
Published as a conference paper at ICLR 2025

LEARNING A NEURAL SOLVER FOR PARAMETRIC PDES
TO ENHANCE PHYSICS-INFORMED METHODS

Lise Le Boudec 1 ∗ Emmanuel de Bezenac 2 Louis Serrano 1

Ramon Daniel Regueiro-Espino 1 Yuan Yin 3 † Patrick Gallinari 1, 4

1 Sorbonne Université, CNRS, ISIR, F-75005 Paris, France
2 INRIA Paris, France
3 Valeo.ai, Paris, France
4 Criteo AI Lab, Paris, France

ABSTRACT

Physics-informed deep learning often faces optimization challenges due to the com-
plexity of solving partial differential equations (PDEs), which involve exploring
large solution spaces, require numerous iterations, and can lead to unstable training.
These challenges arise particularly from the ill-conditioning of the optimization
problem caused by the differential terms in the loss function. To address these
issues, we propose learning a solver, i.e., solving PDEs using a physics-informed
iterative algorithm trained on data. Our method learns to condition a gradient
descent algorithm that automatically adapts to each PDE instance, significantly
accelerating and stabilizing the optimization process and enabling faster conver-
gence of physics-aware models. Furthermore, while traditional physics-informed
methods solve for a single PDE instance, our approach extends to parametric PDEs.
Specifically, we integrate the physical loss gradient with PDE parameters, allowing
our method to solve over a distribution of PDE parameters, including coefficients,
initial conditions, and boundary conditions. We demonstrate the effectiveness
of our approach through empirical experiments on multiple datasets, comparing
both training and test-time optimization performance. The code is available at
https://github.com/2ailesB/neural-parametric-solver.

1 INTRODUCTION

Partial Differential Equations (PDEs) are ubiquitous as mathematical models of dynamical phenomena
in science and engineering. Solving PDEs is of crucial interest to researchers and engineers, leading
to a huge literature on this subject (Evans, 2010; Salsa, 2015). Traditional approaches to solving
PDEs such as finite difference, finite element analysis, or spectral methods (Zienkiewicz et al.,
2005; LeVeque, 2007) often come with stability and convergence guarantees but suffer from a high
computational cost. Improving numerical PDE solvers through faster and more accurate algorithms
remains an active research topic (Zienkiewicz et al., 2005).

PDE solvers usually rely on discretization and/or linearization of the problem through various
techniques to simplify the computations. Iterative methods such as Jacobi, Gauss-Seidel, Conjugate
Gradient, and Krylov subspace methods can then be used to solve the resulting systems. Unfortunately,
many PDEs have an ill-conditioned nature, and these iterative processes can demand extensive
computational resources. Preconditioning techniques are often essential to mitigate this, though they
require precise customization to the specific PDE problem, making the development of effective
solvers a significant research endeavor in itself. Yet, the computational demands, time, and expertise
required to develop these algorithms sometimes make them impractical or sub-optimal for specific

∗Corresponding author: lise.leboudec@isir.upmc.fr.
†Work done during post-doc at Sorbonne University.

1

https://github.com/2ailesB/neural-parametric-solver

Published as a conference paper at ICLR 2025

classes of problems. Instead of relying on hand-designed algorithms, researchers have investigated,
as an alternative, the use of machine learning to train iterative PDE solvers Hsieh et al. (2019); Li
et al. (2023a); Rudikov et al. (2024); Kopaničáková et al. (2023). These approaches usually parallel
the classical numerical methods by solving a linear system resulting from the discretization of a PDE,
for example, using finite differences or finite elements. A preconditioner is learned from data by
optimizing a residual loss computed w.r.t. a ground truth solution obtained with a PDE solver. This
preconditioner is used on top of a baseline iterative solver and aims at accelerating its convergence.
Examples of baseline solvers are the conjugate gradient (Li et al., 2023a; Rudikov et al., 2024) or the
Jacobi method Hsieh et al. (2019).

Another recent research direction investigates the use of neural networks for building surrogate
models in order to accelerate the computations traditionally handled by numerical techniques. These
methods fall into two main categories: supervised and unsupervised. The supervised methodology
consists of first solving the PDE using numerical methods to generate input and target data and then
regressing the solution using neural networks in the hope that this surrogate could solve new instances
of the PDE. Many models, such as Neural Operators, lie within this class (Li et al., 2020; Raonić
et al., 2023; Bartolucci et al., 2023) and focus on learning the solution operator directly through
a single neural network pass. Unsupervised approaches, involve considering a neural network as
a solution of the PDE. The neural network parameters are found by minimizing the PDE residual
with gradient descent. Methods such as Physics-Informed Neural Networks (PINNs) (Raissi et al.,
2019), or DeepRitz (E & Yu, 2018) fall under this category. This family of methods is attractive
as it does not rely on any form of data, but only on information from the PDE residual. However,
they exhibit severe difficulties during training (Krishnapriyan et al., 2021; Ryck et al., 2023), often
requiring many optimization steps and sophisticated training schemes (Krishnapriyan et al., 2021;
Rathore et al., 2024). The ill-conditioned nature of PDE residual loss appears again in this context,
making standard optimizers such as Adam inappropriate (see appendix E.6 and appendix E.7 for a
visualization of the ill conditioning of this loss landscape). A detailed review of the existing literature
is described in appendix A.

In this work, we consider having access to the PDE as in unsupervised approaches and also to some
data for training our neural solver. Our objective is to solve the optimization issues mentioned above
by learning an iterative algorithm that solves the PDE from its residual, defined as in the PINNs
framework (see fig. 1). This neural solver is trained from data, either simulations or observations.
Different from the classical ML training problem which aims at learning the parameters of a statistical
model from examples, the problem we handle is learning to learn, Andrychowicz et al. (2016),
i.e. learning an iterative algorithm that will allow us to solve a learning problem. When vanilla
PINNs handle a single PDE instance, requiring retraining for each new instance, we consider the
more complex setting of solving parametric PDEs, the parameters may include boundary or initial
conditions, forcing terms, and PDE coefficients. Each specific instance of the PDE, sampled from the
PDE parameter distribution, will then be considered as a training example. The objective is then to
learn a solver from a sample of the parametric PDE distribution in order to accelerate inference on
new instances of the equation. With respect to unsupervised approaches, our model implements an
improved optimization algorithm, tailored to the parametric PDE problem at hand instead of using a
hand-defined method such as stochastic gradient descent (SGD) or Adam. As demonstrated in the
experimental section, this approach proves highly effective for the ill-posed problem of optimizing
the PINNs objective, enabling convergence in just a few steps. This is further illustrated through
gradient trajectory visualizations in appendix E.6. In the proposed methodology, the neural solver
will make use of the gradient information computed by a baseline gradient method to accelerate
its convergence. In our instantiation, we will use SGD as our baseline algorithm, but the method
could be easily extended to other baselines. Our model deviates from the traditional preconditioning
methods by directly optimizing the non-linear PDE residual loss (Raissi et al., 2019) without going
through the discretization steps. Our contribution includes :

• Setting an optimization framework for learning to iteratively solve parametric PDEs from
physics-informed loss functions. We develop an instantiation of this idea using an SGD
baseline formulation. We detail the different components of the framework as well as
training and inference procedures.

• Evaluating this method on challenging PDEs for physics-informed method, including failure
cases of classical PINNs and showing that it solves the associated optimization issues and
accelerates the convergence.

2

Published as a conference paper at ICLR 2025

• Extending the comparison to several parametric PDEs with varying parameters from 1d
static to 2d+time problems. We perform a comparison with baselines demonstrating a
significant acceleration of the convergence w.r.t. baselines.

Inference

Training

...

Figure 1: Optimization scheme of a physics-informed method with our framework.

2 MOTIVATION

Let us first motivate our objective with a simple example. Physics-informed neural networks (PINNs)
are a promising tool for optimizing neural networks in an unsupervised way to solve partial differential
equations (PDEs). However, these methods are notoriously difficult to train (Krishnapriyan et al.,
2021; Ryck et al., 2023). As an illustrative example of this challenge, let us solve the zero-boundary
Poisson equation in 1d on Ω = [−π, π]. Note that this section is intentionally informal, we provide
rigorous statements and proofs in Appendix B.

Poisson equation, 1d. The solution is given by u(x) = sin(kx).

u′′(x) = −k2 sin(kx),
u(−π) = 0, u(π) = 0. (1)

Physics-informed machine learning relies on an ansatz space of parametric functions, e.g. neural
networks uΘ : Ω 7→ R, minimizing the following loss in order to satisfy the constraints in equation 1:

LPDE = LRes + λLBC, LRes =

∫
Ω

|u′′Θ(x)− f(x)|2 dx,

LBC =
1

2

[
uΘ(−π)2 + uΘ(π)

2
]
.

As a simple example, consider the parametrization given by considering a linear combination of
Fourier features widely used (Tancik et al., 2020)1, uΘ(x) =

∑K
k=−K θkϕk(x), with ϕ0(x) = 1√

2π
,

ϕ−k(x) =
1√
π
cos(kx) and ϕk(x) = 1√

π
sin(kx) for 1 ≤ k ≤ K.

This simple but informative example yields a tractable gradient descent algorithm, as the associated
updates are linear in the parameters, governed by a matrix A and constant b:

Θl+1 = Θl − η∇LPDE(Θl)

= (I − ηA)Θl + b (2)

1Note that even though the ansatz is linear in Θ, it is not linear in x.

3

Published as a conference paper at ICLR 2025

with A whose condition number is κ(A) := λmax(A)/λmin(A) ≥ K4:

A =


04 0 · · · 0
0 14 · · · 0
...

...
. . .

...
0 0 · · · K4

+ λ


ϕ1(π)
ϕ2(π)

...
ϕK(π)

 [ϕ1(π) ϕ2(π) · · · ϕK(π)] . (3)

This implies that the condition number of A increases extremely rapidly in the ratio between the
highest and lowest frequencies of the network. Given that the rate of convergence to the optimum
Θ∗ = Θ0 +A−1b can be bounded as

∥Θl −Θ∗∥2 ≤ (1− c/κ(A))
l ∥Θ0 −Θ∗∥2, (4)

the number of steps N(ε) required to obtain an error of size at most ε, i.e., ∥Θl−Θ∗∥2 ≤ ε increases
linearly in the condition number, i.e. as the fourth power of the maximal frequency K:

N(ε) = O
(
κ(A) ln 1

ϵ

)
= O

(
K4 ln 1

ϵ

)
. (5)

We believe that this simple example clearly illustrates and highlights the fact that PINNs–even when
considering a linear basis, and when the PDE is linear–suffer heavily from ill-conditioning: if 500
steps are required in order to achieve a given error when K = 5, roughly speaking, 312 500 steps are
required for only K = 25. This result extends to more general linear systems of equations and linear
ansatz, as explained in appendix B.

Our objective in the following will be to accelerate the convergence of such systems in this context–as
well as extend them to the non-linear setting. To do so, in the following section, we will learn how to
transform the optimization problem in such a way that the number of gradient descent iterations is
small. The resulting method can be seen as a standalone, iterative solver as it is not only applicable to
different PDEs but can handle a wide range of initial/boundary conditions and parameters.

3 APPROACH

In order to optimize PDE-based losses, we propose to learn a physics-based optimizer that will fulfill
two objectives: (i) allowing a fast test-time optimization given a new PDE and (ii) solving without
retraining parametric PDEs, with varying PDE coefficients γ 2, forcing terms f , and initial/boundary
conditions g using the same model. We present the general framework below and propose an
instantiation that leverages a linear combination of basis functions as the ansatz.

3.1 PROBLEM STATEMENT

Let us consider the following family of boundary value problems parameterized by γ with domain Ω,
representing both space and time, with N a potentially nonlinear differential operator, B the boundary
operator, g the initial/boundary conditions, and source term f :

N (u; γ) = f in Ω, (6)
B(u) = g on ∂Ω. (7)

Note that different PDEs can be represented in this form, amounting to changing the parameters γ.
The goal here is to develop a generic algorithm that is able to solve the above problem, yielding an
approximate solution u given the PDE and different sets of inputs (γ, f, g).

For training, we assume access to a dataset of M problem instances, represented by the PDE
parameters (γi, fi, gi)Mi=1 and to associated target solution (ui)

M
i=1 given on a m point grid (xj)

m
j=1.

The solutions (ui)Mi=1 will be used to train the neural solver. At inference, for a new PDE instance,
only the PDE parameters are provided and we do not have access to solution points (ui)Mi=1.

2Note that PDE coefficients can be functions, an example is the Darcy PDE in section 4.1

4

Published as a conference paper at ICLR 2025

3.2 METHODOLOGY

Physics-informed neural networks consider an ansatz uΘ parametrized by some finite-dimensional
Θ. The parameters Θ are iteratively updated by minimizing a criterion LPDE (e.g. the PDE residual),
which assesses how well the ansatz uΘ meets the conditions specified in equations 6 and 7. As
introduced for example for PINNs (Raissi et al., 2019) or Deep Galerkin method (Sirignano &
Spiliopoulos, 2018), we consider LPDE to be given by the strong formulation of the residual LRes,
plus a boundary discrepancy term3 LBC: LPDE = LRes + λLBC, , λ > 0.

LRes =
∑
xj∈Ω

|N (uΘ; γ)(xj)− f(xj)|2, LBC =
∑

xj∈∂Ω

|B(uΘ)(xj)− g(xj)|2 (8)

As illustrated in section 2, performing gradient descent, or alternatives such as Adam and L-BFGS
on such a highly ill-conditioned loss LPDE leads to severe training difficulties (Krishnapriyan et al.,
2021). The key idea in our work is to improve a baseline gradient descent algorithms with the neural
solver. More precisely starting from a baseline gradient algorithm, SGD in our instantiation, instead
of considering the classical update, we first transform the gradient using a neural network Fϱ with
parameters ϱ, depending on the values of the PDE parameters as well as on other inputs such as the
residual gradient provided by SGD: ∇ΘLPDE. The objective is to transform, through the neural solver
Fϱ, the ill-conditioned problem into a new, simpler problem that requires fewer steps in order to
achieve a given error.

