
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Stem-OB: GENERALIZABLE VISUAL IMITATION
LEARNING WITH STEM-LIKE CONVERGENT OBSER-
VATION THROUGH DIFFUSION INVERSION

Anonymous authors
Paper under double-blind review

Figure 1: Left: The tree of Stem-OB inversion is composed of different objects progressively in-
verted through a diffusion inversion process. Moving downward alone the tree’s branches, objects
of different textures, appearances, and categories gradually get closer, eventually converging into
the same root of Gaussian noise, where they are completely indistinguishable. Right: Real-world
tasks success rate, where Stem-OB showcases a significant improvement.

ABSTRACT

Visual imitation learning methods demonstrate strong performance, yet they lack
generalization when faced with visual input perturbations like variations in light-
ing and textures. This limitation hampers their practical application in real-world
settings. To address this, we propose Stem-OB that leverages the inversion pro-
cess of pretrained image diffusion models to suppress low-level visual differences
while maintaining high-level scene structures. This image inversion process is
akin to transforming the observation into a shared representation, from which
other observations also stem. Stem-OB offers a simple yet effective plug-and-play
solution that stands in contrast to data augmentation approaches. It demonstrates
robustness to various unspecified appearance changes without the need for addi-
tional training. We provide theoretical insights and empirical results that validate
the efficacy of our approach in simulated and real settings. Stem-OB shows an ex-
ceptionally significant improvement in real-world robotic tasks, where challeng-
ing light and appearance changes are present, with an average increase of 22.2%
in success rates compared to the best baseline. See our website for more videos.

1 INTRODUCTION

Visual Imitation Learning (IL), where an agent learns to mimic the behavior of the demonstrator
by learning a direct mapping from visual observations to low-level actions, has gained popularity in
recent real-world robot tasks (Chi et al., 2023; Zhao et al., 2023; Wang et al., 2023a; Chi et al., 2024;

1

https://stem-ob.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Ze et al., 2024). Despite the versatility demonstrated by visual IL, learned policies are often brittle
and fail to generalize to unseen environments, even minor perturbations such as altering lighting
conditions or changing the texture of the object may lead to failure of the learned policy (Xie et al.,
2023; Yuan et al., 2024b). The underlying reason is that the high-dimensional visual observation
space is redundant with virtually infinite variations in appearance that are irrelevant to the task and
hard to generalize.

As human beings, we can easily manipulate objects that have different appearances. For example,
we can pick up a cup of coffee regardless of its color, texture, or the lighting condition of the room.
This is partially because our visual system is capable of abstracting the high-level semantics of the
scene, such as the silhouette of the object, the structure and arrangement of different objects, etc
in a hierarchical manner (Hochstein & Ahissar, 2002), effectively merging scenes with perceptual
differences to similar “meta” observations.

Augmentation techniques such as Spectrum Random Masking (SRM) (Huang et al., 2022) and
Mixup (Zhang et al., 2018) remove details from observations to encourage the model to focus on
structural features; however, they lack the ability to distinguish between low-level and high-level
features. It is preferable if we can sweep the photometrical differences while maintaining the high-
level structure for the scene. Achieving this requires a semantic understanding of the observations,
and naively perturbing the data with Gaussian noise can lead to irreversible information loss.

Pretrained large image diffusion models, such as Stable Diffusion (Rombach et al., 2022; Esser
et al., 2024), embed essential world knowledge for visual understanding. Apart from synthesizing
new images from random noise, these models are capable to perform a reverse procedure called
inversion (Song et al., 2022), which converts an image back to the space of random noises. A recent
study (Yue et al., 2024) indicates that this inversion process selectively eliminates information from
the image. Rather than uniformly removing information from different semantic hierarchies, it will
push those images with similar structures closer in the early stages of the inversion process. Inver-
sion is like the reprogramming of a differentiated cell back to a stem cell, which bears the totipotency
to differentiate into any cell type. This characteristic aligns perfectly with our will of enhancing the
robustness and generalizability of visual IL algorithms to visual variations. To distill such property
into a visual IL policy, we propose an imitation learning pipeline which applies diffusion inversion
to the visual observations. We name our method Stem-OB to highlight the similarity between the
inversed observation and the stem cell in biology, as illustrated in Figure 1.

To be specific, our method is as simple as inverting the image for reasonable steps before sending
them to the downstream visual IL algorithms. The number of steps is chosen empirically to balance
removing irrelevant details without erasing essential high-level information. From this perspective,
our approach fundamentally distinguishes from generative augmentation methods, which aim to
enrich the training dataset with more unseen objects and appearances (Yu et al., 2023; Mandlekar
et al., 2023). Moreover, Stem-OB is indifferent to many unspecified appearance changes, in contrast
to augmentation-based methods that must concentrate on a few selected types of generalization,
thereby introducing inevitable inductive biases.

We provide theoretical analysis and a user study to support our claim that Stem-OB can effectively
merge scenes with perceptual differences to similar “stem observations”. Empirical study demon-
strates the effectiveness of our approach in a variety of simulated and real-world tasks and a range
of different perturbations. Stem-OB proves to be particularly effective in real-world tasks where
appearance and lighting changes hamper the other baselines, establishing an overall improvement
in the success rate of 22.2%. What’s better, no inference time inversion is required for Stem-OB to
take effect, making the deployment of our method virtually free of computational cost.

2 RELATED WORKS

2.1 VISUAL IMITATION LEARNING AND GENERALIZATION

Visual Imitation Learning (VIL) is a branch of Imitation learning (IL) that focuses on learning action
mappings from visual observations. It typically follows two approaches: directly imitating expert
policies, as in behavior cloning and DAgger (Ross et al., 2011), or inferring a reward function that
aligns the agent’s behavior with expert demonstrations, like inverse reinforcement learning (Ng &

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Overview of Stem-OB: (a). Stem-OB has been evaluated in both real-world and simulated
environments. (b). The trained visual IL policies are directly applied to the original observation
space O, demonstrating robustness to unseen environmental disturbances. (c). We train the visual IL
policy π on the diffusion-inversed latent space Ôt̂/T , where t̂ denotes a specific inversion step out of
a total of T . Each composite rectangle in the diffusion inversion process, made up of three smaller
sections, represents the latent vector of an image, with the smaller section depict the finer attributes
(gray). During the inversion process, finer attributes converge earlier than coarser ones.

Russell, 2000) and GAIL (Ho & Ermon, 2016). The former approach, favored in recent works
due to its scalability and practicality in complex, real-world tasks, has led to several advancements.
Notable methods include Diffusion Policy (Chi et al., 2023), which leverages a diffusion model (Ho
et al., 2020) to maximize the likelihood of expert actions, and Action Chunk Transformer (Zhao
et al., 2023) that uses a Transformer (Vaswani, 2017).

To enhance the generalization and robustness of visual imitation learning algorithms, various ap-
proaches have been explored (Cetin & Celiktutan, 2021). For instance, Li et al. (2023) leverage
trajectory and step level similarity through an estimated reward function, while Wan et al. (2023)
improve visual robustness by separating task-relevant and irrelevant dynamics models before ap-
plying the GAIL framework (Ho & Ermon, 2016). Zhang et al. (2023a) use mutual information
constraints and adversarial imitation learning to create compact representations that generalize to
unseen environments. However, these approaches are not directly applicable to methods like diffu-
sion policy, which focus on imitation without reward functions or dynamics models. Zheng et al.
(2023) propose to filter extraneous action subsequence, yet their focus is not on visual perturbations.
Most relevant to our setting, several works in robust visual reinforcement learning have explored
adding noise in image or frequency domain to improve generalizability (Huang et al., 2022; Lee &
Hwang, 2024; Yuan et al., 2024a), however, they lack the semantic understanding of the augmenta-
tion process.

2.2 INVERSION OF DIFFUSION MODELS AND ITS APPLICATION

Diffusion model inversion aims to recover an initial noise distribution from a given image, enabling
image reconstruction from the same noise via backward denoising. A common approach is DDIM
inversion (Song et al., 2022), which estimates the previous noise using predictions from the current
diffusion step, though the approximation will introduce cumulative errors. To address this issue,
several methods employ learnable text embeddings (Mokady et al., 2023; Miyake et al., 2023), fixed-
point iterations (Pan et al., 2023; Garibi et al., 2024), or gradient-based techniques (Samuel et al.,
2024) to refine the result. Another approach, based on the stochastic DDPM scheduler (Ho et al.,
2020), reconstructs noisy images at each diffusion step (Huberman-Spiegelglas et al., 2024; Brack
et al., 2024). In contrast to the DDIM inversion methods, the noise ε̃t of each step is statistically
independent, making them ideal for our application since we can obtain the noisy image of a certain
step without the need to recover other steps, greatly reducing the calculation cost.

