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Abstract

As Reinforcement Learning (RL) agents are increasingly de-
ployed in real-world applications, ensuring their behavior is
transparent and trustworthy is paramount. A key component
of trust is explainability, yet much of the work in Explainable
RL (XRL) focuses on local, single-step decisions. This
paper addresses the critical need for explaining an agent’s
long-term behavior through trajectory-level analysis. We
introduce a novel framework that ranks entire trajectories
by defining and aggregating a new state-importance metric.
This metric combines the classic Q-value difference with a
“radical term” that captures the agent’s affinity to reach its
goal, providing a more nuanced measure of state criticality.
We demonstrate that our method successfully identifies
optimal trajectories from a heterogeneous collection of agent
experiences. Furthermore, by generating counterfactual
rollouts from critical states within these trajectories, we
show that the agent’s chosen path is robustly superior to
alternatives, thereby providing a powerful “Why this, and
not that?” explanation. Our experiments in standard OpenAI
Gym environments validate that our proposed importance
metric is more effective at identifying optimal behaviors
compared to classic approaches, offering a significant step
towards trustworthy autonomous systems.1

Introduction
The increasing sophistication of Reinforcement Learning
(RL) has enabled the training of agents for complex tasks,
accelerating their deployment in diverse real-world systems.
However, for these autonomous agents to be deemed trust-
worthy and responsible, their decision-making processes
must be explainable. The field of Explainable RL (XRL)
aims to provide high-fidelity, human-comprehensible expla-
nations for an agent’s behavior.

While a significant portion of XRL research has concen-
trated on local explanations, justifying a specific action in
a given state (Amitai, Septon, and Amir 2024), these meth-
ods fall short of clarifying an agent’s long-term strategy. Un-
derstanding the overarching “story” of an agent’s behavior,
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1Code and set up to reproduce our experiments are available at:
https://github.com/clif-ford/XRL Codebase

Figure 1: An agent’s observed trajectory (black) versus a
longer, suboptimal alternative (gray). Our goal is to explain
why the black path was chosen by demonstrating its superior
importance.

encapsulated by its trajectory, is crucial for deployment in
safety-critical domains. For instance, knowing why a self-
driving car chose a particular route over another is more in-
formative than knowing why it braked at a single intersec-
tion.

To address this gap, we propose a framework for explain-
ing entire trajectories by leveraging causal inference con-
cepts. Our approach produces explanations by answering
contrastive questions like “Why was this path taken?” and
“Why was an alternative path not taken?”. Answering such
questions involves generating counterfactuals, what could
have happened, which is a powerful tool for human-like rea-
soning.

This paper makes the following contributions:

• We introduce a novel state-importance metric that aug-
ments the standard Q-value difference with a “radical
term” representing the agent’s goal affinity, allowing for
a more robust evaluation of state criticality.

• We propose a complete pipeline to rank entire trajectories
by aggregating our state-importance metric, enabling the
identification of the most salient and representative be-
haviors from a large dataset of experiences.

• We empirically validate our approach by generating
counterfactuals from top-ranked trajectories, demonstrat-
ing that our method effectively highlights the optimality
of the agent’s chosen path comparing viable alternatives.
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This work advances the state of deployable AI by pro-
viding a practical method for generating high-level strate-
gic explanations, fostering greater trust and transparency in
complex autonomous systems.

Related Work
Explainable RL (XRL) is a well developing field, with
methods broadly categorized into Feature Importance (FI),
Learning Process and MDP (LPM), and Policy Level (PL)
explanations (Milani et al. 2024). Our work falls under the
PL category, with a specific focus on trajectory-level expla-
nations.

PL methods aim to explain high-level policy decisions.
This includes summarizing key transitions (Amir and Amir
2018), converting complex recurrent policies into inter-
pretable formats like finite state automata (Danesh et al.
2021), or extracting prototypical “landmark” states from ex-
perience (McCalmon et al. 2022).

Several works have specifically targeted trajectory expla-
nations. The HIGHLIGHTS method (Amir and Amir 2018)
provides summaries by selecting states with the highest po-
tential impact on future rewards, based on Q-values. While
effective, it summarizes behavior through discrete states
rather than analyzing the full trajectory sequence. Other ap-
proaches have used offline data to cluster trajectories and
train surrogate policies to identify dissimilarities, attributing
importance to clusters that cause the largest policy diver-
gence (Deshmukh et al. 2024). However, the interpretabil-
ity of these clusters can be a challenge. (Frost et al. 2022)
uses a learned policy to answer counterfactual queries by
performing rollouts from matched states in a source domain,
presenting these what-if scenarios to a user. More recently,
visualization techniques have been used to abstract trajecto-
ries by clustering latent state representations, helping to vi-
sualize major state transitions for non-experts (Takagi et al.
2024).