Once the neural solver Fϱ has been learned, inference can be performed on any new PDE as follows
(see inference algorithm 1). Starting from an initial ansatz parameter Θ0, it is iteratively updated
by this solver. At iteration l, the steepest direction of the loss LPDE is first computed with autograd.
Then, the gradient is transformed, in a PDE parameter dependant way, with Fϱ:

Θl+1 = Θl − ηFϱ(∇ΘLPDE(Θl), γ, f, g) (9)

The objective is to iteratively refine the ansatz to closely approximate the true solution after a series
of L iterations, ideally small for efficiency.

This approach can be seen as learning the iterates in a PDE solver to achieve a low loss, similar to the
residual minimization methods in PDEs (Elman et al., 2014). By design, this solver is intended to be
applicable to different PDEs, as well as various sources, boundary conditions, and initial conditions.
This flexibility allows for a broad range of applications, making it a versatile tool in solving complex
PDEs with varying characteristics.

Designed as a parametric PDE solver, Fϱ
4 is trained with input target data from different sets of

PDE parameters, as outlined in section 3.1. Once trained, it will be used without retraining on new
instances of the PDE, i.e. with new values of the PDE parameters. The underlying hypothesis is
that even though the solutions may be different for different inputs and parameters, the solution
methodology remains relatively consistent. This consistency is expected to enhance the algorithm’s
ability to generalize across novel scenarios effectively.

3.3 TRAINING OF A PHYSICS-INFORMED SOLVER

Choice of Ansatz uΘ. A very common choice (Shen et al., 2011) is to consider a family
of basis functions Ψ(x) = {ψi(x)}Ni=1 and consider the ansatz to be given by its linear span
uΘ(x) =

∑N
i=0 θiψi(x). In the following, we consider this linear reconstruction, although our

formulation is generic in the sense that it can also accommodate nonlinear variants. 5

As indicated in eq. (10), the solver Fϱ will be trained from samples of the PDE parameter distribution
(γ, f, g) and from the associated samples of the solution u. We first describe below the inference step
aiming at iteratively updating the parameters Θ of the solution function uΘ while Fϱ is held fixed.
We then describe how the ϱ parameters of the solver are trained. Please refer to fig. 1 that illustrates
the interaction between the two steps.

3Note that other formulations of the loss may also be considered in a straightforward manner.
4In the following we use "solver" with Fϱ as a short-hand to refer to our proposed method.
5Although we have found this may further complicate training.

5

Published as a conference paper at ICLR 2025

Algorithm 1: Inference using the neural PDE
solver.
Data: Θ0 ∈ Rn, PDE (γ, f, g)
Result: ΘL ∈ Rn

for l = 0...L-1 do
Θl+1 = Θl − ηFϱ(∇LPDE(Θl), γ, f, g)

end
return ΘL

Algorithm 2: Training algorithm for learning
to optimize physics-informed losses.
Data: Θ0 ∈ Rn, PDE (γ, f, g), sample values

u(x)
Result: Fϱ

for e = 1... epochs do
for (PDE, x, u) in dataset do

Initialize Θ0

Estimate ΘL from Θ0, (γ, f, g) using
algorithm 1

Reconstruct uΘL
(x)

Update ϱ with gradient descent from
the data loss in eq. (10)

end
end
return Fϱ

Inference The inference step is performed at
fixed values of the solver parameters Fϱ. It con-
sists, for a given instance of the PDE with pa-
rameters (γi, fi, gi), in finding the best Θ with
a few steps of the solver using eq. (9). It is il-
lustrated in fig. 1 - grey box and formalized
in algorithm 1: starting from initial parame-
ters Θ0, we compute the Physical loss LPDE
using the ansatz uΘ0 . The PDE derivatives in
LPDE, can be computed by hand or automatic
differentiation depending on the application 6.
Then, eq. (9) is used to update the parameters
Θ for a given number of steps L. The final
solution is reconstructed using the linear combi-
nation, uΘ(x) =

∑N
i=0 θiψi(x), introduced in

section 3.2 with the computed coefficients ΘL.
Note that inference does not make use of the
sampled target solutions (ui)Mi=1 computed on
the grid points(xj)mj=1.These targets are used
exclusively for training the neural solver.

Training the neural solver Training amounts
to learning the parameters of the solver Fϱ

and is performed with a training set of PDE
parameters and simulation data considered as
ground truth (γi, fi, gi, ui)

M
i=1, corresponding

to PDE instances (i.e. with different parameters
γ and/or forcing terms f and/or initial/boundary conditions g). See fig. 1 - white box and algorithm 2.
The objective is to learn a solver Fϱ able, at inference, to converge to a target solution in a small (2 to
5 in our experiments) number of steps. For that, an optimizer (Adam in our experiments) is used to
update the Fϱ parameters. The training algorithm makes use of the data associated with the different
PDE instances by sampling PDEs in batches and running algorithm 1 on several PDE instances. For
each PDE instance, one starts from an initial parameter value Θ0 and then performs two optimization
steps (see algorithm 2): (i) one consists in solving in the ansatz parameters Θ using the neural solver
using algorithm 1, leading to ΘL; (ii) the second one is the optimization of the solver parameters ϱ.
We train the outputs directly to match the associated ground truth (ui(xj))

m
j=1 using the data loss:

LDATA = Eγ,f,g [||uΘL
− uγ,f,g||] . (10)

The expectation is computed on the distribution of the PDE parameters (γ, f, g). The solution u is
entirely determined by these parameters as indicated by the notation uγ,f,g. ||uΘL

− u|| denotes a
distance between the target (u(xj))mj=1 and the forecast (uΘL

(xj))
m
j=1 with m the trajectory size 7.

In practice, one samples a set of PDE instances (γi, fi, gi) and for each instance a corresponding
sample ui.

Theoretical analysis and relation to preconditioning Analyzing the behavior of the inference
algorithm is challenging due to the non linear nature of the solver. We however could get some
intuition using simplifying assumptions. We build on the ideas introduced in section 2 for the simple
case of the Poisson equation, for which an explicit analytical solution could be derived. We provide
in appendix B, a proof for a more general case and give below in theorem 1 our main result. This
shows that the number of steps induced by F for the proposed algorithm is significantly less than
the number of steps required by the baseline PINNs algorithm. This results is obtained under two
main assumptions: (i) F behaves like its linearization and (ii) the descent operator F used in our
algorithm, allows us to reach the optimum of LDATA.

6In our experiments, we computed the derivative by hand when possible since it fastens computations.
7To simplify the notation, we used a fixed grid size m. However, this framework can be used with different

grid sizes, as well as irregular grids. See Ablation in appendix E, table 13

6

Published as a conference paper at ICLR 2025

Theorem 1. (Convergence rate in the linear case). Given a linear ansatz uΘ(x) =
∑N

i=1 θiϕi(x),
assume the conditioner F behaves like its linearization P = Jacobian(F), meaning that F can be
replaced by P at any point. Let A be the matrix derived from the PDE loss as eq. (3) for the Poisson
equation or eq. (15) in the more general case. Denote by κ(A) the condition number of the matrix A.
The number of steps N ′(ε) required to achieve an error ∥Θl −Θ∗∥2 ≤ ε satisfies:

N ′(ε) = O
(
κ(PA) ln

(
1
ε

))
, (11)

Moreover, if F minimizes LDATA this necessarily implies κ(PA) = 1 ≤ κ(A). Consequently, the
number of steps is effectively reduced, i.e., N ′(ε) ≪ N(ε) with N(ε) the number of steps of the
vanilla PINNs.

Proof. We sketch the main insights here and refer to appendix B for the proof and a detailed analysis.

• Using a linearization of the neural solver, it can be shown that the solver performs as a
pre-conditioner on the linear system.

• Assuming that solution uL provided by the solver reaches the optimum u∗, and that the
training set is such that the learned parameter Θ vectors span the whole parameter space of
the model, then the convergence of the solver is guaranteed at an optimal rate.

• In practice, and as shown in the experiments (section 4), the convergence rate is significantly
improved w.r.t. the reference baseline gradient algorithm.

4 EXPERIMENTS

We present the datasets used in the experiments in section 4.1, a comparison with selected baselines
in section 4.2, and a test-time comparison with different optimizers demonstrating the remarkable
effectiveness of the proposed method in section 4.3. Finally, we make a comparison of the training
and inference time in section 4.4. Experimental details and additional experiments can be found in the
appendices: ablations are in appendix E and additional results and visualization are in appendix E.6,
appendix E.7, and appendix F.

4.1 DATASETS

Table 1: Parameters changed between each trajectory in the
considered datasets.

Dataset Parameters Distribution

Helmholtz
ω U [0.5, 50]
u0 N (0, 1)
v0 N (0, 1)

Poisson
Ai U [−100, 100]
u0 N (0, 1)
v0 N (0, 1)

NLRD ν U [1, 5]
ρ U [−5, 5]

Darcy a(x)
ψ#N (0, (−∆+ 9I)−2)

with ψ = 12 ∗ 1R+
+ 3 ∗ 1R+

Heat

ν U [2× 10−3, 2× 10−2]
Jmax {1, 2, 3, 4, 5}
A U [0.5,−0.5]

Kx, Ky {1, 2, 3}
ϕ U [0, 2π]

We consider several representative
parametric equations for our evalua-
tion. More details about the data gen-
eration are presented in appendix C.
Our objective is to learn a neural
solver able to solve quickly and ac-
curately a new instance of a PDE,
given its parametric form, and the
values of the parameters γ, forcing
terms f and initial/boundary condi-
tions g, i.e. (γ, f, g) 7→ u. Solving
is performed with a few iterations
of the neural solver (algorithm 1).
For that, one trains the neural solver
on a sample of the PDE parame-
ter instances, see table 1 for the pa-
rameter distributions used for each
parametric PDE. Evaluation is per-
formed on unseen sets of parame-
ters within the same PDE family.
Helmholtz: We generate a dataset
following the 1d static Helmholtz
equation u′′(x) + ω2u(x) = 0 with
boundary conditions u(0) = u0 and u′(0) = v0. We generate 1, 024 trajectories with varying ω, u0,

7

Published as a conference paper at ICLR 2025

and v0 with a spatial resolution of 256. Poisson: We generate a dataset following the 1d static Poisson
equation with forcing term: −u′′(x) = f(x) with u(0) = u0 and u′(0) = v0. The forcing term f

is a periodic function, f(x) = π
K

∑K
i=1 aii

2r sin(πx), with K = 16 and r = −0.5. We generate
1, 000 trajectories with varying u0, v0, and f (through changing ai) with a spatial resolution of 64.
Reaction-Diffusion: In Krishnapriyan et al. (2021); Toloubidokhti et al. (2024), the authors propose
a non-linear reaction-diffusion (NLRD). This PDE has been shown to be a failure case for PINNs
(Krishnapriyan et al., 2021). We generate 1, 000 trajectories by varying the parameters of the PDE:
ν and ρ (see table 1). Spatial resolution is 256 and temporal resolution is 100. The PDE is solved
on [0, 1]2. Darcy Flow: The 2d Darcy Flow dataset is taken from (Li et al., 2020) and is commonly
used in the operator learning literature (Li et al., 2023b; Goswami et al., 2022). For this dataset, the
forcing term f is kept constant f = 1, and a(x) is a piece-wise constant diffusion coefficient taken
from (Li et al., 2020). We kept 1, 000 trajectories (on the 5, 000 available) with a spatial resolution
is 64× 64. Heat: The 2d+ t Heat equation is simulated as proposed in (Zhou & Farimani, 2024).
For this dataset, the parameter ν is sampled from U [2× 10−3, 2× 10−2] and initial conditions are a
combination of sine functions with a varying number of terms, amplitude, and phase. A summary
of the datasets and the varying parameters for each PDE are presented in table 1 and more details
on the dataset are provided in appendix C. Experiments have been conducted on NVIDIA TITAN V
(12 Go) for 1d datasets to NVIDIA RTX A6000 GPU with 49Go for 1d + time or 2d datasets. For
all datasets, 800 PDEs are considered during training and 200 for testing. All metrics reported are
evaluated on test samples (i.e. PDEs not seen during training. Coefficients as well as initial and/or
boundary conditions can vary from training).

4.2 COMPARISON WITH BASELINES

We performed comparisons with several baselines including fully data-driven supervised approaches
trained from a data-loss only, unsupervised methods relying only on a PDE loss, and hybrid techniques
trained from PDE + DATA losses. Network size and training details are described in appendix D. In
this experiment, we considered training the models using the training sets (physical losses or MSE
when possible) unless stated otherwise.

