix A.

In following subsections, we introduce our model InfoSEM by proposing flexible and informative
priors for p(A) to replace the weakly informative Laplace prior in Eq.5. Specifically, InfoSEM
models the interaction effects, guided by textual gene embeddings, and the probability of interaction,
informed by known interactions, when available.

3.2 INCORPORATE GENE EMBEDDINGS FROM PRETRAINED LANGUAGE MODELS

Given the frequent unavailability of costly experimental readouts, such as chromatin accessibility,
RNA velocity, perturbation experiments, and accurate pseudo-time annotations, we propose the use
of readily available priors. One such prior is gene embeddings derived from textual gene descriptions,
which have been successfully utilized in recent SL frameworks (Wang et al., 2024; Kommu et al.,
2024). Gene-level information can assist GRN inference: if gene i and gene k are functionally similar,
they may also have similar interaction effects with other genes. We use the d dimensional embedding
hi ∈ R1×d of the textual description of the gene name from BioBERT (Lee et al., 2020), a language
model pretrained on extensive biomedical literature, to represent the function of gene i. We design a
prior of interaction effect informed by language model embeddings as shown in Figure 1 (c):

p(A|H,w) =
∏
i,k

p(aik|hi,hk,w) =
∏
i,k

Laplace(aik; [hi,hk]w
T , σa), (7)

where [hi,hk] concatenates the gene embedding of genes i and k into a 2d-dim row vector and
w ∈ R1×2d is the parameter to learn using a MAP estimate with a prior p(w) = N (0, σ2

w). The
prior mean in Eq.7 can be interpreted as a linear model built on the gene embeddings for predicting
their interactions. Although more flexible nonlinear models, e.g., MLP, can be applied, linear models
on pre-trained embeddings have been successful in several gene-level tasks (Chen & Zou, 2024).

The prior distribution defined in Eq.7 makes similar genes have similar interaction effects with other
genes. Intuitively, if gene 2 and gene 3 are functionally close, i.e., h2 ≈ h3, the prior defines a similar
high-density region for a12 and a13 as they have a similar prior mean: [h1,h2]w

T ≈ [h1,h3]w
T .

The prior is asymmetric, p(aik|w) ̸= p(aki|w), which reflects the asymmetric nature of GRN.

From here on, we refer to this model, which uses BioBERT embeddings as priors, as InfoSEM-B.

3.3 INCORPORATE BOTH GENE EMBEDDINGS FROM PRETRAINED LANGUAGE MODELS AND
KNOWN GENE-GENE INTERACTIONS

Although not always readily available, prior knowledge of gene-gene interactions can be obtained in
specific scenarios, such as those studied in (Yuan & Bar-Joseph, 2019; Anonymous, 2024; Chen &
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(a) train set (known GRN for training) (b) seen gene test set (c) unseen gene test set

Figure 2: Strategies of train-test splits of the ground-truth network, containing three transcription
factors (TF1-TF3) and six target genes (TG1-TG6), when it is used during training. Solid and dashed
lines represent positive and negative interactions. (a) Blue links (→) represent known interactions
used in the training set. (b) Green links (→) represent the test set Dtest

seen, i.e., pairs of genes for which
the individual genes are seen in the train data, but not their interaction. (c) Red links (→) represent
the test set Dtest

unseen, i.e., pairs that both the genes and their interactions are unseen in the train data.

Liu, 2022), where ChIP-seq experiments or similar methodologies provide ground truth interaction
data for subsets of Y . When available, these partially observed interactions offer valuable biological
insights that can guide GRN inference. Here, we show how to incorporate these known interactions
in addition to the textual gene embeddings previously described.

Incorporating known gene-gene interactions comes with a natural challenge in that the partially
observed Y is binary which does not inform the continuous weighted adjacency matrix A directly,
but it can inform the probability of interactions. Therefore, we propose to decompose the weighted
adjacency matrix A into Ae ∈ RP×P , representing the magnitude of the interaction effect, and
Al ∈ RP×P , with each element alik representing the logit of the probability that gene i interacts
with gene k with A = Ae ⊙ σ(Al), where σ(·) is the sigmoid function and ⊙ is element-wise
product (Hadamard product) between them, as shown in Figure 1 (d). We work on the logit space
of probability to remove the necessary constraints during the model training. The prior of Ae is
informed by the gene embeddings from pretrained language models in the same way as Eq.7:

pe(A
e|H,w) =

∏
i,k

Laplace(aeik; [hi,hk]w
T , σa). (8)

We define a prior on Al using the partially observed Y , pl(Al|Y ) =
∏

i,k pl(a
l
ik|yik), where

pl(a
l
ik|yik) =


N (logit(0.95), σ2

l ), if yik = 1,

N (logit(0.05), σ2
l ), if yik = 0,

U [∞,∞], if unknown,
(9)

Intuitively, Eq.9 sets the mode of the prior probability that gene i interacts with gene k to 0.95 if
we know they interact and 0.05 if they do not. The hyper-parameter σl controls the precision of the
labels. We truncate the binary label to 0.95 and 0.05 to ensure numerical stability (Skok Gibbs et al.,
2024). If yik is not observed, we use a non-informative uniform distribution U [∞,∞] as the prior of
the logit, representing that the mode of the prior probability is 0.5.