Our work builds on these ideas by proposing a novel, prin-
cipled metric for quantifying trajectory importance directly
from the agent’s value function. Unlike methods that rely
on clustering or summarizing discrete states, our approach
evaluates the entire sequential path, providing a holistic and
contrastive explanation through counterfactual analysis.

Methodology
Our framework is designed to identify and explain the most
significant trajectories from an agent’s experience. The core
of our approach lies in a novel definition of state and trajec-
tory importance.

State Importance: A Classic View
We begin with the intuitive notion that a state is important
if the choice of action within it has a significant impact on
future rewards. This is classically defined using the agent’s
Q-values (Amir et al. 2016). The importance of a state s,
denoted I(s), is the difference between the values of the best
and worst possible actions:

I(s) = max
a

Qπ(s, a)−min
a

Qπ(s, a)

This quantity, ∆Q(s), captures the potential advantage
available in state s. A high value indicates a critical decision
point where a suboptimal action can be costly.

A Modified Importance Metric
While ∆Q(s) measures the potential gain, it does not cap-
ture the agent’s confidence or decisiveness in pursuing the
optimal action. A state might have a high ∆Q(s), but if the
agent’s policy is nearly uniform over several good actions,
the state is less critical than one where a single action is de-
cisively superior.

To address this, we introduce a modified state-action im-
portance metric that incorporates the agent’s affinity for
reaching the goal. We define this as:

I(s, a) = ∆Q(s)×R(s, a)

Here, R(s, a) is a “radical term” that quantifies the agent’s
commitment to its chosen path. We explored several formu-
lations for R(s, a):

1. Normalization (Naive): Measures how much better the
chosen action is relative to the average action: r(s, a) =
(Q(s, a)− µQ(s))/σQ(s).

2. Bellman Error: Uses the temporal difference error,
|Q(s, a) − (r + γQ(s′, a′))|, as a measure of deviation
from optimality.

3. Entropy-Based Confidence: Measures the decisiveness
of the policy π(a|s). We define confidence as normalized
negative entropy: r(s) = 1− (H(π(s))/ log |A|), where
r(s) → 1 for a deterministic policy.

4. Value-Based Goal Proximity: Uses the state-value func-
tion V (s) as a proxy for closeness to the goal. This can
be normalized using a known range, r(s) = (V (s) −
Vmin)/(Vmax−Vmin), or relative to the goal state’s value,
r(s) = |V (s)/V (sfinal)|.

Through experimentation, we found that the value-based
goal proximity metric (Vgoal) provided the most consistent
and meaningful results, as it directly encodes progress to-
wards the task objective.

Trajectory Importance and Explanation
To evaluate an entire trajectory, we aggregate the importance
scores of its constituent state-action pairs. For a trajectory
τ = {(s0, a0), (s1, a1), . . . , (sT , aT )}, its importance is the
average state-action importance:

Iτ =
1

|τ |
∑

(s,a)∈τ

I(s, a) =
1

|τ |
∑

(s,a)∈τ

∆Q(s)×R(s, a)

This score allows us to rank a large collection of trajectories,
identifying those that are most representative of the agent’s
optimal strategy.

Explanation Pipeline
Our full pipeline for generating trajectory explanations is as
follows:



(a) Our Method (V-Goal) (b) Classic Method (∆Q)

Figure 2: Acrobot counterfactual trajectory lengths. The red line is the original trajectory’s length. (a) For our method, all
counterfactuals are longer (worse) than the original. (b) For the classic method, some counterfactuals are shorter (better),
indicating it did not select a truly optimal trajectory to explain.

1. Data Collection: Collect a dataset of trajectories and
populate a Q-table from a trained agent’s critic. For con-
tinuous state spaces, we discretize the state representa-
tions.

2. Importance Calculation: For each state-action pair
(s, a) in every trajectory, calculate our modified impor-
tance metric I(s, a).

3. Trajectory Ranking: Compute the aggregate impor-
tance Iτ for each trajectory and rank them to find the top-
k most important ones. We select the trajectory from this
set with the best outcome (e.g., highest reward, shortest
length).