Fully supervised We train a standard MLP to learn the mapping (γ, f, g) 7→ Θ, using as loss function
LDATA = Eγ,f,g,u [||uΘL

− uγ,f,g||] with uΘ(x) =
∑N

i=0 θiψi(x), the ψi(.) being fixed B-Spline
basis functions (see appendix D). We denote this baseline as MLP+basis. Unsupervised We compare
our approach with unsupervised physics-informed models (Raissi et al., 2019). While the initial
version of PINNs solves only one PDE instance at a time and requires retraining for each new instance,
we developed here a parametric version of PINNs (PPINNs) where the PDE parameters are fed to the
network (similarly to (Zhang et al., 2023)). Finally, we used (Cho et al., 2024)’s (P2INNs) method as a
physics-informed baseline specifically designed for parametric PDEs. In addition to PINNs-methods,
we also compare our solver to the Physic-informed DeepONet (PO-DeepONet for Physics-Only
DeepONet) (Wang et al., 2021b), which is designed to learn an operator for function-to-function
mappings from physical losses and handles parametric PDEs. The mapping learned for the two
unsupervised baselines is (x, γ, f, g) 7→ uγ,f,g(x). In order to provide a fair comparison with our
optimization method, we fine-tuned the unsupervised baselines for each specific PDE instance for
a few steps (10 or 20). Comparison to preconditioning We compare our approach with vanilla
PINNs (Raissi et al., 2019), i.e. by fitting one PINN per PDE in the test set and averaging the final
errors. We optimize the PDE losses using L-BFGS (Liu & Nocedal, 1989) and refer to this baseline
as PINNs+L-BFGS. As discussed in (Rathore et al., 2024), L-BFGS can be considered as a nonlinear
preconditioning method for Physics-Informed methods and fastens convergence. Finally, we use the
training strategy proposed by (Rathore et al., 2024) i.e. trained PINNs using successive optimizer
(Adam + L-BFGS). This baseline is denoted as PINNs-multi-opt. For these baselines, one model
is trained and evaluated for each PDE in the test set. We report the reader to appendix D for more
details on the training procedure. Hybrid Finally, we compare our proposed method with neural
operators, i.e., models trained to learn mappings (x, γ, f, g) 7→ uγ,f,g(x) using a combination of
physical and data loss: LDATA +LPDE. We use as baselines Physics-Informed Neural Operator (PINO)
(Li et al., 2023b) and Physics-Informed DeepONet (PI-DeepONet) (Goswami et al., 2022). As
already indicated, for a fair comparison, the Unsupervised and Hybrid baselines are fine-tuned on
each specific PDE instance for a few steps (10 on all datasets except for Heat for which 20 steps are
made). Ours We represent the solution uΘ with a linear combination of B-Spline functions for Ψ
(Piegl & Tiller, 1996). This was motivated by the nature of B-Splines which allows to capture local

8

Published as a conference paper at ICLR 2025

phenomena. However, other bases could be used such as Fourier, Wavelet or Chebychev Polynomials.
The neural solver Fϱ is composed of Fourier Layers (FNO) (Li et al., 2020) that allow us to capture
the range of frequencies present in the phenomenon. We refer the reader to appendix D for more
details about the construction of the B-Spline basis and the training hyper-parameters.

Table 2: Results of trained models - metrics in Relative MSE on the test set. Best performances are
highlighted in bold, and second best are underlined.

1d 1d+time 2d 2d+time

Baseline Helmholtz Poisson NLRD Darcy-Flow Heat
Supervised MLP + basis 4.66e-2 1.50e-1 2.85e-4 3.56e-2 6.00e-1

Unsupervised

PINNs+L-BFGS 9.86e-1 8.83e-1 6.13e-1 9.99e-1 9.56e-1
PINNS-multi-opt 8.47e-1 1.18e-1 7.57e-1 8.38e-1 6.10e-1

PPINNs 9.89e-1 4.30e-2 3.94e-1 8.47e-1 1.27e-1
P2INNs 9.90e-1 1.50e-1 5.69e-1 8,38e-1 1.78e-1

PO-DeepONet 9.83e-1 1.43e-1 4.10e-1 8.33e-1 4.43e-1

Hybrid PI-DeepONet 9.79e-1 1.20e-1 7.90e-2 2.76e-1 9.18e-1
PINO 9.99e-1 2.80e-3 4.21e-4 1.01e-1 9.09e-3

Neural Solver Ours 2.41e-2 5.56e-5 2.91e-4 1.87e-2 2.31e-3

Results: Table 2 presents the comparison with the baselines. We recall that the evaluation set is
composed of several PDE instances sampled from unseen PDE parameters (γ, f, g). The proposed
method is ranked first or second on all the evaluations. The most comparable baselines are the
unsupervised methods, since at inference they leverage only the PDE residual loss, as our method
does. Therefore our method should be primarily compared to these baselines. Supervised and
hybrid methods both incorporate data loss and make different assumptions while solving a different
optimization problem.

Table 2 clearly illustrates that unsupervised Physics-informed baselines all suffer from ill-conditioning
and do not capture the dynamics. Compared to these baselines, the proposed method improves at
least by one order of magnitude in all cases. PINNs baseline performs poorly on these datasets
because of the ill-conditioning nature of the PDE, requiring numerous optimization steps to achieve
accurate solutions (appendix D). This is observed on PINNs models for parametric PDEs (PPINNs
and P2INNs) as well as on PINNs fitted on one equation only (PINNs+L-BFGS and PINNs-multi-opt).
We observe that our neural solver has better convergence properties than other Physics-Informed
methods. As will be seen later it also converges much faster.

The supervised baseline performs well on all the PDEs except Poisson and Heat. The data loss used
for training this model is the mean square error which is well-behaved and does not suffer from
optimization problems as the PDE loss does. We note that our method reaches similar or better
performances on every datasets, while relying only on physical information at inference (algorithm 1)
and solving a more complex optimization problem.

The hybrid approaches, do not perform well despite taking benefits from the PDE+DATA loss and
from adaptation steps at test time. Again, the proposed method is often one order of magnitude
better than the hybrids except on NLRD, where it has comparable performances. This shows that the
combination of physics and data losses is also hard to optimize, and suffers from ill-conditioning.

4.3 OPTIMIZATION FOR SOLVING NEW EQUATIONS

The main motivation for our learned PDE solver is to accelerate the convergence to a solution, w.r.t.
predefined solvers, for a new equation. In order to assess this property, we compare the convergence
speed at test time inference with classical solvers, PINNs, and pre-trained PINO as detailed below.
Results are presented in fig. 2 for the Poisson equation with performance averaged on 20 new instances
of the Poisson equation. This experiment is also performed on the other datasets in appendix F.

Baseline optimizers As for the classical optimizer baselines, we used SGD, Adam (Kingma & Ba,
2015), and L-BFGS (Krishnapriyan et al., 2021). These optimizers are used to learn the coefficient of

9

Published as a conference paper at ICLR 2025

the B-Spline basis expansion in the model uΘ(x) =
∑N

i=0 θiψi(x). This provides a direct comparison
to our iterative neural solver. PINNs - We also compare to the standard PINNs (Raissi et al., 2019), i.e.
by fitting one Neural Network (NN) per equation. Note that this requires full training from scratch for
each new equation instance and this is considerably more computationally demanding than solving
directly the parametric setting. This baseline is similar to the Adam optimizer mentioned above,
except that the ansatz for this experience is a multilayer perceptron instead of a linear combination of
a B-Spline basis. Hybrid pre-training strategies - Finally we compare against the hybrid PINO pre-
trained on a set of several parametric PDE instances and then fine-tuned on a new PDE instance using
only the PDE loss associated to this instance. Ours - We train our model as explained in algorithm 2
and show here the optimization process at test time. In order to perform its optimization, our model
leverages the gradient of the physical loss and the PDE parameters (coefficients, initial/boundary
conditions). In this experiment, we use L = 5 steps for a better visualization (whereas, we used
L = 2 in table 2).

0 100 101 102 103 104

Optimization steps

10 4

10 3

10 2

10 1

100

101

M
SE

Test-time optimization evolution of MSE

GD
ADAM
L-BFGS
PINN
PINO
Ours
Objective

Figure 2: Test-time optimization based on the phys-
ical residual loss LPDE for new PDE on Poisson.

Result: fig. 2 compares the number of opti-
mization steps required for the different meth-
ods. Our neural solver converges very fast in
only a few steps (5 here) to a good approxima-
tion of the solution, while all the other meth-
ods require thousands of iterations - we stopped
here at 10, 000 steps. The classical optimizers
(SGD, Adam, L-BFGS) do not converge for a
new equation. The baseline PINNs trained here
from scratch on each new equation show an er-
ratic convergence behavior. Pretrained PINO be-
haves better than the other baselines but still did
not converged after 10, 000 steps. This clearly
demonstrates the potential of our learned solver
to deal with physical losses w.r.t. alternative
pre-defined solvers.

4.4 COMPUTATIONAL TIME

An important aspect of solving PDEs is the computational time required for each solution. Methods
should find a trade-off between achieving high performance and maintaining reasonable computational
costs. In appendix E.3, we provide the training (table 16) and inference (table 17) times for our method
compared to various baselines. Our results show that while our method has comparable training and
inference times to other approaches, it demonstrates substantially better precision (table 2).

5 CONCLUSION

We have presented a PDE solver learned from data that allows fast test-time optimization of physical
losses. Our method succeeds to considerably accelerate the optimization process for the complex
problem of minimizing physical losses and is several orders of magnitude faster than classical hand-
defined optimization methods such as Adam or L-BFGS. Limitations and Future Work While
efficient, the proposed method can be further improved. First, training our iterative algorithms requires
more memory than standard machine learning models due to the complexity of backpropagation
through iterations, which becomes challenging in higher-dimensional bases. Second, we have
focused on solution approximations expressed as a linear expansion in predefined bases. More
expressive representations, such as neural networks, could be explored; however, our preliminary
experiments indicate increased ill-conditioning due to the compositional nature of neural networks.
More sophisticated training schemes could enhance the optimization process. Future work will
investigate these directions to improve scalability and broaden the applicability of the proposed
method. Reproducibility Statement Hyper-parameters, baselines configurations and training details
are detailed in appendix D, tables 4 and 5, and algorithms 1 and 2. The creation of the datasets
is explained in appendix C and tables 1 and 3. Finally, we provide a theoretical analysis of the
model, under an ideal scenario in appendix B. Code is available at https://github.com/2ailesB/
neural-parametric-solver.

10

https://github.com/2ailesB/neural-parametric-solver
https://github.com/2ailesB/neural-parametric-solver

Published as a conference paper at ICLR 2025

ETHICS STATEMENT

Solving PDE is of crucial interest in many applications of science and engineering. While we do not
directly target such real-world applications in this paper, one should acknowledge that solvers can be
used in various ranges of scenarios including weather, climate, medical, aerodynamics, industry, and
military applications.

ACKNOWLEDGMENTS

We acknowledge the financial support provided by DL4CLIM (ANR-19-CHIA-0018-01), DEEPNUM
(ANR-21-CE23-0017-02), PHLUSIM (ANR-23-CE23-0025-02), and PEPR Sharp (ANR-23-PEIA-
0008”, “ANR”, “FRANCE 2030”).

11

Published as a conference paper at ICLR 2025

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando de Freitas. Learning to learn by gradient descent by gradient
descent, 2016.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin
Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable,
Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian
Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano,
Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan, Christian Puhrsch,
Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Shunting Zhang, Michael Suo,
Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou, Richard Zou, Xiaodong Wang, Ajit Mathews,
William Wen, Gregory Chanan, Peng Wu, and Soumith Chintala. Pytorch 2: Faster machine
learning through dynamic python bytecode transformation and graph compilation. In Proceedings
of the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ASPLOS ’24, pp. 929–947, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400703850. doi: 10.1145/3620665.3640366.
URL https://doi.org/10.1145/3620665.3640366.

Francesca Bartolucci, Emmanuel de Bézenac, Bogdan Raonić, Roberto Molinaro, Siddhartha Mishra,
and Rima Alaifari. Are neural operators really neural operators? frame theory meets operator
learning, 2023.

Andrés Beltrán-Pulido, Ilias Bilionis, and Dionysios Aliprantis. Physics-informed neural networks
for solving parametric magnetostatic problems. IEEE Transactions on Energy Conversion, 37(4):
2678–2689, 2022.

Alex Bihlo. Improving physics-informed neural networks with meta-learned optimization. Journal of
Machine Learning Research, 25(14):1–26, 2024. URL http://jmlr.org/papers/v25/23-0356.
html.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark, 2021.

Woojin Cho, Minju Jo, Haksoo Lim, Kookjin Lee, Dongeun Lee, Sanghyun Hong, and Noseong
Park. Parameterized physics-informed neural networks for parameterized pdes, 2024. URL
https://arxiv.org/abs/2408.09446.

Filipe de Avila Belbute-Peres, Yi fan Chen, and Fei Sha. HyperPINN: Learning parameterized
differential equations with physics-informed hypernetworks. In The Symbiosis of Deep Learning
and Differential Equations, 2021. URL https://openreview.net/forum?id=LxUuRDUhRjM.

Weinan E and Bing Yu. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for
Solving Variational Problems. Communications in Mathematics and Statistics, 6(1):1–12, March
2018. ISSN 2194-671X. doi: 10.1007/s40304-018-0127-z.

Howard C. Elman, David J. Silvester, and Andrew J. Wathen. Finite Elements and Fast Iterative
Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University Press, 2nd
edition, 2014. ISBN 9780199678792.

Lawrence C. Evans. Partial differential equations. American Mathematical Society, Providence, R.I.,
2010. ISBN 9780821849743 0821849743.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper_files/paper/2018/file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf.

Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-informed deep
neural operator networks, 2022.

12

https://doi.org/10.1145/3620665.3640366
http://jmlr.org/papers/v25/23-0356.html
http://jmlr.org/papers/v25/23-0356.html
https://arxiv.org/abs/2408.09446
https://openreview.net/forum?id=LxUuRDUhRjM
https://proceedings.neurips.cc/paper_files/paper/2018/file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf

Published as a conference paper at ICLR 2025

Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs), 2016.

Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learning
neural pde solvers with convergence guarantees, 2019.

Xiang Huang, Zhanhong Ye, Hongsheng Liu, Beiji Shi, Zidong Wang, Kang Yang, Yang Li, Bingya
Weng, Min Wang, Haotian Chu, Fan Yu, Bei Hua, Lei Chen, and Bin Dong. Meta-auto-decoder
for solving parametric partial differential equations, 2022.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Alena Kopaničáková, Hardik Kothari, George Em Karniadakis, and Rolf Krause. Enhancing training
of physics-informed neural networks using domain-decomposition based preconditioning strategies.
arXiv preprint arXiv:2306.17648, 2023.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces, 2023.

Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, and Michael W. Ma-
honey. Characterizing possible failure modes in physics-informed neural networks. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
tual, pp. 26548–26560, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
df438e5206f31600e6ae4af72f2725f1-Abstract.html.

Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations:
Steady-State and Time-Dependent Problems. SIAM, Philadelphia, PA, 2007.

Ke Li and Jitendra Malik. Learning to optimize, 2016.