Diffusion Inversion is the crucial part of diffusion-based image editing methods (Meng et al., 2021;
Kawar et al., 2023), which typically involves first inverting the diffusion process to recover the noise
latent, then denoise the latent with desired editing conditions. Recent works also explore to apply

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

attention control over the denoising process to improve the fidelity of the edited image Hertz et al.
(2022); Tumanyan et al. (2023), and have shown promising application in robot learning tasks Gao
et al. (2024). Beyond that, inversion is also used in tasks like concept extraction Huang et al. (2023)
and personalization Gal et al. (2022). Most recently, Wang & Chen (2024) proposed the use of
diffusion inversion to interpolate between image categories to improve classification performance.
And Wang et al. (2023b) uses diffusion inversion to erase out sub-optimal trajectories from the
dataset.

3 PROBLEM DEFINITION

Given a dataset of observation O and action A pairs, the goal of VIL is to learn a policy πθ(A|O)
that maps observations to actions. The policy is typically parameterized by a neural network with
parameters θ, and is trained to minimize the negative log-likelihood of the actions.

To achieve the goal of generalizing to unseen environments, we seek a method to preprocess or
transform the observations O such that task-irrelevant details are suppressed while preserving the
high-level semantic structure that is critical for the task. The problem can be transformed into
learning a transformation T as the input to the policy πθ(A|T (O)), where T (O) is the transformed
observation emphasizing high-level semantics while removing irrelevant details.

4 PRELIMINARY

We begin by outlining the fundamentals of Diffusion Inversion. A diffusion model operates with
two passes: a backward denoising pass, which generates an image from noise, and a forward pass,
where noise is incrementally added to an image until it becomes pure Gaussian noise. This forward
process is a Markov chain that starts with x0, and gradually adds noise to obtain latent variables
x1,x2, ...,xT . Each step in this process is a Gaussian transition following the common form

xt =
√
αtxt−1 + σtϵt ∼ N (xt|

√
αtxt, σ

2
t I) (1)

where αt ∈ (0, 1) represents the scheduler parameter at each step t, while σt characterizes the vari-
ance of the Gaussian noise ϵt introduced at each step. In Denoising Diffusion Probabilistic Models
(DDPM) (Ho et al., 2020), σt =

√
1− αt. Consequently, equation Eq. (1) can be reformulated as

Eq. (2) by applying the cumulative product ᾱt =
∏t

i=1 αi

xt =
√
ᾱtx0 +

√
1− ᾱtϵt ∼ N (xt|

√
ᾱtxt−1, (1− ᾱt)I) (2)

Diffusion inversion is similar to the forward process in that they both maps an image to a noise,
however, inversion tries to preserve the image’s information and obtain the specific noise that can
reconstruct the image during a backward denoising process.

DDPM inversion. We follow the DDPM inversion proposed in Huberman-Spiegelglas et al. (2024),

xt =
√
ᾱtx0 +

√
1− ᾱtϵ̃t (3)

The DDPM inversion we consider here differs slightly from Eq. (2), as ϵ̃t ∼ N (0, I) are mutu-
ally independent distributions, in contrast to the highly correlated ϵt in Eq. (2). As mentioned by
Huberman-Spiegelglas et al. (2024), the independence of ϵ̃t results in a sequence of latent vectors
where the structures of x0 are more strongly imprinted into the noise maps. An error reduction step
is conducted in reverse order after the diffusion forward process to improve image reconstruction
accuracy during the denoising process:

zt = xt−1 − µ̂(xt)/σt, xt−1 = µ̂(xt) + σtzt (4)

DDIM inversion. We follow the DDIM inversion proposed in Song et al. (2022), where at each
forward diffusion step

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

xt =

√
ᾱt

ᾱt−1
xt−1 +

(√ 1

ᾱt
− 1−

√
1

ᾱt−1
− 1
)
ϵθ(xt−1, t, C) (5)

Note that the noise ϵθ(xt−1, t, C) is now generated by a network trained to predict the noise based
on the previous vector xt−1 and the text embedding C which, in our case, is ∅.

5 METHOD

In this section, we introduce the intuition and implementation of our framework. We first propose
the intuition of applying inversion on observations through theoretical analysis based on attribute
loss, a diffusion-based measurement of image semantic similarity. Then, we conduct an illustra-
tive experiment and a user study to validate our intuition. Finally, we explain how to practically
implement Stem-OB and incorporate diffusion inversion into a visual imitation learning framework.

5.1 INTUITION DEVIATION BY ATTRIBUTE LOSS

Intuitively, as the diffusion inversion process moves forward, a source image and another variation
of it become increasingly indistinguishable. The variation here could be low-level changes like
lightning conditions, but also includes semantic changes such as replacing an object. If there are
two different variations, we want to show that as the inversion step increases, the pair with minor
alterations will become indistinguishable sooner than the pair with larger and structural changes. We
borrow the definition of attribute loss from Yue et al. (2024) to quantify the semantic overlapping of
the two images at time step t during a inversion process:

loss(x0,y0, t) =
1

2
OVL(q(xt|x0), q(yt|y0)) (6)

where x0 and y0 are the latent variables of the two images, and OVL is the overlapping coef-
ficient quantifying the overlapping area of two probability density functions . For an inversion
process where each step follows a Gaussian transition, it takes the form xt =

√
ᾱtx0 + σϵ ∼

N (
√
ᾱtx0, σ

2I). The OVL can be further calculated as the overlapping area of two Gaussian distri-
butions, i.e.,

loss(x0,y0, t) =
1

2

[
1− erf(

||
√
ᾱt(y0 − x0)||
2
√
2σ

)
]

(7)

where erf is the error function, which is strictly increasing. Given a source image x0 and its vari-
ations x̂0 and x̃0, with x̃0 undergoing a larger variation than x̂0, the following conclusion can be
easily observed under the same diffusion scheduling:

τ(x0, x̂0, ρ) < τ(x0, x̃0, ρ), s.t.||x̂0 − x0|| < ||x̃0 − x0|| (8)
Here, τ(x0,y0, ρ) = inf{t > 0 | loss(x0,y0, t) > ρ} represents the earliest step where the loss
between x0 and y0 exceeds the threshold ρ, and || · || measures the difference between an image and
its variation. Eq. (8) provides a theoretical grounding for our intuition: images with fine-grained
attribute changes tend to become indistinguishable sooner than those with coarse-grained modifica-
tions under identical diffusion schedules.

We can further derive the attribute loss for DDPM inversion

lossDDPM (x0,y0, t) =
1

2

[
1− erf(

||
√
ᾱt(y0 − x0)||

2
√

2(1− ᾱt)
)
]

(9)

Additionally, we derive that the attribute loss for DDIM inversion exhibits a similar form under
certain assumptions. The detailed derivation can be found in Appendix A.2.

lossDDIM (x0,y0, t) =
1

2

[
1− erf

(||(y0 − x0)||

2

√
2
∑t

i=1
1
ᾱi

(√
1
ᾱi

− 1−
√

1
ᾱi−1

− 1
)2)

]
(10)

Because ᾱt ∈ (0, 1) is strictly decreasing, the attribute loss tends to increase as the time step in-
creases. Furthermore, as discussed in Yue et al. (2024), this attribute loss is equivalent to how likely
the DM falsely reconstruct xt sampled from q(xt|x0) closer to y0 instead of x0, and vise versa.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5.2 ILLUSTRATIVE EXPERIMENT

In Sec. 5.1, we made a key assumption that semantically similar images are closer in latent space
of the diffusion models , leading to the conclusion that such images exhibit higher attribute loss at
a given inversion step (Eq. (8)). While this assumption is backed by recent study on the zero-shot
semantic correspondence ability on diffusion latents (Tang et al., 2023; Zhang et al., 2023b) , we fur-
ther conducted an illustrative experiment to further support it. To validate this assumption, we used a
set of images, denoted as I, from the real-world task variations described in Sec. 6.1.1. Specifically,
we selected the 4 generalization objects in the real-world tasks from 5 categories and calculated
the pairwise distance between images on their latent representations, both for intra-category and
cross-category image pairs. The results are presented in Tab. 1, where each entry represents the av-
erage distance between two categories. It is clear that the diagonal entries indicating intra-category
similarity exhibit lower loss compared to cross-category images, which justifies our claim.

Table 1: By-category image semantic similarity.

Categories Bowl Cup Drawer Duck Faucet

Bowl 156.65 172.20 172.81 172.82 167.73
Cup 172.20 154.63 165.43 167.83 167.37

Drawer 172.81 165.43 144.63 161.82 161.57
Duck 172.82 167.83 161.82 140.51 147.00
Faucet 167.73 167.37 161.57 147.00 145.34

Figure 3: User study confusion proportions.

