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Abstract

On-Device deployment of large and small language models (LLMs / SLMs) faces1

critical challenges in balancing performance, energy consumption, and carbon2

footprint on various mobile and wearable devices. We introduce a hierarchical3

multiobjective reinforcement learning approach for dynamic Low-Rank Adaptation4

(LoRA) scaling that optimizes carbon efficiency as the primary objective while5

maintaining acceptable performance and energy consumption. Our method em-6

ploys Proximal Policy Optimization (PPO) with a carbon-first reward function that7

prioritizes carbon efficiency (inferences per mg CO2) over traditional energy effi-8

ciency (inferences per Joule). In smartwatches, AR glasses, VR headsets and tablets9

using DistilGPT2, OPT-125M, DialoGPT-Small, and GPT-2, our approach achieves10

up to 35.1 inf / J and 0.412 perf / mg of CO2, demonstrating the effectiveness of11

carbon-aware optimization for edge AI systems.12

1 Introduction13

The proliferation of on-device large and small language model (LLM/SLM) applications has created14

an urgent need for deployment strategies that balance computational performance with environmental15

sustainability. Although prior work emphasizes energy efficiency or model compression [1, 2],16

the carbon footprint of edge inference, including operational and embodied emissions, remains17

underexplored [3].18

Low-Rank Adaptation (LoRA) [4] enables efficient adaptation, but choosing where and how to adapt19

(which layers) across heterogeneous devices/tasks is nontrivial. We introduce hierarchical RL for20

dynamic LoRA scaling, where the agent adaptively selects the number of transformer layers equipped21

with related LoRA adapters and hyper-parameters, instead of using a fixed configuration.22

2 Methodology23

2.1 Problem Formulation24

We pose dynamic LoRA scaling as multi-objective optimization: the agent selects a subset/number of25

LoRA layers l ∈ [lmin, lmax] for device p, model m, and task t to maximize26

π∗(s) = argmax
π

Eπ

[
Rhier(s, a)

]
, (1)

Rhier = wcRc + weRe · I(Rc ≥ τ) + wpRp −
∑
i

wiPi, (2)

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Figure 1: System overview. The PPO agent selects LoRA configs under carbon-first reward while the
simulator provides device-aware feedback (power/thermal/memory/carbon).

where Rc, Re, Rp are carbon, energy, and performance rewards; I(·) enforces a carbon threshold27

τ ; Pi penalize constraint violations of system metrics including temperature, latency, memory and28

power.29

2.2 Carbon-First Hierarchical Reward30

Primary (carbon): ηc = 1
mg CO2/inf =

inf/s
mg CO2

with31

Rc =
1

1 + cactual/ctarget
, ctarget = 0.35 mg CO2. (3)

Secondary (energy): Re = tanh
( inf/J
12.0

)
· α(Rc), where α(Rc) = 1 if Rc ≥ 0.55 else 0.25. And32

tertiary (task): Rp = clip(summary_score, 0, 1).33

2.3 Edge Hardware Simulation34

We model the carbon contribution of four device profiles (Watch/AR/VR/Tablet) with:35

Coperational = Einf · Igrid, Cmanufacturing =
Cdevice · 1000

Nlifetime
, Ctotal = Coperational + Cmanufacturing (4)

where Igrid is grid carbon intensity (mg/Wh), Cdevice is device manufacturing carbon (g), and36

Nlifetime is expected lifetime inferences. Other system metrics can be modeled based on the37

emprical formulas, for example, the temperature can be modelled as:38

39

Tsurface = Tamb + α · Pconsumed ·Rthermal, (5)

with safety limits: watch/AR ≤ 42◦C; VR ≤ 40◦C [3].40

2.4 Implementation Details: LoRA Configuration and Dynamic Selection41

Configuration. We implement LoRA via PEFT [5]. Global hyperparameters that can be tuned42

are defined in config.py (e.g., rank r = 8, α = 16, dropout = 0.05; device-specific [lmin, lmax]43

ranges). In edge_training.py, we construct:44

LoraConfig(r, α, dropout, target_modules={q_proj, v_proj}),
and wrap the base LM with get_peft_model on the selected LoRA configs.45

Dynamic layer selection. In rl_environment.py, the PPO agent outputs an action that maps to46

either (i) a count of layers to adapt (respecting the device’s [lmin, lmax]), and/or (ii) a specific subset47

of layer indices. The environment applies LoRA on those layers, executes the task, and computes48

rewards (carbon→energy→performance). This closes the loop between policy, LoRA placement,49

and device-aware feedback.50
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Algorithm 1 Hierarchical Carbon-First PPO Training

1: Initialize policy πθ, value Vϕ

2: Initialize environment (devices, models, tasks)
3: for i = 1 to N do
4: Collect trajectories τ={(st, at, rt)} with πθ

5: Map at to LoRA layer count/subset; apply PEFT to those layers
6: Compute Rc, Re, Rp and Rhier; record constraint penalties
7: Update policy/value with PPO [6] (we use SB3 [7])
8: end for
9: Evaluate across device–model–task grid

Figure 2: PPO learning curves for energy/carbon efficiency and learned LoRA-layer strategy. The
agent converges to ∼3-4 adapted layers on average, balancing performance and carbon.