Yichen Li, Peter Yichen Chen, Tao Du, and Wojciech Matusik. Learning preconditioners for conjugate
gradient PDE solvers. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 19425–19439.
PMLR, 23–29 Jul 2023a. URL https://proceedings.mlr.press/v202/li23e.html.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations,
2020.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations, 2023b.

Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical Programming, 45:503–528, 1989. URL https://api.semanticscholar.org/
CorpusID:5681609.

G.R. Liu. Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition. CRC Press,
2009. ISBN 9781420082104. URL https://books.google.fr/books?id=JWqE-LzjvfEC.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, March 2021. ISSN 2522-5839. doi: 10.1038/
s42256-021-00302-5. URL http://dx.doi.org/10.1038/s42256-021-00302-5.

Les Piegl and Wayne Tiller. The NURBS Book. Springer-Verlag, New York, NY, USA, second edition,
1996.

Tian Qin, Alex Beatson, Deniz Oktay, Nick McGreivy, and Ryan P. Adams. Meta-pde: Learning to
solve pdes quickly without a mesh, 2022.

13

https://proceedings.neurips.cc/paper/2021/hash/df438e5206f31600e6ae4af72f2725f1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/df438e5206f31600e6ae4af72f2725f1-Abstract.html
https://proceedings.mlr.press/v202/li23e.html
https://api.semanticscholar.org/CorpusID:5681609
https://api.semanticscholar.org/CorpusID:5681609
https://books.google.fr/books?id=JWqE-LzjvfEC
http://dx.doi.org/10.1038/s42256-021-00302-5

Published as a conference paper at ICLR 2025

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi:
https://doi.org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

Bogdan Raonić, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima
Alaifari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for robust
and accurate learning of pdes, 2023.

Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in
training pinns: A loss landscape perspective. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=mJGiFr8jLa.

Alexander Rudikov, Vladimir Fanaskov, Ekaterina Muravleva, Yuri M. Laevsky, and Ivan Oseledets.
Neural operators meet conjugate gradients: The fcg-no method for efficient pde solving, 2024.

Tim De Ryck, Florent Bonnet, Siddhartha Mishra, and Emmanuel de Bézenac. An operator precondi-
tioning perspective on training in physics-informed machine learning, 2023.

L. S. H. Numerical Analysis of Partial Differential Equations. Pure and Applied Mathematics:
A Wiley Series of Texts, Monographs and Tracts. Wiley, 2012. ISBN 9781118111116. URL
https://books.google.fr/books?id=chinLsuVsYsC.

Sandro Salsa. Partial Differential Equations in Action: From Modelling to Theory - UNITEX).
Springer Publishing Company, Incorporated, 2nd edition, 2015. ISBN 3319150928.

Jie Shen, Tao Tang, and Li-Lian Wang. Spectral Methods: Algorithms, Analysis and Applications.
Springer Publishing Company, Incorporated, 1st edition, 2011. ISBN 354071040X.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics, 375:1339–1364, 2018.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning,
2023.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020.

Maryam Toloubidokhti, Yubo Ye, Ryan Missel, Xiajun Jiang, Nilesh Kumar, Ruby Shrestha, and
Linwei Wang. DATS: Difficulty-aware task sampler for meta-learning physics-informed neural
networks. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=EvyYFSxdgB.

Kiwon Um, Robert Brand, Yun, Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop: Learning
from differentiable physics to interact with iterative pde-solvers, 2021.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies
in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081,
2021a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed deeponets, 2021b.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022. ISSN 0021-9991. doi:
https://doi.org/10.1016/j.jcp.2021.110768. URL https://www.sciencedirect.com/science/
article/pii/S002199912100663X.

14

https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://openreview.net/forum?id=mJGiFr8jLa
https://books.google.fr/books?id=chinLsuVsYsC
https://openreview.net/forum?id=EvyYFSxdgB
https://www.sciencedirect.com/science/article/pii/S002199912100663X
https://www.sciencedirect.com/science/article/pii/S002199912100663X

Published as a conference paper at ICLR 2025

Yuan Yin, Vincent Le Guen, Jérémie Dona, Emmanuel de Bézenac, Ibrahim Ayed, Nicolas
Thome, and Patrick Gallinari. Augmenting physical models with deep networks for com-
plex dynamics forecasting*. Journal of Statistical Mechanics: Theory and Experiment, 2021
(12):124012, December 2021. ISSN 1742-5468. doi: 10.1088/1742-5468/ac3ae5. URL
http://dx.doi.org/10.1088/1742-5468/ac3ae5.

Runlin Zhang, Nuo Xu, Kai Zhang, Lei Wang, and Gui Lu. A parametric physics-informed deep
learning method for probabilistic design of thermal protection systems. Energies, 16(9), 2023. ISSN
1996-1073. doi: 10.3390/en16093820. URL https://www.mdpi.com/1996-1073/16/9/3820.

Anthony Zhou and Amir Barati Farimani. Masked autoencoders are pde learners, 2024. URL
https://arxiv.org/abs/2403.17728.

O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The Finite Element Method: Its Basis and Fundamen-
tals. Butterworth-Heinemann, Oxford; New York, 6th edition, 2005.

15

http://dx.doi.org/10.1088/1742-5468/ac3ae5
https://www.mdpi.com/1996-1073/16/9/3820
https://arxiv.org/abs/2403.17728

Published as a conference paper at ICLR 2025

A DETAILED RELATED WORK

PDE solvers: Many tools for numerically solving PDEs have been developed for years. The
standard methods for PDE include Finite Differences (FD), Finite Volume (FV), Finite Element
Method (FEM), spectral and multigrid methods, and many others (S. H, 2012; Liu, 2009). While these
methods are widely used, they often suffer from a high computational cost for complex problems or
high-precision simulations. To address these challenges, integrating deep learning (DL) into solvers
has emerged as a promising approach. Current solutions include incorporating correction terms
into mathematical solvers to reduce numerical errors (Um et al., 2021). Some work such as Hsieh
et al. (2019); Li et al. (2023a); Rudikov et al. (2024); Kopaničáková et al. (2023) build a method
to directly enhance the convergence of numerical solvers through preconditioner learning. As an
example, Rudikov et al. (2024); Li et al. (2023a) use a neural operator to approximate conditioner for
the flexible conjugate gradient method or Hsieh et al. (2019) for the Jacobi method. Another example
of preconditioner learning lies in Li et al. (2023a), where the author uses GNN to assess symmetry
and positive definiteness.

Unsupervised training: Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) have
been a pioneering work in the development of DL method for physics. In these models, the solution
is a neural network that is optimized using the residual loss of the PDE being solved. However,
this method suffers from several drawbacks. First, as formulated in Raissi et al. (2019), PINNs
can solve one instance of an equation at a time. Any small change in the parameters of the PDE
involves a full retraining of the network. Efforts such as Beltrán-Pulido et al. (2022); Zhang et al.
(2023); Cho et al. (2024) have attempted to address this limitation by introducing parametric versions
of PINNs capable of handling parametric equations, while Huang et al. (2022); Qin et al. (2022)
explores meta-learning approaches. Other approaches to improve PINNs generalization include
using neural operators (Wang et al., 2021b), or hyper-network (de Avila Belbute-Peres et al., 2021).
Moreover, PINNs have shown convergence difficulties: Krishnapriyan et al. (2021) show that PINNs’
losses have complex optimization landscapes, complicating training despite adequate neural network
expressiveness. Approaches like those detailed in Wang et al. (2022) adopt a Neural Tangent Kernel
(NTK) perspective to identify reasons for failure and suggest using adaptive weights during training to
enhance performance. Additionally, studies such as Ryck et al. (2023) demonstrate that PINNs suffer
from ill-conditioned losses, resulting in slow convergence of gradient descent algorithms. Recently,
(Rathore et al., 2024) shows how training strategies can improve the convergence of Physics-Informed
Neural Networks and show that specific optimizers such as L-BFGS act as conditioners on the
physical losses.

Supervised training: In contrast to the unsupervised training of Physics-informed Neural Net-
works, purely data-driven models have demonstrated remarkable capabilities for PDE simulation
and forecasting. In most of the existing literature, the entire solver is replaced by a DL architecture
and focuses on directly computing the solution from a given input data. A widely studied setting is
operator learning which learns mappings between function spaces (Li et al., 2020; Kovachki et al.,
2023; Lu et al., 2021). This method is very efficient, with the downside of relying on quite large
quantities of data for training in order to ensure adequate generalization. Additionally, the neural
network does not have access to the PDE in itself, only indirectly through the data. To ensure physical
constraints in purely data-driven training, hybrid models have been proposed. The latter relies on both
the available physical knowledge and some data. Some examples include the Aphinity model (Yin
et al., 2021) (where the authors assume partial knowledge of the physics and learned the remaining
dynamics from data), Physics-informed Deep Operator Networks (PIDON) (Wang et al., 2021b;
Goswami et al., 2022), Physics-informed Neural Operator (PINO) (Li et al., 2023b) (DeepONet
architecture (Lu et al., 2021) or Neural Operator models (Kovachki et al., 2023; Li et al., 2020)
respectively with a combination of data and physical losses).

Learning to solve: Improving the learning scheme and optimizers through data-driven training has
been studied since Li & Malik (2016) and Andrychowicz et al. (2016). These works propose to learn
the optimizer of neural networks, which are classically optimized through gradient-based algorithms
such as Adam. They focus on improving training strategies for neural networks, which do not suffer
from the optimization issues and ill-conditioning properties of physics-informed losses. We refer the
reader to the survey of Chen et al. (2021) for a complete overview. The closer work to ours is the very

16

Published as a conference paper at ICLR 2025

recent work of Bihlo (2024) in which the author assesses the capabilities of learned optimizers for
physics-informed neural networks. The main difference with our work relies on the problem setting.
Bihlo (2024) considers learning an optimizer on a single equation, and for different neural networks
initialization, while we focus on efficiently solving several instances of parametric PDE with varying
PDE parameters γ, f, g.

B THEORETICAL ANALYSIS OF OUR METHOD AND PINNS

Setting. We consider the following linear PDE:

Du(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω,
(12)

where Ω ⊂ Rd is an open bounded domain, D is a linear differential operator, f(x) is a given function
in Ω, and g(x) is a given function on the boundary ∂Ω.

B.1 THEORETICAL ANALYSIS OF PINNS

Our aim is to find an approximate solution uΘ(x), parameterized by Θ ∈ RN , Θ = {θi}Ni=1 that
minimizes the loss function:

LPDE(Θ) = LRes(Θ) + λLBC(Θ), (13)

where:

LRes(Θ) =
1

2

∫
Ω

(DuΘ(x)− f(x))
2
dx, LBC(Θ) =

1

2

∫
∂Ω

(uΘ(x)− g(x))
2
dx,

and λ > 0 is a regularization parameter balancing the PDE residual and boundary conditions.

We perform gradient descent updates with step size η. At step k > 0, updates write as:

Θk+1 = Θk − η∇ΘLPDE(Θk).

We establish the following theorem regarding the convergence rate of gradient descent.

Theorem 2 (Convergence rate of PINNs). Given a linear ansatz uΘ(x) =
∑N

i=1 θiϕi(x), the
number of steps N(ε) required to achieve an error ∥Θk −Θ∗∥2 ≤ ε satisfies:

N(ε) = O
(
κ(A) ln

(
1
ε

))
, (14)

where κ(A) is the condition number of the matrix A ∈ Rn×n defined by:

Ai,j =

∫
Ω

(Dϕi(x)) (Dϕj(x)) dx+ λ

∫
∂Ω

ϕi(x)ϕj(x)dx. (15)

Proof. Since uΘ(x) =
∑N

i=1 θiϕi(x), we have:

∂uΘ(x)

∂θi
= ϕi(x),

∂(DuΘ(x))
∂θi

= Dϕi(x).

The gradient of the residual loss is:

∇ΘLRes(Θ) =

∫
Ω

(DuΘ(x)− f(x))Dϕ(x) dx,

17

Published as a conference paper at ICLR 2025

where Dϕ(x) is the vector with components Dϕi(x). Similarly, the gradient of the boundary loss is:

∇ΘLBC(Θ) =

∫
∂Ω

(uΘ(x)− g(x))ϕ(x) dx,

where ϕ(x) is the vector of basis functions evaluated at x. Therefore, the total gradient is:

∇ΘLPDE(Θ) = AΘ− b,

where the (positive, semi-definite) matrix A and vector b are defined as:

Ai,j =

∫
Ω

(Dϕi(x)) (Dϕj(x)) dx+ λ

∫
∂Ω

ϕi(x)ϕj(x)dx,

bi =

∫
Ω

f(x)Dϕi(x) dx+ λ

∫
∂Ω

g(x)ϕi(x) dx.

(16)

Thus, the gradient descent update becomes:

Θk+1 = Θk − η(AΘk − b).

Subtracting Θ∗ (the optimal parameter vector satisfying AΘ∗ = b) from both sides:

Θk+1 −Θ∗ = Θk −Θ∗ − ηA(Θk −Θ∗).

Simplifying:
Θk+1 −Θ∗ = (Id − ηA)(Θk −Θ∗).

By recursively applying the update rule, we obtain:

Θk −Θ∗ = (Id − ηA)k(Θ0 −Θ∗).

Since A is symmetric positive definite, it has eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn with λi > 0. To
ensure convergence, we require 0 < η < 2

λmax(A) . Choosing η = c
λmax(A) with 0 < c < 2, we have:

1− ηλi = 1− c
λi

λmax(A)
.

The spectral radius ρ of Id − ηA is:

ρ = max

{∣∣∣∣1− c
λmin(A)

λmax(A)

∣∣∣∣ , |1− c|
}

= max

{
1− c

κ(A)
, |1− c|

}
,

where κ(A) = λmax(A)
λmin(A) is the condition number of A. By choosing 0 < c < 1, we ensure |1− c| < 1,

and since κ(A) ≥ 1, we have 1− c
κ(A) < 1. Thus, the convergence factor is:

ρ = 1− c

κ(A)
.

