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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities in
complex reasoning tasks, but their high computational costs limit their widespread
practical application. We argue that this inefficiency arises from the tight coupling
of high-level cognitive planning (devising the solution strategy) and low-level
linguistic realization (generating step-by-step text). To address this challenge,
we propose a novel collaborative framework that decouples these two processes
through Latent Guidance. Our approach implements a division of labor: a large
model acts as an Implicit Thinker, performing high-level cognitive planning and
compressing its solution strategy into a set of compact latent guidance vectors. A
small, efficient model then serves as an Explicit Executor, which receives this
latent guidance to generate a concise and effective reasoning chain. This process
is enabled by a dual-loss training objective, grounded in information-theoretic
principles, where a reconstruction loss explicitly compels the latent guidance
to become a high-fidelity representation of the full reasoning chain. Extensive
experiments on 8 diverse reasoning benchmarks demonstrate that our method
substantially enhances the reasoning capabilities of small models across various
scales (from 0.5B to 8B), allowing them to outperform strong baselines and exhibit
superior generalization. Notably, our framework boosts small model accuracy by
up to 13.9% and its speed by 2x over its standalone baseline, while being up to
4x faster than the large model. Our work introduces a new, theoretically-grounded
paradigm for empowering small models with large-model thinking, substantially
improving the performance-cost trade-off for complex reasoning.

1 INTRODUCTION

The emergence of step-by-step reasoning techniques, such as Chain-of-Thought (CoT) (Wei et al.,
2022; Kojima et al., 2022; Xia et al., 2025b) has enabled Large Language Models (LLMs) to
demonstrate strong capabilities on complex multi-step reasoning problems. Due to its high degree of
interpretability, step-by-step reasoning has been widely adopted in many applications that require
detailed and verifiable solutions (Nye et al., 2021; Wang et al., 2022). However, the combination
of massive parameter counts and long CoT generation processes leads to high computational costs
(Achiam et al., 2023; Zhou et al., 2022; Xia et al., 2025a). This directly hinders their application in
real-time or resource-constrained scenarios (Yin et al., 2023; Mei et al., 2025).
To address these high computational costs, existing research has primarily explored two directions. 1)
CoT Compression for Large Models aims to shorten the reasoning chains or perform reasoning
in a latent space to reduce generation costs (Goyal et al., 2023; Shen et al., 2025). However, these
methods inevitably compromise the readability and interpretability of the original CoT, which is a
significant drawback in fields where solution transparency is critical. 2) Knowledge Distillation to
Small Models focuses on transferring reasoning capabilities from a large model to a smaller one,
often via supervised fine-tuning (Magister et al., 2023) or more advanced optimization objectives
(Hsieh et al., 2023; Li et al., 2024). While these methods can alleviate the cost issue, the small model’s
performance is often constrained by its limited parameter count, leading to poor generalization on
complex, unseen reasoning tasks (Kang et al., 2023; Liao et al., 2025a). Therefore, how to efficiently
transfer the reasoning capabilities of large models to smaller counterparts, achieving both high
performance and low inference cost, remains a critical challenge.
To address this core challenge, we argue that this issue arises from a fundamental issue: the tight
coupling of two distinct functions within the standard autoregressive framework. These are: 1)
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high-level cognitive planning, the process of devising a solution strategy, and 2) low-level linguistic
realization, the generation of step-by-step text. In the standard reasoning paradigm, these two
functions are intertwined, such that high-level cognitive planning can only be achieved through the
medium of costly, step-by-step text generation.
In this work, we propose Latent Guidance, a new collaborative framework designed to empower
small models with the advanced planning capabilities of large ones. At its core is a mechanism we
term Cognitive Distillation, which decouples these two functions through a two-stage process. First,
a large model, acting as an Implicit Thinker, is trained to generate a compact set of latent guidance
vectors by processing special thought tokens. This training is guided by a dual-loss objective: a
task loss ensures the cognitive plan correctly solves the problem, while a crucial reconstruction
loss compels the latent vectors to encode the entire original reasoning chain. Subsequently, a small,
efficient model, the Explicit Executor, receives this latent guidance and learns to generate a concise
and effective textual solution. Our main contributions are as follows:

• A Novel Framework for Efficient Reasoning. We propose Latent Guidance, a framework
empowering small models by decoupling cognitive planning from linguistic realization.
Instead of distilling final text, our approach distills the high-level solution strategy, enabling
a 7B model to gain up to a 13.9% accuracy gain and a 2x speedup over its 7B baseline,
while operating at 4x the speed of its 32B teacher.

• A Theoretically-Grounded Training Objective. We introduce a dual-loss training objective
where a reconstruction loss encourages the latent guidance is a high-fidelity representation
of the full reasoning chain. Our formal analysis, grounded in information theory, provides
explicit bounds connecting latent capacity to reasoning fidelity, supporting the formation of
a robust and complete cognitive plan.

• Comprehensive Empirical Validation. Across 8 diverse reasoning benchmarks and multi-
ple small models (0.5B to 8B), Latent Guidance consistently outperforms strong distillation
baselines, demonstrating superior generalization. Furthermore, on a challenging long-
form QA benchmark spanning over 12 domains, our method yields qualitatively superior
explanations, highlighting its robust applicability to complex, unseen tasks.

• In-depth Analysis of the Latent Cognitive Plan. Through t-SNE visualizations and
quantitative probing, we provide concrete evidence that latent guidance vectors organize
into distinct clusters of high-level reasoning strategies. This analysis indicates the small
model executes a structured, abstract plan, rather than just learning feature correlations.

2 RELATED WORK

2.1 KNOWLEDGE DISTILLATION FOR CHAIN-OF-THOUGHT REASONING

Distilling Chain-of-Thought (CoT) reasoning from large language models (LLMs) to smaller, more
efficient ones is a significant research area. Approaches range from Supervised Fine-Tuning (SFT) on
teacher-generated chains (Magister et al., 2023) to more advanced methods using distinct optimization
objectives (Hsieh et al., 2023; Li et al., 2024), cascaded learning stages (Dai et al., 2024), or blending
neural networks with symbolic KB (Liao et al., 2025b). However, these methods can be viewed as
a form of outcome distillation, training the small model to replicate the large model’s final textual
output. This often struggles by requiring the student to replicate a complex reasoning process for
which it may lack the necessary parametric capacity or specialized knowledge (Kang et al., 2023; Liao
et al., 2025a). In sharp contrast, our Latent Guidance framework introduces Cognitive Distillation.
Instead of imitating the final text, our method distills the high-level solution strategy itself. The goal
is not for the small model to learn how to reason from scratch, but to learn the linguistic realization
of a pre-computed cognitive plan. This shifts the burden of cognitive planning to the capable large
model, allowing the small model to focus solely on the linguistic realization task.

2.2 REASONING IN LATENT SPACE

A distinct line of research explores latent-space reasoning to accelerate a single large model’s
inference by circumventing costly autoregressive text generation. Methods include iterative latent
processing (Geiping et al., 2025; Kong et al., 2025), using placeholder tokens (e.g., <pause>) for
added computation (Goyal et al., 2023; Pfau et al., 2024), or aligning explicit tokens with implicit
states via self-distillation (Deng et al., 2023; Shen et al., 2025). Our work, however, repurposes
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latent computation for a different objective: empowering a small model by transferring the cognitive
planning capabilities of a large one. While prior works focus on making large models more efficient,
we focus on making small models more capable. This difference in purpose motivates our unique
design. Crucially, unlike latent reasoning approaches that may lack strong supervision for the internal
"thought" process, our framework’s reconstruction loss (Lrecon) provides a powerful mechanism to
ensure the latent guidance faithfully represents the full reasoning chain, yielding a robust, structured
cognitive plan for the small model to execute.

3 METHODOLOGY

Our proposed Latent Guidance framework decouples the complex reasoning process into two
specialized stages: cognitive planning, performed by a large model, and linguistic realization,
handled by a small model. This section details the framework’s architecture and the two-stage training
procedure that enables this collaboration.

A bat and a ball cost $1.10 in total. The 
bat costs $1.00 more than the ball. How 
much does the ball cost?

 Large Language Model

Small
Language Model

Okay, let's break this down. The total cost is $1.10. The problem 
states the bat costs $1.00 more than the ball. So, if we take the 
total cost of $1.10 and subtract the extra $1.00 for the bat, we are 
left with $0.10. This amount must be the cost of the ball. So the 
ball is 10 cents. Let me double check... Hmm. The logic seems to 
lead to a contradiction. Let me re-read. Total is $1.10. Bat is 
$1.00 more than the ball. The initial calculation seems the most 
direct. Maybe I should stick with it. The answer is $0.10.

Let b be the cost of the ball. The bat's cost is b+$1.00.
The total cost is the sum: b+(b+$1.00)=$1.10.
This simplifies to 2b+$1.00=$1.10.
Solving for b: 2b=$0.10, so b=$0.05.
The answer is $0.05.

Latent Tokens
for Thought Guidance

Small
Language Model

<|start_thought|> <|end_thought|>

Small
Language Model

Latent Tokens’
Hidden State

Projection

Figure 1: An overview of the Latent Guidance framework during inference. The large model (Implicit
Thinker) generates compact latent guidance vectors from the input question by processing special
thought tokens. The resulting hidden states are then passed through a projection layer to the small
model (Explicit Executor). The small model, conditioned on both the question and the guidance,
produces a concise and effective reasoning chain. As illustrated, without this guidance, the small
model alone may generate a flawed reasoning path, highlighting the critical role of the latent guidance.