We then conducted a user study to validate that
similar images exhibit higher attribute loss at
a given inversion step. We recruited 51 par-
ticipants and presented each with image pairs
from I after specific steps of diffusion inver-
sion. The inversion steps were systematically
sampled from 15 to 45, out of a total 50 steps
inversion and with intervals of 5. Each partici-
pant was asked to determine whether the image
pairs depicted the same object, and we recorded
the proportion of incorrect responses.

The experimental results in Fig. 3 show that at
inversion step t1 = 20, the incorrect response
rate within the same category starts to increase.
In contrast, the error rate for objects from dif-
ferent categories only started to rise at the inver-
sion step t2 = 35. This indicates that inversion
makes objects within the same category harder
to distinguish earlier than affecting the distinc-
tion between objects from different categories.
Therefore, these results support our claim that
similar images exhibit higher attribute loss at a
given inversion step.

5.3 IMPLEMENTATION OF STEM-OB

Following the theoretical analysis and experimental validation, we propose a practical implementa-
tion of our framework. Our method applies diffusion inversion to converge different observations
during training, and we find that the model gains robustness improvement in the original observation
space during test time. The detailed implementation is described below.

Training. The training process begins by applying diffusion inversion to each observation. We
define the following partial diffusion inversion process for an observation oi ∈ O:

ô
t/T
i = f(oi, t, T) (11)

Here, ôt/T
i ∈ Ôt/T denotes the observation after t out of T steps of diffusion inversion from the

original observation oi ∈ O. The function f(·) applies t steps of diffusion inversion to o using
any inversion methods. We select the DDPM inversion method for its efficiency and effectiveness
in our experiments, and the selection of t and total inversion step T is discussed in Sec. 6.5. The
visual imitation learning algorithms are then trained on the inversion-altered space Ôt/T . Note that
we empirically find the error reduction step of DDPM inversion in Eq. (4) is not significant for the
performance, so we omit it and approximate the partial inversion process with regard to Eq. (3) only.
In this way, we avoid the full inversion process or reverse-order corrections that involve extensive
Diffusion Model inference. This approach significantly reduces preprocessing time with minimal
performance impact, achieving an average time for preprocessing of 0.2s per image.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Realworld Setup: (a) Overview of the whole setup. (b)(c) These tasks are performed by
the robot in a real-world environment, from left to right: Cup2Plate, Turn on Faucet, Open Drawer,
and Duck2Bowl. The figure showcases the initial and final states of the tasks.

Testing. Despite training is entirely conducted on the inversion-altered space, the imitation learning
algorithm of our choice showcases surprising zero-shot adaptation ability to the original observation
space. We adhere to the original observation space O during testing, which means essentially no
changes are made to the downstream visual imitation learning algorithms. This approach demon-
strates improved robustness to environmental variations without any inference-time overhead, and
is suitable for any other test-time augmentation techniques.

6 EXPERIMENTS

In this section, we present a comprehensive set of experiments using Diffusion Policy (DP) (Chi
et al., 2023) as our visual imitation learning backbone. Since Stable Diffusion is pretrained on real-
world images (Chi et al., 2023; Rombach et al., 2022), and a increasing interest in deploying visual
imitation learning in real-world scenarios in the community (Paolo et al., 2024), we focus primarily
on evaluating Stem-OB on real-world tasks. We extend the testing to simulated environments as
well for further benchmarking. To assess the robustness of our method against visual appearance
variations, we design experiments featuring different object textures and lighting conditions. We
compare Stem-OB against several baselines to validate its effectiveness.

6.1 EXPERIMENT SETUP

6.1.1 REAL-WORLD TASKS

We conduct real-world experiments using a Franka Emika Panda Arm, and two RealSense D435I
cameras positioned at different angles for RGB inputs. The setup is shown in Fig. 4. Our experi-
ments focus on four tasks, as described below:

Cup to Plate (C2P): The robot arm picks up a cup and places it on a plate, with variation intro-
duced by changing tablecloth patterns.
Duck to Bowl (D2B): The robot grasps a toy duck and places it into a bowl, with variations intro-
duced by altering the duck’s appearance.
Open Drawer (OD): The robot arm grabs a drawer handle and pulls it open, with variations intro-
duced by modifying the drawer’s visual characteristics.
Turn on Faucet (ToF): The robot arm turns on a faucet, with variations introduced by altering the
appearance of the faucet and bucket.

In addition to the visual variations mentioned above, all four tasks above involve changes in light-
ing conditions, i.e., cool vs. warm light. All the variations only happen during testing time, with
the training set contain only a basic setting. The object locations in training set are randomly ini-
tialized within a specified area, and 100 demonstrations are collected per task. For testing, nine
predefined target positions are used. Further details of the environmental variations can be found in
Appendix C.1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6.1.2 SIMULATION TASKS

Our simulation experiments consider different tasks within two frameworks: a photorealistic simu-
lation platform SAPIEN 3 (Xiang et al., 2020) and a less realistic framework MimicGen (Mandlekar
et al., 2023).

SAPIEN 3 provides physical simulation for robots, rigid bodies, and articulated objects. It delivers
high-fidelity visual and physical simulations that closely approximate real-world conditions. We
leverage the ManiSkill 3 dataset (Gu et al., 2023; Tao et al., 2024), collected on SAPIEN 3, for
benchmarking. Specifically, we select four tasks from ManiSkill for evaluation:

PushCube: The robot arm pushes a cube to a target location.
PegInsertionSide: The robot arm inserts a peg into a hole.
PickCube: The robot arm picks up a cube and places it on a target location.
StackCube: The robot arm stacks one cube over the other.

During testing, we vary the background and lighting conditions in all tasks to generate different
visual appearances. 50 episodes are tested for each setting. Details of the environmental variations
can be found in Appendix C.2.

(a) PushCube (b) PegInsertionSide (c) PickCube (d) StackCube

Figure 5: SAPIEN 3 environments. The figure showcases the visual appearance and task configu-
ration of each setting.

MimicGen is a system for generating large diverse datasets from a small number of human demon-
strations. We utilize the benchmark to evaluate the performance of our approach and conduct experi-
ments on a variety of tasks: MugCleanup, Threading, ThreePieceAssembly and Coffee. MimicGen
offers numerous task variations, each characterized by different initial distributions. We adopt the
default initial distribution (D0) for both training data and test environments. For evaluation, we
employ a single image as the input to the policy, using 500 samples out of a total of 1000 demos
for training. We alter the table texture and object appearances to create different test environments.
300 episodes are tested for each setting of all the tasks. Detailed descriptions of the environmental
variations can be found in Appendix C.3.

6.2 BASELINES

We compare Stem-OB with several data augmentation methods aimed at improving the generaliz-
ability of visual imitation learning. The baselines include SRM (Huang et al., 2022), which modifies
images by adding random noise in the frequency domain, Mix-Spectrum (Mix) (Lee & Hwang),
which enhances the agent’s focus on semantic content by blending original images with randomly
selected reference images from the same dataset in the frequency domain, and original images (Org)
without any modification. Additionally, as highlighted in (Yuan et al., 2024b), Random Overlay
(RO) improves generalization in real-world experiments by blending original images with random
real-world photos in the image domain. Therefore, we include an additional study using Random
Overlay in our real-world experiments.

6.3 EXPERIMENT RESULTS

6.3.1 REAL-WORLD EXPERIMENTS

In this section, we report the average success rate across all predefined test positions for each task.
As shown in Tab. 2, Stem-OB consistently outperforms the baseline models in all settings, demon-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Evaluation of real-world experiments. Train.: evaluations in the same settings as the training dataset.
Gen.: evaluations under different visual perturbations for generalizability analysis. All: evaluations including
both Train. and Gen. The tasks are C2P, D2B, OD, and ToF. We report the mean and standard deviation of the
success rate (%) over 6 settings for each task, and the best results are highlighted in bold.

Task \ C2P D2B OD ToF
Algorithm Train. Gen. All Train. Gen. All Train. Gen. All Train. Gen. All

Stem-OB 89.0 93.3±6.1 92.6±5.7 78.0 44.4±22.2 50.0±24.1 100.0 100.0±0 100.0±0 100.0 88.9±19.2 90.7±17.8

Org 89.0 77.8±26.1 79.6±23.7 56.0 13.3±14.4 20.4±21.6 89.0 13.3±18.3 25.9±34.9 100.0 22.2±19.2 35.2±36.1

SRM 56.0 73.3±9.9 70.4±11.5 44.0 8.9±9.3 14.8±16.7 89.0 15.6±21.7 27.8±35.7 89.0 31.1±30.8 40.7±36.3

Mix 89.0 55.6±13.6 61.1±18.3 44.0 22.2±17.6 25.9±18.1 33.0 35.6±5.0 35.2±4.5 100.0 68.9±30.8 74.1±30.4

RO 56.0 53.3±9.3 53.7±8.4 44.0 15.6±12.7 20.4 ±16.4 89.0 88.9 ±7.9 88.9 ±7.0 78.0 82.2±20.2 81.5±18.1

Table 3: Evaluations in simulated environments. We compare the performance of Stem-OB, Org, SRM, and
Mix in simulated environments. The left side of the table shows the results on the SAPIEN 3 environment, while
the right side is about the MimicGen environment. The results are reported as the mean and standard deviation
of the success rate(%) over their own various test settings. The performance of Stem-OB is highlighted in or-
ange for better visibility. The best performance of each task is highlighted in bold.