4. Counterfactual Generation: For the top-ranked trajec-
tory, generate counterfactuals. At each state si along the
original path, we forbid the original action ai and force
the agent to take a different action, after which it follows
its policy π. This produces a set of alternative trajecto-
ries.

5. Contrastive Explanation: Compare the original trajec-
tory with the generated counterfactuals on metrics like
total reward, length, and importance score. An optimal
original trajectory should be demonstrably better than its
counterfactuals, providing a powerful explanation for the
agent’s behavior.

This pipeline provides a concrete method for answering
“Why this path and not another?” by showing the conse-
quences of deviation.

Experiments and Results

We conducted experiments in OpenAI Gym environments
(Brockman et al. 2016), Acrobot-v1 and LunarLander-v2,
using agents trained with the PPO algorithm. We focused
on the scenario where trajectories are collected throughout
the training process, resulting in a dataset containing both
optimal and suboptimal behaviors. Our framework must be
able to distinguish between them.

Identifying Optimal Trajectories
We first evaluated the ability of different radical terms
(R(s, a)) to identify the best trajectories. For each metric,
we ranked all collected trajectories and computed the aver-
age length and reward of the top 5.

Method Avg. Length Avg. Reward
Acrobot-v1 Environment

Classic (∆Q only) 70.0 -69.0
Naive Normalization 70.0 -69.0
Entropy-Based 73.2 -72.2
Bellman Error 70.8 -69.8
V-Normalization 70.0 -69.0
V-Goal 68.8 -67.8

Table 1: Performance of top-5 ranked trajectories in Ac-
robot. Lower length and higher (less negative) reward are
better. Our V-Goal metric identifies the most optimal set of
trajectories.

The results for the Acrobot environment are shown in Ta-
ble 1. In this task, success is measured by achieving the
goal in the fewest steps, resulting in a higher (less nega-
tive) reward. While the differences are subtle, the trajecto-
ries ranked highest by our ‘V-Goal’ metric are consistently
the most efficient, with the shortest average length (68.8)
and highest average reward (-67.8). This provides initial ev-
idence that incorporating goal affinity helps refine the selec-
tion of optimal trajectories. The distinction becomes much
clearer in the more complex LunarLander environment.

The data in Table 2 clearly shows the superiority of the
V-Goal’ metric. In LunarLander, a successful landing yields
a high reward, while crashing or running out of time (max
1000 steps) results in poor scores. Our ‘V-Goal’ metric is
the only method that consistently identifies successful land-
ing trajectories, achieving an average reward over 200 and an
average trajectory length of 319 steps. In contrast, the classic
method and others select trajectories that hit the time limit,
indicating failed or meandering attempts. This suggests that
incorporating goal proximity via the value function is essen-



(a) Our Method (V-Goal) (b) Classic Method (∆Q)

Figure 3: LunarLander counterfactual trajectory rewards. The red line represents the original trajectory’s reward. (a) For our
method, all counterfactuals yield lower rewards. (b) For the classic method, some counterfactuals result in higher rewards.

Method Avg. Reward Avg. Length
LunarLander-v2 Environment

Classic (∆Q only) 116.87 1000.0
Bellman Error 117.37 1000.0
Naive Normalization 188.12 433.2
Entropy-Based 121.27 871.0
V-Normalization 120.59 1000.0
V-Goal 207.13 319.2

Table 2: Performance of top-5 ranked trajectories in Lu-
narLander. Higher reward and lower length are better. The
results starkly highlight the effectiveness of our proposed
metric.

tial for distinguishing truly optimal, task-achieving behavior
from prolonged, suboptimal attempts.

Counterfactual Explanations
Having established ‘V-Goal’ as our best metric, we gener-
ated counterfactuals for the single best trajectory it identi-
fied and compared them with those from the top trajectory
identified by the classic ∆Q metric. A successful explana-
tion would show that deviations from the original trajectory
lead to worse outcomes (e.g., longer paths, lower rewards).

Figure 2 shows the results for Acrobot. For the trajectory
selected by our ‘V-Goal’ metric (Fig. 2a), every generated
counterfactual trajectory was longer (worse) than the origi-
nal. This provides a strong, clear explanation: the agent fol-
lowed the optimal path, and any deviation would have been
suboptimal. In contrast, for the trajectory selected by the
classic ∆Q metric (Fig. 2b), several counterfactuals were
shorter than the original, indicating that the classic method
failed to identify a truly optimal trajectory, thus providing a
confusing or incorrect explanation.