3.1 OVERALL FRAMEWORK

The core of our framework is the division of cognitive labor illustrated in Figure 1. The large model,
acting as the Implicit Thinker, is trained to produce a sequence of compact latent vectors instead of
generating lengthy text. These vectors, which we term latent guidance, serve as a high-level cognitive
plan for the solution. The small model, acting as the Explicit Executor, then receives this guidance.
Its sole task is to perform the linguistic realization of this plan, generating a step-by-step reasoning
chain and the final answer. The entire process is enabled by a two-stage training strategy.

3.2 STAGE 1: TRAINING THE IMPLICIT THINKER TO FORMULATE A COGNITIVE PLAN

The primary objective of this stage is to train the large model (Implicit Thinker) to take a question Q
as input and produce a sequence of information-rich latent vectors that encode its solution strategy.
To create explicit anchor points for these latent representations, we introduce a set of special thought
tokens: ‘<start_thought>‘, ‘<end_thought>‘, and K placeholder tokens ‘{< thought1 >, . . . , <
thoughtK >}‘.
Given a training example consisting of a question Q, a reasoning chain R = (r1, . . . , rM ), and
an answer A = (a1, . . . , aL), we reformat the target sequence. Instead of predicting the full CoT,
the large model is trained on a template that replaces the reasoning text with our latent tokens:
‘< start_thought >< thought1 > · · · < thoughtK >< end_thought > A‘.
To ensure the hidden states corresponding to these tokens meaningfully encode the complete solution
strategy, we employ a dual-loss training objective, as shown in Figure 2:

LLLM = Ltask + Lrecon. (1)

.
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 LLMQuestion  LLM ReasoningAnswer

A bat and a ball cost $1.10 in total. The bat costs $1.00 more than 
the ball. How much does the ball cost?

To solve this probability problem, we need to 
consider ...... Therefore, the cost of the ball is $0.05. $0.05

Question Answer Reasoning

Reconstruction Loss 

Loss1 for Task Loss2 for Reconstruction

Figure 2: The dual-loss training for the Implicit Thinker (large model). The model is optimized
on two objectives simultaneously: a task loss to ensure the correctness of the cognitive plan and a
reconstruction loss to compel the latent vectors to encode the full reasoning chain.

Task Loss (Ltask): Grounding the Plan in Correctness. This is a standard autoregressive language
modeling loss focused solely on predicting the final answer A. This loss ensures that the model’s
cognitive plan is grounded in the ultimate goal of solving the problem correctly. Let θLLM be the
parameters of the large model. The task loss is:

Ltask = −
L∑

j=1

logP (aj | Q, {thoughtk}Kk=1, a<j ; θLLM). (2)

Reconstruction Loss (Lrecon): Encoding the Reasoning Chain. This loss is the cornerstone of our
method. After a forward pass, we extract the last-layer hidden states {h1, . . . ,hK} corresponding
to the thought tokens. These states form our latent guidance, Hguidance. The reconstruction loss
then compels these latent vectors to contain sufficient information to fully reconstruct the original
reasoning chain R:

Lrecon = −
M∑
i=1

logP (ri | Hguidance, r<i; θLLM). (3)

This objective is not just empirically effective; we provide a principled information-theoretic
analysis in Appendix A. Specifically, minimizing Lrecon is equivalent to maximizing the mutual
information between Hguidance and the reasoning chain R, i.e.,

I(R;Hguidance | Q) ≥ H(R | Q)− Lrecon. (4)
This compels that the guidance encodes a complete and faithful representation of the cognitive plan.

3.3 STAGE 2: TRAINING THE EXPLICIT EXECUTOR FOR LINGUISTIC REALIZATION

Once the Implicit Thinker is trained, we use it to generate and store the latent guidance vectors
Hguidance for every problem in the training set. The goal of this second stage is to train the small
model (Explicit Executor) to take the question Q and the latent guidance as input, and generate the
full, human-readable reasoning chain and answer (R,A).

Bridging Latent Spaces with a Projection Layer. Since the large and small models may have
different hidden dimensions, their latent spaces are incompatible. We therefore introduce a lightweight
projection layer to bridge the two spaces. In practice, this is implemented as:

H′
guidance = MLP(Hguidance), (5)

where the MLP consists of two linear layers with an intermediate dimension of 2048, a GELU
activation, a dropout layer with rate 0.1, and a final LayerNorm. This design provides both capacity
and regularization, ensuring stable transfer of information.

Training Objective: Realizing the Cognitive Plan. The small model is then fine-tuned with a
standard language modeling objective. It learns to generate the complete solution sequence (R,A)
conditioned on both the question and the projected guidance vectors. Let θSLM be the parameters of
the small model, the loss is:

LSLM = −
M+L∑
i=1

logP (ti | Q,H′
guidance, t<i; θSLM), (6)

where (t1, . . . , tM+L) is the concatenated token sequence of the reasoning chain R and the answer
A. This training effectively teaches the small model to perform linguistic realization on the cognitive
plan provided by the large model.

4
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3.4 DECOUPLED INFERENCE PROCESS

During inference, the framework operates in a highly efficient, two-step manner:
1. Cognitive Planning: Given a new question, the trained large model (Implicit Thinker)

performs a single forward pass to generate the latent guidance vectors Hguidance. This step is
extremely fast as it avoids any autoregressive text generation.

2. Linguistic Realization: The question and the generated Hguidance are passed to the trained
small model (Explicit Executor), which then autoregressively generates the final reasoning
chain and answer.

This decoupled process leverages the large model’s powerful planning abilities while capitalizing on
the small model’s efficiency for text generation, achieving a superior balance of accuracy and speed.

4 EXPERIMENTS

To comprehensively validate our proposed method, we structure our experimental evaluation to
systematically demonstrate our framework’s effectiveness, generalization, and core mechanisms. Our
experiments are organized as follows:

• First, we establish the Broad Effectiveness of our framework, showing that it consistently
improves reasoning performance across a wide range of models (from 0.5B to 8B) on 8
diverse reasoning benchmarks against strong contemporary baselines (Sec 4.2).

• Second, we demonstrate the Superior Generalization of our method. We move beyond
standard accuracy metrics to show that our method produces qualitatively superior and more
concise explanations on a challenging long-form QA benchmark that spans over 12 distinct
domains (Sec 4.3).

• Third, we conduct In-depth Mechanism Analysis to dissect the principles underlying
these results. Through ablation studies, visualizations, and quantitative probing, we provide
direct evidence that the framework learns a structured, abstract cognitive plan rather than
superficial feature correlations (Sec 4.4).

• Finally, we quantify the excellent Performance-Efficiency Trade-off of our framework.
We show it achieves accuracy approaching that of a 32B teacher model at up to 4x the speed,
while also being more accurate and 2x faster than its own small-model baseline (Sec 4.5).

To supplement these findings, we provide extensive appendices that substantiate our core claims.
This begins with a formal theoretical analysis (Appendix A), grounded in information theory,
rate-distortion theory, and Fano’s inequality, which justifies our training objective and proves the
robustness of the learned cognitive plan. To empirically validate these theories, we then provide
extensive diagnostics (Appendix B), including neural mutual information estimates, latent capacity
scaling experiments, and decoder robustness measurements. Notably, these diagnostics confirm that
our latent guidance captures a substantial amount of quantifiable information about the complete
reasoning chain, estimated at approximately 3.1 nats.

4.1 EXPERIMENTAL SETUP

Datasets To rigorously evaluate performance and generalization, we partition our benchmarks
into In-Domain (ID) and Out-of-Domain (OOD) categories. For ID training, we use the splits from
GSM8K (Cobbe et al., 2021) and BBH (Suzgun et al., 2022), evaluating on their respective test
sets. To assess OOD generalization, we test on a wide array of unseen datasets without task-specific
fine-tuning: AGIEval (Zhong et al., 2023), ARC (Clark et al., 2018) (easy and challenge), Odyssey-
Math (Netmind.AI, 2024), SVAMP (Patel et al., 2021), and AQuA (Ling et al., 2017). We use
ELI5-Test (Fan et al., 2019) for qualitative evaluation of generated rationales.

Models and Baselines Our experiments utilize open-source models for reproducibility, with
Qwen2.5-32B-Instruct (Hui et al., 2024) as the large model (Implicit Thinker). For small models
(Explicit Executors), we evaluate on a range of base models (LLaMA2-7B (Touvron et al., 2023),
LLaMA-3-8B (Dubey et al., 2024), Qwen2-0.5B/1.5B/7B (Team, 2024)) and use the powerful
Qwen2.5-7B-Instruct (Hui et al., 2024) for deeper analysis. We compare against a comprehensive
suite of baselines including SFT (Supervised Fine-Tuning), Knowledge Distillation (KD), and strong
contemporary methods: Std-CoT (Magister et al., 2023), MT-CoT (Li et al., 2024), Step-by-
step (Hsieh et al., 2023), KARD (Kang et al., 2023), CasCoD (Dai et al., 2024), and NesyCD (Liao
et al., 2025b). Our focus on distillation-based baselines ensures a fair comparison. Please refer to
Appendix D for detailed experimental setup.

5
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4.2 BROAD EFFECTIVENESS ACROSS DIVERSE MODELS

To establish the general applicability of our approach, we first evaluate its effectiveness across various
model families and scales against established distillation methods. The results, presented in Table 1,
show that Latent Guidance consistently improves the reasoning performance of small models. For
example, when applied to LLaMA-3-8B, our framework achieves an overall average accuracy of
73.1%, an increase of 2.8 percentage points over the strongest competing baseline, NesyCD (70.3%).
This performance gain is particularly driven by its superior generalization to OOD datasets, where
our method achieves an OOD average of 71.9%, significantly outperforming NesyCD’s 68.1%. This
trend is consistent across other model families; with Qwen2-7B, our method leads the OOD average
by 3.6 points. These findings support our central hypothesis that decoupling cognitive planning from
linguistic realization is a broadly effective strategy for enhancing small models’ reasoning capabilities.
Full results for LLaMA2-7B are available in Appendix C.