Task \ SAPIEN 3 MimicGen

Algorithm PushCube PegInsertionSide PickCube StackCube MugCleanup Threading ThreePieceAssembly Coffee

Stem-OB 99.1±1.8 0.4±0.8 25.1±20.9 27.2±31.3 19.5±12.5 16.4±12.8 13.1±6.9 50.5±19.6

Org 61.8±33.1 0.0±0.0 8.6±18.2 4.3±19.2 16.4±12.0 18.1±12.8 14.8±8.4 43.3±17.3

SRM 62.5±30.5 0.0±0.0 8.4±16.1 0.7±3.4 15.4±0.08 25.8±11.7 13.6±7.6 39.4±12.0

Mix 97.2±3.35 0.6±0.1 12.9±16.3 8.2±18.0 22.3±11.8 18.9±8.5 14.2±6.6 41.8±9.9

strating superior generalization capability. Under the training conditions, all methods achieve rela-
tively high success rates, with our method performing slightly better than the baselines. However, in
generalization testing, baseline methods exhibit significant performance drop, while our approach
maintains a high success rate, showcasing the superior adaptability of Stem-OB to complex and
noisy real-world visual disturbances.

The experiment results demonstrate that previous visual augmentation methods, such as SRM and
Mix-Spectrum, struggle to generalize in real-world scenarios, which could be attribute to the com-
plexity of real-world environments. Real images contain more redundant information, complicating
the frequency domain and potentially leading to the failure of these augmentation methods. The light
disturbance introduced in our experiments is a typical example, where wide-range but low-intensity
noise is added to the images. Our approach effectively handles real-world noise by extracting high-
level structures from the appearances, resulting in better generalization. Even in challenging sce-
narios like D2B, where baseline methods mostly fail, our method maintains a high success rate.

Interestingly, DP without any image modification (Org) outperforms the baselines in some tasks,
such as OD and ToF, suggesting that DP has inherent generalization capabilities. However, this
generalizability is inconsistent across tasks. For instance, in C2P, we observe that object appearance
(cup and plate) had little impact on DP’s performance, while the tablecloth pattern significantly
affects it. In D2B, the duck’s appearance is critical, whereas the table cloth variation is more influ-
ential. In contrast, our method exhibits consistent generalization across diverse scenarios.

6.4 SIMULATION EXPERIMENTS

Sapien 3 The evaluation results on Sapien 3 are presented on the left side of Tab. 3. The complexity
of the tasks poses challenges for DP in generalizing across various conditions. However, our method
achieves a higher success rate than the baseline methods on most of the tasks. In PushCube, both
Mix-Spectrum and our method perform well, but our approach is more robust and reach nearly 100%
success. These results demonstrate that in more photorealistic simulation environments, our method
generalizes more effectively across diverse tasks and conditions.

MimicGen. The evaluation results on the MimicGen benchmark are presented on the right side
of Tab. 3. At first glance, the results seem unanticipated, asresults seem unanticipated, as Stem-OB
does not perform best in most settings. This can be attributed to the fact that is can be attributed to
the fact that MimicGen evironments are less photorealistic, with nearly texturexture-free and -ow-
resolutions, limiting DP from fully leveraging images. Consequently, diffusion inversion processing
complicates the observations, limiting DP from fully leveraging the advantages of Stem-OB. It is im-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablation study on diffusion steps. On the left side of the table, we increase the inversion step
with fixed total number of steps, to intensify the effect of the diffusion process. Additionally, we compare the
performance of the model with fixed ratio of steps, where the intensity of inversion is approximately the same.
The results are reported as mean and standard deviation over 21 kinds of settings. The best performance is
highlighted in orange and the second best is highlighted in pink.

Task \ Fixed Total Number of Steps (50) Fixed Ratio of Steps (30%)

Settings 0/50 5/50 10/50 15/50 20/50 25/50 9/30 15/50 30/100

PushCube 61.8±33.1 97.1±4.0 91.1±18.9 99.1±1.8 98.5±3.2 96.3±3.8 98.1±3.8 99.1±1.8 98.3±2.9

PickCube 8.6±18.2 12.0±20.0 28.0±26.3 25.1±20.9 12.7±14.0 8.29±6.2 23.7±24.4 25.1±20.9 25.6±22.3

StackCube 4.3±19.2 20.7±29.6 27.2±31.3 19.6±24.9 11.6±12.8 2.0±3.6 19.5±20.5 19.6±24.9 20.2±27.0

portant to emphasize that our method is primarily designed for real-world sccenarios, where diverse
noise is inevitable, in contrast to the controlled controlled Gen environment.

6.5 ABLATION

In this section, we test with several design choices of Stem-OB, providing a better understanding of
their impact on the final performance. We consider the following choices: the number of inversion
steps with fixed total steps, the number of total steps with the constant proportion of inversion
steps to the total steps, and the selection of inversion methods (DDPM or DDIM inversion). The
experiments are conducted on SAPIEN 3. We choose PushCube, PickCube and StackCube, since
they have a more significant performance variance in the main experiments.

Number of Inversion Steps. We compare the performance of Stem-OB with varying numbers
of inversion steps, fixing the total steps to 50 and adjusting the inversion steps from 5 to 25 in
increments of 5. The results, shown in Tab. 4, indicate that performance generally increases up
to 15 inversion steps before declining. This can be attributed to insufficient removal of low-level
appearance features with too few inversion steps, while excessive steps eliminate high-level struc-
tural information, hindering task performance. Optimal performance is observed around 10 to 15
inversion steps, depending on the complexity of the tasks.

Number of Total Steps. With the proportion of inversion steps to total steps fixed, we varied the
total number of steps to 30, 50, and 100. The results, shown on the right side of Tab. 4, indicate
that performance remains consistent regardless of the total number of steps. This suggests that the
proportion of inversion steps is more critical to performance than the total number of steps.

Task DDPM DDIM

PushCube 99.1±1.8 81.3±15.7

PickCube 25.1±20.9 5.4±12.0

Table 5: Ablation study on different in-
version methods. We compare the perfor-
mance of DDPM and DDIM on the tasks of
PushCube and PickCube. The results are re-
ported as the success rate (%) of the task.
The best performance is highlighted in bold.

Diffusion Inversion Methods. We compare the perfor-
mance of two inversion methods: DDPM inversion and
DDIM inversion, with results presented in Tab. 5. For
DDIM inversion, we use 5/50 inversion steps instead of
15/50 due to differences in noise scheduling compared to
DDPM inversion. The results show that DDPM inversion
outperforms DDIM inversion on the benchmark datasets,
supporting our choice of DDPM inversion as the primary
diffusion inversion method.

7 CONCLUSION

In this work, we propose Stem-OB, a straightforward preprocessing method for visual IL. By invert-
ing the observation in the diffusion latent space for certain steps, we effectively converge different
observation variations to the node it stems from, Making it invariant to unseen low-level appearance
changes in the observation space. Though we only test our method on the diffusion policy method,
our method is general and compatible with any visual IL baselines in theory, and the plug-and-play
nature of our method makes it easy to integrate. We plan to test our method with other visual IL
baselines in simulation and real tasks in the future.

Reproducibility: The main algorithm of our method is simple as applying the open-sourced DDPM
inversion method on the dataset before training. We’ve provided the code for our method in the
supplementary material.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Manuel Brack, Felix Friedrich, Katharia Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian
Kersting, and Apolinário Passos. Ledits++: Limitless image editing using text-to-image models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
8861–8870, 2024.

Edoardo Cetin and Oya Celiktutan. Domain-robust visual imitation learning with mutual informa-
tion constraints, 2021. URL https://arxiv.org/abs/2103.05079.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric A. Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. ArXiv, abs/2303.04137,
2023. URL https://api.semanticscholar.org/CorpusID:257378658.

Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau, Benjamin Burchfiel, Siyuan Feng, Russ
Tedrake, and Shuran Song. Universal manipulation interface: In-the-wild robot teaching with-
out in-the-wild robots. arXiv preprint arXiv:2402.10329, 2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
inversion. arXiv preprint arXiv:2208.01618, 2022.

Jialu Gao, Kaizhe Hu, Guowei Xu, and Huazhe Xu. Can pre-trained text-to-image models generate
visual goals for reinforcement learning? Advances in Neural Information Processing Systems,
36, 2024.