We will henceforth refer to this model, which incorporates BioBERT embeddings as well as known
interactions (from e.g., ChIP-seq) when available as priors, as InfoSEM-BC. We train InfoSEM-B
(Section 3.2) and InfoSEM-BC (Section 3.3) using variational inference as shown in Appendix A.

4 A NEW BENCHMARKING FRAMEWORK FOR EVALUATING GRNS

Evaluation methodologies for GRN inference models play a critical role in validating their biological
relevance and utility. Existing GRN evaluation, while suitable for specific tasks, have limitations. We
highlight these shortcomings first and propose a biologically motivated framework to address them.

4.1 LIMITATIONS OF EXISTING SUPERVISED LEARNING BENCHMARKS

When using parts of the ground-truth network to train a GRN inference model, careful train-test split
strategies are essential for reliable evaluation. In most supervised GRN inference studies (Chen &
Liu, 2022; Wang et al., 2023; Mao et al., 2023; Xu et al., 2023; Wang et al., 2024; Kommu et al.,
2024), datasets are split by gene pairs, where edges for each TF are randomly divided into training
and test sets. This results in a test set, Dtest

seen, containing unseen interactions between seen genes.
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For instance, in Figure 2 (b), the link from TF2 to TG1 is in Dtest
seen, unseen during training, though

both TF2 and TG1 appear in the training set (Figure 2 (a)). This means that TFs and TGs in test
sets are also in training sets, with only the regulatory interactions (edges) being distinct between
the training and test sets. Furthermore, the class imbalance for interactions associated with each TF
remains consistent across Dtrain and Dtest

seen. This approach has the following major limitations, which
are further explored in Section 5:

• Risk of memorization due to class imbalance: The partially observed ground-truth GRN networks
are often heavily imbalanced (Pratapa et al., 2020): most TFs have far more negative interactions
(no regulation) than positive ones (Figure 3 (b) right). When all genes are represented in both
training and test sets, models can memorize gene-specific patterns (e.g., gene IDs) by exploiting
their node degrees from the GT network rather than learning true regulatory mechanisms from
scRNA-seq. Such memorization undermines the biological validity of the inferred networks.

• Inadequate representation of real-world scenarios: In real-world cases such as biomarker expansion,
the interaction (degree) information of most genes is not represented in the partially observed
GRN (Lotfi Shahreza et al., 2018). For instance, TF3, TG3, and TG6 in Figure 2 (c) exhibit this
scenario. Evaluating models on unseen genes (genes not present in the training set) reflects their
ability to generalize to new biological contexts, which is not captured by existing benchmarks.

4.2 PROPOSED BENCHMARKING FRAMEWORK

In this work, we construct another test set, Dtest
unseen, containing interaction between unseen genes,

i.e., all genes in Dtest
unseen are not in the training set (see Figure 2 (c) for an example). The model

performance and generalization ability on Dtest
unseen would reflect the level of biology that the model

has learned from the gene expression data. In practice, we randomly divide all TFs and TGs with
known interactions into four sets: seen and unseen TFs, e.g., [TF1, TF2] and [TF3] in Figure 2, and
seen and unseen TGs, e.g., [TG1, TG2, TG4, TG5] and [TG3, TG6], with a ratio 3:1. All links
between unseen TFs and unseen TGs are in Dtest

unseen (e.g., TF3 → TG3). We then randomly divide
all interactions between seen TFs and seen TGs into training Dtrain and Dtest

seen with a ratio 3:1 using
split strategies in existing works. Essentially, we leave some TFs and TGs out when constructing the
training set whose interactions are then considered as the unseen gene test sets Dtest

unseen.

5 EXPERIMENTS

We begin by experimentally validating the limitations of existing GRN inference benchmarks men-
tioned in the previous subsection to motivate the need for our new benchmarking setup followed
by comparison of our proposed InfoSEM model with state-of-the-art supervised and unsupervised
models. For reproducibility, all experimental details are available in Appendix C.

For all experiments, we use scRNA-seq datasets of four cell lines and two ground-truth GRNs for
each from BEELINE (Pratapa et al., 2020) (see Appendix B). We compare nine methods, including: 1.
a random baseline; 2. two trivial methods that do not use any information from scRNA-seq: one-hot
LR (a logistic regression that takes the concatenation of one-hot embeddings of two genes to predict
the GT interactions) and matrix completion (MatComp) that imputes the partially observed adjacency
matrix Y using low-rank decomposition (Troyanskaya et al., 2001); 3. two recent supervised methods
with state-of-the-art reported performances: scGREAT (Wang et al., 2024) and GENELink (Chen
& Liu, 2022); 4. two state-of-the-art unsupervised methods: GRNBoost2 (Moerman et al., 2019)
and DeepSEM (Shu et al., 2021); 5. our proposed InfoSEM-B and InfoSEM-BC models. Inputs and
training objectives for all models are summarized in Appendix Table 2.