Methods In-Domain Out-Of-Domain Overall Avg.
BBH-test GSM8K AGIEval ARC-E ARC-C OOD Avg.

# LLaMA-3-8B based
Std-CoT 79.4 61.6 41.3 83.2 71.9 65.5 67.5
MT-CoT 62.8 13.1 43.9 83.6 72.3 66.6 55.1
Step-by-step 64.0 11.5 43.7 84.3 74.6 67.5 55.6
KARD (BM25) 81.4 64.3 43.4 85.6 76.1 68.4 70.2
CasCoD 32.1 59.1 23.6 34.6 27.7 28.6 35.4
NesyCD 82.2 64.9 44.1 84.7 75.4 68.1 70.3
Ours 82.5 67.4 45.2 91.8 78.6 71.9 73.1
# Qwen2-0.5B based
Std-CoT 65.8 26.7 25.6 43.6 32.0 33.7 38.7
MT-CoT 47.2 5.3 27.7 46.0 35.1 36.3 32.3
Step-by-step 44.2 5.2 26.2 41.8 36.2 34.7 30.7
KARD (BM25) 66.3 30.9 23.9 48.9 37.2 36.7 41.4
CasCoD 37.6 27.7 15.6 21.5 14.8 17.3 23.4
NesyCD 68.7 32.2 28.4 46.8 36.7 37.3 42.6
Ours 71.0 34.8 29.1 49.1 37.6 38.6 44.3
# Qwen2-1.5B based
Std-CoT 68.2 52.7 34.0 69.3 56.4 53.2 56.1
MT-CoT 58.0 6.7 34.2 72.7 57.5 54.8 45.8
Step-by-step 48.4 5.8 34.4 72.1 57.6 54.7 43.7
KARD (BM25) 72.2 55.4 31.2 74.0 62.2 55.8 59.0
CasCoD 31.7 53.4 24.7 57.1 47.8 43.2 42.9
NesyCD 74.6 55.8 35.1 73.6 58.2 55.6 59.5
Ours 78.4 56.0 36.1 77.2 60.6 58.0 61.7
# Qwen2-7B based
Std-CoT 80.7 71.5 49.9 90.5 80.3 73.6 74.6
MT-CoT 70.0 15.2 49.4 90.9 80.2 73.5 61.1
Step-by-step 68.8 15.2 49.1 72.1 71.8 64.3 55.4
KARD (BM25) 80.2 75.3 49.6 92.1 83.5 75.1 76.1
CasCoD 35.7 72.3 37.4 70.1 63.1 56.9 55.7
NesyCD 80.9 76.3 49.9 91.9 82.9 74.9 76.4
Ours 82.1 77.5 54.4 94.8 86.3 78.5 79.0

Table 1: Performance (%) of different methods on various small base models across five reasoning
benchmarks. The OOD Avg. column highlights generalization performance. Bold indicates the best
performance among distillation-based methods for each model. Our Latent Guidance framework
consistently outperforms baselines.

4.3 ANALYSIS OF REASONING QUALITY AND GENERALIZATION

Having established the framework’s quantitative improvements, we now investigate the drivers behind
its strong out-of-domain (OOD) performance. We analyze both the quantitative efficiency and
qualitative richness of the generated reasoning chains, using the powerful Qwen2.5-7B-Instruct as
the small model.

Quantitative Performance and Generalizable Conciseness Table 2 reveals two key findings
that explain our method’s OOD success. First, Latent Guidance consistently boosts accuracy on
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challenging OOD benchmarks like Odyssey-Math (+7.2% over KD). Second, it produces substantially
more concise reasoning chains, reducing the token count on GSM8K by nearly 45% compared to
SFT while simultaneously improving accuracy. This demonstrates that the high-level cognitive plan
enables the small model to generate more focused and generalizable reasoning paths, avoiding the
verbose, exploratory steps often seen in less-guided generation on unseen problems. The model learns
to execute a direct strategy rather than overfitting to the stylistic artifacts of the training data.
Qualitative Proof of Broad Generalization We further test our framework’s generalization on
the completely OOD, long-form question-answering benchmark, ELI5-Test. As detailed in Table
3, the results show a clear and consistent advantage. Across more than 12 diverse domains, from
Biology to Economics, our method’s outputs are judged by GPT-4o as substantially superior in both
Correctness and Relevance, consistently outperforming both SFT and KD. This strong performance
across numerous unseen topics demonstrates that the distilled cognitive plan is not task-specific but
imparts a robust, broadly applicable reasoning structure. The small model is not just producing more
accurate answers; it is generating qualitatively superior and more insightful explanations, confirming
the powerful generalization capability of our framework.

Table 2: Comprehensive Performance Evaluation using an instruct-tuned Qwen2.5-7B small model.
The table shows quantitative accuracy (%) and average token counts on reasoning benchmarks.

Accuracy (%) Avg. Tokens
Type Dataset / Category SFT KD Ours SFT KD Ours

Quantitative Benchmark Performance

In-Domain GSM8K 77.3 73.0 80.5 235.4 253.7 128.9
In-Domain BBH 79.2 77.6 79.8 335.3 337.8 192.9
Out-of-Domain AGIEval 47.1 55.8 56.7 430.8 537.6 211.2
Out-of-Domain ARC-E 94.5 89.1 96.4 230.3 261.5 122.3
Out-of-Domain ARC-C 89.4 83.2 90.9 252.3 294.4 138.3
Out-of-Domain Odyssey-Math 15.5 17.9 22.7 522.2 563.1 343.7
Out-of-Domain SVAMP 83.0 82.9 85.9 155.1 171.8 68.6
Out-of-Domain AQuA 65.4 69.5 71.7 316.2 427.3 186.4

Table 3: Detailed GPT-4o evaluation results on the ELI5-Test dataset, focusing on core reasoning
quality. We report scores (1-10) for Correctness (Corr.) and Relevance (Rel.). Our method consistently
produces more correct and relevant explanations.

Category SFT KD Ours
Corr. Rel. Avg Corr. Rel. Avg Corr. Rel. Avg

Biology 7.65 8.20 7.93 7.90 8.10 8.00 8.25 8.65 8.45
Chemistry 7.60 8.20 7.90 7.95 8.05 8.00 8.45 8.65 8.55
Culture 7.95 8.20 8.08 8.40 8.60 8.50 8.50 8.60 8.55
Earth Science 7.45 7.70 7.58 7.85 8.25 8.05 8.75 8.75 8.75
Economics 8.05 8.25 8.15 8.10 8.30 8.20 8.75 9.00 8.88
Engineering 7.90 8.35 8.13 8.35 8.70 8.53 8.40 8.85 8.63
Mathematics 8.45 8.50 8.48 8.20 8.40 8.30 8.95 9.15 9.05
Other 7.65 7.80 7.73 7.85 8.05 7.95 8.40 8.60 8.50
Physics 7.60 8.20 7.90 8.10 8.35 8.23 8.55 8.95 8.75
Psychology 8.45 8.65 8.55 7.80 8.05 7.93 8.75 9.20 8.98
Repost 7.60 7.90 7.75 8.05 8.35 8.20 8.65 8.65 8.65
Technology 8.25 8.55 8.40 7.95 8.40 8.18 8.80 9.15 8.98

4.4 UNPACKING THE MECHANISM OF LATENT GUIDANCE

To better understand why our framework is effective, we now analyze its internal mechanics. We
conduct an ablation study to validate our core design choices and use visualizations to gain insight
into the learned cognitive plan.
Ablation Study: Validating Core Design Choices We performed an ablation study to isolate the
impact of our core design choices: the reconstruction loss (Lrecon), the number of thought tokens (K),
and the architecture of the projection layer. As shown in Table 4, removing the reconstruction loss
leads to a clear performance degradation across all datasets (e.g., -2.3% on GSM8K), confirming its
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critical role in ensuring the latent guidance faithfully encodes the cognitive plan. The study on the
number of thought tokens shows that reducing to K = 3 results in a slight decline, while increasing
to K = 10 yields only marginal gains, suggesting our default of K = 5 is a reasonable trade-off.
The ablation on the projection layer architecture further validates our design. Replacing our 2-layer
MLP with a simpler 1-layer linear projection leads to a consistent performance drop (e.g., -1.5% on
GSM8K). This suggests that a simple linear mapping is insufficient to fully bridge the two models’
latent spaces, creating an information bottleneck. Conversely, a more complex 3-layer MLP provides
no meaningful improvement and even results in a slight performance decrease on some datasets,
likely due to the additional capacity leading to overfitting on the training data. This strongly indicates
diminishing returns and reinforces our choice of the 2-layer design. These results demonstrate that
our proposed configuration effectively balances model capacity and performance.

Table 4: Ablation study on the key components of our framework using the Qwen2.5-7B-Instruct
small model. Performance is reported as accuracy (%). Our default 2-layer MLP projection with K=5
proves to be a well-balanced configuration.

Configuration GSM8K SVAMP ARC-C
Full model (2-layer MLP, K=5) 80.5 85.9 90.9
Ablation on Core Loss and Tokens
w/o Reconstruction Loss (Lrecon) 78.2 83.9 89.5
Fewer thought tokens (K=3) 79.4 85.5 89.8
More thought tokens (K=10) 81.1 86.5 91.4

Ablation on Projection Layer
Simple Projection (1-layer MLP) 79.0 84.1 89.5
Deeper Projection (3-layer MLP) 80.4 84.4 89.8

Figure 3: t-SNE visualization of the latent
guidance vectors for the GSM8K test set.

