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Abstract
Although Large Language Models (LLMs)001
demonstrate remarkable ability in processing002
and generating human-like text, they do have003
limitations when it comes to comprehending004
and expressing world knowledge that extends005
beyond the boundaries of natural language(e.g.,006
chemical molecular formula). Injecting a col-007
lection of symbolic data directly into the train-008
ing of LLMs can be problematic, as it disre-009
gards the synergies among different symbolic010
families and overlooks the need for a balanced011
mixture of natural and symbolic data. In this012
work, we tackle these challenges from both a013
data and framework perspective and introduce014
Symbol-LLM series models1. First, we curated015
a data collection consisting of 34 tasks and in-016
corporating approximately 20 distinct symbolic017
families, intending to capture the interrelations018
and foster synergies between symbols. Then,019
a two-stage tuning framework succeeds in in-020
jecting symbolic knowledge without loss of021
the generality ability. Extensive experiments022
on both symbol- and NL-centric tasks demon-023
strate the balanced and superior performances024
of Symbol-LLM series models.025

1 Introduction026

Large Language Models (LLMs), such as GPT-027

series (Radford et al., 2019; Brown et al., 2020;028

OpenAI, 2023) and LLaMA-series (Touvron et al.,029

2023a,b), boosted the performance in various Nat-030

ural Language Processing (NLP) tasks (Zhao et al.,031

2023; Wei et al., 2022b; Zhou et al., 2023; Yao032

et al., 2023). The success of these models heavily033

relies on natural language (NL) as the primary inter-034

face2 for interaction and reasoning. However, the035

NL-centric interface confines the inputs and out-036

puts to an NL form, which can only address certain037

1We will open-source Symbol-LLM with 7B and 13B.
2Interface in this paper refers to the communication be-

tween LLM and environment (i.e., external tools).

aspects of world knowledge, such as fact (Bordes 038

et al., 2015), commonsense (Talmor et al., 2019). 039

Nevertheless, a substantial amount of abstract 040

knowledge, notably in areas like molecular for- 041

mula (e.g., C6H12O6) and first-order logic (e.g., 042

IsTriangle(X) → SumOfAngles(X, 180◦)), is 043

more effectively represented in symbolic forms 044

rather than in NL. 045

Compared to the NL form, the symbolic form 046

covers a wide spectrum of scenarios and tends to 047

be more concise and clear, enhancing its commu- 048

nication effectiveness (Gao et al., 2023; Qin et al., 049

2023). In particular, when interacting with robots, 050

symbolic command sequences (such as PICKUP, 051

WALK) are more accurate and efficient than NL. Sim- 052

ilarly, when using programming languages (like 053

SQL and Python) to call external tools (Gao et al., 054

2023), expressing this structured information in NL 055

form can be difficult. 056

Despite the symbolic form offering a wealth 057

of information, deploying LLMs directly via a 058

symbolic-centric interface poses a significant chal- 059

lenge. This is largely attributed to the fact that 060

LLMs are trained via large-scale unsupervised 061

pre-training on extensive general text datasets, 062

which inherently lack a symbolic foundation. The 063

most straightforward approach to incorporating 064

symbolic knowledge into LLMs is through fine- 065

tuning (Yang et al., 2023; Xu et al., 2023b). How- 066

ever, the format of symbolic data significantly di- 067

verges from that used during pre-training. Con- 068

sequently, merely fine-tuning with large heteroge- 069

neous data can lead to catastrophic forgetting (Kirk- 070

patrick et al., 2017). 071

Meanwhile, existing injection methods primar- 072

ily concentrate on specific symbols, it is impor- 073

tant to note that symbolic forms can be quite 074

complex and vary across tasks. Training an 075

LLM for a particular symbolic form in a spe- 076
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cific task is both time-consuming and labor-077

intensive. Furthermore, treating each symbol in-078

dependently often overlooks the interconnections079

between different symbols, e.g., the atom unit080

(e.g., BornIn(Obama,USA)) in FOL is similar081

to function (e.g., query(Paris, nwr(hotel))) in082

API calls in the form.083

Upon this observation, we conduct a compre-084

hensive collection of 34 text-to-symbol generation085

tasks with ∼20 standard symbolic forms introduced086

with instruction tuning format. The symbolic data087

comes from three sources: (1) 88.3% of the data088

was collected from existing benchmarks. (2) 5.8%089

of the data was prompted by LLMs. Compensat-090

ing for the natural absence of symbolic representa-091

tions in some NL-centric tasks, prompting power-092

ful LLMs can generate more novel text-to-symbol093

pairs. (3) 5.9% of data was generated by introduc-094

ing the Symbol-evol strategy, with replaced sym-095

bolic definitions to prevent the model from memo-096

rizing specific symbols. The above sources finally097

are uniformly leveraged to capture the underlying098

connections between symbols from the data per-099

spective.100

From the framework aspect, we apply a two-101

stage continual tuning framework including the In-102

jection Stage and the Infusion Stage. The Injection103

Stage prioritizes the exploitation of the inherent104

connections between different symbols, thereby en-105

abling the model to thoroughly learn a wide range106

of symbolic knowledge. After tuning LLaMA-2-107

Chat models with all collected symbolic data, we108

obtain Symbol-LLMBase variants. The Infusion109

Stage focuses on balancing the model’s dual capa-110

bilities by utilizing both symbolic data and general111

instruction tuning. After combining the general112

instruction-tuning data with the sampled symbolic113

data and tuning based on Symbol-LLMBase, we can114

obtain Symbol-LLMInstruct. Finally, Symbol-LLM115

series models are widely tested on both symbol-116

centric and NL-centric tasks, which are verified to117

exhibit substantial superiority.118

Our contributions can be listed as the following:119

• A comprehensive collection of text-to-symbol gen-120

eration tasks is the first collection to treat symbolic121

data in a unified view and explore the underlying122

connections among symbols.123

• The open-sourced Symbol-LLM series models124

build a new foundation LLM with balanced sym-125

bolic and NL abilities.126

• Extensive experiments on both symbol- and NL-127

Transform the natural language sentence 
into action sequence from the candidate 
actions. I_TURN_RIGHT means turning 
right. I_JUMP means jump...

Origin (one example)

Symbol-Evol

(1) Collect from existing benchmarks

(2) Prompt GPT-4

(3) Diversify by Symbol-evol strategy

GPT-4

Filter

(88.3%)
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WebQSP

  

Code

FOLIO

CLEVR

NL
Input
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Transform the natural language sentence 
into action sequence from the candidate 
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Figure 1: Overview of the data collection procedure. It
involves three key sources: (1) existing benchmarks, (2)
new data generated via prompting GPT-4, and (3) new
data synthesized using the Symbol-evol strategy.

centric tasks are conducted to prove the superiority 128

of Symbol-LLM. 129

2 Approach 130

In this section, we first introduce the overall sym- 131

bolic data collection procedure in Section 2.1 and 132

then describe the two-stage tuning framework and 133

the comprehensive test settings in Section 2.2. 134

2.1 Data Collection 135

Conducting comprehensive symbolic knowledge 136

injection and exploiting their interrelations requires 137

a large collection of symbolic data. However, 138

achieving diverse knowledge coverage continues 139

to be a significant hurdle in language modeling. 140

Therefore, we curate an extensive collection of 141

symbolic tasks, which is under-explored in NLP. 142

The overview of the symbolic data collection 143

procedure is shown in Figure 1. The ultimate sym- 144

bolic dataset is Ds = Ds1 ∪ Ds2 ∪ Ds3 . Here, Ds1 145

represents the existing benchmarks. The dataset 146

Ds2 is a novel dataset, resulting from prompting 147

GPT-4. Ds3 is another new dataset, generated by in- 148

troducing the Symbol-evol strategy. Generally, we 149

compile a set of 34 text-to-symbol generation tasks, 150

covering ∼20 different standard symbolic forms. 151

To maintain the general capability in NL-centric 152

tasks, this work also includes general instruction 153

data Dg. Details of each dataset are attached in 154

Appendix A. 155

Ds1: the existing symbolic datasets and bench- 156

marks Previous efforts have been dedicated to 157

specific symbolic forms, offering a natural and 158

strong foundation for Symbol-LLM. We include 159
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Transform the natural 
language question into 
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TOP (API calls) Bash/RX/Java/Go/...
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(define (problem BW-3)
    (:domain blocksworld)
    (:objects b1 b2 b3 )

       

SELECT COUNT(*) FROM 
singer

PREFIX ns: <http://xxxxx>
SELECT DISTINCT x?
WHERE {

                        

(w / wish-01
        :ARG0  (i / i)
        :ARG1  (b / bear-02

                        

ethnicGroup (US, Asian 
Americans) | language 
(US, English_language)

[IN: GET_WEATHER [SL: 
WEATHER_ATTRIBUTE 
tornados] [SL:DATE_TIME 
this week]]

I_TURN_LEFT  I_WALK  
I_LOOK  I_JUMP  I_JUMP  
I_TURN_RIGHT

public Integer getInteger(xx {
        Number number = xxx;
        if (number==null) {

         

  x ((Efficient(x) Reliable 

(x))   HighQuality(x))

query_color(unique(filter_s
hape(cylinder,same_size(un
ique(filter_color(cyan,scene
()))))))

def Solution():
    result_list = []
    for i in range(10):
        result_list.append(i**2)