We consider two types of evaluation metrics (Pratapa et al., 2020): accuracy-based metric: AUPRC,
and rank-based metric: number of positive interactions among the top 1% (Hit@1%) predicted
interactions. We repeat the train-test splits 10 times with different seeds to estimate the error bars.

5.1 EXPLORING THE BIASES WITH EXISTING BENCHMARKS

Under the existing benchmarks involving unseen interactions between seen genes, we observe that
the performance of existing supervised and unsupervised methods aligns with prior studies (Wang
et al., 2024; Chen & Liu, 2022; Pratapa et al., 2020). However, no previous work has compared
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(a) Performance of existing methods (b) One-hot LR coefficients (c) One-hot LR and scGREAT predictions

Figure 3: (a) AUPRC with corresponding standard error of the mean of existing GRN inference
models with cell-type specific target on both unseen interactions between seen genes (first column)
and interactions between unseen genes (second column) test sets. One-hot LR and matrix completion
without gene expression data achieve similar performance as several latest supervised methods
(scGREAT, GENELink) using gene expression. (b) Relations between class imbalance level and
one-hot LR coefficient of each TF. The x-axis shows the coefficient of one-hot embedding in LR. The
y-axis represents the imbalance level (proportion of positive interactions) of each TF with histogram
shown on the right. (c) Histograms and kernel density estimations of predicted probabilities from
one-hot LR and scGREAT on interactions in Dtest

seen with two TFs: TFAP2A (left) and SNAI2 (right),
with training class imbalance level 0.89 and 0.06 respectively.

these methods to simple supervised baselines, one-hot LR, which uses only one-hot embeddings of
gene IDs as features, and a matrix completion baseline, which simply imputes the partially observed
Y without any additional information. None of these use any information from scRNA-seq data.
Surprisingly, both one-hot LR and matrix completion perform similarly to state-of-the-art supervised
models such as scGREAT and GENELink across all cell lines (Figure 3 (a) first column for hESC
and hHEP cell lines, full results in Appendix E.1 for all cell lines show similar trend).

This performance is driven by one-hot LR’s ability to exploit the node degree from the partially known
GRN. Specifically, the one-hot embeddings enable the model to memorize gene-specific biases, such
as the probability of a TF regulating a TG. To validate this, we analyzed the correlation between
the class imbalance level (the proportion of positive interactions) of each TF and the corresponding
one-hot coefficient in the one-hot LR. Figure 3 (b) shows a strong rank correlation, supporting
that one-hot LR predicts interactions based on dataset biases to match the class imbalance level
of the corresponding TF, rather than biological relationships. Similarly, MatComp works well by
learning degree biases in the partially observed network of genes with low-rank latent features, which
generalizes effectively to unseen interactions between those seen genes.

In imbalanced datasets, where certain genes are predominantly associated with positive or negative
interactions, SL models can achieve high performance by learning these biases, rather than meaningful
biological relationships from scRNA-seq. The cross-entropy loss allows SL models (Eq.1) to exploit
this class imbalance by learning, for example, how likely a TF is to regulate TGs, or how likely a TG
is to be regulated, without relying on gene expression data. This shortcut allows models to predict
unseen interactions between seen genes based solely on these biases. For illustration, both one-hot
LR and scGREAT predict unseen interactions of a seen TF (e.g., TFAP2A in Figure 3 (c)) positive if
the TF has more positive interactions in the training set and vice versa (e.g., SNAI2).

To systematically confirm further whether sophisticated supervised models, such as scGREAT and
GENELink, also rely on dataset biases, we evaluated them on our new benchmark designed to predict
interactions between unseen genes using scRNA-seq data. In this scenario, we observe a significant
performance drop for supervised GRN inference methods, averaging 42% for cell-specific ChIP-seq
and 79% for non-cell-specific ChIP-seq (see Figure 3 (a) second column, Table 1, and Appendix
Table 5), even underperforming the random baseline (dashed green line in Figure 3 (a)). In contrast,
unsupervised methods, especially DeepSEM, outperformed supervised methods on three datasets
(hESC, hHEP, mDC) for cell-specific ChIP-seq without using known interactions. This further
confirms the dependence of supervised methods on dataset-specific biases. Using simple techniques
such as downsampling to address class imbalance in supervised methods reduces their accuracy
inflation on existing benchmarks but does not improve their accuracy on unseen genes scenario (see
Appendix D for details). This trend holds across both cell-type-specific and non-cell-type-specific
benchmarks, and for metrics such as Hit@1% (additional results in the Appendix E).
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hESC hHEP mDC mESC
AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1%