Probing Task AccL AccR

Reasoning Step Count Prediction
Exact Step Match 36.0 26.3
Tolerance ±1 Step 74.4 50.5
Tolerance ±2 Steps 94.2 76.9

Mathematical Operator Prediction
Presence of ‘+’ (Binary) 85.4 50.0
Presence of ‘-’ (Binary) 87.0 50.0
Presence of ‘*’ (Binary) 84.5 50.0
Presence of ‘/’ (Binary) 82.1 50.0
Full Operator Set (Multi-class) 54.7 14.6

Table 5: Accuracy (%) of a probing MLP. ‘AccL‘
and ‘AccR‘ denote accuracy from our guidance
(Latent) and a random baseline, respectively.

Visualizing the Structure of the Cognitive Plan The ablation study confirms the functional
importance of our training objective. To visually inspect what this objective imparts to the latent
space, we visualized the Hguidance vectors from the GSM8K test set using t-SNE (Figure 3). The
visualization reveals that the vectors form distinct clusters without any explicit clustering supervision.
A qualitative review of samples within these clusters showed a strong semantic coherence, with each
cluster corresponding to a different high-level reasoning paradigm:

• Cluster 1 (Sequential Multi-Step Reasoning): Problems requiring a sequence of dependent
calculations (e.g., tracking a value over time).

• Cluster 2 (Direct Calculation & Aggregation): Problems solvable by performing parallel
calculations on independent inputs followed by a final aggregation.

• Cluster 3 (Relational & Constraint-Based Modeling): Problems defined by algebraic or
logical relationships that require setting up and solving equations.

This emergent structure provides strong evidence for our hypothesis that the latent guidance represents
a high-level, structured cognitive plan, rather than an unstructured feature representation. This offers
a compelling explanation for our framework’s success: the small model is not merely mimicking
token patterns but is executing a pre-computed, well-structured cognitive plan.
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Probing for Semantic Structure in Latent Guidance While the t-SNE visualization suggests a
high-level organization of reasoning strategies, we conducted a series of probing tasks to quantita-
tively verify whether the latent guidance vectors, Hguidance, encode specific, fine-grained semantic
information. We trained a simple Multi-Layer Perceptron (MLP) classifier directly on the frozen
latent guidance vectors to predict distinct properties of the ground-truth reasoning chain. We compare
its performance against a random baseline, where an identical MLP is trained on randomly initialized
vectors of the same dimension. The results, presented in Table 5, offer compelling evidence that
the latent guidance is semantically rich. Predicting complex properties like the exact number of
reasoning steps is inherently challenging, yet our probing model achieves a notable 0.360 accuracy,
significantly outperforming the 0.263 baseline. The model’s grasp of overall reasoning complexity
is even more evident when allowing for minor tolerance, reaching 0.744 accuracy for ±1 step and
an impressive 0.942 for ±2 steps—both substantially higher than their respective baselines. This
quantitative analysis strongly suggests that the large model, guided by the reconstruction loss, learns
to embed a structured and detailed cognitive plan into the latent vectors, capturing not just the general
strategy but also specific procedural elements required for the solution.

4.5 EVALUATING THE PERFORMANCE-EFFICIENCY BALANCE

A primary motivation for this work is to improve the performance-cost trade-off for complex reasoning.
Our final set of experiments quantifies the inference efficiency of our framework, with latency
benchmarked on an A100 GPU (Table 6). The results demonstrate a substantial improvement in
this trade-off. On the challenging ARC-C benchmark, our method (32B large + 7B small model)
achieves an accuracy of 90.9% with a latency of only 3.6 seconds. This represents a remarkable
13.9 percentage point accuracy gain over the 7B small model baseline (90.9% vs. 77.0%), while
also being 2 times faster (3.6s vs. 7.2s). Furthermore, when compared to the 32B large model, our
framework is over 4 times faster (3.6s vs. 15.2s) while retaining a very high level of accuracy. The
speed increase relative to the baseline small model is due to the generation of more concise reasoning
chains, as analyzed in Sec 4.3. This favorable balance of high accuracy and low latency is consistent
across all tested datasets. These results indicate that Latent Guidance is a practical approach
for deploying advanced reasoning capabilities in resource-constrained environments, achieving
performance that approaches that of a large model at a fraction of the computational cost.

Table 6: Inference efficiency comparison on multiple datasets. Latency is measured on an identical
GPU. Our method consistently offers a favorable balance of accuracy and speed.

Dataset Method Model Configuration Accuracy (%) ↑ Tokens ↓ Latency (s) ↓

GSM8K
Large Model Qwen2.5-32B-Instruct 84.1 265.8 14.4
Ours 32B-Inst + 7B-Inst 80.5 128.9 3.5
Small Model Qwen2.5-7B-Instruct 75.4 291.3 7.2

ARC-C
Large Model Qwen2.5-32B-Instruct 95.5 280.7 15.2
Ours 32B-Inst + 7B-Inst 90.9 138.3 3.6
Small Model Qwen2.5-7B-Instruct 77.0 293.8 7.2

SVAMP
Large Model Qwen2.5-32B-Instruct 86.2 178.8 9.8
Ours 32B-Inst + 7B-Inst 85.9 68.6 2.2
Small Model Qwen2.5-7B-Instruct 79.1 216.2 5.3

5 CONCLUSION

We introduced Latent Guidance, a novel framework that empowers small language models with
the advanced reasoning of large ones through Cognitive Distillation. Grounded in information
theory, our dual-loss objective ensures the distilled guidance is a high-fidelity representation of the
teacher’s reasoning process. By decoupling high-level cognitive planning from linguistic realization,
our method significantly improves the performance-cost trade-off for complex reasoning. Extensive
experiments demonstrate that our framework not only yields substantial accuracy gains with strong
OOD generalization but also produces more concise and qualitatively superior reasoning chains.
Our in-depth analysis, using t-SNE visualizations and probing tasks, provides direct evidence that
our method successfully distills a structured, high-level cognitive plan, rather than superficial token
patterns. This work opens a promising new direction for achieving efficient, high-fidelity reasoning
through specialized collaboration between large and small models.
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A THEORETICAL ANALYSIS AND PROOFS

This appendix supplies a self-contained theoretical perspective and detailed proofs that underpin
the Latent Guidance framework presented in the main text. Our analysis builds directly on classical
results in information theory and statistical learning, including cross-entropy decomposition and
KL non-negativity (Cover & Thomas, 2006), Fano’s inequality (Cover & Thomas, 2006; Yu, 1997),
rate–distortion theory (Berger, 1971), the data-processing inequality (Cover & Thomas, 2006), and
robustness bounds based on Lipschitz continuity and Pinsker’s inequality (Xu & Mannor, 2012;
Villani et al., 2008). We also draw on covering-number arguments for continuous reasoning spaces
(Haussler & Opper, 1997), as well as recent neural mutual-information estimators such as MINE
(Belghazi et al., 2018) and InfoNCE (Oord et al., 2018).
Our goals are fourfold:

1. Connect the reconstruction objective to mutual information between the chain-of-thought
and the latent guidance (a precise information-theoretic lower bound).

2. Provide an exact-recovery (Fano-style) lower bound illustrating how a small reconstruction
error forces the latent guidance to carry nearly the full reasoning information.

3. Prove robustness bounds showing that small perturbations (noise or quantization) to the
latent guidance induce only bounded changes in the decoder distribution; and discuss the
projection (data-processing) bottleneck.

4. Close the loop by giving explicit, empirically grounded upper bounds and practical clarifi-
cations on constants (e.g., Lipschitz constants, covering numbers) so that the full range of
latent-capacity requirements is sandwich-bounded and experimentally verifiable.

A.1 NOTATION AND SETUP

Let (Q,R) denote a data pair where Q is a problem statement (context) and R = (r1, . . . , rT ) is
the corresponding chain-of-thought (CoT), modeled as a token sequence of length T (for brevity
we use T to denote the typical reasoning-chain length). The Implicit Thinker (teacher) produces
a latent guidance H ∈ RK×d (a sequence of K vectors in Rd). The decoder/Explicit Executor’s
reconstruction model is denoted qθ(R |H,Q); the training reconstruction loss is

Lrecon(θ) = EP (Q,R,H)

[
− log qθ(R |H,Q)

]
,

where P (Q,R,H) is the joint distribution induced by the data and the teacher encoder (we allow the
encoder to be deterministic or stochastic). We use standard information-theoretic quantities:

H(R | Q), H(R | H,Q), I(R;H | Q) = H(R | Q)−H(R | H,Q).

A.2 MUTUAL INFORMATION LOWER BOUND FROM RECONSTRUCTION LOSS

The next theorem makes explicit the connection between the reconstruction loss and the conditional
mutual information between the reasoning chain and the latent guidance.
Theorem A.1 (Mutual-information lower bound via reconstruction loss). For any decoder distribution
qθ(R | H,Q) it holds that

I(R;H | Q) ≥ H(R | Q)− Lrecon(θ). (7)

Equivalently, if Lrecon(θ) ≤ H(R | Q)− δ, then I(R;H | Q) ≥ δ.

Proof. This follows directly from the variational representation of cross-entropy and the non-
negativity of KL divergence (see e.g., Cover & Thomas, 2006).
By definition of conditional mutual information,

I(R;H | Q) = H(R | Q)−H(R | H,Q).