Daniel Garibi, Or Patashnik, Andrey Voynov, Hadar Averbuch-Elor, and Daniel Cohen-Or. Renoise:
Real image inversion through iterative noising, 2024. URL https://arxiv.org/abs/
2403.14602.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiaing Liu, Tongzhou Mu, Yihe Tang, Stone
Tao, Xinyue Wei, Yunchao Yao, Xiaodi Yuan, Pengwei Xie, Zhiao Huang, Rui Chen, and Hao
Su. Maniskill2: A unified benchmark for generalizable manipulation skills. In International
Conference on Learning Representations, 2023.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626,
2022.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning, 2016. URL https:
//arxiv.org/abs/1606.03476.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv preprint
arxiv:2006.11239, 2020.

Shaul Hochstein and Merav Ahissar. View from the top: Hierarchies and reverse hierarchies in
the visual system. Neuron, 36(5):791–804, 2002. ISSN 0896-6273. doi: https://doi.org/10.
1016/S0896-6273(02)01091-7. URL https://www.sciencedirect.com/science/
article/pii/S0896627302010917.

Yangru Huang, Peixi Peng, Yifan Zhao, Guangyao Chen, and Yonghong Tian. Spectrum random
masking for generalization in image-based reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 35:20393–20406, 2022.

Ziqi Huang, Tianxing Wu, Yuming Jiang, Kelvin CK Chan, and Ziwei Liu. Reversion: Diffusion-
based relation inversion from images. arXiv preprint arXiv:2303.13495, 2023.

Inbar Huberman-Spiegelglas, Vladimir Kulikov, and Tomer Michaeli. An edit friendly ddpm noise
space: Inversion and manipulations. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12469–12478, 2024.

11

https://arxiv.org/abs/2103.05079
https://api.semanticscholar.org/CorpusID:257378658
https://arxiv.org/abs/2403.14602
https://arxiv.org/abs/2403.14602
https://arxiv.org/abs/1606.03476
https://arxiv.org/abs/1606.03476
https://www.sciencedirect.com/science/article/pii/S0896627302010917
https://www.sciencedirect.com/science/article/pii/S0896627302010917

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
Michal Irani. Imagic: Text-based real image editing with diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6007–6017, 2023.

Jeong Woon Lee and Hyoseok Hwang. Mix-spectrum for generalization in visual reinforcement
learning. Available at SSRN 4818827.

Jeong Woon Lee and Hyoseok Hwang. Mix-spectrum for generalization in visual reinforcement
learning. Available at SSRN 4818827, 2024.

Siyuan Li, Xun Wang, Rongchang Zuo, Kewu Sun, Lingfei Cui, Jishiyu Ding, Peng Liu, and Zhe
Ma. Robust visual imitation learning with inverse dynamics representations, 2023. URL https:
//arxiv.org/abs/2310.14274.

Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan,
Yuke Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using
human demonstrations. In 7th Annual Conference on Robot Learning, 2023.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021.

Daiki Miyake, Akihiro Iohara, Yu Saito, and Toshiyuki Tanaka. Negative-prompt inversion: Fast
image inversion for editing with text-guided diffusion models, 2023. URL https://arxiv.
org/abs/2305.16807.

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
editing real images using guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6038–6047, 2023.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A uni-
versal visual representation for robot manipulation, 2022. URL https://arxiv.org/abs/
2203.12601.

Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning, 2000. URL https://api.semanticscholar.org/
CorpusID:266239314.

Zhihong Pan, Riccardo Gherardi, Xiufeng Xie, and Stephen Huang. Effective real image edit-
ing with accelerated iterative diffusion inversion, 2023. URL https://arxiv.org/abs/
2309.04907.

Giuseppe Paolo, Jonas Gonzalez-Billandon, and Balázs Kégl. A call for embodied ai. arXiv preprint
arXiv:2402.03824, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning, 2011. URL https://arxiv.org/abs/
1011.0686.

Dvir Samuel, Barak Meiri, Nir Darshan, Shai Avidan, Gal Chechik, and Rami Ben-Ari. Regularized
newton raphson inversion for text-to-image diffusion models, 2024. URL https://arxiv.
org/abs/2312.12540.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
https://arxiv.org/abs/2010.02502.

Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, and Bharath Hariharan. Emergent
correspondence from image diffusion. Advances in Neural Information Processing Systems, 36:
1363–1389, 2023.

12

https://arxiv.org/abs/2310.14274
https://arxiv.org/abs/2310.14274
https://arxiv.org/abs/2305.16807
https://arxiv.org/abs/2305.16807
https://arxiv.org/abs/2203.12601
https://arxiv.org/abs/2203.12601
https://api.semanticscholar.org/CorpusID:266239314
https://api.semanticscholar.org/CorpusID:266239314
https://arxiv.org/abs/2309.04907
https://arxiv.org/abs/2309.04907
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/2312.12540
https://arxiv.org/abs/2312.12540
https://arxiv.org/abs/2010.02502

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Stone Tao, Fanbo Xiang, Arth Shukla, Chen Bao, Nan Xiao, Rui Chen, Tongzhou Mu, Tse-Kai
Chan, Xander Hinrichsen, Xiaodi Yuan, Xinsong Lin, Xuanlin Li, Yuan Gao, Yuzhe Qin, Zhiao
Huang, and Hao Su. Maniskill 3 (beta). 2024. GitHub repository.

Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for
text-driven image-to-image translation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 1921–1930, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Shenghua Wan, Yucen Wang, Minghao Shao, Ruying Chen, and De-Chuan Zhan. Semail: Eliminat-
ing distractors in visual imitation via separated models, 2023. URL https://arxiv.org/
abs/2306.10695.

Chen Wang, Linxi Fan, Jiankai Sun, Ruohan Zhang, Li Fei-Fei, Danfei Xu, Yuke Zhu, and An-
ima Anandkumar. Mimicplay: Long-horizon imitation learning by watching human play. arXiv
preprint arXiv:2302.12422, 2023a.

Yanghao Wang and Long Chen. Improving diffusion-based data augmentation with inversion spher-
ical interpolation. arXiv preprint arXiv:2408.16266, 2024.

Yunke Wang, Minjing Dong, Bo Du, and Chang Xu. Imitation learning from purified demonstration.
arXiv preprint arXiv:2310.07143, 2023b.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao Su. SAPIEN: A
simulated part-based interactive environment. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

Annie Xie, Lisa Lee, Ted Xiao, and Chelsea Finn. Decomposing the generalization gap in imitation
learning for visual robotic manipulation. 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3153–3160, 2023. URL https://api.semanticscholar.org/
CorpusID:259375845.

Tianhe Yu, Ted Xiao, Austin Stone, Jonathan Tompson, Anthony Brohan, Su Wang, Jaspiar Singh,
Clayton Tan, Jodilyn Peralta, Brian Ichter, et al. Scaling robot learning with semantically imag-
ined experience. arXiv preprint arXiv:2302.11550, 2023.

Zhecheng Yuan, Tianming Wei, Shuiqi Cheng, Gu Zhang, Yuanpei Chen, and Huazhe Xu. Learning
to manipulate anywhere: A visual generalizable framework for reinforcement learning, 2024a.
URL https://arxiv.org/abs/2407.15815.

Zhecheng Yuan, Sizhe Yang, Pu Hua, Can Chang, Kaizhe Hu, and Huazhe Xu. Rl-vigen: A rein-
forcement learning benchmark for visual generalization. Advances in Neural Information Pro-
cessing Systems, 36, 2024b.

Zhongqi Yue, Jiankun Wang, Qianru Sun, Lei Ji, Eric I Chang, Hanwang Zhang, et al. Exploring
diffusion time-steps for unsupervised representation learning. arXiv preprint arXiv:2401.11430,
2024.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy: Generalizable visuomotor policy learning via simple 3d representations. In Proceedings
of Robotics: Science and Systems (RSS), 2024.

Haoran Zhang, Yinghong Tian, Liang Yuan, and Yue Lu. Invariant adversarial imitation learning
from visual inputs. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1–5, 2023a. doi: 10.1109/ICASSP49357.2023.10096070.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization, 2018. URL https://arxiv.org/abs/1710.09412.

Junyi Zhang, Charles Herrmann, Junhwa Hur, Luisa Polania Cabrera, Varun Jampani, Deqing Sun,
and Ming-Hsuan Yang. A tale of two features: Stable diffusion complements dino for zero-shot
semantic correspondence. 2023b.

13

https://arxiv.org/abs/2306.10695
https://arxiv.org/abs/2306.10695
https://api.semanticscholar.org/CorpusID:259375845
https://api.semanticscholar.org/CorpusID:259375845
https://arxiv.org/abs/2407.15815
https://arxiv.org/abs/1710.09412

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual ma-
nipulation with low-cost hardware, 2023. URL https://arxiv.org/abs/2304.13705.