CN(C(=0)N)N=0
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Figure 2: Overall pipeline of Symbol-LLM. (a) is two-stage tuning framework, Injection stage and Infusion stage.
(b) is the test phase with comprehensive settings, symbolic tasks, general tasks, and downstream tasks under the
Symbol+Delegation paradigm.

plenty of text-to-symbol tasks from various data160

sources such as Spider (Yu et al., 2018), MTOP (Li161

et al., 2021), SCAN (Lake and Baroni, 2018), and162

further shape them in the defined formats. Such163

collection is named as Ds1 .164

Ds2: novel text-to-symbol pairs by prompting165

GPT-4 While Ds1 has broad coverage, it lacks166

certain text-to-symbol pairs in some crucial sce-167

narios. For example, some mathematical problems168

can be better handled when converted to program-169

ming language, but labeled samples are limited.170

To address this, we prompt GPT-4 to generate the171

corresponding symbolic outputs given the NL in-172

structions, following Gao et al. (2023). Correct173

outputs judged by executing solvers (e.g., code in-174

terpreter) are retained to form new text-to-symbol175

pairs, constructing the collection Ds2 .176

Ds3: new samples generated by applying177

Symbol-evol strategy The above collection can178

cover a vast range of standard definitions of sym-179

bolic forms. However one concern is that large tun-180

ing data with the same symbolic definitions mag-181

nify LLM’s propensity to memorize the patterns in-182

stead of truly learning to follow instructions. Thus,183

we introduce the Symbol-evol strategy, expecting184

to enhance the diversity of symbolic systems.185

The strategy of Symbol-evol, as depicted in Fig-186

ure 1(3), is exemplified using SCAN dataset (Lake187

and Baroni, 2018). In the original data collection,188

some action commands (in red background) are de- 189

fined to control robots. Randomly generated strings 190

(in green background) are leveraged to replace the 191

original symbolic definitions. For example, the 192

originally defined command I_TURN_RIGHT is 193

replaced by shY2sW. In this way, diverse symbol 194

instruction samples can be derived based on some 195

original tasks in Ds1 , forming the collection Ds3 . 196

Dg: general data These collected data are from 197

three sources: (i) sampled flan collection data (Wei 198

et al., 2022a; Longpre et al., 2023); (ii) Code Al- 199

paca instruction tuning data (Chaudhary, 2023); 200

(iii) sampled Evol-data from WizardLM (Xu et al., 201

2023a). Full details are given in Appendix A.2. 202

2.2 Symbol-LLM 203

The overview of Symbol-LLM is shown in Figure 2, 204

comprised of both the tuning and testing phases. 205

The tuning framework, as illustrated in Fig.2a, 206

encompasses two stages: the Injection stage and 207

Infusion stage. After the Injection stage, we can ob- 208

tain the Symbol-LLMBase model, which is expected 209

to address various symbol-related scenarios. How- 210

ever, Injection stage focuses on injecting symbolic 211

knowledge into LLMs regardless of the general 212

capability. But we also expect Symbol-LLM to 213

maintain the necessary proficiency in general tasks, 214

to achieve balanced symbol and NL interfaces for 215

interaction and reasoning. Thus, we introduce the 216

Infusion stage to obtain the Symbol-LLMInstruct. 217
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The test phase, represented in Fig.2b, covers218

comprehensive settings on the symbolic and NL219

scenarios.220

Tuning Phase 1: Injection Stage In this stage,221

we purely focus on injecting various symbolic222

knowledge into LLMs by conducting supervised223

fine-tuning (SFT) on the Ds collection. The train-224

ing loss of Injection stage is the maximum likeli-225

hood estimation (MLE):226

LMLE(Ds) = −
∑
i

log pθ(yi|si ⊕ xi), (1)227

where pθ is the tunable LLM with parameters θ,228

which is initialized from LLaMA-2-Chat models.229

si⊕xi refers to the input format: the instruction (si)230

covering the task definition concatenates (⊕) with231

the natural language query (xi). And yi is the sym-232

bolic output.233

Tuning Phase 2: Infusion Stage In this stage,234

we randomly sample Ds to obtain a subset Ds′ ⊂235

Ds, the data are proportioned to ensure a fair dis-236

tribution. They are combined with general instruc-237

tion tuning data Dg to form the training set in this238

stage. The loss function to be minimized is based239

on MLE:240

LMLE(Ds′ ∪ Dg) = −
∑
j

log pθ1(yj |sj ⊕ xj), (2)241

where the tunable parameters θ1 are initialized from242

Symbol-LLMBase. sj , xj , and yj are the instruction,243

input, and output for a single sample, respectively.244

Testing Phase This work presents comprehen-245

sive testing settings for border applications. For246

detailed task descriptions refer to Appendix C.247

• Symbolic Tasks: Extensive symbolic generation248

tasks stress the unique advantages of addressing249

symbolic language beyond NL.250

• General Tasks: Classical benchmarks of general251

tasks are leveraged to verify the balanced capabili-252

ties in symbol- and NL-centric scenarios.253

• Symbol+Delegation Tasks: Verifying the effec-254

tiveness of LLM with symbolic-centric inter-255

face. We refer to this promising setting as Sym-256

bol+Delegation, where the model first generates257

the symbolic representation of the question and258

then relies on the external solvers for solution (e.g.,259

Python interpreter, SQL execution).260

3 Experiments 261

In this section, we fully evaluate Symbol-LLM3 on 262

three parts of experiments: the symbolic tasks in 263

Sec. 3.1, the general tasks in Sec. 3.2, and the Sym- 264

bol+Delegation tasks in Sec. 3.3. The implementa- 265

tion details refer to Appendix C and Appendix D. 266

The overall performances of Symbol-LLM are con- 267

cluded in Appendix E. 268

3.1 Symbolic Tasks 269

Table 1 presents the results of 34 symbolic genera- 270

tion tasks. For model comparison, we include GPT- 271

3.5, Claude-1, LLaMA-2-Chat, and the optimized 272

model after single-domain SFT on LLaMA-2-Chat. 273

Due to the limited space, we leave the results of 274

other baseline models (e.g., CodeLLaMA-Instruct) 275

in Appendix E. The main results are as follows: 276

Symbol-LLM largely enhances the symbol- 277

related capabilities of LLM. In comparison 278

with the LLaMA-2-Chat model, Symbol-LLM 279

presents overwhelming advantages in symbolic 280

tasks. It improves the baseline performances of 281

7B and 13B by 49.29% and 55.88%, respectively. 282

Also, cutting-edge close-source LLMs like GPT- 283

3.5 and Claude-1, are far behind Symbol-LLM, 284

with the minimum gaps of 39.61% (GPT-3.5 v.s. 285

Symbol-LLM-7B). In short, Symbol-LLM brings 286

huge advantages in symbolic scenarios. 287

The unified modeling helps Symbol-LLM suc- 288

cessfully capture the intrinsic relationships be- 289

tween different symbols. Fine-tuning LLaMA- 290

2-Chat on single-domain tasks fully overfits 291

domain-specific symbolic forms, as shown in Sin- 292

gle SFT of Table 1. Compared with it, Symbol- 293

LLM shows better performances, with averaged 294

0.42% and 2.02% gains in 7B and 13B. It verifies 295

that the unified modeling of various symbolic forms 296

is beneficial to capturing symbolic interrelations. 297

3.2 General Tasks 298

To verify Symbol-LLM’s power in tackling NL- 299

centric tasks, we conduct the experiments on two 300

widely-used benchmarks, MMLU and BIG-Bench- 301

Hard (BBH). Results are shown in Table 2. 302

Competitive performances in general tasks are 303

maintained in Symbol-LLM. Overall, Symbol- 304

LLM is well optimized with the two-stage frame- 305

work in keeping general abilities. For 7B models, 306

3Unless otherwise specified, Symbol-LLM represents the
final model after two stages (i.e., Instruct version).
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Domains / Tasks Metrics Close-Source Open-source (7B) Open-source (13B)
GPT-3.5 Claude-1 LLaMA-2-Chat Single SFT Symbol-LLM LLaMA-2-Chat Single SFT Symbol-LLM

Planning

Blocksworld BLEU 96.54 91.35 85.16 97.40 99.02 31.27 97.06 99.02
Termes BLEU 74.73 26.94 53.08 67.46 48.69 59.30 68.63 90.09
Floortile BLEU 54.23 13.94 59.41 78.07 95.84 0.00 74.22 95.24
Grippers BLEU 99.90 90.91 86.15 94.84 98.53 95.36 97.46 98.89

SQL
Spider EM 42.60 32.70 16.50 65.30 63.80 10.30 68.20 69.20
Sparc EM 29.90 28.60 12.50 55.40 55.00 10.20 57.50 58.90
Cosql EM 18.80 22.70 9.30 51.30 48.20 1.20 54.60 52.70

KG / DB
WebQSP F1 36.49 41.37 0.09 84.93 84.43 0.00 84.80 85.29
GrailQA EM 28.52 25.56 0.00 80.58 79.24 0.06 81.82 81.17
CompWebQ EM 0.00 0.00 0.00 56.30 50.98 0.00 59.02 54.94