One-hot LR 0.210 (0.018) 0.205 (0.041) 0.395 (0.016) 0.345 (0.056) 0.247 (0.019) 0.225 (0.104) 0.329 (0.026) 0.397 (0.036)
MatComp 0.219 (0.018) 0.191 (0.048) 0.395 (0.016) 0.356 (0.034) 0.240 (0.008) 0.225 (0.043) 0.342 (0.023) 0.345 (0.038)
scGREAT 0.224 (0.029) 0.222 (0.046) 0.416 (0.020) 0.433 (0.047) 0.245 (0.017) 0.183 (0.035) 0.393 (0.027) 0.390 (0.066)
GENELink 0.201 (0.020) 0.144 (0.050) 0.415 (0.016) 0.428 (0.060) 0.249 (0.013) 0.207 (0.054) 0.381 (0.030) 0.454 (0.094)
GRNBoost2 0.218 (0.018) 0.162 (0.037) 0.440 (0.014) 0.553 (0.058) 0.226 (0.009) 0.167 (0.053) 0.356 (0.023) 0.348 (0.049)
DeepSEM 0.265 (0.032) 0.419 (0.059) 0.435 (0.019) 0.517 (0.043) 0.277 (0.014) 0.292 (0.095) 0.343 (0.024) 0.369 (0.048)

InfoSEM-B 0.331 (0.055) 0.547 (0.091) 0.498 (0.020) 0.533 (0.048) 0.298 (0.028) 0.472 (0.076) 0.388 (0.023) 0.522 (0.047)
InfoSEM-BC 0.331 (0.056) 0.585 (0.094) 0.499 (0.020) 0.550 (0.053) 0.322 (0.032) 0.498 (0.069) 0.408 (0.020) 0.575 (0.045)

Random 0.222 0.215 0.390 0.397 0.232 0.231 0.349 0.351

Table 1: The GRN inference performance, measured by AUPRC and Hit@1%, with corresponding
standard error of the mean (in parentheses) for each method evaluated on interactions between unseen
genes with cell-type specific ChIP-seq targets. The top-2 best models are bold.

5.2 UTILITY OF INFORMATIVE PRIORS FOR INFOSEM

Next, we study the performance of our proposed InfoSEM models on our introduced unseen genes
benchmark. Table 1 and Appendix Table 5 demonstrate that InfoSEM-BC and InfoSEM-B emerge as
the best-performing models on all datasets that we tested for both cell-specific and non-cell-specific
ChIP-seq. InfoSEM-B, which does not use known interactions, always improves upon DeepSEM
on all datasets that we tested for both cell-specific and non-cell-specific cases by 25% and 52%
on average, respectively. InfoSEM-B, without using any known interaction labels, achieves top-2
performance for both AUPRC and Hit@1% metrics on 3 out of 4 datasets, even when compared to
SL baselines that incorporate known interactions (see Table 1 and Appendix Tables 5 and 6).

InfoSEM-BC that incorporates information from known interactions achieves the best performance
on all datasets with respect to AUPRC and on 3 out of 4 datasets with respect to Hit@1% for both
cell-specific and non-cell-specific ChIP-seq target on unseen genes test set with average improvements
over DeepSEM by 31% and 66% (see Table 1 and Appendix Tables 5 and 6). By integrating prior
knowledge from known interactions, InfoSEM-BC reconstructs scRNA-seq data effectively, enabling
strong performance on unseen genes without the pitfalls of class imbalance exploited by supervised
methods relying on their discriminative loss (Eq.1).

Sensitivity analysis: We investigate the impact of alternative gene embeddings in Appendix
Figure 5, where InfoSEM-B (GenePT) replaces BioBERT embeddings with those from another
language model GenePT (Chen & Zou, 2024), still resulting in improved GRN inference compared to
DeepSEM. As expected, using non-informative embeddings, such as one-hot or random embeddings,
in InfoSEM-B does not enhance performance. Additionally, we evaluate the sensitivity of GRN
inference accuracy w.r.t. the number of cells in the training data, as detailed in Appendix E.3. We
find that both InfoSEM-B and InfoSEM-BC, trained on just 20% of cells, achieve performance
comparable to DeepSEM trained on all cells for the hESC cell line.

6 CONCLUSION AND DISCUSSION

In this work, we study the problem of Gene Regulatory Network (GRN) inference using scRNA-seq
data. Existing benchmarks focus on interactions between seen genes, i.e., all genes appear in both
training and test sets. While suitable for predicting novel interactions within well-characterized gene
sets, they fail to address real-world applications such as biomarker expansion (Lotfi Shahreza et al.,
2018), where models must generalize to interactions between unseen genes with no prior knowledge
about their interactions. Additionally, we show that the high performance of supervised methods even
on existing benchmarks may be influenced by dataset (gene-specific) biases, such as class imbalance,
rather than their ability to learn true biological mechanisms.