Therefore:

∥Θk −Θ∗∥2 ≤
(
1− c

κ(A)

)k

∥Θ0 −Θ∗∥2.

To achieve ∥Θk −Θ∗∥2 ≤ ε, the number of iterations N(ε) satisfies:

18

Published as a conference paper at ICLR 2025

N(ε) ≥ ln (ε/∥Θ0 −Θ∗∥2)

ln
(
1− c

κ(A)

) .

Using the inequality ln(1− x) ≤ −x for 0 < x < 1, we get:

N(ε) ≤ κ(A)

c
ln

(
∥Θ0 −Θ∗∥2

ε

)
.

Thus:
N(ε) = O

(
κ(A) ln

(
1
ε

))
.

We have shown that for a linear ansatz uΘ(x) =
∑N

i=1 θiϕi(x), the convergence rate of gradient
descent depends linearly on the condition number κ(A) of the system matrix A. A large condition
number impedes convergence, requiring more iterations to achieve a desired accuracy ε.

B.2 THEORETICAL ANALYSIS OF OUR METHOD

In practice, we often work with multiple data points. For each data point, there is an associated
parameter vector Θ ∈ RN . We are interested in the iterative update where the gradient is transformed
by a neural network F :

Θl+1 = Θl − ηF (∇ΘLPDE(Θl)) , (17)

where Θl represents the parameter vector at iteration l. Recall that F is trained to minimize the loss
after L iteration steps for M data points:

LDATA =
1

m

M∑
k=1

∥∥∥uΘ(k)
L

− u∗k

∥∥∥2
2
, (18)

Theorem 3. (Convergence rate of our method). Given a linear ansatz uΘ(x) =
∑N

i=1 θiϕi(x),
assume F behaves like its linearization P = ∂F

∂v

∣∣
v=0

. The number of steps N ′(ε) required to achieve
an error ∥Θl −Θ∗∥2 ≤ ε satisfies:

N ′(ε) = O
(
κ(PA) ln

(
1
ε

))
, (19)

Moreover, if F minimizes LDATA this necessarily implies κ(PA) = 1 ≤ κ(A). Consequently, the
number of steps is effectively reduced, i.e., N ′(ε) ≪ N(ε).

Proof. Since F behaves like its linearization P , the gradient descent update becomes (refer to proof
of Theorem 2 for steps):

Θl+1 = Θl − ηP (AΘl − b).

Let Θ∗ be the optimal parameter vector minimizing LPDE. Then, the difference between the parameter
vector at iteration l and the optimal parameter vector is:

Θl+1 −Θ∗ = Θl −Θ∗ − ηPA(Θl −Θ∗) = (Id − ηPA)(Θl −Θ∗).

By recursively applying this update until the final step L, we obtain:

19

Published as a conference paper at ICLR 2025

ΘL −Θ∗ = (Id − ηPA)L(Θ0 −Θ∗).

Since we have multiple data points, each with its own parameter vector, we consider the concatenation
when necessary. Let’s introduce Ξl as the matrix whose columns are the parameter vectors:

ΞL = [Θ
(1)
L ,Θ

(2)
L , . . . ,Θ

(m)
L].

Similarly, Ξ∗ contains the optimal parameter vectors for each data point. The update for all data
points can be written collectively:

ΞL − Ξ∗ = (Id − ηPA)L(Ξ0 − Ξ∗).

Since F minimizes LDATA, we have ΞL = Ξ∗, implying:

(Id − ηPA)L(Ξ0 − Ξ∗) = 0.

Given that the values of Ξ0 are iid and sampled randomly from a continuous distribution, because the
set of singular matrices has measure zero, the square matrix (Ξ0 − Ξ∗)(Ξ0 − Ξ∗)⊤ is full rank (i.e.,
invertible), with probability 1. Thus, the only way for the above equality to hold is if:

(Id − ηPA)L = 0.

This means Id − ηPA is nilpotent of index L. Consequently, all eigenvalues of Id − ηPA are zero,

implying that all eigenvalues of PA are equal to
1

η
, leading to κ(PA) = λmax(PA)/λmin(PA) = 1,

which is the optimal condition number. Referring to the convergence analysis in Theorem 2, we have:

N ′(ε) ≤ κ(PA)

c
ln

(
∥Ξ0 − Ξ∗∥2

ε

)
.

Which directly implies
N ′(ε) = O

(
κ(PA) ln

(
1
ε

))
, (20)

With κ(PA) = 1, this leads us to the desired result:

N ′(ε) = O
(
ln
(
1
ε

))
≪ O

(
κ(A) ln

(
1
ε

))
=: N(ϵ),

Thus, the number of iterations required is significantly reduced compared to the case without the
neural network preconditioner.

Discussion The convergence proofs for our method fundamentally rely on the assumption of
linearity in the underlying problems. It is important to note that the theoretical analysis does not
extend to non-linear cases. Consequently, for non-linear scenarios, the theory should be viewed
primarily as a tool for building intuition or providing motivation, rather than a definitive proof. This
is due to the lack of established methods for rigorously studying the non-linear regime, as no known
results currently address such cases.

20

Published as a conference paper at ICLR 2025

Under these conditions:

• This optimal condition number implies that convergence is not only guaranteed but also
optimal, requiring fewer iterations.

• Guaranteed Convergence: The method reliably achieves convergence to the optimal
solution due to the reduced condition number.

• Optimal Convergence Speed: With κ(PA) = 1, the neural network provides an enhanced
convergence rate, resulting in fewer required iterations compared to the original system
without the neural network.

21

Published as a conference paper at ICLR 2025

C DATASET DETAILS

For all datasets, we kept 800 samples for training and 200 as testing examples (except otherwise
stated in the experiments).

C.1 HELMHOLTZ

We generate a dataset following the 1d static Helmholtz equation eq. (21). For x ∈ [0, 1[,
u(x)′′ + ω2u(x) = 0,

u(0) = u0,

u′(0) = v0.

(21)

The solution can be analytically derived: u(x) = α cos(ωx+β), with β = arctan(−v0
ωu0

), α = u0

cos(β)

and directly computed from the PDE data. We generate 1, 024 trajectories for training and 256 for
testing with u0, v0 ∼ N (0, 1), and ω ∼ U(0.5, 50) and compute the solution on [0, 1] with a spatial
resolution of 256. For training, we keep 800 samples and use the complete dataset for the additional
experiments presented in figs. 12a and 12b. Moreover, we sub-sample the spatial resolution by 4 and
keep 64 points for training.

(a) (b)

Figure 3: Samples from the Helmholtz Dataset.

C.2 POISSON

We generate a dataset following the 1d static Poisson equation eq. (22) with forcing term. For
x ∈ [0, 1[, 

−u′′(x) = f(x),

u(0) = u0,

u′(0) = v0.

(22)

We chose f to be a non-linear forcing term: f(x) = π
K

∑K
i=1 aii

2r sin(πx), with ai ∼ U(−100, 100),
we used K = 16, r = −0.5, and solve the equation using a backward finite difference scheme. We
generate 1, 000 trajectories with u0, v0 ∼ N (0, 1) and compute the solution on [0, 1] with a spatial
resolution of 64.

Reaction-Diffusion We use a non-linear reaction-diffusion used in (Krishnapriyan et al., 2021;
Toloubidokhti et al., 2024). This PDE has been shown to be a failure case for PINNs (Krishnapriyan
et al., 2021). The PDE states as follows:

∂u(t, x)

∂t
− ν

∂2u(t, x)

∂x2
− ρu(t, x)(1− u(t, x) = 0, (23)

u(0, x) = e−32(x−1/2)2 . (24)

22

Published as a conference paper at ICLR 2025

(a) (b)

Figure 4: Samples from the Poisson Dataset.

We generate 800 trajectories by varying ν in [1, 5] and ρ in [−5, 5]. Spatial resolution is 256 and
temporal resolution is 100, which we sub-sample by 4 for training, leading to a spatial resolution of
64× 25. The PDE is solved on [0, 1]2 as in (Toloubidokhti et al., 2024).

(a) (b)

Figure 5: Samples from the Reaction-Diffusion Dataset.

Reaction-Diffusion with initial conditions: To complexify the setting, we also change the initial
condition of the problem (NLRDIC in the following). The initial condition is expressed as follows:

u(x, 0) =

3∑
i=1

aie
− (x−h/4

h)
2

4 . (25)

Where ai are randomly chosen in [0, 1] and h = 1 is the spatial resolution.

23

Published as a conference paper at ICLR 2025

(a) (b)

Figure 6: Samples from the Reaction-Diffusion Dataset with initial conditions changed.

C.3 DARCY FLOW

The 2d Darcy Flow dataset is taken from (Li et al., 2020) and is commonly used in the operator
learning literature (Li et al., 2023b; Goswami et al., 2022).

−∇.(a(x)∇u(x)) = f(x) x ∈ (0, 1)2, (26)

u(x) = 0 x ∈ ∂(0, 1)2. (27)

For this dataset, the forcing term f is kept constant f = 1, and a(x) is a piece-wise constant diffusion
coefficient taken from (Li et al., 2020). We kept 1, 000 trajectories (on the 5, 000 available) with a
spatial resolution of 64× 64.

(a) (b)

Figure 7: Samples from the Darcy Dataset.

C.4 HEAT

As proof that our method can handle 2d + time, we consider the dataset proposed by (Zhou &
Farimani, 2024).

∂u(x, y, t)

∂t
− ν∇2u(x, y, t) = 0, (28)

u(x, y, 0) =

J∑
j=1

Aj sin(
2πlxjx

L
+

2πlyjy

L
+ ϕi). (29)

Where L = 2, ν is randomly chosen between [2 × 10−3, 2 × 10−2], Aj in [−0.5, 0.5], lxj , lxy are
integers in {1, 2, 3} and ϕ is in [0, 2π]. As a difference with (Zhou & Farimani, 2024), we randomly

24

Published as a conference paper at ICLR 2025

chose J between 1 and Jmax = 5 to have more diversity in the represented frequencies in the data.
The PDEs are sampled with spatial resolution 64 in x and y and temporal resolution 100. However,
during training the spatial resolution are subsampled by 4 and the coordinates are re scaled between 0
and 1. As for other PDEs, we use 800 trajectories for training and 200 for testing.

(a) (b)

Figure 8: Samples from the Heat dataset.

C.5 ADDITIONAL DATASET: ADVECTION

The dataset is taken from (Takamoto et al., 2023).

∂u(t, x)

∂t
+ β

∂u(t, x)

∂x
= 0, x ∈ (0, 1), t ∈ (0, 2], (30)

u(0, x) = u0(x), x ∈ (0, 1). (31)

Where β is a constant advection speed, and the initial condition is u0(x) =
∑

ki=k1...kN
Ai sin(kix+

ϕi), with ki = 2πni

Lx
and ni are randomly selected in [1, 8]. The author used N = 2 for this PDE.

Moreover, Ai and ϕi are randomly selected in [0, 1] and (0, 2π) respectively. Finally, Lx is the size
of the domain (Takamoto et al., 2023).

The PDEBench’s Advection dataset is composed of several configurations of the parameter
β ({0.1, 0.2, 0.4, 0.7, 1, 2, 4, 7}), each of them is composed of 10, 000 trajectories with vary-
ing initial conditions. From these datasets, we sampled a total of 1, 000 trajectories for β ∈
{0.2, 0.4, 0.7, 1, 2, 4} (which gives about 130 trajectories for each β). This gives a dataset with
different initial conditions and parameters. Moreover, during training, we sub-sampled the trajectories
by 4, leading to a grid of resolution 25 for the t-coordinate and 256 for the x-coordinate.

(a) (b)

Figure 9: Samples from the Advections Dataset.

25

Published as a conference paper at ICLR 2025

C.6 SUMMARY OF PROBLEM SETTINGS CONSIDERED

A summary of the datasets and parameters changing between 2 trajectories is presented in table 3.

Table 3: Parameters changed between each trajectory in the considered datasets in the main part of
the paper as well as additional datasets (Advections and NLRDIC).

Dataset Changing PDE data Range / Generation

Helmholtz
ω [0.5, 50]
u0 N (0, 1)
v0 N (0, 1)

Poisson
Ai [−100, 100]
u0 N (0, 1)
v0 N (0, 1)

Reaction-diffusion ν [1, 5]
ρ [−5, 5]

Darcy a(x)
ψ#N (0, (−∆+ 9I)−2)

with ψ = 12 ∗ 1R+
+ 3 ∗ 1R+

Heat

ν [2× 10−3, 2× 10−2]
Jmax {1, 2, 3, 4, 5}
A [0.5,−0.5]

Kx, Ky {1, 2, 3}
ϕ [0, 2π]

Advection

β {0.2, 0.4, 0.7, 1, 2, 4}
Ai [0, 1]
ϕi [0, 2π]
ki {2kπ}8k=1

NLRDIC
ν [1, 5]
ρ [−5, 5]
ai [0, 1]

26

Published as a conference paper at ICLR 2025

D IMPLEMENTATION DETAILS

We add here more details about the implementation and experiments presented in section 4.

We implemented all experiments with PyTorch (Ansel et al., 2024). We estimate the computation
time needed for development and the different experiments to be approximately 300 days.

D.1 B-SPLINE BASIS

We chose to use a B-Spline basis to construct the solution. We manually build the spline and compute
its derivatives thanks to the formulation and algorithms proposed in (Piegl & Tiller, 1996). We used
Splines of degree d = 3 and constructed the Splines with 2 different configurations:

• Take N + d+ 1 equispaced nodes of multiplicity 1 from d
N to 1 + d

N . This gives a smooth
local basis with no discontinuities (see fig. 10a) represented by a shifted spline along the
x-axis (denoted as shifted in the following).

• Use N + 1 − d nodes of multiplicity 1 and 2 nodes of multiplicity d (typically on the
boundary nodes: 0 and 1). This means that nodes 0 and 1 are not differentiable (see fig. 10b).
We call this set-up equispaced.