Ray Chen Zheng, Kaizhe Hu, Zhecheng Yuan, Boyuan Chen, and Huazhe Xu. Extraneousness-
aware imitation learning. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 2973–2979, 2023. doi: 10.1109/ICRA48891.2023.10161521.

14

https://arxiv.org/abs/2304.13705

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DERIVATION OF DDPM INVERSION ATTRIBUTE LOSS

The derivation of DDPM inversion is straightforward by simply letting σ =
√
1− ᾱt in Eq. (7).

A.2 DERIVATION OF DDIM INVERSION ATTRIBUTE LOSS

We first rewrite Eq. (5) as a linear combination of x0 and a noise variable. To do so, we expand
the recursive equation in Eq. (5). Note that we assume that ϵθ(xt−1, t, C) is a Gaussian distribution
with mean µt and use ϵt for simplicity in the following derivation.

xt =

√
ᾱt

ᾱt−1
xt−1 +

(√
1

ᾱt
− 1−

√
1

ᾱt−1
− 1

)
ϵt

=

√
ᾱt

ᾱt−1

(√
ᾱt−1

ᾱt−2
xt−2 +

(√
1

ᾱt−1
− 1−

√
1

ᾱt−2
− 1

)
ϵt−1

)
+

(√
1

ᾱt
− 1−

√
1

ᾱt−1
− 1

)
ϵt

=

√
ᾱt

ᾱt−2

(√
ᾱt−2

ᾱt−3
xt−3 +

(√
1

ᾱt−2
− 1−

√
1

ᾱt−3
− 1

)
ϵt−2

)

+

√
ᾱt

ᾱt−1

(√
1

ᾱt−1
− 1−

√
1

ᾱt−2
− 1

)
ϵt−1 +

(√
1

ᾱt
− 1−

√
1

ᾱt−1
− 1

)
ϵt

...

=
√
ᾱtx0 +

t∑
i=1

√
ᾱt

ᾱi

(√
1

ᾱi
− 1−

√
1

ᾱi−1
− 1

)
ϵi

=
√
ᾱtx0 +

t∑
i=1

√
ᾱt

ᾱi

(√
1

ᾱi
− 1−

√
1

ᾱi−1
− 1

)
µt +

√√√√ t∑
i=1

ᾱt

ᾱi

(√
1

ᾱi
− 1−

√
1

ᾱi−1
− 1

)2

ϵ

(12)
where the last equality holds considering the property of sum of gaussian dis-
tributions, i.e., N (µ1, σ

2
1I) + N (µ2, σ

2
2I) ∼ N (µ1 + µ2, (σ

2
1 + σ2

2)I). And∑t
i=1

√
ᾱt

ᾱi

(√
1
ᾱi

− 1−
√

1
ᾱi−1

− 1
)
µt represents the mean shift resulting from the mean

bias of model ϵθ. For two similar images, the biases are approximately equal and thus cancel out
when substituted into Eq. (7). Consequently, we can approximately derive the attribute loss for
DDIM inversion.

lossDDIM (x0,y0, t) ≈
1

2

[
1− erf

(||
√
ᾱt(y0 − x0)||

2

√
2
∑t

i=1
ᾱt

ᾱi

(√
1
ᾱi

− 1−
√

1
ᾱi−1

− 1
)2)]

=
1

2

[
1− erf

(||(y0 − x0)||

2

√
2
∑t

i=1
1
ᾱi

(√
1
ᾱi

− 1−
√

1
ᾱi−1

− 1
)2)]

(13)

B TRAINING DETAILS

The hyperparameters for Diffusion Policy across all experiments are listed in Tab. 6. We use DDPM
inversion in all the basic experiments, with the specific inversion steps for each experiment detailed
in Tab. 7.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Hyperparameter value Hyperparameter value

epoch every n steps 100 ddim num train timesteps 100
seq length 15 ddim num inference timesteps 10
frame stack 2 ddim beta schedule squaredcos cap v2
batch size 128 ddim clip sample TRUE
num epochs 1500 ddim set alpha to one TRUE
learning rate initial 0.0001 ddim steps offset 0
learning rate decay factor 0.1 ddim prediction type epsilon
regularization L2/0.0 VisualCore feature dimension 64
observation horizon 2 VisualCore backbone class ResNet18Conv
action horizon 8 VisualCore pool class SpatialSoftmax
prediction horizon 16 VisualCore pool num kp 32
unet diffusion embed dim 256 VisualCore pool temperature FALSE
unet down dims [256, 512,1024] VisualCore pool noise std 1
unet kernel size 4 obs randomizer class CropRandomizer
unet n groups 8 num crops 1
ema power 0.75

Table 6: Hyperparameters used for Diffusion Policy. We use the same hyperparameters of diffu-
sion policy for all the experiments.

Task Step Task Step Task Step

Cup2Plate 15/50 PushCube 15/50 MugCleanup 10/50
Duck2Bowl 15/50 PegInsertionSide 15/50 Threading 5/50
OpeningDrawer 15/50 PickCube 15/50 ThreePieceAssembly 5/50
Turn on Faucet 15/50 StackCube 10/50 Coffee 5/50

Table 7: Tasks and inversion steps used for training the Diffusion Policy. We all use DDPM as
the inversion method.

C EXPERIMENT DETAILS

C.1 REALWORLD DETAILS

Fig. 6 shows the camera views of the real-world environments. Each task is represented by two rows,
corresponding to different camera angles. The columns represent task settings, with the first being
the default. As lighting conditions vary across tasks, images are grouped in pairs: the odd columns
are under warm light and the even columns are under cold light. The low-level object appearance
changes along each row.

C.2 SAPIEN ENVIRONMENTS SETTINGS

Each task includes 21 distinct testing environments, as shown in Fig. 7. We alternate between seven
unique tablecloth textures and three lighting conditions: white, yellow, and red light.

C.3 MIMICGEN ENVIRONMENTS SETTINGS

Fig. 9 demonstrates the four MimicGen environments used in the experiments, and each row in
Fig. 8 represents a task. In MugCleanup, the robot arm opens a drawer, retrieves a mug, and places
it back. Threading involves the precise insertion of a stick into a hole. ThreePieceAssembly requires
collecting and assembling three components in a specific order. In Coffee, the robot opens the
lid of the coffee machine and places a cup inside. Eight different table textures are used across all
tasks (first eight columns). Additionally, MugCleanup, Threading, and ThreePieceAssembly employ
alternating object texture, as indicated in the last column, creating distinct testing environments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 6: Realworld Camera Views. Each task is represented by two rows, with each representing
a different camera view angle. For each task, we perform experiments on three instances with
different object appearances, and two light conditions, as displayed along the columns. The first
column represents the training setup.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: Sapien Testing Settings. Each task consists of 21 distinct settings, arranged in two rows.
The images are grouped in threes, with each group sharing the same tablecloth texture but differing
in lighting conditions: white, yellow, and red light. A total of seven unique tablecloth textures are
used. The training environment is the first setting in the first row.

Figure 8: MimicGen Testing Settings. Each row represents a specific task, with eight different
table textures across the columns. The training environment is the first column. Additionally, Mug-
Cleanup, Threading, and ThreePieceAssembly employ alternate object textures in the last column.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) MugCleanup (b) Threading (c) ThreePieceAssembly (d) Coffee

Figure 9: MimicGen environments. These tasks are based on MimicGen benchmark. (a) The agent
must open the drawer, pick up the mug, and place it into the drawer. (b) This task requires the agent
to thread a string through a hole. (c) The agent must assemble three pieces together. (d) The agent
is required to open the lid, and then place the coffee cup inside it.

C.4 DETAILS OF EXPERIMENT RESULTS

Figure 10: Realworld Success Rate. This figure presents the success rates for real-world tasks.
The groups are labeled as W1, C1 through W3, C3. W1 to W3 are conducted under the same warm
lighting condition as the training set with different object appearances. C1 to C3 are performed
under identical cold lighting conditions, with varying object appearances. The order of the groups
is consistent to that shown in Fig. 6.

Fig. 10, Fig. 11, and Fig. 12 illustrate the success rates of Stem-OB and baseline methods in real-
world, SAPIEN 3, and MimicGen environments, respectively. These three figures display the per-
formance of Stem-OB under each setting with more details.

C.5 DETAILS OF ILLUSTRATIVE EXPERIMENTS

Image Distance Calculation: We use the 2-norm to compute the image distance D(x,y) in the latent
space, where a smaller distance indicates greater similarity between the two images.

Intra-Category Distance Calculation: the intra-category distance is calculated as the mean of the
pairwise distances between images within the same category I

Dintra =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

D(xi,xj) (14)

where N is the number of images within I and xi is the i-th image.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 11: Sapien Success Rate. This figure presents the success rates for tasks of the SAPIEN
3 benchmark. The groups are labeled as T1 to T7 and L1 to L3. The settings are varied across 7
different tablecloth textures (T1 to T7) and 3 distinct lighting conditions (L1 to L3). For T1 to T7,
the mean and standard deviation of the success rates are calculated over different lighting conditions
with 3 lighting conditions combined for one texture. Conversely, for L1 to L3, the mean and standard
deviation are computed over various tablecloth textures under a fixed lighting condition, with 7
textures evaluated for each light condition. The order of tablecloth textures and lighting conditions
aligns with that presented in Fig. 7.