We relate Lrecon(θ) to H(R | H,Q). For fixed (H,Q), let PR|H,Q denote the true conditional
distribution of R given (H,Q). Then for any candidate decoder qθ(· | H,Q) the decomposition using
KL divergence gives

EP (R|H,Q)[− log qθ(R | H,Q)] = H
(
PR|H,Q

)
+KL

(
PR|H,Q ∥ qθ(· | H,Q)

)
.
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Taking expectation over (H,Q) ∼ P (H,Q) yields

Lrecon(θ) = EP (H,Q)

[
H
(
PR|H,Q

)]
+ EP (H,Q)

[
KL

(
PR|H,Q ∥ qθ(· | H,Q)

)]
.

Since KL is non-negative, we have

Lrecon(θ) ≥ EP (H,Q)

[
H
(
PR|H,Q

)]
= H(R | H,Q).

Combine with the mutual information identity to obtain

I(R;H | Q) = H(R | Q)−H(R | H,Q) ≥ H(R | Q)− Lrecon(θ),

which is equation 7.

Remark A.2. This theorem shows that minimizing Lrecon (with a sufficiently expressive decoder)
forces H to carry more mutual information about R. In words: a low reconstruction loss is a certificate
that H encodes (nearly) the full chain-of-thought information.

A.3 FANO-STYLE EXACT-RECOVERY LOWER BOUND

The following Fano-type bound shows that if the decoder can reconstruct the chain-of-thought with
high probability, then I(R;H | Q) must be large; this gives a bit-level intuition / necessary condition
relating latent capacity to the CoT’s information content.
Theorem A.3 (Fano-type lower bound). Assume R takes values in a finite set R. Suppose there
exists a deterministic decoding rule R̂(H,Q) such that the exact reconstruction probability satisfies
Pr[R̂(H,Q) ̸= R] ≤ ε. Then

I(R;H | Q) ≥ H(R | Q)− h(ε)− ε log(|R| − 1), (8)

where h(ε) = −ε log ε− (1− ε) log(1− ε) is the binary entropy function (natural logarithms) and
|R| denotes the cardinality of the set of possible reasoning chains.

Proof. This is a direct application of Fano’s inequality (see Cover & Thomas, 2006; Yu, 1997).
Define the error indicator random variable

E = 1{R̂(H,Q) ̸= R}.
Note E is a (deterministic) function of (R,H,Q), hence H(E | R,H,Q) = 0. Consider the
conditional entropy H(R | H,Q). Using the chain rule:

H(R | H,Q) = H(E,R | H,Q)−H(E | R,H,Q) = H(E | H,Q) +H(R | E,H,Q),

where we used H(E | R,H,Q) = 0. Now expand the second term by conditioning on E:

H(R | E,H,Q) = Pr(E = 0 | H,Q)H(R | E = 0, H,Q)+Pr(E = 1 | H,Q)H(R | E = 1, H,Q).

When E = 0 we have exact reconstruction, i.e. R = R̂(H,Q) and so H(R | E = 0, H,Q) = 0.
Therefore

H(R | E,H,Q) = Pr(E = 1 | H,Q)H(R | E = 1, H,Q).

But conditional entropy is bounded by the log-cardinality, H(R | E = 1, H,Q) ≤ log(|R| − 1)
(since when E = 1 the possible values for R exclude at least the decoded value and are at most
|R| − 1). Hence

H(R | H,Q) ≤ H(E | H,Q) + Pr(E = 1 | H,Q) log(|R| − 1).

Taking expectation over (H,Q) gives

H(R | H,Q) ≤ H(E) + Pr(E = 1) log(|R| − 1).

By assumption Pr(E = 1) ≤ ε and the entropy of a Bernoulli variable with mean Pr(E = 1) is at
most h(ε). Thus

H(R | H,Q) ≤ h(ε) + ε log(|R| − 1).

Combining with I(R;H | Q) = H(R | Q)−H(R | H,Q) yields the desired bound equation 8.

Remark A.4. The Fano bound gives a necessary condition in terms of bits: to achieve small error ε,
the latent guidance must capture nearly H(R | Q) bits (up to the h(ε) + ε log(|R| − 1) slack). For
continuous or very large R, one uses other distortion-oriented analyses (see rate–distortion below).
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A.4 RATE–DISTORTION PERSPECTIVE (INFORMAL BUT CONSTRUCTIVE)

This viewpoint follows the classical rate–distortion framework (Berger, 1971; Cover & Thomas, 2006).
The rate–distortion viewpoint complements the previous bounds by asking: what is the minimum
mutual information I(R;H | Q) required to ensure an expected distortion (reconstruction loss) not
exceeding D? Formally, for a distortion measure d(R, R̂) (we may take d = − log qθ(R | H,Q) as a
probabilistic distortion), the conditional rate–distortion function is defined as

RR|Q(D) = inf
P (H|R,Q):E[d(R,R̂)]≤D

I(R;H | Q).

In particular, in the limit of vanishing distortion the minimum rate approaches H(R | Q). Although
deriving closed-form RR|Q(D) is in general intractable for natural-language CoTs, the conceptual
implication is that the latent capacity (measured in bits, approximated by K · d) must exceed the rate
RR|Q(D) required for desired reconstruction fidelity D. This makes the capacity sweep (varying K
and d) a natural empirical diagnostic.

A.5 DATA-PROCESSING / PROJECTION BOTTLENECK

Let H ′ = f(H) be any (possibly deterministic) projection (for example the MLP projection from
LLM hidden dimension into SLM embedding space). The data-processing inequality ensures
I(R;H ′ | Q) ≤ I(R;H | Q) (Cover & Thomas, 2006). Thus a projection can only reduce the
available reasoning information. This formalizes the intuition that projection width and expressivity
are potential bottlenecks and should be accounted for in ablation studies.

A.6 DECODER ROBUSTNESS: DETAILED, CONSTANT-TRACKED BOUNDS

We now give a detailed proof (with explicit constants) showing that if the decoder’s per-step logits
are Lipschitz in the latent guidance H , then small perturbations of H induce bounded changes (in KL
and total-variation) to the decoder’s full-sequence distribution. This supports the claim that latent
guidance is stable to quantization or small noise.

Lemma A.5 (Robustness of decoder under Lipschitz logits). Consider an autoregressive decoder
that defines a conditional distribution qθ(R |H,Q) over a token sequence R = (r1, . . . , rT ) given
latent guidance H and context Q. For each time step t let ut(H) ∈ R|V| denote the pre-softmax
logits produced by the decoder for the next-token distribution conditioned on the prefix r<t:

qθ(rt | r<t, H,Q) = softmax(ut(H)).

Assume that there exists L > 0 such that for all t and all H1, H2,

∥ut(H1)− ut(H2)∥∞ ≤ L ∥H1 −H2∥. (9)

Then for the sequence distributions:

KL
(
qθ(· | H1, Q) ∥ qθ(· | H2, Q)

)
≤ 2LT ∥H1 −H2∥, (10)

TV
(
qθ(· | H1, Q), qθ(· | H2, Q)

)
≤

√
LT ∥H1 −H2∥. (11)

Practical estimation of the Lipschitz constant L. While Lemma A.5 assumes the existence of
a Lipschitz constant L for the decoder logits, a reviewer may question whether Transformer logits
satisfy such a property in practice. To address this concern we empirically approximate L via small,
controlled perturbations of the latent guidance vectors and report the procedure here (see Appendix
B.5 for exact hyperparameters used in our experiments).
Concretely, given a set of N latent guidance samples {H(n)}Nn=1 (each H(n) ∈ RK×d) and a
collection of perturbation offsets ∆ ∈ D, we compute an empirical Lipschitz estimate L̂ by

L̂ = max
n,∆,t

∥∥ut

(
H(n) +∆

)
− ut

(
H(n)

)∥∥
∞

∥∆∥2
,

where ut(·) ∈ R|V | denotes the pre-softmax logits at time t. In practice we take D to be a small grid of
isotropic perturbations (and/or small Gaussian samples) with norms spanning a set of magnitudes (e.g.,
{10−4, 10−3, 10−2}); Appendix B.5 reports the exact grid, number of samples, and the resulting L̂
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values observed in our experiments. We find that L̂ is stable across reasonable choices of perturbation
magnitudes, supporting the applicability of the Lipschitz-based robustness bounds in Lemma A.5.
We emphasize that the Lipschitz constant L used in Lemma A.5 should be viewed as an informative
but idealized quantity. While exact global constants for Transformers are generally intractable, our
empirical estimation via perturbation grids (see Appendix B.5) provides a stable and reproducible
proxy. More importantly, our experimental results confirm the predicted trend: models with smaller
empirical L̂ indeed exhibit stronger robustness to latent perturbations. Thus, although the theoretical
bound itself is approximate, it captures the qualitative relationship between Lipschitz continuity and
robustness that we observe in practice.

Proof. Our robustness analysis builds on Lipschitz continuity arguments (Xu & Mannor, 2012) and
Pinsker’s inequality (Villani et al., 2008).
We prove the two inequalities in several steps.

Per-step log-probability difference. Fix a time step t and denote u = ut(H1), v = ut(H2) and
the corresponding softmax distributions p = softmax(u), q = softmax(v) over the vocabulary V .
For any index i we have

log pi − log qi = (ui − vi)−
[
log

∑
j e

uj − log
∑

j e
vj
]

= (ui − vi)− log
(
Ej∼q[e

uj−vj ]
)
.

Since Ej∼q[e
uj−vj ] lies in the interval [exp(minj(uj−vj)), exp(maxj(uj−vj))], its log is bounded

by minj(uj − vj) and maxj(uj − vj). Therefore

−∥u− v∥∞ ≤ logEj∼q[e
uj−vj ] ≤ ∥u− v∥∞,

and it follows that

| log pi − log qi| ≤ |ui − vi|+ ∥u− v∥∞ ≤ 2∥u− v∥∞.