(a) (b)

Figure 10: B-spline basis with N = 10 terms with shifted spline (Left) and higher multiplicity nodes
(Right). Dashed lines represent nodes’ position with color the darker, the higher the multiplicity.

Higer-dimension basis For 1d + time, 2d dataset, and 2d + time we build a 2 (or 3) dimensional
B-spline basis, i.e., we treat the time coordinates as spatial ones. To build such bases, we compute the
Cartesian product between the 2 (or 3) 1d-bases, 1 per dimension. This means that for a 2d dataset,
for which we chose to use bases of size N1 and N2 for each coordinate, the resulting basis will have
N1 +N2 +N1 ∗N2 terms. This method makes the training more costly and several techniques to
improve its scalability could be used. For 3d datasets, the number of terms in the basis is cubic.

D.2 TRAINING DETAILS

In our experiments, neural networks are trained using the Adam optimizer. For network optimization,
we employ a smooth l1-loss for our solver while for other baselines, we use MSE loss and/or physical
losses. All models are trained for at least 1, 500 epochs on datasets composed of some sampling of γ
and/or f and/or g. If not stated otherwise, we train our proposed method for 750 epochs and baselines
for 1, 500 epochs. We use the Adam optimizer and an initial learning rate of 0.001. We use an
exponential learning rate scheduler that lowers the learning rate by 0.995 every epoch. Experiments
are conducted on NVIDIA TITAN V (12 Go) for 1d datasets and NVIDIA RTX A6000 GPU with
49Go for 1d + time, 2d datasets or 2d + time. We recall in algorithm 3 the pseudo-code for training
our proposed method.

27

Published as a conference paper at ICLR 2025

Algorithm 3: Training algorithm for learning to optimize physics-informed losses.
Data: Θ0 ∈ Rn, PDE (γ, f, g), sample values u(x)
Result: Fϱ

for e = 1... epochs do
for (PDE, x, u) in dataset do

Initialize Θ0

Estimate ΘL from Θ0, (γ, f, g) using Algorithm 1
Reconstruct uΘL

(x)
Update the parameters ϱ of F with gradient descent from the data loss in Equation 10.

end
end
return Fϱ

We make use of two nested components: the solver for providing the approximate solution to the
PDE and the optimizer that conditions the training of the solver. Both are using gradient descent but
with different inputs and objectives. The former optimizes the PDE loss (inner loop), while the latter
optimizes the gradient steps of the solver through conditioning (outer loop). Optimization of the two
components proceeds with an alternate optimization scheme. In particular, this implies that the map
Fϱ is kept fixed during the inner optimization process.

D.3 MODELS

We present here the training details for our model and the baseline. The results can be found in
table 2. In all our experiments, we use a GeLU (Hendrycks & Gimpel, 2016) activation function. The
details of the model architecture on each dataset are presented in table 4.

Hyperparameters for Helmholtz: For the baselines, we empirically searched hyperparameters to
allow the network to handle the high frequencies involved in the Helmholtz dataset. Unfortunately,
other network architectures did not improve the results. We proceed similarly for other datasets.

Training of PPINNs: For the Helmholtz dataset, we trained our model for 2000 epochs with a
plateau learning rate scheduler with patience of 400 epochs. For the Poisson dataset, we trained
our parametric PINN model for 5000 epochs with a cosine annealing scheduler with a maximum
number of iterations of 1000. For the Reaction-diffusion dataset, we consider an initial learning rate
of 0.0001 instead of 0.001. Finally, P2INNs is trained for 5, 000 epochs using the Adam optimizer
and an exponential scheduler with patience 50.

PINNs baselines (PINNs + L-BFGS and PINNs-multi-opt): The conditioning of the problem
highly depends on the parameters of the PDE and initial/boundary conditions. This can lead to
unstable training when optimizing PINNs, requiring specific parameter configurations for each PDE.
To avoid extensive research of the best training strategy, we found a configuration that allowed a good
fitting of most of the testing dataset. This means that in the values reported in table 2, we removed
trainings for which the losses exploded (only a few hard PDEs were removed, typically between
none to 20). This prevents us from extensive hyper-parameter tuning on each PDE. Please note that
this lowers the reported relative MSE, thus advantaging the baseline. We detail in tables 5 and 6 the
hyper-parameters for each dataset.

Basis configuration: For all datasets, we use Splines of degree 3, built with shifted nodes. We
change the number of terms in the basis depending on the problem considered. For the 1d-problem,
we use 32 terms. For the 2d-problem, 40 elements are in the basis of each dimension, except for
Reaction-Diffusion where the variable t has 20 terms. Moreover, during training, we use the projection
of the initial conditions and/or parameters and/or forcing terms function in the basis as input to the
networks. Finally, for experiments using the Heat dataset (i.e. 3d basis), we used 15 terms for the x
and y spatial coordinates and 10 terms for the t-coordinate.

28

Published as a conference paper at ICLR 2025

Table 4: Architecture details of our model and baselines

Model Architecture
Dataset

1d 1d + time 2d 2d + time

Helmholtz Poisson NLRD Darcy Heat

PINNs MLP depth 3 3 3 3 3
MLP width 256 256 256 256 256

PPINNs MLP depth 8 3 5 3 3
MLP width 64 256 256 256 256

PO-DeepONet

Branch Net depth 3 2 5 5 5
Branch Net width 256 256 256 256 256
Trunk Net depth 3 2 5 5 5
Trunk Net width 256 256 256 256 256

P2INNs

Enc params depth 4 4 4 4 4
Enc params width 256 256 256 256 256

Emb params 128 128 128 128 128
Enc coord depth 3 3 3 3 3
Enc coord width 256 256 256 256 256

Emb coord 128 128 128 128 128
Dec depth 6 6 6 6 6
Dec width 256 256 256 256 256
Activations GeLU GeLU GeLU GeLU GeLU

MLP + basis MLP depth 5 5 5 5 5
MLP width 256 256 1,024 1,024 1,024

PI-DeepONet

Branch Net depth 3 2 5 5 5
Branch Net width 256 256 256 256 5
Trunk Net depth 3 2 5 5 5
Trunk Net width 256 256 256 256 256

PINO

FNO depth 3 3 4 3 3
FNO width 64 64 64 64 64

FNO modes 1 16 16 10 20 7
FNO modes 2 - - 5 20 7
FNO modes 3 - - - - 5
FNO fc dim 64 64 64 64 64

Ours

FNO depth 3 3 3 3 3
FNO width 64 64 64 64 64

FNO modes 1 16 16 10 20 7
FNO modes 2 - - 5 20 7
FNO modes 3 - - - - 5
FNO fc dim 64 64 64 64 64

Table 5: Hyperparameters for PINNs+L-BFGS baseline.

Hyper-parameter
Dataset

1d 1d + time 2d 2d + time

Helmholtz Poisson NLRD Darcy Heat
epochs 1, 000 1, 000 1, 500 1, 500 1, 000

learning rate 1e-4 1e-5 1e-4 1e-3 1e-3

29

Published as a conference paper at ICLR 2025

Table 6: Hyperparameters for PINNs-multi-opt baseline.

Hyper-parameter
Dataset

1d 1d + time 2d 2d + time

Helmholtz Poisson NLRD Darcy Heat
epochs Adams 800 800 800 1, 200 1, 200

epochs L-BFGS 200 200 200 300 300
epochs total 1, 000 1, 000 1, 000 1, 500 1, 500

learning rate Adam 1e-4 1e-5 1e-4 1e-3 1e-3
learning rate L-BFGS 1 1 1e-3 1 1

30

Published as a conference paper at ICLR 2025

E ADDITIONAL EXPERIMENTS

E.1 ABLATION

We experimentally show some properties of our iterative method. These evaluations are made on a
test set composed of several instances of PDE with varying configurations (γ, f, g) that are unseen
during training. These experiments are performed on the Helmholtz equation which appeared as
one of the most complex to optimize in our evaluation. We used L = 5 in our method for a better
visualization, unless stated otherwise.

Error w.r.t the number of steps L On fig. 11, we show that having more optimizer steps allows
for a better generalization. However, we observed in our experiments that the generalization error
stabilizes or even increases after the proposed 5 steps. This limitation of the solver should be
investigated in future work in order to allow the model to make more iterations. Note that for this
experiment, we lowered batch size (and adapted the learning rate accordingly) when the number of
steps increased (fig. 11).

Figure 11: Error on the test set (Helmholtz equation) w.r.t the number of iterations

Error w.r.t the number of training samples On figs. 12a and 12b, we show that compared to
other physics-informed baselines, our solver requires less data to learn to solve PDE. Note that in this
simple example, the MLP+basis baseline also performed well. However, as shown in table 2, this is
not the case for all the datasets. The contribution of the iterative procedure clearly appears since with
2× less data, our model performs better than this baseline.

102 103

Number of training samples.

10 2

10 1

100

Re
lM

SE

Data requirement comparison.

Ours
MLP+basis
PINO
PI-DeepONet

(a)

102

Number of training samples.

10 2

10 1

Re
lM

SE

Data requirement comparison.

Ours
MLP+basis
PINO
PI-DeepONet

(b)

Figure 12: Relative MSE on the test set w.r.t the number of training samples on Helmholtz (left) and
Darcy (right) datasets.

31

Published as a conference paper at ICLR 2025

Optimization with LPDE Table 7 shows that optimizing our network with physical loss greatly
complicates training. Indeed, adding an ill-conditioned loss to the standard MSE makes training
ill-conditioned.

Table 7: How the physical loss complexifies training and lowers performances. Metrics in Relative
MSE on the test set of Helmholtz equation.

Input Relative MSE

LPDE + LDATA 1.11
LDATA 2.19e-2

Iterative update & SGD-based update In table 8, we compare two optimizer configurations.
"Direct" means that the network directly predicts the parameters for the next step (i.e. Θk+1 =
Fϱ(∇LPDE(Θk), γ, f, g)), while "GD", corresponds to the update rule described before and using
SGD as the base algorithm Θk+1 = Θk − ηFϱ(∇LPDE(Θk), γ, f, g). The latter clearly outperforms
the direct approach and shows that learning increments is more efficient than learning a direct mapping
between two updates. As shown in table 8 increasing the number of steps improves the performance
(shown here for 1 and 5 update steps). However, the performance does not improve anymore after a
few steps (not shown here).

Table 8: Comparison of different optimizer configurations for solving the Helmholtz equation. Metrics
in Relative MSE on the test set.

Relative MSE

N-steps Direct GD

1-step 1.08e-1 8.5e-2
5-step 9.07e-2 2.19e-2

Optimization with different inner learning rates In table 9, we study the performance of our
proposed method with different inner learning rates η. As expected, a higher learning rate leads to
better performances since the optimization is taking bigger steps.

Table 9: Ablation on the inner learning rate. Metrics in Relative MSE on the test set of Helmholtz
equation.

learning rate Relative MSE

0.01 7.32e-2
0.1 4.93e-2
1 2.19e-2

Quantifying the importance of input feature for the learned solver As indicated in eq. (9) the
inputs of our learned solver are (γ, f, g,∇LPDE(θL)). We performed experiments by removing either
γ or ∇LPDE(θl) from the input (For the Helmholtz equation, there is no forcing term f). The BC g
are kept since they are part of the PDE specification and are required to ensure the uniqueness of the
solution. This experiment (table 10) illustrates that conditioning on the PDE parameters γ is indeed
required to solve the parametric setting. Without γ, the solver has no hint on which instance should
be used. The addition of the gradient information, ∇, which is at the core of our method, is also
crucial for improving the convergence and validates our setting.

32

Published as a conference paper at ICLR 2025

Table 10: Effect of using the gradient as input w.r.t the PDE parameters. Metrics in Relative MSE on
the test set of Helmholtz equation.

Input Relative MSE

γ + g 3.75e-1
∇ + g 1.07e-1
∇ + γ + g 2.19e-2

We showed by a simple experiment that our model can handle nonlinear cases (see table 11). We
propose to model the solution u using a non-linear combination of the basis terms ϕi. The relation
between the ϕi is modeled using a simple NN with one hidden layer and a tanh activation function.
This experiment is performed on the Poisson PDE.

Table 11: Nonlinear combination of the basis. Relative MSE on the test set for our proposed method
and comparison with other non linear models and optimizers.

baselines Relative MSE

PINNs+L-BFGS 8.83e-1
PPINNs 4.30e-2

Ours 3.44e-3

Network architecture We show in table 12, an ablation on the layer type used for Fϱ in our
experiments: MLP, Residual Network (ResNet), FNO and a modified version of a MLP (ModMLP)
taken from (Wang et al., 2021a), inspired from attention mechanism. We conducted this experiment
on the Helmholtz dataset.

Table 12: Ablation on different layer types. Metric on the test set of the Helmholtz equation.

Layer type Relative MSE

MLP 8.25e-1
ResNet 6.87e-1

ModMLP 5.55e-2
FNO 2.41e-2

Irregular grids We show in table 13, an ablation on different types of grids: regular as in table 2, and
irregular. The latter were created by sampling uniformly 75% of the points in the original grid. The
sampled grids are different between each trajectory both during the training and testing phases.
We conducted this experiment on the Helmholtz dataset. Finally, we show some reconstruction
examples in figs. 13a and 13b.

Table 13: Comparison of the performances when training our solver using regular or irregular and
different grids for each PDE. Metrics on the test set.

Grid Relative MSE

regular 2.41e-2
irregular 3.38e-1

This experiment shows that our method is capable of handling irregular grids. We observe a decrease
in the performances (table 13) and in the reconstruction quality figs. 13a and 13b. However, we also
note that our method is still capable of reconstructing the dynamic of the PDE, where most of the
considered baselines failed to capture the oscillation in the Helmholtz PDE solution.

33

Published as a conference paper at ICLR 2025

0 10 20 30 40 50 60
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75
So

lu
tio

n

Reconstruction
Ground truth

(a)

0 25 50 75 100 125 150 175
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

So
lu

tio
n

Reconstruction
Ground truth

(b)

Figure 13: Comparison of the reconstruction of the solution when models are trained on regular (left)
and irregular grid (right).