AMR
AMR3.0 Smatch 18.00 10.00 6.00 55.00 54.00 2.00 55.00 55.00
AMR2.0 Smatch 14.00 12.00 7.00 46.00 45.00 1.00 47.00 46.00
BioAMR Smatch 23.00 3.00 24.00 80.00 78.00 0.00 80.00 80.00

Ontology Tekgen F1 8.92 1.86 4.50 56.69 57.34 6.24 58.49 58.55
Webnlg F1 28.34 8.89 7.38 63.75 60.42 17.23 62.13 63.08

API
MTOP EM 3.80 8.40 0.00 84.80 84.40 0.00 86.20 86.60
TOPv2 EM 6.60 7.60 0.00 86.60 85.80 0.00 87.20 85.20
NLmaps EM 30.88 16.77 2.00 91.95 92.18 3.60 92.38 92.21

Command SCAN EM 15.09 15.97 0.00 98.23 98.35 0.00 98.99 99.28

Code

NL2BASH BLEU 54.19 42.24 23.29 59.22 60.25 19.06 60.68 60.76
NL2RX BLEU 38.60 18.30 5.91 85.25 85.08 0.00 85.55 84.97
NL2Python BLEU 37.01 36.73 26.68 38.19 39.79 34.94 40.35 40.76
NL2Java BLEU 24.88 22.79 25.77 27.33 28.08 23.49 28.47 28.25
NL2Go BLEU 19.08 26.65 24.00 30.77 29.19 1.26 24.75 30.31

FOL
FOLIO LE 60.65 53.47 33.98 90.81 90.58 28.79 91.59 90.65
MALLS LE 69.15 30.46 55.13 89.24 88.88 11.71 89.41 89.50
LogicNLI LE 73.11 69.16 39.95 100.00 99.97 32.26 99.99 100.00

Visual
GQA EM 7.55 7.70 0.30 85.65 85.50 8.85 86.10 85.95
CLEVR EM 6.35 5.90 0.25 86.35 94.80 1.15 92.20 95.60
Geometry3k EM 65.25 40.84 36.88 93.92 95.13 52.17 94.52 95.67

Math
GSM8K-Code BLEU 82.20 63.42 53.66 85.31 84.14 72.29 84.01 84.42
AQUA-Code BLEU 67.48 48.88 39.25 66.27 67.05 55.13 65.66 67.20
MATH-Code BLEU 56.48 48.87 29.88 56.43 57.36 48.85 58.24 56.97

AI4Science CheBi-20 EM 1.15 0.30 0.00 40.36 58.97 0.00 46.82 65.27

Average Performance 32.27 25.04 22.59 71.46 71.88 18.46 72.32 74.34

Table 1: Main results on 34 text-to-symbol generation tasks. The better results with the same model size are marked
in bold. GPT-3.5, Claude-1, and LLaMA-2-Chat column presents the baseline performances of prompting these
models under the few-shot setting. Single-SFT represents the models fine-tuned with single-domain samples based
on LLaMA-2-Chat. Symbol-LLM column represents the final obtained model after two-stage tuning.

Symbol-LLMInstruct shows consistent superiority307

on MMLU and BBH benchmarks, with ∼4% gains308

compared with LLaMA-2-Chat. For 13B models,309

although Symbol-LLMInstruct slightly falls behind310

its LLaMA counterpart, it achieves 7.20% perfor-311

mance advantages in BBH. The superiority on av-312

erage is obvious. While Symbol-LLM may not yet313

match the performance of closed-source LLMs, its314

well-rounded general capability is notable.315

To verify the generalization in a broader scope,316

the evaluation of extensive general tasks is attached317

in Appendix F.318

3.3 Symbol+Delegation Tasks319

A wide range of experiments are done under the320

Symbol+Delegation paradigm, covering the fields321

of math reasoning, symbolic reasoning, logical rea-322

soning, robotic planning, visual reasoning as well323

as table question answering. For detailed settings, 324

please refer to Appendix C.3. Limited by space, 325

we only present the results of the math reasoning in 326

the main paper. The remaining parts are attached 327

in Appendix G. 328

We select 9 commonly used math datasets 329

for testing, including both in-domain and OOD 330

tasks. To demonstrate the surprising performances 331

of Symbol-LLM, we also include several math- 332

domain LLMs (e.g., WizardMath (Luo et al., 2023), 333

MAmmoTH (Yue et al., 2023)) as strong baselines. 334

Comparison results are presented in Table 3. 335

Advanced abilities in math reasoning are pos- 336

sessed by Symbol-LLM. GSM8K and MATH 337

are widely used to evaluate the math reasoning 338

capabilities of LLMs. Compared with recent math- 339

domain LLMs, Symbol-LLM presents great com- 340
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Models MMLU (5-shot) BBH (0-shot)
Humanities SocialSciences STEM Others Average Average

Close-source LLMs
GPT-3.5 54.90 69.58 49.73 66.75 59.74 56.84
Claude-1 56.60 74.15 53.66 60.35 62.09 47.01

Open-source LLMs (7B)
LLaMA-2-Chat 42.47 52.49 36.94 52.47 45.78 35.01
CodeLLaMA-Instruct 39.47 46.31 35.95 45.34 41.57 35.69
Symbol-LLMBase 40.04 46.28 33.73 47.16 41.70 33.82
Symbol-LLMInstruct 46.33 57.20 40.39 54.53 49.30 39.30

Open-source LLMs (13B)
LLaMA-2-Chat 49.52 62.43 43.84 60.02 53.55 36.99
CodeLLaMA-Instruct 33.88 41.92 34.69 42.17 37.73 36.71
Symbol-LLMBase 45.67 55.67 40.09 53.89 48.56 35.26
Symbol-LLMInstruct 48.88 62.14 43.44 57.93 52.71 44.09

Table 2: Results on general tasks. We include 57 tasks in the MMLU benchmark for testing under the 5-shot
setting (Hendrycks et al., 2021a), while we select 21 tasks in BBH under the 0-shot setting following Gao et al.
(2021a). The best results are marked in bold while sub-optimal results are underlined (same for the following
tables).

Models Del. GSM8k MATH GSM-Hard SVAMP ASDiv ADDSUB SingleEQ SingleOP MultiArith
Is OOD Setting ✓ ✓ ✓ ✓ ✓ ✓ ✓

Close-source LLMs
GPT-3.5 ✓ 4.60 1.05 4.62 5.10 6.30 1.01 3.94 8.54 17.33
GPT-3.5 (3-shot) ✓ 76.04 36.80 62.09 83.40 85.73 87.59 96.46 90.74 96.67
Claude-1 ✓ 11.14 1.07 9.02 10.30 6.30 5.06 4.53 0.36 12.67
Claude-1 (3-shot) ✓ 58.07 13.17 43.75 78.90 74.19 79.49 88.19 87.72 91.83

Open-source LLMs (7B)
LLaMA-2-Chat (3-shot) ✓ 12.21 1.32 10.69 22.00 25.86 29.11 27.36 39.15 23.17
CodeLLaMA-Instruct (3-shot)† ✓ 34.00 16.60 33.60 59.00 61.40 Average performance 79.60
WizardMath† 54.90 10.70 - 57.30 - - - - -
MAmmoTH† ✓ 51.70 31.20 - 66.70 - - - - -
Symbol-LLMBase ✓ 61.14 28.24 52.62 72.50 78.34 89.62 97.83 96.26 99.67
Symbol-LLMInstruct ✓ 59.36 26.54 48.98 72.80 75.76 87.85 96.26 93.24 99.00

Open-source LLMs (13B)
LLaMA-2-Chat (3-shot) ✓ 34.87 6.07 28.96 45.00 46.61 45.57 47.05 56.76 56.67
CodeLLaMA-Instruct (3-shot)† ✓ 39.90 19.90 39.00 62.40 65.30 Average performance 86.00
WizardMath† 63.90 14.00 - 64.30 - - - - -
MAmmoTH† ✓ 61.70 36.00 - 72.40 - - - - -
Symbol-LLMBase ✓ 68.69 33.39 58.53 78.80 80.15 91.14 96.85 95.55 98.83
Symbol-LLMInstruct ✓ 65.58 31.32 55.57 76.80 79.01 91.90 96.85 94.84 99.33

Table 3: Results on Math Reasoning. Del. represents whether uses delegation (i.e., Python Interpreter for math
reasoning tasks). Results are under the zero-shot setting unless otherwise stated (the following tables share the same
setting). † indicates that the results are reported from Luo et al. (2023), Yue et al. (2023) and Gou et al. (2023).