To address this gap, we propose a new, biologically motivated benchmarking framework that evaluates
a model’s ability to infer interactions between unseen genes. We also introduce InfoSEM, an
unsupervised generative model that integrates biologically meaningful priors by leveraging textual
gene embeddings from BioBERT. InfoSEM achieves 38.5% on average improvement over existing
state-of-the-art models without informative priors for GRN inference. Furthermore, we show that
InfoSEM can incorporate known interaction labels when available, further enhancing performance by
11.1% on average across datasets while avoiding the pitfalls of training with class imbalance.
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MEANINGFULNESS STATEMENT

A ”meaningful representation of life” involves accurate and unbiased modeling of biological sys-
tems. Our work studies machine learning methods for learning gene regulatory networks (GRNs), a
network representation of gene regulatory mechanisms, from gene expression data. We introduce
InfoSEM, a generative model leveraging multimodal prior knowledge, such as textual gene repre-
sentations and known interactions, to infer GRNs without gene-specific biases. We also propose a
new benchmarking framework evaluating GRNs between unseen genes, better reflecting real-world
applications like biomarker discovery. Our approach advances computational biology by providing a
generalizable method for GRN inference and trustworthy benchmarking, crucial for understanding
complex biological processes.
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A LEARN PROBABILISTIC MODELS WITH VARIATIONAL BAYES.

All deep generative models for GRN inference inference are learned with variational Bayes, which
are introduced below:

A.1 LEARN DEEPSEM WITH VARIATIONAL BAYES

In DeepSEM, the whole inference model is shown in Figure 1 (b). Weighted adjacency matrix
A is learned using its maximum a posteriori (MAP) estimate Ã, which is equivalent to using a
Dirac measure as the approximated posterior distribution, qÃ(A) = δ(A = Ã), in the variational
Bayes framework. All parameters, i.e., Ã, θ, ϕ. are optimized by maximizing a lower-bound of the
likelihood, i.e., evidence lower-bound (ELBO):

log p(X) = log

∫
pθ(X|Z,A)P (A)P (Z)

qϕ(Z|X,A)
qϕ(Z|X,A)dZdA

≥Eqϕ(Z|X,Ã)

[
log pθ(X|Z, Ã)

]
+ log p(Ã)−KL

[
qϕ(Z|X, Ã)|p(Z)

]
= L(Ã, θ, ϕ),

(10)

where the first term is the expected reconstruction error of the gene expression matrix X , log p(Ã)

regularizes the MAP estimate of A, and KL
[
qϕ(Z|X, Ã)|p(Z)

]
is the Kullback–Leibler divergence

that regularizes the approximated posterior of Z and is weighted by β in practice.

A.2 LEARN INFOSEM WITH VARIATIONAL BAYES

Similar as DeepSEM, we use MAP estimates to infer all variables related to the weighted adjacency
matrix, i.e., w in both models, A in InfoSEM-B, and Ae and Al in InfoSEM-BC, given the data
X . We use a full-rank matrix Ã, Ãe ∈ RP×P for A and Ae, i.e., qÃ(A) = δ(A = Ã) and
qÃe(Ae) = δ(Ae = Ãe). We use a low-rank MAP estimate with rank h ≪ P to infer Al, motivated
by the fact that the maximum rank of the adjacency matrix of a GRN is the number of transcription
factors, as it represents the interactions from transcription factors to target genes (Li et al., 2020;
Weighill et al., 2021). Therefore, we use qAl

a,A
l
b
(Al) = δ(Al = Al

aA
l
b), where Al

a ∈ RP×h,
Al

b ∈ Rh×P , and Al
aA

l
b has a rank h.

We derive the ELBO of InfoSEM-B with above model to be: LInfoSEM-B(Ã, θ, ϕ,w) =

Eqϕ(Z|X,Ã)

[
log pθ(X|Z, Ã)

]
+ log p(Ã|H,w) + log pw(w)−KL

[
qϕ(Z|X, Ã)|p(Z)

]
, (11)

and the ELBO of InfoSEM-BC to be: LInfoSEM-BC(Ã
e, Al

a, A
l
b, θ, ϕ,w) =

Eqϕ(Z|X,Ãe⊙σ(Al
aA

l
b))

[
log pθ(X|Z, Ãe ⊙ σ(Al

aA
l
b))

]
+ log pe(Ã

e|H,w)+

log pl(A
l
aA

l
b|Y ) + log pw(w)−KL

[
qϕ(Z|X, Ãe ⊙ σ(Al

aA
l
b))|p(Z)

]
.

(12)

The detailed derivation of above ELBOs are shown below:

p(X|H)

=

∫
pθ(X|Z,A)p(A|H,w)pw(w)p(Z)dZdA

= log

∫
pθ(X|Z,A)p(A|H,w)pw(w)p(Z)

qϕ(Z|X,A)
qϕ(Z|X,A)dZdA

= log

∫
pθ(X|Z, Ã)p(Ã|H,w)pw(w)p(Z)

qϕ(Z|X, Ã)
qϕ(Z|X, Ã)dZ

≥Eqϕ(Z|X,Ã)

[
log pθ(X|Z, Ã)

]
+ log p(Ã|H,w) + log pw(w)−KL

[
qϕ(Z|X, Ã)|p(Z)

]
=LInfoSEM-B(Ã, θ, ϕ,w).