Error as a function of the PDE parameters values We illustrate in fig. 14 the behavior of the
reconstruction of the MSE varying the PDE parameter values. We conducted this experiment on
the Helmholtz PDE and varied ω from −5 to 55 i.e. extrapolation of 10% beyond the parameter
distribution (and kept fixed boundary conditions).

0 10 20 30 40 50

10 5

10 4

10 3

10 2

10 1

100

101

102

M
SE

Evolution of the MSE with respect to the PDE parameter .
 Helmholtz equation

Ours
PINO
PI-DeepONet
PO-DeepONet
PPINNS
MLP+basis

Figure 14: MSE comparison with PDE parameters ω of the Helmholtz dataset and extrapolation
outside of the training distribution.

We observe in fig. 14 that, as expected, solving Helmholtz PDE outside the training distribution fails
for our model as well as for all baselines. The proposed method performs well inside the training
distribution (as already observed in table 2) and behaves similarly to fully supervised methods on
Out-Of-Distribution (OOD) examples. Finally, other baselines, involving physical only or hybrid
training, only predict a mean solution.

E.2 STATISTICAL ANALYSIS

We provide a statistical analysis on some datasets and baselines. These experiments are conducted
using L = 5 (instead of L = 2 in table 2). For computational cost reasons, we did not make this
experiment on all datasets but kept 2 datasets in 1d (table 14), 1 dataset in 1d+time, and 1 dataset in
2d (table 15) so that several configurations and data sizes are represented.

This analysis shows the robustness of our proposed method w.r.t. initial seed.

34

Published as a conference paper at ICLR 2025

Table 14: Results of trained models with error bars (std errors) on 1d datasets - metrics in Relative
MSE on test set. Best performances are highlighted in bold, and second best are underlined.

1d

Baseline Helmholtz Poisson
Supervised MLP + basis 5.26e-2 ± 7.56e-3 1.58e-1 ± 7.98e-3

Unsupervised PPINNs 8.33e-1±5.61e-3 3.59e-2±2.11e-2
PO-DeepONet 9.84e-1±6.93e-4 1.79e-1±3.09e-2

PI-DeepONet 9.81e-1 ± 2.25e-3 1.25e-1 ±1.04e-2
Hybrid PINO 9.95e-1 ± 3.30e-3 3.27e-3 ± 1.38e-3

Ours 2.17e-2 ± 1.12e-3 4.07e-5 ± 2.65e-5

Table 15: Results of trained models with error bars (std errors) on 1d + time, and 2d datasets -
metrics in Relative MSE on test set. Best performances are highlighted in bold, and second best are
underlined.

1d + time 2d

Baseline 1dnlrd Darcy-Flow
Supervised MLP + basis 2.83e-5 ± 6.83e-7 3.78e-2±2.09e-3

Unsupervised PPINNs 4.64e-1 ± 1.92e-2 9.99e-1±2.63e-2
PO-DeepONet 4.18e-1 ± 1.04e-2 8.32e-1±2.51e-4

PI-DeepONet 7.88e-2 ± 1.96e-4 2.72e-1 ± 4.44e-3
Hybrid PINO 8.00e-5 ± 1.00e-5 1.17e-1 ± 1.42e-2

Ours 2.61e-5 ± 2.53e-6 1.62e-2 ± 3.06e-4

E.3 COMPUTATIONAL COST

Finally, we detail here the training and inference times of our method as well as baselines.

As we can see in table 16, our model takes longer to train due to the iterative process occurring at
each epoch. However, note that this is training time; inference time is similar to other methods (see
table 17). We detail a justification for this additional training time compared to PINNs variants below:

• Comparison with vanilla PINNs: Consider the following experiment. Suppose we train a
classical PINN on a single instance of the Darcy PDE. Based on the training times shown in
table 16, using this method, we performed 1, 500 steps, which took 420 minutes for training
(please note that the performances were less accurate than our model’s performance). If we
wanted to train a PINNs on each PDE of our entire test dataset for 15000 epochs (sometimes
even more steps are required), this would take 4200 minutes or stated otherwise approximatly
3 days. Suppose now, that one wants to solve an additional equation. This will require an
average of 0.226 seconds (see table 17) with our method, while PINNs would require an
entirely new training session of approximately 20 minutes for 15, 000 steps. This makes our
method 5, 000 times faster than traditional PINNs for solving any new equation.

• Comparison with PINNs parametric variants: Now let us consider two parametric variants
of PINNs designed to handle multiple PDEs (PPINNs for parametric PINNs, P2INNs
for the model proposed by (Cho et al., 2024)). In table 2, models was trained for 5, 000
epochs only. Let us consider training it further as suggested for vanilla PINNs, until 15, 000
epochs. First, this training would require approximately 19h30m. Then, the optimization
problem is still ill-conditioned, training further would probably not significantly improve the
performance. We can extend this reasoning to the P2INNs baseline, for which we observed
similar performance and behaviors.

35

Published as a conference paper at ICLR 2025

Table 16: Training time of the experiments shown in Table 2. of the paper on a single NVIDIA
TITAN RTX (25 Go) GPU. d stands for days, h for hours, m for minutes.

Dataset Helmholtz Poisson 1dnlrd Darcy Heat

MLP + basis 30m 20m 1h10m 2h 4h45
PPINNs 15m 20m 4h15m 6h30m 1d2h
P2INNs 2h 3h 11h 1d7h 1d8h
PODON 10m 10m 3h30m 1d9h 22h
PIDON 10m 10m 3h30m 1d10h 22h
PINO 15m 10m 1h10m 45m 2h40
Ours 30m 30m 4h30 10h15 1d 13h

Table 17: Inference time, averaged (in seconds) on the test set. All experiments are conducted on a
single NVIDIA RTX A6000 (48Go). We report the mean time computed on the test set to evaluate
the baselines as performed in table 2 in the paper (i.e. with 10 test-time optimization steps when
applicable and 20 steps on the Heat dataset). We consider as inference the solving of a PDE given its
parameters and/or initial/boundary conditions.

Dataset Helmholtz Poisson 1dnlrd Darcy Heat

MLP + basis 1.12e-2 1.18e-2 1.25e-2 1.19e-2 1.66e-2
PINNs+L-BFGS 274 136 369 126 234
PINNs-multi-opt 15.5 25.5 16.5 105 90

PPINNs 3.09e-1 2.03e-1 2.91e-1 3.22e-1 5.45e-1
P2INNs 2.84e-1 3.09e-1 6.76e-1 1.29 1.23
PODON 3.27e-1 2.71e-1 4.38e-1 6.32e-1 8.85e-1
PIDON 3.32e-1 2.96e-1 4.43e-1 6.35e-1 8.80e-1
PINO 3.14e-1 1.24e-1 5.19e-1 2.21e-1 8.08e-1
Ours 2.58e-1 2.16e-1 2.84e-1 2.26e-1 2.90e-1

E.4 ADDITIONAL DATASETS

We provide additional experiments on 2 new datasets: Non-linear Reaction-Diffusion in a more
complex setting and Advections. We refer the reader to appendix C for the details about the PDE
setting. These datasets were not included in the main part of the paper due to a lack of space in the
results table.

Table 18: Results of trained models on additional datasets - metrics in Relative MSE on the test set.
Best performances are highlighted in bold, and second best are underlined.

Baseline NLRDIC Advections
Supervised MLP + basis 9.88e-4 6.90e-2

Unsupervised PPINNs 3.71e-1 4.50e-1
PO-DeepONet 4.36e-1 5.65e-1

PI-DeepONet 5.39e-2 4.26e-1
Hybrid PINO 3.79e-3 6.51e-4

Ours 1.41e-3 5.39e-3

These additional datasets show cases where baselines are performing very well on the considered
PDE. For Advections, PINO reached very good performances. We believe that the Fourier layers used
in the model fit well to the phenomenon. Indeed, the solution is represented using a combination of
sine moving with time. This simple dynamics is easily captured using Fourier transformations. Our
B-Splines basis can be sub-optimal for this dataset. For the complexified version of NLRD, NLRDIC,
it is the supervised baseline that performs best. This dataset does not present high frequencies, and
the MLP looks sufficiently expressive to find the coefficient in the basis. However, this baseline
had difficulties in reconstructing the higher frequencies in Advections. Even if our model does not

36

Published as a conference paper at ICLR 2025

perform best on these datasets, it is ranked second. We believe that these additional results show the
robustness of our method across different physical phenomena.

E.5 TRAINING BEHAVIOR

We show in this section the evolution of the MSE as the training progresses (see fig. 15).

0 100 200 300 400 500 600 700
epoch

10 3

10 2

10 1

M
SE

Evolution of MSE during training
 on the train and test sets of the Helmholtz equation.

MSE on the training set
MSE on the test set

Figure 15: MSE during training on the training and testing sets. Example shown on the Helmholtz
equation for results as presented in table 2.

0.0 0.2 0.4 0.6 0.8 1.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

so
lu

tio
n

Reconstruction during training.
0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
truth

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

so
lu

tio
n

Reconstruction during training.
0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
truth

(b)

Figure 16: Reconstruction of the solution PDEs during training. Example drawn from the test set.

In fig. 15, we show the MSE evolution on both the train and test sets (evaluation every 50 epochs)
and on figs. 16a and 16b some reconstruction (from the test set), with respect to the training epochs.
The training set (800 PDE trajectories) corresponds to PDEs used to update the network parameters,
while the test set (200 trajectories) are unseen PDEs for the network. This means that the model
has not been trained or optimized on these PDEs. The test set is composed of PDEs with varying
PDE parameter values (ω) and boundary conditions (u0, v0). This illustrates that the generalization
performance on new PDEs within the training distribution is rapidly achieved by the network.

37

Published as a conference paper at ICLR 2025

E.6 LOSS LANDSCAPES

In this section, we propose a visual representation of the optimization paths in the loss landscape.
Figures 17 and 18 illustrates the behavior of the vanilla PINNs algorithm and of our "learning to
optimize" method. The plots represent respectively a 2D visualization of the physical loss landscape
LPDE (fig. 17) and of the data loss landscape LDATA (fig. 18), around the approximate solution (in
our basis) of a given Helmholtz equation. The function basis used in this experiment has a size of 32.
We used the technique in (Garipov et al., 2018) to visualize the solution coordinates in the basis Θ in
the loss landscape (more details in appendix E.7.1). Superimposed on the loss background, we plot
three trajectories obtained by starting from an initial random vector Θ0.

Figure 17 visualizes the sharp and ill conditioned landscape of the physical loss LPDE , while
Figure 18 shows the better conditioned landscape of the MSE data loss LDATA. The figures provide
intuition on how the proposed algorithm operates and improves the convergence. The optimizer F
modifies the direction and magnitude of the stochastic gradient descent (SGD) updates in the physical
loss landscape (Figure 17, left plot). It achieves this by utilizing solution values at various sample
points to adjust the gradient, steering it toward the corresponding minimum in the mean squared error
(MSE) landscape (Figure 18, central plot). While the descent remains within the residual physics
error space, the learned optimizer provides an improved gradient direction, enhancing convergence
efficiency (Figure 17, right plot). We describe below the different figures.

• Left Columns in Figures 17 and 18: these figures show the gradient path (100 steps) obtained
by directly optimizing the physical loss LPDE , similar to the vanilla PINNs algorithm. This
trajectory highlights the ill-conditioning of the optimization problem associated to LPDE .

• Center Column in Figures 17 and 18: these figures plot the trajectory of a gradient-based
optimization algorithm trained with a mean squared error LDATA data loss (100 steps),
under the assumption that the solution values are known at collocation points. While
these quantities are not available in our case, this visualization is included to illustrate the
differences in convergence behavior between physics-based and MSE-based loss functions
when both are accessible.

• Right Column in Figures 17 and 18: these plots illustrate the behavior of our algorithm
(the solver is trained with 2 gradient steps for this example). It demonstrates the effect of
our learned optimizer and the significant improvements achieved compared to a standard
gradient descent algorithm on the physical loss.

. We describe in appendix E.7 the construction of the figures figs. 17 and 18.

Figure 17: Loss landscapes and optimization trajectories on an instance of the Helmholtz PDE. The
figure represents the PDE loss LPDE landscape and superimposed are examples of optimization paths
computed using SGD on the physical loss (left), the data loss (center), and our method (right).

38

Published as a conference paper at ICLR 2025

Figure 18: Loss landscapes and optimization trajectories on an instance of the Helmholtz PDE.
The figures represents the DATA loss LDATA and superimposed are examples of optimization paths
computed using SGD on the physical loss (left), the data loss (center), and our method (right).

E.7 PROJECTION OF THE BASIS FOR VISUALIZATION

Following the technique described in (Garipov et al., 2018), we plot a 2D slice of the loss function
around the minimum solution. We explain below the method used for creating figs. 17 and 18.

E.7.1 CREATE A BASIS FOR PROJECTION

We want to visualize the loss landscapes around a parameter solution Θ⋆ of a given PDE. Due to the
high dimensionality of the parameter space, we use the method proposed in (Garipov et al., 2018),
that involves creating a 2d slice of the loss landscape for visualization. This methods projects the
multidimensional landscape onto a 2D basis (u, v) so that any solution vector Θ could be written
as Θ = αu + βv, with, α, β ∈ R and u, v ∈ RN , 2 orthonormal vectors. Let Ωu,v := Vect{u, v}
denote this projection space. For the visualization, the basis must include the solution vectors found
by our algorithm. For that:

1. We start by running our optimization algorithm from a random vector parameters Θ0 to
find ΘL ∈ RN , our approximate PDE solution. We set w1 = ΘL and set a second vector
w2 = Θ0, chosen here as the initial vector of our optimization process.