petitive results on them. Especially on GSM8K,341

Symbol-LLM consistently wins all strong baselines342

with great margins with all the model variants. On343

the MATH dataset, Symbol-LLM merely falls be-344

hind MAmmoTH, which is a strong LLM specially345

designed for math reasoning tasks. Notably, MAm-346

moTH includes GSM8K and MATH in the tuning347

stage and it also uses delegation (i.e., Python In-348

terpreter) for inference, thus our comparisons are349

fair. Similar superiority is also observed under the350

OOD tasks (e.g., SVAMP).351

Symbol-LLM exhibits competitive perfor-352

mances in extrapolating to OOD tasks. More353

surprisingly, Symbol-LLM consistently presents354

its significant superiority among all 7 OOD math355

tasks. Even compared with GPT-3.5 under the356

three-shot setting, our Symbol-LLM-7B series 357

won 4 (out of 7) OOD tasks under the zero-shot 358

setting. As we scale the model size to 13B, obvious 359

performance improvements are observed in most 360

of the tasks. These findings verify the prospects 361

of Symbol-LLM under the Symbol+Delegation 362

paradigm. 363

4 Analysis 364

In this section, we include the ablation stud- 365

ies (Sec.4.1) and the analysis on Alignment and 366

Uniformity (Sec.4.2). Notably, additional supple- 367

mentary experiments are attached in Appendix H. 368

4.1 Ablation Studies 369

Here we present two ablation experiments from 370

both the framework and data views: (1) tuning only 371
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in one stage, and (2) tuning only on general data372

collection. For a fair comparison, we introduce373

two settings for one-stage tuning. The first setting374

(named One-stage 1.46M) simply mixes Ds, Ds′375

and Dg, regardless of sample overlap. The sec-376

ond setting (named One-stage 1.20M) mixes Ds377

and Dg, which ensures consistency in diversity and378

avoids duplication. The model exclusively fine-379

tuned on general task Dg is referred to as General-380

only. Comparison results are shown in Table 4.381

Two-stage tuning framework shows superior-382

ity over one-stage, especially for 13B. Simply383

mixing the training data in one stage is prone to384

affecting the symbol-related tasks. Especially un-385

der the Symbol+Delegation setting, the two-stage386

framework witnesses 3∼6% advantages over the387

one-stage models. In the 13B model comparison,388

our two-stage framework consistently demonstrates389

superiority across symbolic tasks, general tasks,390

and Symbol+Delegation tasks.391

The incorporation of symbolic data yields a mod-392

est impact on the performances of general tasks.393

Compared with General-only, Symbol-LLMInstruct394

is optimized to largely enhance the symbol-centric395

capabilities. Meanwhile, it maintains the capability396

to address general NL-centric tasks without signifi-397

cant sacrifices (< 2%).398

4.2 Alignment and Uniformity399

Motivated by (Wang and Isola, 2020; Gao et al.,400

2021b), we include Alignment and Uniformity met-401

rics to delve into the factors contributing to the402

superiority of Symbol-LLM.403

Alignment measures the representation similar-404

ity within each symbolic form, based on Eq. 3 in405

Appendix I. Uniformity quantifies the uniformity406

of all the symbolic representations with Eq. 4 in407

Appendix I. The calculation results are visualized408

in Figure 3. Further, we extend the definition to409

measure the interrelations between any two sym-410

bolic forms, based on Eq. 5. Limited by space,411

we only include a part of the symbolic forms for412

illustration and present the results of 13B models413

in Figure 4. Detailed definitions and settings are414

attached in Appendix I.415

The item-wise conclusions are listed as follows:416

Symbol-LLM optimizes symbol distinctiveness417

and overall expressiveness in the embedding418

space. From Fig. 3, compared with the LLaMA-419

2-Chat models, Symbol-LLM series is optimized420

Figure 3: Visualization of Alignment-Uniformity. Both
metrics are inversely related, which means a lower value
indicates better performance.
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Figure 4: Visualization of the alignment relations be-
tween symbols after binarization. Dark blue denotes a
close relation between two symbols in the representa-
tion. Limited by space, we only showcase 13B models.
More illustrations refer to Appendix I.

towards superior Alignment and Uniformity. It en- 421

sures the discernment of shared features within 422

each symbolic form, simultaneously enhancing the 423

overall information entropy. Specifically for the 7B 424

model, the two-stage framework effectively main- 425

tains a balance of uniformity, preventing the col- 426

lapse of the embedding space. 427

Symbol-LLM excels at capturing symbolic inter- 428

relations. From Fig. 4, the LLaMA-2-Chat model 429

exhibits significant representation sparsity between 430

symbolic forms. Even under the same form (e.g., 431

Bash, FOL), the features are scattered. On the 432

contrary, Symbol-LLM largely enhances the per- 433

ception of symbolic interrelations by (1) achieving 434

better alignments between symbols (e.g., Python- 435

AMR and CheBi-RX) and (2) pulling closer sample 436

features within each symbolic form (e.g., FOL). 437
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Models 7B Models 13B Models
Symbolic General Symbol+Del. Avg. Symbolic General Symbol+Del. Avg.

Symbol-LLM 71.88 44.30 52.54 56.24 74.34 48.40 60.45 61.06
One-stage 1.20M 70.38 45.24 47.27 54.30 70.59 48.29 53.99 57.62

∆ (+1.50) (-0.94) (+5.27) (+1.94) (+3.75) (+0.11) (+6.46) (+3.44)
One-stage 1.46M 72.75 44.44 49.31 55.50 73.71 46.59 52.67 57.66

∆ (-0.87) (-0.14) (+3.13) (+0.74) (+0.63) (+1.81) (+7.78) (+3.40)
General-only 28.66 46.21 28.17 34.35 31.35 49.72 31.49 37.52

∆ (+43.22) (-1.91) (+24.37) (+11.89) (+42.99) (-1.32) (+28.96) (+23.54)

Table 4: Comparison experiments. Avg. denotes the simple averaged performances on the symbolic tasks, general
tasks, and Symbol+Delegation tasks.

5 Related Works438

Large Language Models Plenty of recent efforts439

have been made to develop foundation language440

models (Zhao et al., 2023), which are expected441

to promote the subsequent applications, such as442

AI agents (Wang et al., 2023a). These works443

on LLMs are universally categorized into closed-444

source and open-source models. Close-source445

LLMs, represented by GPT-4 (OpenAI, 2023),446

Claude, PaLM (Chowdhery et al., 2023), have447

greatly shaped our daily life through NL-centric448

interactions. However, their closed-source and449

black-box property limits further optimization. Un-450

der such circumstances, open-source LLMs (Zeng451

et al., 2023; Jiang et al., 2023; Touvron et al.,452

2023b) receive significant attention because of their453

tunable and small-scale properties. However, cur-454

rent attempts on these LLMs mainly explore NL-455

centric abilities, which treats NL as the interface to456

express knowledge and achieve interactive reason-457

ing. In contrast, our work focuses on improving the458

symbol-centric capabilities of open-source LLM,459

which leads to a balanced symbol-centric and NL-460

centric foundational LLM.461

Instruction Tuning To make LLMs capable of462

following human instructions, instruction fine-463

tuning (Zhang et al., 2023) is widely adopted.464

Meanwhile, self-instruct methods (Wang et al.,465

2023c; Xu et al., 2023a; Ouyang et al., 2022) have466

been proposed to generate diverse and abundant in-467

struction data, based on a small collection of seed468

instructions. In our work, we follow the previous469

instruction tuning strategies in both tuning stages.470

For symbolic tasks, we construct instructions, cov-471

ering the task and symbolic descriptions. For gen-472

eral tasks, we sample the off-the-shelf instruction-473

tuning datasets (e.g., Flan collection (Longpre et al.,474

2023)).475

Symbol-centric Scenarios LLMs have domi- 476

nated plenty of NL-centric tasks (Rajpurkar et al., 477

2016; Talmor et al., 2019; Nallapati et al., 2016), 478

where NL is leveraged as the core interface for 479

interaction, planning, and reasoning. But world 480

knowledge is not purely represented by NL. In 481

fact, symbolic language is also of great significance 482

in expressing abstract world knowledge (Edwards 483

et al., 2022; Bevilacqua et al., 2021; Li and Sriku- 484

mar, 2019) and leveraging external tools (Gao et al., 485

2023; Liu et al., 2023; Pan et al., 2023). Some 486

concurrent works (Xu et al., 2023b; Yang et al., 487

2023) shift focus to the specific forms of symbols 488

(e.g., code), either through prompting off-the-shelf 489

LLMs or tuning on open-source LLMs. These ef- 490

forts fail to lay a solid symbolic foundation, which 491

is expected to grasp the interrelations among vari- 492

ous symbolic forms. In our work, we explore the 493

possibility of treating symbols in a unified manner 494

and lay foundations to build balanced symbol and 495

NL interfaces. 496

6 Conclusion 497

This work proposes to enhance the LLM capability 498

in symbol-centric tasks while preserving the perfor- 499

mances on general tasks, leading to balanced sym- 500

bol and NL interfaces. To address the challenges of 501

capturing symbol interrelations and maintaining a 502

balance in general abilities, we tackle the problem 503

from both data and framework perspectives. Data- 504

wise, we include a collection of 34 text-to-symbol 505

tasks to systematically explore underlying symbol 506

relations. Framework-wise, we implement SFT in 507

a two-stage manner to reduce catastrophic forget- 508

ting. Extensive experiments across three task set- 509

tings (i.e., symbolic tasks, general tasks, and sym- 510

bol+delegation tasks) demonstrate Symbol-LLM’s 511

superiority in harmonizing symbol- and NL-centric 512

capabilities. Moreover, all models and resources 513

will be made public to facilitate a broader range of 514

research. 515
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Limitations516