(13)
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p(X|H,Y )

=

∫
pθ(X|Z,Ae ⊙ σ(Al))pe(A

e|H,w)pl(A
l|Y )pw(w)p(Z)dZdAedAl

= log

∫
pθ(X|Z,Ae ⊙ σ(Al))pe(A

e|H,w)pl(A
l|Y )pw(w)p(Z)

qϕ(Z|X,Ae ⊙ σ(Al))
qϕ(Z|X,Ae ⊙ σ(Al))dZdAedAl

= log

∫
pθ(X|Z, Ãe ⊙ σ(Al

aA
l
b))pe(Ã

e|H,w)pl(A
l
aA

l
b|Y )pw(w)p(Z)

qϕ(Z|X, Ãe ⊙ σ(Al
aA

l
b))

qϕ(Z|X, Ãe ⊙ σ(Al
aA

l
b))dZ

≥Eqϕ(Z|X,Ãe⊙σ(Al
aA

l
b))

[
pθ(X|Z, Ãe ⊙ σ(Al

aA
l
b))

]
+ log pe(Ã

e|H,w) + log pl(A
l
aA

l
b|Y ) + log pw(w)

−KL
[
qϕ(Z|X, Ãe ⊙ σ(Al

aA
l
b))|p(Z)

]
=LInfoSEM-BC(Ã

e, Al
a, A

l
b, θ, ϕ,w).

(14)

B DETAILS OF EACH DATASET

For all experiments, we use scRNA-seq datasets of four cell lines from the popular BEELINE
suite (Pratapa et al., 2020), including human embryonic stem cells (hESC) (Yuan & Bar-Joseph,
2019), human mature hepatocytes (hHEP) (Camp et al., 2017), mouse dendritic cells (mDC) Shalek
et al. (2014), and mouse embryonic stem cells (mESC) (Hayashi et al., 2018). We consider two
available ground-truth networks, cell-type specific ChIP-seq, collected from databases such as
ENCODE and ChIP-Atlas, on the same or similar cell type, and non-cell-type specific transcriptional
regulatory network from BEELINE (Pratapa et al., 2020).

B.1 CELL-TYPE SPECIFIC DATASETS

hESC hHEP mDC mESC
number of genes 844 908 1216 1353
number of cells 758 425 383 421

number of positive links 4404 9684 1129 40083
number of negative links 23448 17556 24407 78981

averaged node degree of TFs 133.5 322.8 53.8 455.5

B.2 NON-CELL-TYPE SPECIFIC DATASETS

hESC hHEP mDC mESC
number of genes 844 908 1216 1353
number of cells 758 425 383 421

number of positive links 3318 4033 3694 7705
number of negative links 229626 279263 300306 678266

averaged node degree of TFs 12.0 12.9 14.8 15.2
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C REPRODUCIBILITY: DETAILS AND HYPERPARAMETERS OF EACH MODEL

Methods scRNA-seq Known GRN External prior Framework
One-hot LR ✗ ✓ ✗ SL

Matrix Completion ✗ ✓ ✗ SL
scGREAT ✓ ✓ ✓ SL

GENELink ✓ ✓ ✗ SL
GRNBoost2 ✓ ✗ ✗ USL
DeepSEM ✓ ✗ ✗ USL

InfoSEM-B (Ours) ✓ ✗ ✓ USL
InfoSEM-BC (Ours) ✓ ✓ ✓ USL

Table 2: Properties of a list of benchmarking methods. Existing methods that make use of known
GRN interactions treat them as prediction targets in supervised learning (SL) framework while our
approaches consider them as a prior for constructing the scRNA-seq in an unsupervised learning
(USL) framework.

In general, we cross-validate hyper-parameters using the partially known GRN on the training set to
ensure a fair comparison with existing methods that use the same strategy. Code and datasets will be
made available on acceptance.

One-hot LR: A logistic regression implemented by scikit-learn (Pedregosa et al., 2011) with the
L2 regularization coefficient cross-validated on the training set.

MatComp: A matrix completion algorithm implemented by fancyimpute (Rubinsteyn & Feldman)
with rank 128.

scGREAT: Use hyperparameters and implementation provided by (Wang et al., 2024).

GENELink: Use hyperparameters and implementation provided by (Chen & Liu, 2022).

DeepSEM: Use hyperparameters and implementation provided by (Yuan & Bar-Joseph, 2019).

InfoSEM-B and InfoSEM-BC: We set hyper-parameters, e.g., neural network architectures,
learning rates schedule, prior scale of latent variable Z, to be the same as DeepSEM (Yuan & Bar-
Joseph, 2019). For unique hyper-parameters of InfoSEM-B and InfoSEM-BC, we cross-validate
them on the training set using known GRN (shown as below).

Ground-truth Methods hESC hHEP mDC mESC

cell-type specific
ChIP-seq

σw (InfoSEM-B, InfoSEM-BC) 0.1 10 10 1
σl (InfoSEM-BC) 0.1

√
0.1

√
0.1 0.1

h (InfoSEM-BC) 128 128 128 128

non-cell-type specific
ChIP-seq

σw (InfoSEM-B, InfoSEM-BC) 100 100 100 100
σl (InfoSEM-BC)

√
0.1 0.1

√
0.1

√
0.1

h (InfoSEM-BC) 128 128 128 128
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D PERFORMANCE OF SUPERVISED METHODS WITH DOWNSAMPLING

Figure 4: AUPRC with corresponding standard error of the mean of GRN inference models with
cell-type specific target on unseen interactions between seen genes test sets. Although we apply
downsampling to remove the class imbalance level associated with each TF, supervised methods still
show an inflated accuracy on most of cell lines by using the class imbalance level associated with
each TG.