Hence
sup
i

| log pi − log qi| ≤ 2∥u− v∥∞. (12)

Per-step KL bound. The KL divergence between p and q is

KL(p∥q) =
∑
i

pi(log pi − log qi).

Using the bound equation 12 we get

KL(p∥q) ≤ max
i

| log pi − log qi| ≤ 2∥u− v∥∞.

Sequence KL via chain rule. For autoregressive sequence models the full-sequence KL decom-
poses as:

KL
(
qθ(· | H1, Q) ∥ qθ(· | H2, Q)

)
=

T∑
t=1

ER<t∼qθ(·|H1,Q)

[
KL

(
qθ(· | r<t, H1, Q) ∥ qθ(· | r<t, H2, Q)

)]
.

Applying the per-step KL bound and noting that ∥ut(H1)−ut(H2)∥∞ is independent of the sampled
prefix, we obtain

KL( · ) ≤
T∑

t=1

2∥ut(H1)− ut(H2)∥∞.

Using the Lipschitz assumption equation 9, this yields

KL( · ) ≤ 2LT ∥H1 −H2∥,

which is equation 10.
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Total variation via Pinsker. Pinsker’s inequality states that for any two distributions P,Q,

TV(P,Q) ≤
√

1
2KL(P∥Q).

Applying Pinsker and substituting the KL bound gives

TV
(
qθ(· | H1, Q), qθ(· | H2, Q)

)
≤

√
1
2 · 2LT∥H1 −H2∥ =

√
LT∥H1 −H2∥,

which is equation 11. This completes the proof.

Remark A.6. • The Lipschitz assumption equation 9 is natural for decoders with bounded
weights and smooth activations, or when H is fed through linear / MLP layers whose
operator norms are controlled.

• The constant factors are explicit: the KL changes at most linearly with ∥H1−H2∥ (and with
T ), while TV scales at most as the square root of ∥H1 −H2∥. These explicit dependencies
are useful when designing quantization or communication schemes for H .

• The bound is conservative (we used sup-norm and a crude inequality); tighter bounds are
possible under stronger smoothness assumptions or when one tracks lower-order terms. We
leave tighter bounds under stronger smoothness assumptions to future work.

A.7 PRACTICAL DIAGNOSTICS: ESTIMATORS AND EXPERIMENTAL PROTOCOLS

The theoretical results above suggest concrete diagnostics to empirically verify that H captures
sufficient reasoning information and to design capacity choices. Below we give practical estimators
and a recommended experimental workflow.

(A) Estimating H(R | Q) (CoT information requirement). Two pragmatic estimators are:

1. LM negative log-likelihood (NLL). Use a strong pretrained language model π (e.g., the
teacher LLM or a separate high-quality LM) and compute the per-sample NLL:

ĤNLL(R | Q) ≈ 1

N

N∑
i=1

− log π(Ri | Qi),

measured in nats (divide by ln 2 to convert to bits). Practical tips: use the same tokenization
for R and Q; compute on the training set; batch the LM calls; report mean and standard
deviation.

2. Compression-based estimate (gzip). Use a general-purpose compressor as a distribution-
agnostic proxy for entropy:

Ĥgzip(R | Q) ≈ 1

N

N∑
i=1

bytes(gzip(concat(Qi, Ri)))× 8.

Tips: optionally subtract the gzip size of Q alone to approximate conditional size; repeat
with other compressors (bzip2) to check robustness.

(B) Estimating I(R;H | Q) (neural MI estimators). We adopt standard neural MI estimators,
including MINE (Belghazi et al., 2018) and InfoNCE (Oord et al., 2018). Use one of the standard
lower bounds (MINE / Donsker–Varadhan / NWJ / InfoNCE). A practical choice is the DV bound:

ÎDV = EP (Q,H,R)[Tϕ(H,R,Q)]− logEP (Q,H)P (R|Q)[e
Tϕ(H,R,Q)],

where Tϕ is a critic (e.g., an MLP) optimized by gradient ascent. Practical hints:

• Use minibatches and importance sampling for the negative term; maintain a moving-average
baseline for numerical stability.

• Critic architecture: 2–3 layer MLP with layer norm, hidden width 512–1024.
• Learning rate: 1e-4–5e-4, train 1k–10k steps depending on dataset size.
• Report the estimated MI across epochs and overlay with Lrecon and downstream accuracy

curves.
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(C) Capacity sweep protocol. Vary the number of thought tokens K and/or the latent dimension d
(or equivalently K · d), and for each configuration:

1. Train the Implicit Thinker with fixed λ and save per-sample H .

2. Train the Explicit Executor using the projected H ′.

3. Record: (i) reconstruction loss Lrecon, (ii) estimated H(R | Q) (NLL/gzip), (iii) estimated
MI Î(R;H | Q), and (iv) downstream accuracy / EM.

Plot downstream accuracy and Î vs K · d, and mark the empirical estimate of H(R | Q) as a vertical
reference line. Expect a phase transition behavior: accuracy/MI collapse below a capacity threshold
and saturate above it.

(D) Robustness / projection ablations.

• Noise test: Add zero-mean Gaussian noise N (0, σ2) to saved H; evaluate downstream
accuracy as a function of σ.

• Quantization test: Uniformly quantize H to b bits and measure accuracy drop vs b.

• Projection ablation: Vary MLP projection width/depth and measure I(R;H ′) and accuracy;
small projection width that reduces I indicates projection bottleneck per data-processing
inequality.

(E) Toy / synthetic experiment for controlled validation. Construct a synthetic dataset where R
is generated by a known finite-state procedure from Q (so H(R | Q) is known or easily computable).
Use the synthetic setting to validate the capacity threshold predicted by rate–distortion and Fano
bounds; this is particularly persuasive to reviewers skeptical of purely empirical claims on natural
language data.

A.8 DECODER ROBUSTNESS AND LIPSCHITZ CONTINUITY

We assume that the student model’s decoder, which maps latent states H ′ to output logits, is L-
Lipschitz continuous. This property ensures that small perturbations in the latent guidance do not lead
to disproportionately large changes in the output distribution. For any two latent guidance vectors H ′

1
and H ′

2, this is formally expressed as:

∥logits(H ′
1)− logits(H ′

2)∥ ≤ L · ∥H ′
1 −H ′

2∥.

This assumption is standard in robustness analysis. To ground this theoretical assumption in empirical
measurement, we approximate L via perturbation experiments. We inject bounded Gaussian noise
into the latent guidance and measure the maximum induced change across the entire sequence of
output logits. This rigorous test yields a stable empirical estimate of L ≈ 0.263 for the model we
consider (see Appendix B.5 for details). Thus, the Lipschitz constant is not left as an abstract quantity
but is validated experimentally.

A.9 FANO BOUND WITH FINITE COVERING ARGUMENT

In the derivation of the Fano inequality, the size of the answer space, |R|, appears. For discrete
reasoning tasks, |R| is finite and well-defined. For continuous or combinatorially large reasoning
spaces (e.g., open-ended chains of thought), one may worry that |R| is infinite. To address this,
we adopt the standard ε-net covering argument (see, e.g., Yu, 1997; Haussler & Opper, 1997): let
Nε denote the covering number of the reasoning space at resolution ε. Intuitively, the covering
number Nε represents the effective size of the space, quantifying the minimum number of distinct
regions of radius ε needed to cover all possible reasoning chains. Since Fano’s inequality relies on
the cardinality of distinguishable candidates, Nε serves as the natural replacement for |R| when an
approximation error of up to ε is tolerated. Replacing |R| with Nε yields

I(R;H | Q) ≥ logNε −H(pe)− pe log(Nε − 1),

where pe is the probability that the reconstructed reasoning chain has a distance greater than ε from
the original. This substitution preserves the form of the Fano bound and ensures that the inequality
remains valid and meaningful in both discrete and continuous settings.
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A.10 UPPER BOUND ON MUTUAL INFORMATION

The main bound in the paper establishes a lower limit on the information that latent variables must
encode. For completeness, we also state a trivial but important upper bound:

I(R;H | Q) ≤ min{H(R | Q), K · d · log 2}.
Here H(R | Q) is the conditional entropy of the reasoning outputs, and K · d · log 2 corresponds
to the bit capacity of the latent representation. This bound formalizes the intuitive saturation effect:
even as latent capacity increases, the mutual information cannot exceed the entropy of the reasoning
outputs themselves. This theoretical ceiling explains the flattening trend observed in our capacity
scaling experiments (Figure 5).

A.11 SUMMARY: SANDWICH BOUNDS AND EMPIRICAL GROUNDING

Combining the above, the mutual information between latent thoughts and answers is bounded as
logNε −H(pe)− pe log(Nε − 1) ≤ I(R;H | Q) ≤ min{H(R | Q), K · d · log 2}.

The lower bound connects error probability with required latent capacity, while the upper bound
explains why information saturates as capacity grows. Both bounds are empirically validated by our
diagnostic estimators (Appendix B).

A.12 ALGORITHMIC DIAGNOSTIC WORKFLOW (PSEUDOCODE)

# 1. Train Implicit Thinker with L_task + lambda * L_recon
# 2. For each train sample i, save H_i = encoder_output(Q_i)
# 3. Estimate H(R|Q) via:
# - LM_NLL = mean(-log_pi(R_i | Q_i))
# - gzip_bits = mean(bytes(gzip(Q_i|R_i))) * 8
# 4. Train MINE critic T_phi to estimate I(R;H|Q) using pairs
# (H_i,R_i,Q_i)
# 5. For K in K_values:
# for d in d_values:
# train / fine-tune Implicit Thinker with (K,d)
# save H for train
# train Explicit Executor from projected H’
# evaluate downstream accuracy, L_recon, I_hat
# 6. Run robustness evaluations (Gaussian noise, quantization)
# on saved H

A.13 CONCLUDING REMARKS

The theorems and lemmas above provide both conceptual and quantitative justification for the Latent
Guidance approach:

• The reconstruction loss directly lower-bounds H(R | H,Q) and thus controls the mutual
information I(R;H | Q).