Figure 12: MimicGen Success Rate. This figure presents the success rates of Stem-OB and base-
lines across four distinct tasks. The mean and standard deviation are computed over 300 episodes.
Each group of bars corresponds to one experimental setting. The bar order is consistent with the
arrangement shown in Fig. 8.

Figure 13: Illustrative Experiment Objects.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Cross-Category Distance Calculation: the cross-category distance is calculated as the mean of the
pairwise distances between images from two different categories I1 and I2

Dintra =
1

MN

M∑
i=1

N∑
j=1

D(xi,yj) (15)

where M and N are the size of I0 and I1, respectively, xi ∈ I and yi ∈ I2.

C.6 DETAILS OF USER STUDY

Figure 14: Example of User Study Questions. The upper two images represent one example from
the first section, and the lower two images represent one example from the second section. Each pair
is generated through a randomly selected inversion step. To prevent users from making judgments
based on image size or orientation, these images have been randomly rotated, cropped, and zoomed.

We conducted a user study to evaluate the quality of the inversion results through a questionnaire-
based approach. In the first section, consisting of 42 questions, participants compare two images
per question and are asked to determine whether the images depict the same object, different objects
of the same category, or entirely different objects. Participants are informed that the images have
been randomly rotated, cropped, and zoomed, so image size or orientation should not influence their
judgment of object similarity. All images are snapshots of items like bowls and faucets that are used
in the real-world experiment, with each pair inverted by a randomly selected inversion step.

The second section, consisting of 56 questions, presented images from real-world tasks, as seen in
Fig. 6. In this section, participants evaluate whether the images represent the same task, different
scenes from the same task (with variations such as lighting or object appearance), or entirely differ-
ent tasks, where the target of the task changed (for example, a cup versus a drawer). Participants are
informed that scene variations could include changes in environmental conditions, such as lighting,
or the appearance of objects, like a change in a tablecloth or the texture of a drawer, but the under-
lying task or function remains the same. To avoid bias from image size or angle, we also randomly
cropped, rotated, and zoomed the images. The example of images from the two sections is shown in
Fig. 14. A total of 51 valid questionnaires were collected, with the results presented in Fig. 3.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 15: Realworld Inversion Results. Each task corresponds to two rows, with each repre-
senting a distinct camera view. The first column of each row is the original image, while the other
columns are the DDPM inversion results. Starting from the second column, the diffusion steps are
increased from 5 to 50, with the incremental step being 5.

Figure 16: Simulation Inversion Results. The first four rows correspond to the tasks in SAPIEN
3, while the last four rows correspond to the tasks in MimicGen. Each row represents a task, with
the first column displaying the original image and the subsequent columns illustrating the DDPM
inversion results. Starting from the second column, the diffusion steps are increased from 5 to 50,
with the incremental step being 5.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 8: Success rate of SAPIEN tasks. Train.: evaluations in the same settings as the training dataset. Gen.:
evaluations under different visual perturbations for generalizability analysis. All: evaluations including both
Train. and Gen. The tasks are PushCube, PegInsertionSide, PickCube, and StackCube. We report the mean and
standard deviation of the success rate (%), and the best results are highlighted in bold. In the following tables,
when ”Train.”, ”Gen.”, or ”All” is mentioned, they carry the same meaning as defined above.

Task \ PushCube PegInsertionSide PickCube StackCube
Algorithm Train. Gen. All Train. Gen. All Train. Gen. All Train. Gen. All

Stem-OB 100.0 99.1±1.8 99.1±1.8 2.0 0.3±0.7 0.4±0.8 50.0 23.9±20.6 25.1±20.9 90.0 24.1±28.7 27.2±31.3

Org 100.0 59.9±32.7 61.8±33.1 0.0 0.0±0.0 0.0±0.0 90.0 4.6±1.1 8.6±18.2 90.0 0.0±0.0 4.3±19.2

SRM 100.0 60.6±30.0 62.5±30.5 0.0 0.0±0.0 0.0±0.0 80.0 4.8±1.6 8.4±16.1 16.0 0.0±0.0 0.7±3.4

Mix 100.0 97.1±3.4 97.2±3.4 2.0 0.5±1.2 0.6±0.1 75.0 9.8±8.8 12.9±16.3 84.0 4.4±6.3 8.2±18.0

Table 9: Success rate of MimicGen tasks. The tasks are MugCleanup, Threading, ThreePieceAssembly, and
Coffee. We report the mean and standard deviation of the success rate (%), and the best results are highlighted
in bold.

Task \ MugCleanup Threading ThreePieceAssembly Coffee
Algorithm Train. Gen. All Train. Gen. All Train. Gen. All Train. Gen. All

Stem-OB 38.7±2.5 17.1±11.1 19.5±12.5 31.3±2.5 14.5±12.3 16.4±12.8 19.7±4.8 12.3±6.7 13.1±6.9 68.0±5.7 48.0±19.7 50.5±19.6

Org 33.0±2.8 16.4±12.0 16.4±12.0 41.3±3.3 15.2±10.4 18.1±12.8 26.3±4.5 13.4±7.7 14.8±8.4 61.0±6.5 40.7±16.8 43.3±17.3

SRM 21.0±2.9 15.6±7.1 15.4±0.1 24.3±5.7 26.0±12.2 25.8±11.7 24.7±2.9 12.3±6.8 13.6±7.6 52.3±3.7 37.6±11.7 39.4±12.0

Mix 39.7±6.9 21.9±12.3 22.3±11.8 32.0±1.6 17.3±7.5 18.9±8.5 17.7±1.7 13.8±6.8 14.2±6.6 55.3±5.3 39.8±8.8 41.8±9.9

D VISUALIZATION

D.1 INVERSION VISUALIZATION

Fig. 15 and Fig. 16 display the inversion results for real-world and simulation environments, re-
spectively. In the real-world environments, each task spans two rows, corresponding to the same
camera view as in Fig. 6. In the simulation environments, each row represents a task, with the first
four rows showing SAPIEN 3 environments and the last four showing MimicGen environments.
The first column in each row is the original image, while subsequent columns present the inverted
results. From the second column onward, the inversion results are generated by DDPM inversion,
with 50 total inversion steps and 5 incremental steps from 5 to 50.

E DETAILS OF SUCCESS RATES

We separate the results for training and test variants to provide a clearer picture of the policy’s
performance. For SAPIEN tasks, we test 50 episodes for each task, while for MimicGen tasks, we
test 300 episodes. As is shown in the Tab. 8 and Tab. 9, Stem-OB performs well in the generalizing
settings, while remaining competitive in the training settings.

F ADDITIONAL MIMICGEN EXPERIMENTS

To further strengthen our evaluation, we add experiments for additional MimicGen tasks. We report
results for an additional 4 tasks, including Square, StackThree, Stack, and CoffeePreparation.
Fig. 17 shows the images for each task. In Square, the robot arm must pick up square nuts and
place them onto the correct pole. In StackThree, the robot arm is asked to stack three cubes in the
correct order. Stack is similar to StackThree, but with only two cubes. CoffeePreparation is a long-
horizon task where the robot arm must prepare a cup of coffee by placing a mug under the coffee

Table 10: Success rate of Additional MimicGen tasks. The tasks are Square, StackThree, Stack, and Cof-
feePreparation. We report the mean and standard deviation of the success rate (%), and the best results are
highlighted in bold.

Task \ Square StackThree Stack CoffeePreparation
Algorithm Train. Gen. All Train. Gen. All Train. Gen. All Train. Gen. All

Stem-OB 50.7±1.7 28.3±12.8 31.4±14.0 41.3±0.9 27.6±12.3 29.3±12.4 85.7±0.9 70.7±29.0 72.6±27.5 14.7±2.1 13.2±6.4 13.4±6.0

Org 53.3±5.2 22.0±12.5 25.9±15.7 44.0±5.1 25.7±15.1 28.0±15.5 87.3±2.1 74.5±29.3 76.1±27.7 18.7±5.0 10.1±5.9 11.1±6.5

SRM 51.7±0.5 22.4±13.0 26.1±15.6 28.0±0.0 20.4±9.1 21.3±8.9 75.3±3.4 58.7±24.8 60.8±23.8 15.0±2.2 9.5±5.2 10.2±5.2

Mix 53.7±5.6 37.5±15.4 39.5±15.5 35.7±2.5 18.3±9.2 20.5±10.4 79.7±3.1 66.8±27.6 68.4±26.2 17.7±2.5 11.9±6.0 12.6±6.0

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) Square (b) StackThree (c) Stack (d) CoffeePreparation

Figure 17: Additional MimicGen environments. These tasks are based on MimicGen benchmark.
(a) The agent must pick up square nuts and place them onto the correct pole. (b) The agent is
required to stack three cubes in the correct order. (c) The task also needs stacking but only with two
cubes. (d) The agent need to place a mug on the machine, open the lid, open the drawer to get coffee
pod and insert it into the machine.