If the class imbalance level associated with each gene causes the inflated accuracy of supervised
method, one straightforward solution is to remove the class imbalance with downsampling. Specifi-
cally, we randomly select the same number of negative edges as the number of positive edges for
each TF when training a supervised model, and the performance is shown in Fig 4.

We observe that supervised methods still have an inflated accuracy by comparing their performance
on unseen interactions between seen genes and interactions between unseen genes. One reason is that
edges associated with TGs can still be imbalanced even the edges associated with TFs are balanced,
and supervised learning methods can still make use of such information easily.

Moreover, removing the class imbalance of TFs does not improve the performance on interactions be-
tween unseen genes and unsupervised methods, especially DeepSEM, are still outperform supervised
methods on unseen genes.
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 PERFORMANCE OF ALL METHODS ON unseen interaction between seen genes TEST SET.

hESC hHEP mDC mESC
AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1%

One-hot LR 0.600 (0.028) 0.932 (0.039) 0.835 (0.005) 1.000 (0.003) 0.176 (0.006) 0.250 (0.024) 0.844 (0.009) 0.991 (0.004)
MatComp 0.638 (0.026) 0.913 (0.037) 0.840 (0.006) 1.000 (0.006) 0.351 (0.013) 0.419 (0.034) 0.860 (0.007) 0.974 (0.008)
scGREAT 0.642 (0.029) 0.966 (0.039) 0.847 (0.006) 1.000 (0.000) 0.249 (0.011) 0.325 (0.047) 0.858 (0.009) 1.000 (0.001)

GENELink 0.565 (0.029) 0.964 (0.043) 0.782 (0.007) 0.942 (0.015) 0.178 (0.006) 0.162 (0.026) 0.690 (0.016) 0.716 (0.101)
GRNBoost2 0.173 (0.006) 0.230 (0.017) 0.384 (0.007) 0.423 (0.015) 0.115 (0.007) 0.141 (0.036) 0.352 (0.011) 0.342 (0.024)
DeepSEM 0.216 (0.010) 0.318 (0.016) 0.424 (0.011) 0.509 (0.028) 0.118 (0.006) 0.165 (0.033) 0.340 (0.013) 0.431 (0.023)
Random 0.168 0.171 0.383 0.384 0.110 0.111 0.346 0.344

Table 3: The GRN inference performance for each method evaluated on unseen interactions between
seen genes with cell-type specific ChIP-seq targets. The top-2 best models are bold. We observe
that all supervised learning methods, including one-hot LR, achieve much better performance than
unsupervised methods.

hESC hHEP mDC mESC
AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1%

One-hot LR 0.159 (0.001) 0.257 (0.013) 0.186 (0.004) 0.306 (0.008) 0.126 (0.004) 0.228 (0.007) 0.127 (0.004) 0.205 (0.006)
MatComp 0.207 (0.017) 0.334 (0.020) 0.247 (0.012) 0.375 (0.016) 0.396 (0.009) 0.563 (0.015) 0.260 (0.009) 0.375 (0.013)
scGREAT 0.173 (0.002) 0.288 (0.014) 0.244 (0.006) 0.366 (0.004) 0.183 (0.012) 0.314 (0.004) 0.139 (0.004) 0.235 (0.004)

GENELink 0.059 (0.011) 0.101 (0.022) 0.088 (0.011) 0.157 (0.022) 0.103 (0.007) 0.141 (0.019) 0.025 (0.005) 0.025 (0.013)
GRNBoost2 0.019 (0.001) 0.031 (0.004) 0.018 (0.001) 0.031 (0.003) 0.020 (0.001) 0.031 (0.005) 0.018 (0.001) 0.042 (0.003)
DeepSEM 0.023 (0.001) 0.034 (0.004) 0.021 (0.001) 0.035 (0.004) 0.021 (0.001) 0.033 (0.005) 0.021 (0.001) 0.044 (0.002)
Random 0.019 0.017 0.018 0.017 0.018 0.018 0.014 0.014

Table 4: The GRN inference performance for each method evaluated on unseen interactions between
seen genes with non-cell-type specific ChIP-seq targets. The top-2 best models are bold. We observe
that InfoSEM-BC achieves top-2 performance on three dataset.

We show the performance of all methods evaluated under current evaluation setup, i.e., unseen
interactions between seen genes, in Table 3 and Table 4 for cell-type specific and non-cell-type
specific GRNs. We observe that trivial baselines (one-hot LR and matrix completion) without using
any gene expression data always achieve top-2 performance.