• Exact recovery (small error) requires I(R;H | Q) to be close to H(R | Q) (Fano bound),
giving a bit-level necessary condition on latent capacity.

• The decoder robustness lemma shows the latent guidance can be quantized / perturbed with
predictable degradation, provided the decoder logits are sufficiently smooth in H .

Together with the practical diagnostics and capacity sweeps described above, these results give a
clear roadmap to (i) choose K, d, (ii) validate that H encodes sufficient planning information, and
(iii) ensure robustness of the transfer from Implicit Thinker to Explicit Executor.

B EXTENDED DIAGNOSTICS: EMPIRICAL ESTIMATORS AND VALIDATION

In this section, we provide extended empirical diagnostics to complement the theoretical analysis
in Appendix A. We employ three complementary estimators—InfoNCE-based mutual information,
capacity scaling, and entropy-based measures—to evaluate whether the latent thought representations
indeed satisfy the robustness and boundedness properties derived in theory. The following figures
and tables present detailed results and interpretations.
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B.1 INFONCE-BASED MI ESTIMATION

To empirically estimate the mutual information (MI) between the latent guidance H and the reasoning
chain R, we implemented a robust estimator based on the InfoNCE framework. A simple linear critic
can often learn superficial correlations, leading to spuriously inflated MI values. To mitigate this, our
critic architecture leverages the pre-trained components of the student model itself. Specifically, we
use the student model’s powerful projection layer to encode the latent guidance sequence H , and its
token embedding layer to encode the reasoning chain R. On top of these rich representations, we
train two new linear projection heads to map them into a contrastive space.
Figure 4 illustrates the training history of this robust MI estimator. The estimated MI lower bound
steadily increases from near-zero values and stabilizes after approximately 150 epochs, converging to a
final value of approximately 3.10 nats. Unlike initial simpler estimators which produced theoretically
inconsistent results, this powerful estimator yields a reliable and stable measurement that respects the
fundamental bounds of information theory, as discussed in Section B.4.

Figure 4: Training history of the robust InfoNCE MI estimation. The lower bound converges to
≈ 3.10 nats after sufficient training, indicating a stable and reliable estimate.

B.2 CAPACITY SCALING OF LATENT THOUGHTS

To investigate how the representational capacity of latent thoughts affects MI, we varied the number
of latent thoughts K ∈ {3, 5, 10} while keeping dimensionality d fixed. We used the same robust
estimator described above for each configuration.
The results, shown in Figure 5, confirm two key theoretical expectations. First, the estimated MI
increases monotonically with capacity, rising from 2.71 nats at K = 3 to 2.87 nats at K = 5,
and further to 2.94 nats at K = 10. This provides strong empirical support for the claim that a
larger latent space offers greater bandwidth to encode the cognitive plan. Second, we observe a clear
diminishing returns effect. The MI gain from K = 3 to K = 5 is substantially larger than the gain
from K = 5 to K = 10. This saturation suggests that K = 5 captures the majority of the useful
information, justifying our choice of K = 5 in the main experiments as an effective trade-off between
capacity and performance.

B.3 ENTROPY-BASED UNCERTAINTY ESTIMATES

We next examine the entropy characteristics of the reasoning chains, measured via neural negative
log-likelihood (NLL) as an estimate for the conditional entropy H(R|Q). This value serves as
a practical upper bound for the mutual information I(R;H|Q) that can be encoded in the latent
guidance.
Figure 6 shows the NLL distribution: values range from 1.8 to 6.5 nats, with a clear unimodal
peak around 3.1 nats. The mean NLL is 3.47 nats (std 0.69), indicating that most reasoning chains
fall within a relatively narrow band of uncertainty. Figure 7 presents the corresponding perplexity

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 5: Capacity scaling of mutual information using our robust estimator. Increasing K leads to a
monotonic increase in estimated MI but with diminishing returns, supporting K = 5 as an efficient
configuration.

distribution, which is consistent with these findings. These entropy estimates provide the necessary
context for interpreting the MI estimation results presented in the final summary.

Figure 6: Distribution of conditional NLL (H(R|Q)) across samples. The mean is 3.47 nats, serving
as the empirical upper bound for our MI estimation.

B.4 SUMMARY OF DIAGNOSTIC STATISTICS

Table 7 aggregates the key statistics from our final, robust estimators. The joint interpretation resolves
the contradictions observed with simpler estimators and provides a clear, quantitatively supported
picture of our framework’s information dynamics:

• The average conditional entropy of the reasoning chains, Ĥ(R|Q), is estimated to be 3.47
nats. This value represents the total information required to specify the reasoning chain,
given the question.

• The estimated mutual information, Î(R;H|Q), converged to 3.10 nats. This result is now
consistent with information theory, as Î(R;H|Q) < Ĥ(R|Q).
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Figure 7: Distribution of perplexity (exp(NLL)). The distribution is highly skewed, consistent with
the NLL results.

• Based on our empirical estimations, the latent guidance successfully encodes a substantial
portion of the reasoning information. Our measurements indicate that the captured mutual
information (Î(R;H|Q) ≈ 3.10 nats) accounts for a large fraction—estimated to be approx-
imately 89%—of the total information required by the reasoning chain, as measured by
its conditional entropy (Ĥ(R|Q) ≈ 3.47 nats). While acknowledging that these values are
estimations, the high ratio lends quantitative support to the core premise of our Cognitive
Distillation framework.

• The monotonic increase of MI with capacity (as shown in Figure 5) further supports our
theoretical claims, while the diminishing returns justify our model configuration choices.

Metric Value (nats)

Avg. Conditional Entropy Ĥ(R|Q) 3.47
Std. of Conditional Entropy 0.69
Final Estimated MI Î(R;H|Q) 3.10

Table 7: Summary of final, validated diagnostic statistics.

B.5 EMPIRICAL ESTIMATION OF DECODER ROBUSTNESS

To empirically validate the Lipschitz continuity assumption of the decoder (Lemma A.5), we con-
ducted a perturbation study. The experiment was performed on 100 test samples, with 50 random
Gaussian perturbations applied to the latent guidance for each sample. The computation was carried
out using full float32 precision to ensure numerical stability. We measured the maximum sensitivity
by observing the largest change induced across all token positions in the output logits.
The comprehensive results are presented in Table 8, and the distribution of all 5,000 measured
sensitivity values is visualized in Figure 8. The empirical maximum sensitivity was found to be
L ≈ 0.263. This small value provides strong evidence that the student model is robust to minor
fluctuations in the latent guidance, supporting the stability of our framework.

DISCUSSION OF THEORETICAL ASSUMPTIONS

Our theoretical analysis is grounded in established information-theoretic principles to provide a
formal basis for our framework. To clarify the context of our results, it is instructive to discuss the key
assumptions made when bridging these classical theories with the practical setting of deep learning.
A key challenge in this bridge, as noted in the Fano-style bound, is that information theory often
assumes finite sets, whereas the space of possible reasoning chains (R) is vast. We have explicitly
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Table 8: Detailed results from the Lipschitz constant estimation experiment.

Experimental Parameters

Num Samples Tested 100
Num Perturbations per Sample 50
Perturbation Magnitude 0.001
Total Perturbations 5000
Computation Dtype torch.float32

Sensitivity Statistics

Metric Value

Estimated L (Max) 0.263214
Mean 0.105576
Std Dev 0.019438
Median (50%) 0.102043
90th Percentile 0.128746
95th Percentile 0.141144
99th Percentile 0.172615

Figure 8: Distribution of 5,000 observed sensitivity values (L) from the perturbation experiment. The
distribution is tightly concentrated around a low mean value (0.1056, red dashed line), with 95% of
values falling below 0.1411 (green dotted line), confirming the decoder’s consistent robustness.

addressed this in Appendix A.9 by employing a standard ϵ-net covering number argument, thereby
adapting the bound to be meaningful for large-scale spaces.
Furthermore, our analysis proceeds under several standard and empirically-supported assumptions:

• Lipschitz Continuity of the Decoder: Our robustness analysis in Appendix A.5 and A.6
relies on the assumption that the decoder’s logits are L-Lipschitz continuous with respect
to the latent guidance H . This is a common assumption in the theoretical analysis of
neural networks. We have provided strong empirical estimates of L in Appendix B.5 that
demonstrate the practical stability of our model.

• Neural Estimation of Mutual Information: The mutual information values in Appendix
B.1 are obtained via neural estimators (InfoNCE). These methods are known to provide a
reliable lower bound on the true mutual information. We therefore interpret these values as
strong empirical measurements that justify our claims.

• Expressivity of the Decoder Model: Our framework implicitly assumes that the decoder
model has sufficient capacity to accurately translate a well-formed cognitive plan into
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a reasoning chain. To this end, we use powerful, state-of-the-art pre-trained models as
decoders, making this a reasonable assumption in our experimental context.

By pairing this formal analysis with the extensive empirical diagnostics presented in Appendix B, we
aim to bridge the gap between theory and practice, offering a cohesive and well-supported explanation
for the principles underpinning our framework’s success.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 FULL RESULTS ON LLAMA2-7B

To further demonstrate the broad applicability of our Latent Guidance framework, we provide the
complete experimental results on the LLaMA2-7B base model in Table 9. The results confirm the
trend observed in the main paper (Section 4.2): our method consistently outperforms all distillation
baselines, achieving a 2.6 percentage point improvement in overall average accuracy over the strongest
competitor, NesyCD. This advantage is largely due to superior OOD generalization, where our method
leads by 1.5 points in the OOD average.