The insight of Symbol-LLM is to build a balanced517

symbol- and NL-centric interface for interaction518

and reasoning. We achieve it from both data (com-519

prehensive symbolic collection to open-source) and520

framework (two-stage tuning to reduce forgetting)521

perspectives. It is expected to expand the scope of522

cutting-edge open-source LLMs largely and lay a523

new foundation for future work. Though plenty of524

experiments covering three settings are conducted,525

there still exist the following two directions for ex-526

ploration: (1) The model’s ability to self-correct or527

interact with environmental feedback in symbolic528

scenarios. It is also key to building language agents529

from language models. (2) Model size scaling to530

70B or larger. As widely recognized, 7B or 13B531

LLMs are still not sufficient to build excellent lan-532

guage agents, especially when complex interaction533

is involved. Thus, it needs further exploration for534

the size scaling to the larger ones.535
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A Details of Data Collection996

In this section, detailed information on the data col-997

lection is attached, including both text-to-symbol998

task collection, and general task collection.999

A.1 Text-to-symbol Task Collection1000

We provide a detailed illustration of the symbolic1001

task collection, which consists of 34 different text-1002

to-symbol generation tasks. They are categorized1003

into 12 domains in Table 5.1004

Note that the symbolic task collection includes1005

but is not limited to the listed 34 tasks. To expand1006

the diversity, we also consider some similar tasks.1007

For example, we include some domain-specific NL-1008

to-SQL tasks to provide diverse schema. The data1009

is only used at the tuning stage but is not for a test.1010

Thus, the whole collection (only count training1011

samples) reaches ∼880K samples. All of them are1012

leveraged in the first SFT stage.1013

Also, it is mentioned above that we sample parts1014

of symbolic task collection in the second stage to1015

reduce forgetting. For it, we uniformly sample1016

each task domain with a ratio of 0.3, leading to a1017

sampled collection of ∼260K.1018

A.2 General Task Collection1019

In the second tuning stage, we include a collec-1020

tion of general instruction-tuning data to keep the1021

LLM capability in some NL-centric settings and1022

further improve the instruction-following capabil-1023

ity of Symbol-LLM.1024

The general data collection contains ∼ 570K1025

samples, which are sourced from the following1026

three parts:1027

(1) Sampled Flan collection (Longpre et al.,1028

2023) of 150K samples. We obtain the collection1029

directly following Tulu (Wang et al., 2023b).1030

(2) Code Alpaca collection (Chaudhary, 2023)1031

of 20K samples. In fact, this collection is not in1032

an NL-to-NL form as we expected. However, it1033

stresses much on the instruction-following capabil-1034

ities, which may help enhance the general ability1035

of LLMs. Also, it is expected to act as the bridge1036

between NL data and symbolic form (i.e., code in1037

this case).1038

(3) Sampled WizardLM collection (Xu et al.,1039

2023a) of 143K samples. To further expand the1040

diversity of our instruction-tuning collection, we1041

leverage the evol-data from WizardLM.1042

B Data Format 1043

To support the instruction tuning, each piece of 1044

data i in the training collection contains three parts, 1045

i.e., instruction si, input xi, and output yi. During 1046

the training process, instruction si and input text 1047

xi are concatenated as the whole input sequence. 1048

The model is optimized to generate output yi. One 1049

example in the FOLIO dataset is as follows: 1050

[Instruction] Transform the natural language sen- 1051

tence into first-order logic forms. 1052

[Input] All people who regularly drink coffee are 1053

dependent on caffeine. 1054

[Output] ∀x (Drinks(x) → Dependent(x)) 1055

In the implementation, we rewrite the instruction 1056

for each sample by prompting GPT-4, keeping the 1057

diversity of the instruction. 1058

C Test Datasets and Benchmarks 1059

Our main experiments are conducted on both 1060

text-to-symbol tasks and general NL-centric tasks. 1061

Then this work also extends the scope to Sym- 1062

bol+Delegation setting, which uses LLM to gen- 1063

erate symbolic representation and delegate the rea- 1064

soning process to the external solver. Such a setting 1065

satisfies our expectation to build a better symbol 1066

interface. 1067

C.1 Tests in Text-to-Symbol Generation Tasks 1068

Planning These tasks involve controlling the 1069

robot to finish some tasks in the defined environ- 1070

ments. The input is the natural language descrip- 1071

tion of the initial states and the final goals, while 1072

the symbolic output in the Planning Domain Def- 1073

inition Language (PDDL) form can be executed 1074

by the symbolic planner. For the four settings, 1075

Blocksworld involves stacking blocks in order. Ter- 1076

mes involves moving blocks to a specific position 1077

in the grid. Floortile is to color the floors with the 1078

instructions. Grippers is to gripper and move balls 1079

from room to room. We use the BLEU metric to 1080

measure the correctness of generated forms. 1081

SQL They cover three representative Text-to- 1082

SQL datasets, Spider, Sparc and Cosql. Given the 1083

schema and the natural language query, the output 1084

is the corresponding SQL. We use the exact match 1085

as the metric. 1086

KG / DB It is similar to the Text-to-SQL tasks, 1087

which require generating the symbolic form of 1088

the query given the natural language question and 1089
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Domains Tasks # Train # Test Sampled? Access Few-shot? Original Source

Planning

Blocksworld

37,600

20 GPT-4+Evol ✓ Liu et al. (2023)
Termes 20 GPT-4+Evol ✓ Liu et al. (2023)
Floortile 20 GPT-4+Evol ✓ Liu et al. (2023)
Grippers 20 GPT-4+Evol ✓ Liu et al. (2023)

SQL
Spider

109,582
1,034 Direct Yu et al. (2018)

Sparc 1,625 Direct Yu et al. (2019b)
Cosql 1,300 Direct Yu et al. (2019a)

KG / DB
WebQSP 3,241 1,639 Direct ✓ Yih et al. (2016)
GrailQA 53,222 6,463 Direct ✓ Rogers et al. (2023)
CompWebQ 37,444 3,531 Direct ✓ Talmor and Berant (2018)

AMR
AMR3.0 68,778 1,898 Direct ✓ Knight and et al. (2020)
AMR2.0 45,436 1,371 Direct ✓ Knight and et al. (2017)
BioAMR 7,150 500 Direct ✓ Banarescu et al. (2013)

Ontology Tekgen 11,219 4,062 Direct ✓ Agarwal et al. (2021)
Webnlg 3,415 2,014 Direct ✓ Gardent et al. (2017)

API
MTOP 18,784 500 ✓ Direct ✓ Li et al. (2021)
TOPv2 149,696 500 ✓ Direct ✓ Chen et al. (2020)
NLmaps 21,657 10,594 Direct ✓ Lawrence and Riezler (2018)

Command SCAN 25,990 4,182 Direct+Evol ✓ Lake and Baroni (2018)

Code

NL2BASH 11,971 746 Direct ✓ Lin et al. (2018)
NL2RX 10,808 1,000 ✓ Direct ✓ Locascio et al. (2016)
NL2Python 12,005 500 ✓ Direct ✓ Husain et al. (2019)
NL2Java 11,978 500 ✓ Direct ✓ Husain et al. (2019)
NL2Go 12,001 500 ✓ Direct ✓ Husain et al. (2019)

FOL
FOLIO 2,006 500 ✓ Direct ✓ Han et al. (2022)
MALLS 39,626 1,000 ✓ Direct ✓ Yang et al. (2023)
LogicNLI 11,559 2,373 ✓ Direct ✓ Tian et al. (2021)

Visual
GQA 36,086 2,000 ✓ Direct ✓ Hudson and Manning (2019)
CLEVR 47,081 2,000 ✓ Direct+Evol ✓ Johnson et al. (2017)
Geometry3k 2,864 601 Direct ✓ Lu et al. (2021)

Math
GSM8K-Code 8,453 100 ✓ GPT-4 ✓ Cobbe et al. (2021)
AQUA-Code 31,144 100 ✓ GPT-4 ✓ Ling et al. (2017)
MATH-Code 4,426 100 ✓ GPT-4 ✓ Hendrycks et al. (2021b)

AI4Science CheBi-20 35,629 3,300 Direct ✓ Edwards et al. (2022)

Table 5: Detailed illustrations of 34 text-to-symbol generation tasks. # Train and # Test represent the number of
training and test samples respectively. Sampled? means whether the test split is sampled from the original dataset.
Access is related to how we obtain the data, including directly from off-the-shelf benchmarks (Direct), prompting
GPT-4 (GPT-4), and applying the symbol-evol strategy (Evol). Few-shot? denotes whether few-shot samples are
included. Original Source is the citation of the original paper.