3 Results51

3.1 RL Learning and Convergence52

Figure 2 shows PPO learning curves: episode rewards increase from 39.1 to 43.3 (500 episodes),53

meanwhile, carbon and energy efficiency trend has both positive slope but with variance especially54

carbon slope is smaller, reflecting competing objectives, and more tuning on the reward function and55

training episodes are needed. The learned policy reaches up to 35.1 inf/J and 0.412 perf/mg CO2 on56

tablet-like configurations.57

3.2 Device-Specific Efficiency and Layer Patterns58

Table 1 and Figure 3 summarize device-level outcomes. Watches peak in energy efficiency (20.559

inf/J) with 1 adapted layer; tablets peak in carbon efficiency (0.412 perf/mg CO2) with 2 layers.60

Figure 4 details the learned frontier across devices.61

4 Discussion and Limitations62

This work initially study carbon-first hierarchical RL framework that learns where to place LoRA63

adapters on-device. Some limitations need to be resolved as follows. Scope: Evaluation spans 464
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Table 1: Performance by device. Lightweight LoRA (1–3 layers) dominates across profiles.
Device Energy Eff. (inf/J) Carbon Eff. (perf/mg CO2) Optimal Layers

Smartwatch 20.5 0.142 1
AR Glasses 9.9 0.340 2
Tablet 6.4 0.412 2
VR Headset 9.9 0.384 3

Figure 3: (a) Carbon and (b) energy efficiency by device. The learned policies favor few-layer
adaptation (1–3) with device-specific optima, yielding strong carbon gains on tablets and energy
gains on watches. Error bars: variability across model–task pairs.

models and 3 tasks; broader coverage and seed sweeps are future work. Modeling: Carbon/thermal65

models are simplified; real devices will refine intensities and transfer coefficients [3]. Validation:66

Hardware-in-the-loop measurements are needed to verify LoRA–carbon causality. Training: Vari-67

ance in learning suggests sensitivity to PPO and simulator settings; multi-objective RL or evolutionary68

strategies could further stabilize [8, 9].69

(a) Carbon efficiency frontier vs. adapted layers (b) Energy efficiency frontier vs. adapted layers

Figure 4: Layer-scaling frontiers. Carbon/energy gains saturate beyond 3–4 layers, motivating
dynamic (few-layer) selection instead of uniform deep adaptation.

5 Conclusion70

We introduced a hierarchical reinforcement learning approach for dynamic LoRA scaling that71

prioritizes carbon and energy efficiency in on-device LLM deployment. Our method achieves72

significant environmental benefits while maintaining competitive energy efficiency (up to 35.1 inf/J)73

and high constraint satisfaction rates. The learned policies demonstrate intelligent adaptation to74

diverse device capabilities, providing a foundation for environmentally conscious edge AI systems.75
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A Technical Appendices99

A.1 Experimental Setup100

Models:101

• DistilGPT2 (82M parameters)102

• OPT-125M (125M parameters)103

• DialoGPT-Small (117M parameters)104

• GPT-2 (124M parameters)105

Tasks:106

• Question Answering (SQuAD dataset)107

• Text Summarization (CNN/DailyMail dataset)108

• Dialogue Generation109

Devices and LoRA Layer Ranges:110

• Smartwatch: 1–5 layers (limited by power/thermal constraints)111

• AR Glasses: 2–7 layers (moderate computational capacity)112

• VR Headset: 3–6 layers (balanced power/performance profile)113

• Tablet: 2–8 layers (highest computational capacity)114

The numbers indicate the range of transformer layers that can be equipped with LoRA adapters on115

each device type, constrained by device-specific power budgets, thermal limits, and memory capacity.116

A.2 Training Convergence117

Training Curves shows good convergence with representative configs: LoRA r=8, α=16, dropout118

0.05.

Figure 5: Representative LoRA training-loss traces across models/tasks.

119

A.3 Carbon Footprint Distribution120

The carbon footprint analysis reveals significant variability across device-model-task configurations,121

as shown in Figure 6. The distribution exhibits a mean of 46.6 mg CO2 per inference with substantial122
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variance, indicating that optimal LoRA layer selection critically depends on the specific deployment123

context. The left panel shows the frequency distribution of carbon emissions, with most configura-124

tions clustering around 35-50 mg CO2/inf. The right panel demonstrates the performance-carbon125

trade-off across devices, where the Pareto frontier clearly separates efficient configurations from126

suboptimal ones. Notably, tablets and VR headsets show wider carbon footprint ranges due to their127

higher computational capacity, while smartwatches cluster toward lower emissions but also lower128

performance scores.129

Figure 6: Carbon distribution (mean 46.6 mg CO2/inf) with substantial cross-configuration variance.

A.4 Constraint Satisfaction130

Device-specific constraint analysis demonstrates the effectiveness of our hierarchical reward structure131

in respecting hardware limitations, as illustrated in Figure 7. The left panel shows constraint132

satisfaction rates across four categories: memory, power, latency, and temperature. Simpler devices133

(smartwatch, AR glasses) achieve near-perfect constraint satisfaction due to their conservative134

LoRA layer limits and lower computational demands. However, more capable devices (tablets, VR135

headsets) experience constraint violations, particularly in temperature and power domains when136

the RL agent pushes toward higher performance configurations. The right panel quantifies total137

constraint violations, showing 24 violations for tablets and 33 for VR headsets, primarily occurring138

during aggressive few-layer LoRA adaptation that maximizes carbon efficiency at the cost of thermal139

stability. This validates our carbon-first reward design but highlights the need for stricter constraint140

penalties in future work.141

Figure 7: Constraint satisfaction: perfect for simpler devices; more violations on tablet/VR under
heavy loads.

A.5 Carbon-Efficiency Scaling Laws142

Across profiles, optimal adapted-layer counts cluster at 1–2 (wearables) and 2–3 (mobile). Returns143

diminish beyond 4 layers due to overhead, supporting dynamic few-layer selection.144
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