We observed the same pattern for LunarLander, shown in
Figure 3. Counterfactuals from the trajectory identified by
our method consistently resulted in lower rewards, while the
classic method again selected a trajectory from which bet-
ter paths could be found. These results robustly demonstrate
that our modified importance metric is superior for identify-

ing and explaining optimal agent behavior.

Discussion
Our experiments demonstrate that when an agent is still
learning, with an experience buffer containing both suc-
cessful and suboptimal trajectories, our framework excels at
identifying and explaining optimal behavior.

However, when analyzing trajectories generated exclu-
sively by a fully trained, optimal agent, the task becomes
more challenging. In this scenario, most trajectories are
nearly identical in quality, offering less explanatory insight.
Future work could address this by focusing not on ranking
trajectories but on identifying the few most critical states
within a single optimal trajectory. Generating counterfactu-
als from only these pivotal moments could provide more
concise and impactful explanations, even for highly opti-
mized agents, maintaining our focus on trajectory-level anal-
ysis while adapting to the nuances of expert behavior.

Conclusion and Future Work
In this paper, we introduced a framework for generating
trajectory-level explanations in Reinforcement Learning. By
defining a state-importance metric that accounts for both
Q-value advantage and goal affinity, our method identifies
and ranks optimal trajectories from heterogeneous experi-
ence data. Through contrastive counterfactuals, we provide
clear, intuitive explanations for an agent’s long-term strat-
egy, demonstrating why its chosen path was superior to al-
ternatives.

Our empirical results show that this approach is more ef-
fective than classic importance metrics, providing a more
reliable foundation for trustworthy and deployable AI sys-
tems. Understanding and interrogating high-level behavior is
a critical step towards deploying RL safely in the real world.

For future work, we plan to extend this framework to au-
tomatically identify critical decision points within trajecto-
ries and explore scenarios where the agent’s policy and value
functions are unknown. Techniques from Inverse Reinforce-
ment Learning (IRL) could infer a reward function explain-
ing observed trajectories, after which our importance-based
analysis can explain the inferred policy.
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Appendix
Supplementary Counterfactual Results
As discussed in the main paper’s counterfactual analysis, our
‘V-Goal’ metric consistently identifies trajectories that are
superior to their alternatives. The main text demonstrated
this using reward values and trajectory length for LunarLan-
der (Figure 2). This appendix provides supplementary evi-
dence using trajectory length as the metric (Figure 4), further
reinforcing our claim that the identified optimal trajectory is
robustly better than its counterfactuals across multiple per-
formance dimensions.

Exploration of KL-Divergence Metric
During our research, we explored using KL-divergence as
a radical term, r(s) = KL(π(s), X(s)), where π(s) is the
agent’s policy and X(s) is a reference distribution over ac-
tions. The intuition was that a high divergence would indi-
cate a confident, non-uniform policy. However, this metric
was ultimately not included in our final framework for two
main reasons:
1. High Variance: The performance was highly sensitive to

the choice of the reference distribution X(s) and varied
significantly across different environments.

2. Lack of Clear Rationale: It was difficult to establish
a principled, general method for choosing the reference
distribution X(s) for any given environment. While we
hypothesized certain distributions might be suitable for
specific agent behaviors (as shown in Table 3), this could
not be consistently validated.

Due to this lack of stability and clear justification, we con-
cluded that the KL-divergence metric was not robust enough
for a general-purpose explanation framework.



(a) Our Method (V-Goal) (b) Classic Method (∆Q)

Figure 4: LunarLander counterfactual trajectory lengths. The red line represents the original trajectory’s length. (a) Counter-
factuals from our method’s selected trajectory are probabilistically longer. (b) The classic method’s selected trajectory has
counterfactuals that are probabilistically shorter.

Distribution When to Use

Uniform When no clear preference exists in action selection; suitable for exploratory, early-stage agents
or when the action tendencies are uncertain.

Gaussian When actions follow a central tendency with some variability (common in continuous action
spaces). Ideal for confident, near-deterministic agents.

Exponential When large actions are rare and small actions are frequent (e.g., sparse high-reward events).
Suitable for exploitative agents.

Dirichlet When some actions are preferred over others but there remains significant variability. Useful for
environments with multiple viable paths to success.

Beta When actions have bounded probabilities (0–1) and model uncertainty in preference; suitable
for tasks balancing exploration and exploitation.

Table 3: Initial hypotheses for choosing a reference distribution X(s) for the KL-divergence metric.