Figure 18: Additional MimicGen Testing Settings. Each row represents a specific task, with eight
different table textures across the columns. The training environment is the first column.

Table 11: Success rate of RO in SAPIEN. The tasks are PushCube, PickCube, and StackCube. We report
the mean and standard deviation of the success rate (%), and the best results are highlighted in bold. We
constructed a simulation dataset by overlaying images from the MimicGen dataset to adapt the RO algorithm
to simulation datasets.

Task \ PushCube PickCube StackCube
Algorithm Train. Gen. All Train. Gen. All Train. Gen. All

Stem-OB 100.0 99.1±1.8 99.1±1.8 50.0 23.9±20.6 25.1±20.9 90.0 24.1±28.7 27.2±31.3

RO 100.0 92.1±18.0 92.5±17.7 86.0 22.5±20.9 25.5±24.5 60.0 7.2±11.5 9.7±15.9

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 12: Evaluations in SAPIEN with normal map perturbation. normal only: evaluations with normal
map perturbation only. normal+texture: evaluations with normal map and texture perturbation. normal+light:
evaluations with normal map and light perturbation. We report the mean and standard deviation of the success
rate (%), and the best results are highlighted in bold.

Task \ PushCube PickCube
Algorithm normal only normal+texture normal+light normal only normal+texture normal+light

Stem-OB 98.0±2.3 99.3±0.9 98.7±0.9 30.0±21.5 2.3±0.8 17.7±21.5

Org 74.7±13.4 39.0±1.5 58.5±27.1 2.0±0.0 2.0±0.0 2.0±0.0

SRM 86.0±8.1 8.3±2.7 75.8±11.7 2.3±0.8 2.3±0.8 2.2±0.5

Mix 99.0±1.0 97.3±1.9 99.0±1.0 22.3±17.5 2.0±0.0 8.5±5.9

machine, opening the lid of the coffee machine, then retrieving the coffee pod from a drawer and
finally inserting it in the machine. The test settings are shown in Fig. 18. Tab. 10 presents the success
rates for these tasks. Stem-OB achieves competitive performance across all tasks, demonstrating its
generalization capabilities.

G RANDOM OVERLAY BASELINE IN SAPIEN ENVIRONMENTS

The original random overlay baseline uses the Places365 dataset, which contains real-world images
inconsistent with the simulation environments, thus we didn’t take it into account in simulation
tasks. To adapt it for simulation, we constructed a simulation dataset by overlaying images from the
MimicGen dataset. Specifically, we randomly selected one of the seven MimicGen environments
and picked an arbitrary image from a random trajectory to overlay onto the original image. Using
this adapted RO dataset, we evaluated RO on PushCube, PickCube and StackCube. The results
show that Stem-OB still outperforms RO in most tasks as shown in Tab. 11.

H MORE GENERALIZATION EXPERIMENTS

Figure 19: Sapien Testing Settings. Each task consists of 24 distinct settings, arranged in two rows.
The first row of each task contains 12 settings, with the left half showing 6 normal only perturbation
and the right half showing the normal + texture perturbation. The second row of each task represents
12 normal+lighting perturbation settings, with 2 lights combined with 6 normal maps.

We introduced a new type of visual variance in the SAPIEN environment by adding normal maps
to the tabletop and combining this perturbation with other variations, such as lighting conditions
and table textures. Fig. 19 provides a visualization of these new perturbations. We then evaluated
Stem-OB and the baselines on the PushCube and PickCube tasks. The results are shown in Tab. 12.
Stem-OB consistently outperforms the baselines, even when encountering previously unseen pertur-
bations.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 13: Success rate of R3M in SAPIEN. The tasks are PushCube, PickCube. We report the mean and
standard deviation of the success rate (%), and the best results are highlighted in bold. R3M(w/ freeze) is
trained with the frozen encoder, while R3M(w/o freeze) is fine-tuning the encoder during training.

Task \ PushCube PickCube
Algorithm Train. Gen. All Train. Gen. All

Stem-OB 100.0 99.1±1.8 99.1±1.8 50.0 23.9±20.6 25.1±20.9

R3M(w/ freeze) 14.0 19.8±6.1 19.5±6.1 2.0 2.1±0.8 2.1±0.8

R3M(w/o freeze) 24.0 20.0±5.7 20.2±5.6 2.0 1.9±0.8 1.9±0.8

Table 14: Success rate of SD1.4 in SAPIEN. The tasks are PushCube, PickCube. We report the mean and
standard deviation of the success rate (%), and the best results are highlighted in bold. We perform additional
benchmarking on another version of stable-diffusion: SD1.4. For SAPIEN environment, the DDPM inverison
steps are set to 15/50.

Task \ PushCube PickCube
Algorithm Train. Gen. All Train. Gen. All

Stem-OB (sd2.1) 100.0 99.1±1.8 99.1±1.8 50.0 23.9±20.6 25.1±20.9

Stem-OB (sd1.4) 100.0 99.7±0.7 99.7±0.7 36.0 18.3±14.6 19.1±14.7

I COMPARISON WITH SELF-SUPERVISED REPRESENTATION LEARNING

Self-supervised representation learning (SSL) also aims to map raw observations into a unified rep-
resentation space. We benchmark our method against R3M Nair et al. (2022) which pre-trains
a visual representation using a human video dataset and incorporates a self-supervised loss term.
This representation can then be used as a perception module for downstream policy learning. We
simply replace our visual encoder (ResNet18) with the pretrained R3M ResNet18 model, and then
experiment with two approaches: freezing the pretrained model and fine-tuning the encoder during
training. We test R3M on PushCube and PickCube. The results are shown in the Tab. 13.

The experiment results show that the R3M pretrained encoder doesn’t work well on the SAPIEN
environment tasks. Since loading R3M is simple and we use the official parameters, we think this
may be due to the heavy supervision imposed by R3M not suitable for diffusion policies.

J GENERATIVE MODELS

Table 15: Success rate of SD1.4 in MimicGen. The tasks are MugCleanup, Threading, ThreePieceAssem-
bly, and Coffee. We report the mean and standard deviation of the success rate (%), and the best results are
highlighted in bold. We perform additional benchmarking on another version of stable-diffusion: SD1.4. For
MimicGen environment, the DDPM inverison steps are set to 1/8.

Task \ MugCleanup Threading ThreePieceAssembly Coffee
Algorithm Train. Gen. All Train. Gen. All Train. Gen. All Train. Gen. All

Stem-OB (sd2.1) 38.7±2.5 17.1±11.1 19.5±12.5 31.3±2.5 14.5±12.3 16.4±12.8 19.7±4.8 12.3±6.7 13.1±6.9 68.0±5.7 48.0±19.7 50.5±19.6

Stem-OB (sd1.4) 35.3±1.7 15.9±10.0 18.0±11.2 32.0±0.8 13.4±10.7 15.5±11.6 20.7±3.9 14.0±6.2 14.7±6.4 60.0±6.5 37.3±16.0 40.2±16.9

We conduct the experiments on other generative models, other than Stable Diffusion 2.1, to find
out whether the performance of Stem-OB is model-specific. We perform additional benchmarking
on another version of stable-diffusion: SD1.4 in both MimicGen and SAPIEN environments. For
MimicGen tasks, we use 1 / 8 as the inversion steps in DDPM inversion, and 15/50 for SAPIEN
tasks. The results of the two environments are listed in the Tab. 14 and Tab. 15. The success rates of
these two versions of stable-diffusion are similar. This supports our methods’ feasibility regardless
of the underlying pretrained diffusion model.

26

	Introduction
	Related Works
	Visual Imitation Learning and Generalization

	Problem Definition
	Preliminary
	Method
	Intuition Deviation by Attribute loss

	Experiments
	Experiment Setup
	Simulation Tasks

	Baselines
	Experiment Results
	Real-World Experiments

	Simulation Experiments
	Ablation

	Conclusion
	Appendix
	Derivation of DDPM inversion attribute loss
	Derivation of DDIM inversion attribute loss

	Training Details
	Experiment Details
	Realworld Details
	Sapien environments settings
	MimicGen environments settings
	Details of experiment results
	Details of Illustrative Experiments

	Visualization
	Inversion Visualization

	blueDetails of success rates
	blueAdditional MimicGen experiments
	blueRandom Overlay baseline in SAPIEN environments
	blueMore generalization experiments
	blueComparison with self-supervised representation learning
	blueGenerative Models