schema. But WebQSP and GrailQA leverage the s-1090

Expression form while CompWebQ uses SPARQL1091

format. We use the F1 metric for WebQSP and the1092

exact match metric for GrailQA and CompWebQ,1093

following previous work (Xie et al., 2022).1094

AMR They are classical semantic parsing tasks,1095

where the input sentence is parsed into an abstract1096

syntax graph. We use the Smatch metric to mea-1097

sure the generated form on AMR3.0, AMR2.0, and1098

BioAMR datasets.1099

Ontology It focuses on the domain of knowledge1100

graph construction. Given the ontology (i.e, pre-1101

defined relations or entities) and natural language1102

sentence, it is required to output the triples. We em-1103

ploy F1 scores introduced in (Mihindukulasooriya1104

et al., 2023) to measure the performances on Tek-1105

gen and WebNLG.1106

API These tasks require the output of the API 1107

calling form based on the natural language query. 1108

MTOP and TOPv2 cover various domains like 1109

controlling the music player, and setting alarms. 1110

NLMAPS focuses on calling the maps. 1111

Command SCAN involves outputting action se- 1112

quences based on the commands to control robots. 1113

The exact match metric is used to measure the gen- 1114

eration accuracy. 1115

Code It involves five representative programming 1116

languages, including Bash, Regular Expression, 1117

Python, Java and GO. They are tested with the 1118

BLEU metric. 1119

FOL It covers three datasets in NL-to-FOL do- 1120

main, that is FOLIO, MALLS and LogicNLI. Logic 1121

Equivalence (LE) is leveraged as the metric, fol- 1122

lowing (Yang et al., 2023). 1123
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Visual Three multi-modal question answering1124

datasets GQA, Clevr and Geometry3K are included1125

for test. In these scenarios, we only focus on the1126

natural language parts and transform the natural1127

language query into function symbol forms. The1128

exact match metric is used to measure the perfor-1129

mances.1130

Math As we discussed, transforming the natural1131

language question into Python code is one of the1132

faithful ways to solve math problems. Hence, we1133

measure the accuracy of the generated Python code1134

with the BLEU metric. The ground-truth code is1135

derived by prompting GPT-4, where the ones that1136

can execute the correct answer are preserved.1137

AI4Science In CheBi dataset, the model is re-1138

quired to generate the correct molecular formula1139

given the natural language descriptions. Exact1140

match metric is used for measure.1141

C.2 Tests in General Tasks1142

MMLU It covers 57 tasks including different sub-1143

jects STEM, humanities, social sciences, and oth-1144

ers. Our evaluations are based on (Hendrycks et al.,1145

2021a).1146

Big Bench Hard The benchmark is designed for1147

testing LLM capability in challenging reasoning1148

tasks. We select 21 tasks in BBH for the test, based1149

on Open-LLM-Leaderboard4.1150

C.3 Tests in Symbol+Delegation Setting1151

Math Reasoning We generate Python code with1152

Symbol-LLM and use Python interpreter as the1153

delegation. The datasets include GSM8K (Cobbe1154

et al., 2021), MATH (Hendrycks et al., 2021b),1155

GSM-Hard (Gao et al., 2023), SVAMP (Patel et al.,1156

2021), Asdiv (Miao et al., 2020), AddSub (Hos-1157

seini et al., 2014), SingleEQ (Roy et al., 2015),1158

SingleOP (Roy et al., 2015) and MultiArith (Roy1159

and Roth, 2015). The former two datasets are in-1160

domain, while the latter seven datasets are under1161

OOD settings.1162

Note that MATH dataset includes various1163

ground-truth answer formats (e.g., with diverse1164

units), thus it is difficult to parse the correct values1165

to evaluate the LLMs. Hence, we use manually-1166

crafted templates to derive the ground-truth values,1167

leading to around 4,000 samples for test.1168

4https://huggingface.co/spaces/HuggingFaceH4/
open_llm_leaderboard

Symbolic Reasoning Same as math reasoning, 1169

we use Python code + Python interpreter to solve 1170

the problems. Two OOD tasks are used for test, 1171

i.e., Colored Objects (Suzgun et al., 2023) and Last 1172

Letter Concatenation 5. 1173

Logical Reasoning We take three representative 1174

datasets into consideration, i.e., FOLIO (Han et al., 1175

2022), ProofWriter (Tafjord et al., 2021) and Pron- 1176

toQA (Saparov and He, 2022). We follow the strat- 1177

egy proposed in (Pan et al., 2023) to conduct the 1178

reasoning. Detailedly, for FOLIO, we generate 1179

FOL representations first and delegate the solution 1180

to the FOL solver. For ProofWriter and ProntoQA 1181

tasks, we generate logic programming language 1182

and delegate the reasoning to Pyke expert system. 1183

Robotic Planning For robotic planning tasks, 1184

we transform the natural language description into 1185

PDDL and use fastdownward (?) as the symbolic 1186

solver. Besides the four datasets mentioned in text- 1187

to-symbol generation tasks, we also employ two 1188

OOD datasets into account, i.e. Barman and Tyre- 1189

world. 1190

Visual Question Answering We further extend 1191

the application scope of Symbol-LLM to the multi- 1192

modal domain and test on Geometry3K dataset (Lu 1193

et al., 2021) for illustration. But we only concen- 1194

trate on the processing of the NL part. Detailed, 1195

we parse the natural language sentence into logic 1196

forms and rely on the baseline method (Lu et al., 1197

2021) to conduct the multi-modal reasoning. 1198

D Experimental Settings 1199

In the implementation, this work leverages the 1200

AdamW optimizer with a learning rate of 2e-5 for 1201

both Injection and Infusion stages. The learning 1202

rate schedular is set to Linear. The epoch number 1203

is set to 1 for both stages. In the Injection stage, the 1204

model weights are initialized from LLaMA-2-Chat 1205

and the tuned model is named Symbol-LLMBase. 1206

In the Infusion stage, we initialize the model from 1207

Symbol-LLMBase and obtain Symbol-LLMInstruct 1208

at last. These settings are consistent for both 7B 1209

and 13B variants. 1210

For a comprehensive evaluation, we include the 1211

following strong baselines. They are categorized 1212

into Close-source and Open-source ones: 1213

5Test data is based on: https://huggingface.co/
datasets/ChilleD/LastLetterConcat
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Close-source Baselines1214

• GPT-3.5 We access OpenAI API to call the1215

model. Specifically, GPT-3.5-turbo version1216

is employed for evaluation across a wide range1217

of tasks.1218

• Claude-1 We access Anthropic API to call1219

the model. We select Claude-instant-1.21220

version for evaluation.1221

Open-source Baselines1222

• LLaMA-2-Chat Since Symbol-LLM is ini-1223

tialized from LLaMA-2-Chat, we include it1224

as the baseline. In general, LLaMA-2-Chat1225

series is regarded as an excellent NL-centric1226

interface for interaction and reasoning, which1227

exhibits great performance on vast NL tasks.1228

• Single SFT We conduct SFT on LLaMA-2-1229

Chat models for tasks in one specific domain.1230

The obtained models can fully overfit the sin-1231

gle domain, thus serving as a strong baseline1232

for comparison.1233

• CodeLLaMA-Instruct Based on the origin1234

LLaMA-2 models, the CodeLLaMA series is1235

continually pretrained and finetuned with code1236

data. Considering code is one of the specific1237

symbols in our work, we include it as one of1238

the strong baselines. For balanced capabilities1239

in general tasks, we leverage CodeLLaMA-1240

Instruct for evaluations.1241

E Overall Performances1242

Figure 5 presents the overall performance compari-1243

son among baseline models. It intuitively demon-1244

strates the obvious advantages of Symbol-LLM on1245

the wide range of tasks. Also, it supports our claim1246

to make Symbol-LLM a balanced foundation LLM1247

on symbols and NL.1248

F Results on Extensive General Tasks1249

In Table 6, we select extensive general tasks for1250

comparison. According to OpenCompass (Contrib-1251

utors, 2023), these tasks are divided into several cat-1252

egories, covering Examinations, Knowledge, Un-1253

derstanding and Reasoning. Considering the com-1254

putation cost, we only report the performances of1255

7B models. The major takeaways are as follows:1256

Tasks LLaMA-2-Chat† Symbol-LLM
Examinations

AGI-Eval 28.50 27.55
C-Eval 31.90 34.96
GaokaoBench 16.10 13.37
ARC-c 54.90 61.69

Knowledge
BoolQ 81.30 77.00
CommonsenseQA 69.90 59.21
TrivialQA 46.40 40.90
NaturalQuestions 19.60 16.48

Understanding
OpenbookQA 74.40 79.20
XSUM 20.80 33.29
LAMBADA 66.90 70.10
C3 49.80 52.82

Reasoning
CMNLI 36.10 55.43
OCNLI 36.40 48.10
Ax-b 58.50 62.68
Ax-g 51.70 64.61
Hellaswag 74.10 53.10
SIQA 55.40 69.60
MBPP 17.60 22.80
ReCoRD 22.50 39.49

Table 6: Results on extensive general tasks. The evalua-
tions are based on OpenCompass (Contributors, 2023).
† denotes the model results directly derived from the
leaderboard.

Symbol-LLM demonstrates better overall per- 1257

formances compared with LLaMA-2-Chat. 1258

Generally speaking, Symbol-LLM wins more of 1259

the tasks than LLaMA-2-Chat. Such superiority is 1260

consistent with the findings in MMLU and BBH 1261

benchmarks in Table 2. It illustrates that Symbol- 1262

LLM can serve as a solid foundational model, sig- 1263

nificantly enhancing its symbolic capabilities while 1264

maintaining its generality. 1265

Optimization empowers Symbol-LLM with im- 1266

proved understanding and reasoning abilities. 1267

Among the four task categories, Symbol-LLM is 1268

particularly better at understanding and reason- 1269

ing, beating LLaMA-2-Chat on almost all tasks. 1270

Such findings are intuitive because text-to-symbol 1271

can be regarded as an abstract form of NL, which 1272

enriches the understanding abilities of the model. 1273

Meanwhile, the generation of some symbolic forms 1274

(e.g., code) involves the implicit reasoning process, 1275

which is actually similar to the chain-of-thought 1276

strategy. To this end, the superior reasoning capa- 1277

bility is within our expectations. 1278

G Results on Symbol+Delegation Setting 1279

In the main paper, we present the results of math 1280

reasoning under the Symbol+Delegation paradigm. 1281
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Figure 5: Overall results comparison. We report the performances on close-source, open-source 7B as well as
open-source 13B LLMs. The results on symbolic tasks, general tasks, symbol+delegation tasks and the average
ones are included.