2. We generate a third vector w3 ∈ RN randomly.
3. We then set: u = w2 − w1 and v = (w3 − w1)− <w3−w1,w2−w1>

||w2−w1||2 (w2 − w1)

4. The resulting normalized vectors û = u
||u|| and v̂ = v

||v|| form an orthogonal basis containing
w1, w2 and w3.

5. Using the solution parameters ΘL as the origin for our newly created basis, we can compute
a 2D slice of the loss landscape where each solution Θ could be represented in the (u, v)
basis with its projection coordinates (α, β) as Θprojection = w1 + αû+ βv̂.

E.7.2 PLOT TRAJECTORIES

Finally, we run a baseline optimization procedures and get trajectories {Θi}Li=0, with L being the
number of optimization steps, e.g. a gradient descent, on the physical loss, the MSE loss or our
proposed method. We project the Θi’s in the created basis (see appendix E.7.1) and plot this projection
of the optimization trajectory on the loss landscape Ωu,v as visualized on figs. 17 and 18.

E.7.3 ILLUSTRATION OF THE ILL-CONDITIONING OF THE PDE LOSS

As an illustration of the ill-conditioning of the PDE loss, we replicate fig. 17 using a basis that
further emphasizes this aspect. To build this basis, we use the procedure described in appendix E.7.1
by using 2 eigenvectors of the hessian of the PDE loss. First, we compute Hess(LPDE) and its

39

Published as a conference paper at ICLR 2025

eigenvectors decomposition. We select the vectors associated to the highest and lowest eigenvalues,
and respectively set them to w2 and w3. The resulting landscape visualization is shown in fig. 19.

Figure 19: Loss landscapes and optimization trajectories on an instance of the Helmholtz PDE. These
optimization trajectories are computed using SGD on the physical loss (left), the data loss (center),
and our method (right). The background represents the PDE loss LPDE.

Figure 19, clearly illustrates the characteristic shape of the ill-conditioned function LPDE. The two
directions, extracted from the highest and lowest eigenvalues, are clearly visible on this PDE loss
landscape. This highlights the difficulty of this optimization problem for standard descent methods.

40

Published as a conference paper at ICLR 2025

F QUALITATIVE RESULTS

This section is dedicated to visualization of the results of our model, baselines and optimizers,
presented in section 4. For each PDE considered, we chose 2 samples in the test sets and compute
the solutions with our model and the different baselines. We provide visualization samples with
L = 5 i.e. results proposed in tables 14 and 15 to detail more precisely the evolution of the solution
at several steps of optimization. 3 datasets are shown with L = 2: Heat for computational reasons
(training with L = 5 is much more expensive when the dimension of the problem increases) and the 2
additional datasets trained only with L = 2 (Advections and NLRDIC). Then, we show the evolution
of the reconstruction of the solution with our method i.e. we plot the solution at each step of the
optimization (figs. 20a, 20b, 23a, 23b, 26a, 26b, 29a, 29b, 32a, 32b, 35a, 35b, 38a and 38b) and we
compare the final prediction with baselines’ (figs. 21a, 21b, 24a, 24b, 27a, 27b, 30a, 30b, 33a, 33b,
36a, 36b, 39a and 39b). Finally, we chose 20 (6 for Heat) PDEs and we reproduce fig. 2 for every
dataset. More precisely, we optimize one PINN per PDE using Adam, we fit our basis using several
optimizers (GD, ADAM, L-BFGS and our learned optimization process) and we fine-tune the learned
PINO for 10, 000 steps and visualize the evolution of the MSE (averaged at each step on the selected
PDE). These figures show the relevance of learning the optimizer when using physics-informed losses
(figs. 22, 25, 28, 31, 34, 37 and 40).

F.1 HELMHOLTZ

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

1.5

So
lu

tio
n

Evolution of the reconstruction of the solution with optimization steps.
Ground truth
Initialization
Step 1
Step 2
Step 3
Step 4
Step 5: Output

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

1.5

So
lu

tio
n

Evolution of the reconstruction of the solution with optimization steps.
Ground truth
Initialization
Step 1
Step 2
Step 3
Step 4
Step 5: Output

(b)

Figure 20: Reconstruction of the solution using our optimizer on the Helmholtz dataset.

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

So
lu

tio
n

Solution for Helmholtz

Ground truth
PPINNS
PO-DeepONet
MLP+basis
PI-DeepONet
PINO
Ours

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

So
lu

tio
n

Solution for Helmholtz

Ground truth
PPINNS
PO-DeepONet
MLP+basis
PI-DeepONet
PINO
Ours

(b)

Figure 21: Visual comparison of the solutions for the Helmholtz equation.

41

Published as a conference paper at ICLR 2025

0 100 101 102 103 104

Optimization steps

10 2

10 1

100

101

M
SE

Test-time optimization evolution of MSE

GD
ADAM
L-BFGS
PINN
PINO
Ours
Objective

Figure 22: Test-time optimization based on the physical residual loss LPDE on Helmholtz. Note that,
even though hardly visible on this figure, the optimization is running very slowly and the PINN
MSE (orange) decreases for the last steps. This dataset will probably need even more steps before
convergence.

F.2 POISSON

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.0

0.5

1.0

So
lu

tio
n

Evolution of the reconstruction of the solution with optimization steps.
Ground truth
Initialization
Step 1
Step 2
Step 3
Step 4
Step 5: Output

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

1.5

1.0

0.5

0.0

0.5

1.0

So
lu

tio
n

Evolution of the reconstruction of the solution with optimization steps.

Ground truth
Initialization
Step 1
Step 2
Step 3
Step 4
Step 5: Output

(b)

Figure 23: Reconstruction of the solution using our optimizer on the Poisson dataset.

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

So
lu

tio
n

Solution for Poisson
Ground truth
PPINNS
PO-DeepONet
MLP+basis
PI-DeepONet
PINO
Ours

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

2

1

0

1

So
lu

tio
n

Solution for Poisson

Ground truth
PPINNS
PO-DeepONet
MLP+basis
PI-DeepONet
PINO
Ours

(b)

Figure 24: Visual comparison of the solutions for the Poisson equation.

42

Published as a conference paper at ICLR 2025

0 100 101 102 103 104

Optimization steps

10 4

10 3

10 2

10 1

100

101
M

SE

Test-time optimization evolution of MSE

GD
ADAM
L-BFGS
PINN
PINO
Ours
Objective

Figure 25: Test-time optimization based on the physical residual loss LPDE on Poisson.

F.3 REACTION-DIFFUSION

x

Ground truth

t

Initialization

t

Step 1

t

Step 2

t

Step 3

t

Step 4

t

Step 5: Output

Evolution of the reconstruction of the solution with optimization steps.

(a)

x

Ground truth

t

Initialization

t

Step 1

t

Step 2

t

Step 3

t

Step 4

t

Step 5: Output

Evolution of the reconstruction of the solution with optimization steps.

(b)

Figure 26: Reconstruction of the solution using our optimizer on the Reaction-Diffusion dataset.

43

Published as a conference paper at ICLR 2025

t

x
Ground truth

t

PPINNS

t

PO-DeepONet

t

MLP+basis

t

PI-DeepONet

t

PINO

t

Ours
Solution for Reaction-diffusion

(a)

t

x

Ground truth

t

PPINNS

t

PO-DeepONet

t

MLP+basis

t

PI-DeepONet

t

PINO

t

Ours
Solution for Reaction-diffusion

(b)

Figure 27: Visual comparison of the solutions for the Reaction-Diffusion equation.

0 100 101 102 103 104

Optimization steps

10 5

10 4

10 3

10 2

10 1

100

M
SE

Test-time optimization evolution of MSE

GD
ADAM
L-BFGS
PINN
PINO
Ours
Objective

Figure 28: Test-time optimization based on the physical residual loss LPDE on NLRD.

44

Published as a conference paper at ICLR 2025

F.4 DARCY

y

x
Ground truth

y

Initialization

y

Step 1

y

Step 2

y

Step 3

y

Step 4

y

Step 5: Output

Evolution of the reconstruction of the solution with optimization steps.

(a)

y

x

Ground truth

y

Initialization

y

Step 1

y

Step 2

y

Step 3

y

Step 4

y

Step 5: Output

Evolution of the reconstruction of the solution with optimization steps.

(b)

Figure 29: Reconstruction of the solution using our optimizer on the Darcy dataset.

y

x

Ground truth

y

PPINNS

y

PO-DeepONet

y

MLP+basis

y

PI-DeepONet

y

PINO

y

Ours

Solution for Darcy flow

(a)

y

x

Ground truth

y

PPINNS

y

PO-DeepONet

y

MLP+basis

y

PI-DeepONet

y

PINO

y

Ours

Solution for Darcy flow

(b)

Figure 30: Visual comparison of the solutions for the Darcy equation.

45

Published as a conference paper at ICLR 2025

0 100 101 102 103 104

Optimization steps

10 2

10 1

100

M
SE

Test-time optimization evolution of MSE

GD
ADAM
L-BFGS
PINN
PINO
Ours
Objective

Figure 31: Test-time optimization based on the physical residual loss LPDE on Darcy.

46

Published as a conference paper at ICLR 2025

F.5 HEAT

x
t=

0.
00

Ground truth Initialization Step 1 Step 2

x
t=

0.
24

x
t=

0.
48

x
t=

0.
72

y

x
t=

0.
96

y y y

Evolution of the reconstruction of the solution with optimization steps.

(a)

x
t=

0.
00

Ground truth Initialization Step 1 Step 2

x
t=

0.
24

x
t=

0.
48

x
t=

0.
72

y

x
t=

0.
96

y y y

Evolution of the reconstruction of the solution with optimization steps.

(b)

Figure 32: Reconstruction of the solution using our optimizer on the Heat dataset.

47

Published as a conference paper at ICLR 2025

x
t=

0.
00

Ground truth PPINNS PO-DeepONet MLP+basis PI-DeepONet PINO Ours

x
t=

0.
24

x
t=

0.
48

x
t=

0.
72

y

x
t=

0.
96

y y y y y y

(a)

x
t=

0.
00

Ground truth PPINNS PO-DeepONet MLP+basis PI-DeepONet PINO Ours

x
t=

0.
24

x
t=

0.
48

x
t=

0.
72

y

x
t=

0.
96

y y y y y y

(b)

Figure 33: Visual comparison of the solutions for the Heat equation.

0 100 101 102 103

Optimization steps

10 4

10 3

10 2

10 1

100

M
SE

Test-time optimization evolution of MSE

GD
ADAM
L-BFGS
PINN
PINO
Ours
Objective

Figure 34: Test-time optimization based on the physical residual loss LPDE on Heat. For computational
reasons, this experiment has been conducted on 1, 000 steps only.

48

Published as a conference paper at ICLR 2025

F.6 ADVECTION

t

x

Ground truth

t

Initialization

t

Step 1

t

Step 2

Evolution of the reconstruction of the solution with optimization steps.

(a)

t

x

Ground truth

t

Initialization

t

Step 1

t

Step 2

Evolution of the reconstruction of the solution with optimization steps.

(b)

Figure 35: Reconstruction of the solution using our optimizer on the Advection dataset.

49

Published as a conference paper at ICLR 2025

t

x

Ground truth

t

PPINNS

t

PO-DeepONet

t

MLP+basis

t

PI-DeepONet

t

PINO

t

Ours
Solution for Advection

(a)

t

x

Ground truth

t

PPINNS

t

PO-DeepONet

t

MLP+basis

t

PI-DeepONet

t

PINO

t

Ours
Solution for Advection

(b)

Figure 36: Visual comparison of the solutions for the Advection equation.

0 100 101 102 103 104

Optimization steps

10 3

10 2

10 1

100

M
SE

Test-time optimization evolution of MSE

GD
ADAM
L-BFGS
PINN
PINO
Ours
Objective

Figure 37: Test-time optimization based on the physical residual loss LPDE on Advection.

50

Published as a conference paper at ICLR 2025

F.7 NON-LINEAR REACTION-DIFFUSION WITH INITIAL CONDITIONS

x

Ground truth

t

Initialization

t

Step 1

t

Step 2

Evolution of the reconstruction of the solution with optimization steps.

(a)

x

Ground truth

t

Initialization

t

Step 1

t

Step 2

Evolution of the reconstruction of the solution with optimization steps.

(b)

Figure 38: Reconstruction of the solution using our optimizer on the NLRDIC dataset.

51

Published as a conference paper at ICLR 2025

Ground truth PPINNS PO-DeepONet MLP+basis PI-DeepONet PINO Ours
Solution for Reaction-Diffusion

(a)

Ground truth PPINNS PO-DeepONet MLP+basis PI-DeepONet PINO Ours
Solution for Reaction-Diffusion

(b)

Figure 39: Visual comparison of the solutions for the NLRD with varying IC equation.

0 100 101 102 103 104

Optimization steps

10 4

10 3

10 2

10 1

M
SE

Test-time optimization evolution of MSE

GD
ADAM
L-BFGS
PINN
PINO
Ours
Objective

Figure 40: Test-time optimization based on the physical residual loss LPDE on NLRD with varying IC.

52

	Introduction
	Motivation
	Approach
	Problem statement
	Methodology
	Training of a physics-informed solver

	Experiments
	Datasets
	Comparison with baselines
	Optimization for solving new equations
	Computational time

	Conclusion
	Detailed related Work
	Theoretical Analysis of our Method and PINNs
	Theoretical Analysis of PINNs
	Theoretical Analysis of our Method

	Dataset details
	Helmholtz
	Poisson
	Darcy Flow
	Heat
	Additional dataset: Advection
	Summary of problem settings considered

	Implementation details
	B-Spline basis
	Training details
	Models

	Additional Experiments
	Ablation
	Statistical analysis
	Computational cost
	Additional datasets
	Training behavior
	Loss landscapes
	Projection of the basis for visualization
	Create a basis for projection
	Plot trajectories
	Illustration of the ill-conditioning of the PDE loss

	Qualitative results
	Helmholtz
	Poisson
	Reaction-Diffusion
	Darcy
	Heat
	Advection
	Non-Linear Reaction-Diffusion with Initial Conditions