E.2 PERFORMANCE OF METHODS ON interaction between unseen genes TEST SET FOR
NON-CELL-TYPE SPECIFIC CHIP-SEQ TARGET.

hESC hHEP mDC mESC
AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1% AUPRC Hit@1%

One-hot LR 0.025 (0.002) 0.029 (0.008) 0.022 (0.002) 0.006 (0.006) 0.022 (0.002) 0.012 (0.004) 0.014 (0.001) 0.008 (0.004)
MatComp 0.024 (0.001) 0.017 (0.004) 0.021 (0.001) 0.017 (0.003) 0.023 (0.001) 0.031 (0.005) 0.014 (0.000) 0.014 (0.003)
scGREAT 0.025 (0.003) 0.031 (0.011) 0.029 (0.003) 0.027 (0.010) 0.028 (0.002) 0.024 (0.006) 0.024 (0.001) 0.037 (0.006)
GENELink 0.023 (0.001) 0.006 (0.006) 0.020 (0.002) 0.014 (0.007) 0.026 (0.002) 0.028 (0.013) 0.015 (0.001) 0.012 (0.003)
GRNBoost2 0.022 (0.001) 0.018 (0.006) 0.022 (0.001) 0.027 (0.009) 0.024 (0.001) 0.020 (0.004) 0.022 (0.003) 0.041 (0.009)
DeepSEM 0.028 (0.002) 0.032 (0.005) 0.026 (0.003) 0.028 (0.010) 0.026 (0.001) 0.028 (0.004) 0.022 (0.002) 0.028 (0.007)

InfoSEM-B 0.036 (0.004) 0.038 (0.007) 0.029 (0.003) 0.049 (0.009) 0.050 (0.004) 0.077 (0.014) 0.023 (0.003) 0.032 (0.008)
InfoSEM-BC 0.038 (0.004) 0.042 (0.006) 0.030 (0.003) 0.054 (0.007) 0.051 (0.004) 0.082 (0.014) 0.023 (0.002) 0.045 (0.007)

Random 0.024 0.024 0.021 0.021 0.024 0.022 0.014 0.014

Table 5: The GRN inference performance for each method evaluated on interactions between unseen
genes with non-cell-type specific ChIP-seq targets. The top-2 best models are bold. We observe
that InfoSEM-BC achieves top-2 performance on all dataset and InfoSEM-B achieves top-2 on three
datasets.

We show the performance of all methods evaluated on interactions between unseen genes for the
non-cell-type specific GRNs in Table 5, where the proposed InfoSEM is among top-2 best models in
all cell lines. We observe that both AUPRC and Hit@1% are very small when benchmarked against
non-cell-type specific GRNs unlike cell specific GRNs in Table 1. One reason is that negative links in
non-cell-type specific GRNs contain both unknown positive links and negative links due to the data
collection process (Pratapa et al., 2020), therefore, negative links in non-cell-type specific GRNs are
much noisier than cell-type specific GRNs. However, positive links in non-cell-type specific GRNs
do not contain such noise. We compute the recall to evaluate the performance of our methods on
positive links only (Table 6) where we observe a much higher accuracy compared with Table 5 when
both positive links and negative links are evaluated.
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hESC hHEP mDC mESC
DeepSEM 0.10 (0.04) 0.11 (0.04) 0.60 (0.03) 0.03 (0.02)

InfoSEM-B 0.19 (0.09) 0.34 (0.14) 0.64 (0.10) 0.19 (0.12)
InfoSEM-BC 0.22 (0.09) 0.38 (0.14) 0.64 (0.10) 0.21 (0.11)

Table 6: Averaged recall of each method with non-cell-type specific target GRNs using a threshold
0.5.

E.3 SENSITIVITY ANALYSIS
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Figure 5: Results of using different prior gene embeddings in InfoSEM-B with cell-type specific
ChIP-seq targets. InfoSEM-B with informative gene embedding, e.g., from BioBERT and GenePT,
are better than models with noninformative embeddings, e.g., one-hot and random.
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Figure 6: AUPRC of models on the unseen genes test set with different numbers of cells in the
training data.

Since InfoSEM-B uses embeddings from BioBERT, it is natural to ask: how useful are these
embeddings in improving GRN inference? To explore this, we investigate the impact of alternative
gene embeddings in Figure 5, where InfoSEM-B (GenePT) replaces BioBERT embeddings with those
from another textual gene embedding language model GenePT (Chen & Zou, 2024), still resulting in
improved GRN inference compared to DeepSEM. As expected, using non-informative embeddings,
such as one-hot or random embeddings, in InfoSEM-B does not enhance performance. Additionally,
we evaluate the sensitivity of GRN inference accuracy with respect to the number of cells in the
training data, as detailed in Appendix E.3. We illustrate how InfoSEM with different priors and
DeepSEM perform on the unseen gene test sets when only a fraction of cells in the hESC dataset
are used to train the model. We observe that InfoSEM-BC is only a slightly better than InfoSEM-B.
Moreover, InfoSEM-B and InfoSEM-BC trained only on 20% cells can achieve a similar performance
as DeepSEM trained on all cells.
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