Models Del. ColoredObject LastLetter
Is OOD Setting ✓ ✓

Close-source LLMs
GPT-3.5-turbo ✓ 12.45 94.00
Claude-1 ✓ 46.05 90.67

Open-source LLMs (7B)
LLaMA-2-Chat ✓ 28.70 0.00
CodeLLaMA-Instruct ✓ 4.60 0.00
Symbol-LLMBase ✓ 22.65 90.67
Symbol-LLMInstruct ✓ 25.50 96.67

Open-source LLMs (13B)
LLaMA-2-Chat ✓ 30.35 0.00
CodeLLaMA-Instruct ✓ 1.35 0.00
Symbol-LLMBase ✓ 36.35 94.00
Symbol-LLMInstruct ✓ 34.00 96.67

Table 7: Results on Symbolic Reasoning.

Next, we will provide the remaining 5 scenar-1282

ios, i.e., symbolic reasoning (G.1), logical rea-1283

soning (G.2), robotic planning (G.3), visual ques-1284

tion answering (G.4) and table question answer-1285

ing (G.5).1286

G.1 Symbolic Reasoning1287

In symbolic tasks, we also adopt the Python code as1288

the generated symbolic representations, and lever-1289

age a Python interpreter to conduct the reasoning.1290

Two representative tasks, Colored Objects and Last1291

Letter Concatenation are selected for testing under1292

the zero-shot setting.1293

From the results in Table 7, the Symbol-LLM1294

series are competitive in both tasks. Notably, even1295

Symbol-LLM-7B shows over 10% superiority over1296

GPT-3.5-turbo in Colored Object task. It is worth1297

noticing that LLaMA-2-Chat models underperform1298

consistently in Last Letter task. Since samples in1299

this dataset share similar forms, the model tends1300

to fail if the model does not master the techniques1301

required for solving it.1302

Models Del. FOLIO ProofWriter PrOntoQA
Is OOD Setting ✓

Close-source LLMs
GPT-3.5-turbo ✓ 44.61 29.00 52.00
Claude-1 ✓ 37.25 35.83 55.80
Logic-LM (SOTA) ✓ 61.76 70.11 93.20

Open-source LLMs (7B)
LLaMA-2-Chat ✓ 34.80 34.83 50.00
CodeLLaMA-Instruct ✓ 32.84 32.50 50.20
Symbol-LLMBase ✓ 46.08 76.50 55.60
Symbol-LLMInstruct ✓ 49.02 76.33 57.20

Open-source LLMs (13B)
LLaMA-2-Chat ✓ 33.33 35.83 49.20
CodeLLaMA-Instruct ✓ 32.84 34.00 50.00
Symbol-LLMBase ✓ 33.82 76.33 48.40
Symbol-LLMInstruct ✓ 35.29 75.50 53.60

Table 8: Results on Logical Reasoning. All results are
obtained under the one-shot setting.

G.2 Logical Reasoning 1303

In logical reasoning tasks, we take three tasks 1304

into consideration, i.e., FOLIO, ProofWriter and 1305

ProntoQA. For the FOLIO task, Symbol-LLM 1306

first transforms the natural language into FOL 1307

forms and delegates the solution to the FOL solver. 1308

ProofWriter and ProntoQA are represented in logic 1309

programming language and integrate Pyke expert 1310

system for deductive reasoning. 1311

Results are listed in Table 8. Symbol-LLM-7B 1312

series performs relatively better than 13B counter- 1313

parts. Among all three tasks, the Symbol-LLM-7B 1314

series outperforms GPT-3.5-turbo with large ad- 1315

vantages. In comparison with the SOTA model 1316

Logic-LM, which is based on off-the-shelf LLMs, 1317

Symbol-LLM also wins the ProofWriter tasks, with 1318

5%-6% improvements. 1319

G.3 Robotic Planning 1320

In the field of robotic planning, Symbol-LLM first 1321

transforms the natural language description into 1322

PDDL forms and relies on the fast downward solver 1323

to give the faithful action sequence. 1324

In total, we select 6 different robotic settings to 1325

18



Models Del. Blocksworld Termes Floortile Grippers Barman Tyreworld
Is OOD Setting ✓ ✓

Close-source LLMs
GPT-3.5-turbo ✓ 55.00 0.00 0.00 100.00 95.00 30.00
Claude-1 ✓ 55.00 0.00 0.00 85.00 50.00 5.00

Open-source LLMs (7B)
LLaMA-2-Chat ✓ 5.00 0.00 0.00 5.00 0.00 0.00
LLaMA-2-Chat SFT ✓ 75.00 100.00 0.00 0.00 0.00 0.00
CodeLLaMA-Instruct ✓ 5.00 0.00 0.00 20.00 0.00 0.00
Symbol-LLMBase ✓ 90.00 100.00 5.00 15.00 0.00 0.00
Symbol-LLMInstruct ✓ 100.00 50.00 20.00 20.00 0.00 5.00

Open-source LLMs (13B)
LLaMA-2-Chat ✓ 0.00 0.00 0.00 45.00 50.00 5.00
LLaMA-2-Chat SFT ✓ 70.00 100.00 25.00 10.00 0.00 0.00
CodeLLaMA-Instruct ✓ 5.00 0.00 0.00 0.00 0.00 0.00
Symbol-LLMBase ✓ 90.00 100.00 0.00 30.00 0.00 10.00
Symbol-LLMInstruct ✓ 100.00 90.00 25.00 45.00 20.00 35.00

Table 9: Results on Robotic Planning. The evaluation is under the one-shot setting.
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Figure 6: Performances on Geometry3k task.

verify the proposed method. Results are presented1326

in Table 9. Among four in-domain tasks, Symbol-1327

LLM performs pretty well compared with strong1328

baselines, achieving the best results in most cases.1329

Even with GPT-3.5-turbo and Claude-1, both our1330

7B and 13B series win 3 (out of 4) tasks. How-1331

ever, it struggles a lot in OOD tasks. Only in Tyre-1332

world scenario, Symbol-LLMInstruct-13B achieves1333

the best result, beating all close-source and open-1334

source baselines. It is required to state that these1335

selected robotic planning tasks are very challeng-1336

ing, given the length and rigor requirements of1337

the generated programming language. Even close-1338

source LLMs fail in some scenarios. Therefore, we1339

argue it is still an open question for future studies.1340

G.4 Visual Question Answering1341

We also explore our potential in the multi-modal1342

scenario. Geometry question answering is selected1343

as the task for the test. Note that the understanding1344

of image is not within our scope, we only focus1345

on the text part and transform the natural language1346

Models Del. WikiSQL WikiTQ
Is OOD Setting ✓ ✓

Close-source LLMs
GPT-3.5-turbo ✓ 28.49 11.58
Claude-1 ✓ 26.79 8.79

Open-source LLMs (7B)
LLaMA-2-Chat ✓ 21.05 3.50
CodeLLaMA-Instruct ✓ 20.18 2.88
Symbol-LLMBase ✓ 70.88 17.15
Symbol-LLMInstruct ✓ 73.75 16.97

Open-source LLMs (13B)
LLaMA-2-Chat ✓ 34.86 7.50
CodeLLaMA-Instruct ✓ 33.15 6.70
Symbol-LLMBase ✓ 71.69 17.31
Symbol-LLMInstruct ✓ 69.83 15.31

Table 10: Results on Table Question Answering.