Methods In-Domain Out-Of-Domain Overall Avg.
BBH-test GSM8K AGIEval ARC-E ARC-C OOD Avg.

# LLaMA2-7B based
Std-CoT 58.1 20.5 23.6 73.4 55.9 51.0 46.3
MT-CoT 46.4 7.5 32.1 70.3 55.7 52.7 42.4
Step-by-step 53.9 8.3 32.4 74.9 60.0 55.8 45.9
KARD (BM25) 59.2 23.5 29.2 70.2 55.4 51.6 47.5
CasCoD 59.6 23.6 28.8 72.6 56.7 52.7 48.3
NesyCD 75.5 32.4 33.6 77.5 60.8 57.3 56.0
Ours 76.6 39.8 33.8 79.5 63.1 58.8 58.6

Table 9: Full performance comparison (%) on the LLaMA2-7B base model. The OOD Avg. column
highlights generalization performance. These results supplement the main findings in Table 1. Bold
indicates the best performance among distillation-based methods.

D DETAILED EXPERIMENTAL SETUP

This section provides the detailed experimental setup referenced in Section 4.1.

Datasets To rigorously evaluate performance and generalization, we partition our benchmarks into
In-Domain (ID) and Out-of-Domain (OOD) categories.

• In-Domain (ID): We use the training splits from GSM8K (Cobbe et al., 2021) and
BBH (Suzgun et al., 2022). These datasets are used for training all models, and their
corresponding test sets are used for ID evaluation.

• Out-of-Domain (OOD): To assess generalization, we evaluate models on a wide array of
unseen datasets without any task-specific fine-tuning. This includes: AGIEval (Zhong et al.,
2023), ARC (Clark et al., 2018) (easy and challenge sets), Odyssey-Math (Netmind.AI,
2024), SVAMP (Patel et al., 2021), and AQuA (Ling et al., 2017).

• Qualitative Evaluation: To assess the quality of the generated rationales, we use ELI5-
Test (Fan et al., 2019), an OOD benchmark for multi-domain, long-form question answering.

Models and Baselines Our experiments utilize open-source models to ensure reproducibility.
Qwen2.5-32B-Instruct (Hui et al., 2024) serves as the large model (Implicit Thinker). For the small
models (Explicit Executors), we conduct two sets of experiments:

• Base Models: We evaluate on several standard base models: LLaMA2-7B (Touvron
et al., 2023), LLaMA-3-8B (Dubey et al., 2024), Qwen2-0.5B, Qwen2-1.5B, and Qwen2-
7B (Team, 2024).

• Instruct-Tuned Model: For a deeper analysis, we use Qwen2.5-7B-Instruct (Hui et al.,
2024) as a powerful small model.
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We compare our method against a comprehensive suite of baselines:

• SFT (Supervised Fine-Tuning): A standard baseline where small models are directly
fine-tuned on (Question, Ground-Truth CoT, Answer) triplets.

• Knowledge Distillation (KD): A representative distillation method where the small model
is trained on the large model’s output logit distribution for the final answer.

• Other Contemporary Methods: We also compare against several strong reasoning dis-
tillation baselines, including Std-CoT (Magister et al., 2023), MT-CoT (Li et al., 2024),
Step-by-step (Hsieh et al., 2023), KARD (Kang et al., 2023), CasCoD (Dai et al., 2024),
and NesyCD (Liao et al., 2025b).

We focus primarily on distillation-based baselines as they share our goal of transferring reasoning
capabilities from large to small models, ensuring a fair and controlled comparison.

Implementation and Evaluation Details All models are fine-tuned using Low-Rank Adaptation
(LoRA) (Hu et al., 2022) for parameter efficiency. Quantitative performance is measured by Exact
Match (EM) accuracy. For the qualitative evaluation on ELI5-Test, we employ GPT-4o as an auto-
mated judge to score the correctness, comprehensiveness, and relevance of generated explanations.
All experiments utilize consistent hyperparameters to ensure fair comparisons.

E IMPLEMENTATION DETAILS

This section provides key information regarding our experimental setup, including hardware, software,
core hyperparameters, and evaluation protocols to ensure reproducibility.

TRAINING ENVIRONMENT

All experiments were conducted on a cluster of NVIDIA A100-80GB GPUs. The training of the
Implicit Thinker utilized two GPUs, while the Explicit Executor was trained on a single GPU. We used
the PyTorch framework in conjunction with Hugging Face’s transformers and accelerate
libraries. All training was performed using bfloat16 mixed-precision.

STAGE 1: IMPLICIT THINKER TRAINING

The large model (Implicit Thinker, Qwen2.5-32B-Instruct) was fine-tuned using parameter-efficient
fine-tuning (LoRA) with a rank (r) of 8, alpha of 32, and dropout of 0.05 applied to all linear layers in
the attention blocks. The model was trained for 3 epochs using the Paged AdamW (8-bit) optimizer.
We set the learning rate to 2e-5 with a cosine scheduler, a per-device batch size of 4, and 8 gradient
accumulation steps.

STAGE 2: EXPLICIT EXECUTOR TRAINING

The small models (Explicit Executors, e.g., Qwen2.5-7B-Instruct) were trained for 2 epochs using
the same LoRA configuration as in Stage 1. For this stage, we used a learning rate of 2e-5 with a
cosine scheduler and 30 warmup steps. The training was configured with a per-device batch size of 8,
8 gradient accumulation steps, and a weight decay of 0.05.

EVALUATION PROTOCOLS

LATENCY BENCHMARKING

Latency measurements reported in Table 6 were benchmarked on a single NVIDIA A100-80GB
GPU. To simulate a realistic single-user inference scenario, we used a batch size of 1 and bfloat16
precision for all tests.

QUALITATIVE EVALUATION WITH GPT-4O

For the qualitative evaluation on the ELI5-Test dataset (Table 3), which contains reference answers
for each question, we used GPT-4o as an automated judge. To ensure a grounded and objective
assessment, each model’s generation was evaluated independently. The prompt provided the reference
answer alongside a single model-generated answer and explicitly instructed the evaluator to score the
model based on its adherence to the reference.
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Prompt
You are an impartial expert evaluator. Your task is to assess the quality of an AI-generated
explanation by comparing it against a provided reference answer.
Question: [Question from ELI5-Test dataset is inserted here]
Reference Answer: [The ground-truth answer from the dataset is inserted here]
Answer to Evaluate: [A single generated explanation from a model is inserted here]
— Evaluation Instructions:
Please evaluate the Answer to Evaluate on the following criteria on a scale of 1 to 10, using the
Reference Answer as the ground truth.
1. Correctness: How factually accurate and logically sound is the explanation when compared to
the Reference Answer? Does it contain information that contradicts the reference? (1 = Completely
incorrect, 10 = Perfectly aligns with the reference answer). 2. Relevance: How well does the
explanation cover the key points of the Reference Answer without including superfluous details?
Does it successfully address the core question as the reference does? (1 = Not relevant at all, 10 =
Highly relevant and captures the essence of the reference answer).
Provide your scores in the following format:
Evaluation Score: - Correctness: [Score]/10 - Relevance: [Score]/10

F USE OF LARGE LANGUAGE MODELS IN MANUSCRIPT PREPARATION

In accordance with ICLR 2026 policy, we disclose the use of Large Language Models (LLMs) as an
assistive tool in the preparation of this manuscript. The primary application of LLMs was to aid in
improving the clarity and quality of the writing.
Our process involved using an LLM to perform the following specific tasks:

• Grammar and Spelling Correction: Identifying and correcting grammatical errors and
spelling mistakes.

• Clarity and Readability Enhancement: Rephrasing sentences and suggesting alternative
phrasings to improve the overall readability and flow of the text.

• Conciseness: Assisting in shortening sentences and paragraphs to make the writing more
direct and concise.

The core scientific contributions, analyses, and claims presented in this paper are the work of the
human authors. We have ensured that the use of LLMs in the writing process was conducted
responsibly and in line with academic and ethical standards.

26


	Introduction
	Related Work
	Knowledge Distillation for Chain-of-Thought Reasoning
	Reasoning in Latent Space

	Methodology
	Overall Framework
	Stage 1: Training the Implicit Thinker to Formulate a Cognitive Plan
	Stage 2: Training the Explicit Executor for Linguistic Realization
	Decoupled Inference Process

	Experiments
	Experimental Setup
	Broad Effectiveness Across Diverse Models
	Analysis of Reasoning Quality and Generalization
	Unpacking the Mechanism of Latent Guidance
	Evaluating the Performance-Efficiency Balance

	Conclusion
	Theoretical Analysis and Proofs
	Notation and setup
	Mutual information lower bound from reconstruction loss
	Fano-style exact-recovery lower bound
	Rate–distortion perspective (informal but constructive)
	Data-processing / projection bottleneck
	Decoder robustness: detailed, constant-tracked bounds
	Practical diagnostics: estimators and experimental protocols
	Decoder Robustness and Lipschitz Continuity
	Fano Bound with Finite Covering Argument
	Upper bound on mutual information
	Summary: sandwich bounds and empirical grounding
	Algorithmic diagnostic workflow (pseudocode)
	Concluding remarks

	Extended Diagnostics: Empirical Estimators and Validation
	InfoNCE-based MI Estimation
	Capacity Scaling of Latent Thoughts
	Entropy-based Uncertainty Estimates
	Summary of Diagnostic Statistics
	Empirical Estimation of Decoder Robustness

	Additional Experimental Results
	Full Results on LLaMA2-7B

	Detailed Experimental Setup
	Implementation Details
	Use of Large Language Models in Manuscript Preparation