query into logical forms. Then the solution is dele- 1347

gated to the off-the-shelf baseline methods. Com- 1348

parison results are shown in Figure 6. 1349

The top red bar means the performances using 1350

the annotated logic forms from the text. Note that 1351

since the utilized delegation method is a neural- 1352

based baseline just for a simple evaluation, the 1353

upper boundary does not represent the boundary of 1354

this task. From the figure, Symbol-LLM variants 1355

are approaching it and significantly outperform all 1356

the other baselines. 1357

G.5 Table Question Answering 1358

Table (or database) question answering is also a hot 1359

topic in recent years. Thus, we select two OOD 1360

tasks WikiSQL and WikiTQ for evaluations. The 1361

natural language query is first transformed into an 1362

SQL query and it is executed by an SQL solver over 1363

the given tables or databases under the zero-shot 1364

setting. We report experimental results in Table 10. 1365
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Symbol-LLM series are consistently superior to1366

all open-source and close-source baselines, with1367

over 40% margins in WikiSQL and 3%∼14% ad-1368

vantages in WikiTQ.1369

H Supplementary Experiments1370

H.1 Comparison with Single Domain SFT1371

As discussed above, one of our hypotheses is that1372

various symbols share underlying interrelations,1373

though they are in quite different forms. Thus, we1374

expect that the learning of symbolic knowledge1375

will mutually benefit each other if they are treated1376

in a unified manner.1377

We present the comparison results between sin-1378

gle SFT and unified SFT in Figure 7. The light blue1379

bar denotes the single domain SFT while the dark1380

blue one is the unified SFT. We categorize the text-1381

to-symbol generation tasks into 12 task domains,1382

according to their similarity in symbolic forms.1383

Within one domain, all tasks are tuned together1384

and the performances on test splits are averaged1385

as the single SFT results. To reduce the effect of1386

the tuning strategy, we utilize the Symbol-LLMBase1387

model to measure the results on the unified SFT1388

setting. Each sub-figure in Figure 7 corresponds to1389

one specific domain.1390

In most domains, unified SFT is superior to1391

single-domain SFT. Larger gains are observed in1392

some uncommon symbolic forms, such as PDDL1393

for planning tasks and molecular formulas in AI for1394

Science scenarios. It presents the possibility that1395

unified SFT on various symbols may help extend1396

the model coverage to low-resource cases. It is also1397

worth noting that in some cases, single-domain SFT1398

performs a little better than Symbol-LLMBase. This1399

is because purely overfitting on specific symbolic1400

forms with powerful LLMs is usually easy to get1401

promising results.1402

H.2 Extrapolating to New Symbols1403

In the above section, we introduce symbol-evol1404

strategy to expand sample diversity and facilitate1405

the training of instruction-following ability. Fol-1406

lowing this strategy, we can also automatically gen-1407

erate abundant novel instructions to extrapolate to1408

new symbols. To this end, we further evaluate1409

Symbol-LLM by following novel instructions.1410

The experiments are based on Clevr and SCAN1411

tasks. Applying symbol-evol strategy, we obtain1412

Clevr-evol and SCAN-evol datasets. Evaluation1413

results are presented in Figure 8.1414

From the results, the more complex setting (i.e., 1415

green bar) does not induce a significant decrease in 1416

model performance. Especially, in the Clevr task, 1417

Symbol-LLM even does better given the novel in- 1418

structions. It uncovers that Symbol-LLM follows 1419

the instructions during the reasoning process, in- 1420

stead of merely memorizing the specific symbolic 1421

forms. 1422

H.3 Training Data Scaling 1423

We also explore the scaling law of the training 1424

data. Specifically, we sample Ds in the Injection 1425

stage at a ratio of 10%, 40%, and 70%. And the 1426

performances on the 34 symbolic generation tasks 1427

are reported in Figure 9. 1428

As the proportion of training data increases, the 1429

performance of the model continues to improve 1430

and has not been saturated. This indicates that the 1431

ability to handle symbol tasks is not well stored in 1432

the origin LLaMA-2-Chat model. It requires ad- 1433

ditional symbolic knowledge injection to facilitate 1434

the performances. 1435

Also, the performance differences between 7B 1436

and 13B are not significant. Especially when pro- 1437

vided with more symbolic data, the 7B model is 1438

approaching the 13B model. 1439

I Analysis: Alignment and Uniformity 1440

Beyond performances on symbolic tasks, it is also 1441

required to reveal what leads to superiority. In- 1442

spired by (Wang and Isola, 2020), we extend the 1443

ideas of Alignment and Uniformity to evaluate the 1444

model perception of symbolic knowledge. Align- 1445

ment 6 is utilized to measure the interrelations be- 1446

tween symbolic forms. Uniformity quantifies the 1447

degree of evenness or uniformity in the distribu- 1448

tion of symbolic representations. The concept of 1449

a uniform feature distribution is valuable as it en- 1450

courages a higher information entropy, represent- 1451

ing more information retention. 1452

Alignment Different from the original implemen- 1453

tation (Wang and Isola, 2020) which considers pos- 1454

itive pairs in the contrastive learning, this work 1455

takes the symbolic sequences under the same sym- 1456

bolic form as the positive pairs. For any symbolic 1457

form X, their data distributions are referred to as 1458

PX . The alignment within X can be measured with 1459

the following formula: 1460

6Here, Alignment refers to the concept in contrastive learn-
ing, but is not related to the alignment technique in LLMs.
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Lalign(X) = E
x1,x2

i.i.d∼ PX

∥f(x1)− f(x2)∥2 , (3)1461

where x1 and x2 are samples from the specific sym-1462

bolic form X. f(·) returns the LLM embeddings of1463

the symbolic sequences. ∥·∥ returns the norm of1464

the vector.1465

In the implementation, we select 16 main sym-1466

bolic forms and sample 100 symbolic sequences for1467

each form to measure the alignment. f(·) leverages1468

the mean pooling representation of the last hidden1469

states of the LLM. We average all the alignment1470

scores from the 16 symbols to obtain the final one.1471

Notably, we employ logarithmic operations on the1472

Alignment loss to reduce scale, without impacting1473

their relative comparison.1474

Uniformity Apart from alignment, we also cal-1475

culate the uniformity of the LLMs on symbolic1476
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Figure 9: Training data scaling.

sequences. The evaluation of the uniformity 1477

Luniform is implemented by the following for- 1478

mula: 1479

Luniform = log E
x,y

i.i.d∼ Pdata

e−2∥f(x)−f(y)∥2 , (4) 1480

where the data distribution Pdata covers all the sym- 1481

bolic sequences. f(·) also utilizes the mean pooling 1482

representation of the last hidden states of the LLM. 1483

Leveraging the above definitions, further analy- 1484

sis and comparison on Symbol-LLM are conducted. 1485

The item-wise conclusions are listed as follows: 1486

(1) Symbol-LLM optimizes symbol distinctive- 1487

ness and overall expressiveness in the embed- 1488

ding space (superior Alignment and Uniformity). 1489

Based on the equation 3 and 4, we can assess the 1490

proficiency of LLMs in handling symbols. Fig- 1491

ure 10 presents the visualization of Alignment- 1492
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Figure 10: Visualization of Alignment-Uniformity. Both
metrics are inversely related, which means a lower value
indicates better performance.

Uniformity. The x-axis stands for uniformity while1493

the y-axis is the alignment. Both of these metrics1494

are better when kept as small as possible.1495

From the figure, Symbol-LLMInstruct models per-1496

form consistently better than the original LLaMA-1497

2-Chat models, with obvious merit in Alignment1498

and Uniformity. It can be regarded as an in-depth1499

explanation for the superior performances on sym-1500

bolic generation tasks. Further, it witnesses that the1501

two-stage tuning framework actually corrects the1502

weakness of Uniformity under 7B settings (Symbol-1503

LLMInstruct v.s. Symbol-LLMBase).1504

Both metrics are well optimized with the pro-1505

posed two-stage tuning framework as well as the1506

symbolic data collection. For Symbol-LLMBase1507

models, though the 7B version witnesses some loss1508

in Uniformity, they consistently achieve superior1509

alignment.1510

(2) Symbol-LLM excels at capturing symbolic1511

interrelations.1512

The above calculation of Alignment roughly de-1513

picts the similarity among samples under the same1514

symbolic form. To this end, we extend the idea of1515

Alignment to measure the interrelation between any1516

two symbolic forms X and Y. The score S(X,Y )1517

is calculated based on the following formula:1518

S(X,Y ) = E
x∼PX ,y∼PY

∥f(x)− f(y)∥2 , (5)1519

where x is one symbolic sample in the form of1520

X, while y is one sample in the symbolic form Y.1521

We binarize the scores with the manually defined1522
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Figure 11: Visualization of the alignment relations be-
tween symbols. Dark blue denotes a close relation be-
tween two symbols in the representation.

threshold for a more intuitive illustration. We en- 1523

sure the same threshold under a fair comparison of 1524

the same model size. And the set of thresholds will 1525

not affect the overall conclusion. 1526

The visualization is presented in Figure 11, 1527

where the dark blue denotes the closer relation in 1528

the representation while the light one is the oppo- 1529

site. We make comparisons between the original 1530

LLaMA-2-Chat models and Symbol-LLMInstruct 1531

models, separately for the size of 7B and 13B. 1532

For the original LLaMA model (Figure 11a 1533

and 11c), the representations between different 1534

symbols exhibit significant sparsity. There are 1535

only three pairs of symbolic forms that effec- 1536

tively demonstrate the interrelations in the embed- 1537

ding space, i.e., AMR-PDDL, AMR-SPARQL and 1538

CLEVR-NLMaps. Also, under several symbol sys- 1539

tems (e.g., Bash, FOL), the representation space of 1540

samples is also very scattered. The above observa- 1541

tions demonstrate that previous foundational LLMs 1542

(i.e., LLaMA-2-Chat) lack the ability to capture the 1543

interrelations among symbolic systems. 1544

In comparison, Symbol-LLMInstruct series mod- 1545

els excel at reflecting the interrelations between 1546

symbols. As presented in Figure 11b and 11d: 1) 1547

Symbols exhibiting potential connections are effec- 1548

tively aligned within the representation space, i.e., 1549
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Python-AMR and CheBi-RX. 2) Samples within1550

each symbol are pulled closer together.1551

Combining the above two observations and anal-1552

ysis, the superior performances of Symbol-LLM1553

on the symbolic generation tasks are sourced from1554

better alignment among symbols in the embedding1555

space as well as the optimized uniformity.1556

23


