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Abstract
Zero-order (ZO) optimization is a powerful tool
for dealing with realistic constraints. On the
other hand, the gradient-tracking (GT) technique
proved to be an efficient method for distributed
optimization aiming to achieve consensus. How-
ever, it is a first-order (FO) method that requires
knowledge of the gradient, which is not always
possible in practice. In this work, we introduce a
zero-order distributed optimization method based
on a one-point estimate of the gradient tracking
technique. We prove that this new technique con-
verges with a single noisy function query at a
time in the non-convex setting. We then establish
a convergence rate of O( 1

3√
K

) after a number of
iterations K, which competes with that of O( 1

4√
K

)

of its centralized counterparts. Finally, a numeri-
cal example validates our theoretical results.

1. Introduction
We consider a network encompassing a set of agents N =
{1, 2, . . . , n}, where the communication is limited to net-
work neighbors. Each agent i maintains a local objective
function fi : Rd → R and the aim is for the agents to collab-
oratively find the decision variable x ∈ Rd that minimizes
the stochastic global objective function:

min
x∈Rd

F(x) =
1

n

n∑
i=1

Fi(x) (1)

with
Fi(x) = Eξ∼Difi(x, ξ), (2)

where ξ denotes an i.i.d. ergodic stochastic process that
follows a local distribution Di. Hence, the goal is for agents
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to achieve consensus while the local objective functions are
kept private. Further, these functions are assumed to be non-
convex, and to solve this problem, agent i can only query the
function values of fi at exactly one point at a time. These
function queries are assumed to be noisy f̃i = fi+ζi with ζi
some additive noise. We note that ζi is added to differentiate
between the stochastic nature of fi and the noise imposed
on its querying. While the expectation of the local function
might not change with this addition, its variance increases,
presenting an added difficulty to the analysis

Distributed optimization appears across many applications,
in distributed data processing and control in sensor networks,
parallel computing and data storing, and big-data analytics.
It has many interests in machine learning applications such
as data rights, privacy, and scalability (Lian et al., 2017;
Nedic, 2020). One important technique in this domain is
the gradient tracking method, which is agnostic to the data
distribution (Koloskova et al., 2022), meaning there’s no
need for data to be i.i.d across all the devices. In addition,
this technique was shown to have interesting rates. For
example, it converges linearly to the optimal solution with
constant step size (Qu & Li, 2018; Nedić et al., 2017; Pu,
2020).

However, all these references assume the availability of first-
order information, which is not always the case, especially
when gradient computation can be impractical like when the
system is constantly changing, costly when the system is
too complex or too huge in dimension, or even impossible
such as in black-box optimization. For example, when
training a deep neural network, the loss output is an intricate
function of the weights, which complicates the derivation
of the gradient (Lian et al., 2016). In bandit settings, an
adversary reveals a cost value at every period, and the player
must compete with this adversary without any knowledge
of the underlying cost function (Flaxman et al., 2004). In
centralized and distributed settings, much work has been
done on zero-order (ZO) optimization. ZO methods include
substituting the gradient by one-point estimates with one
functional value at a time (Li & Assaad, 2021; Flaxman
et al., 2004; Roy et al., 2022; Mhanna & Assaad, 2022),
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generally of the form

g =
d

γ
f(x+ γz, ξ)z, (3)

with γ > 0 a small value and z a random vector with sym-
metrical distribution. It includes two- and multi-points es-
timates (Agarwal et al., 2010; Roy et al., 2022; Balasub-
ramanian & Ghadimi, 2018; Tang et al., 2021) having the
respective forms

g = d
f(x+ γz, ξ)− f(x− γz, ξ)

2γ
z (4)

and g =

d∑
j=1

f(x+ γej , ξ)− f(x− γej , ξ)
2γ

ej (5)

where {ej}j=1,...,d is the canonical basis and other tech-
niques which are derivative-free (Golovin et al., 2019;
Bubeck et al., 2021).

While the gradient tracking technique has been extended to
the ZO case (Tang et al., 2021; Mhanna & Assaad, 2022),
the prior utilizes a multi-point estimator of the gradient and
a static objective function without any stochasticity/noise
whatsoever in the system, and the latter deals with the prob-
lem in the strongly convex setting. Both of which do not
satisfy the assumptions of our problem.

As various stochastic sources and noisy environments can
be present in the model, such as distinct device data distri-
butions, uncertainties in electronic devices, discretization
errors, lossy data compression, and time-varying communi-
cation channels, static objective functions no longer serve
realistic purposes. Moreover, multi-point estimates assume
that it is possible to observe multiple realizations of the
objective function under the same system conditions, as can
be seen from (4) and (5), many function queries are done
for the same realization of ξ. This assumption does not hold
when the environment is continually changing. For exam-
ple, in wireless networks, when the query is an estimate is
subject to a wireless channel between the transmitter and
the user, that usually changes every 1− 2 ms. Thus, by the
time the next observation is queried, a stochastic process
will have already impacted the new function value.

While the distributed convex setting is present in many
applications, countless problems call for non-convex opti-
mization, such as in distributed learning (Omidshafiei et al.,
2017) and resource allocation (Tychogiorgos et al., 2013).

For all these reasons, we extend the gradient tracking tech-
nique to stochastic objective functions and one-point gradi-
ent estimators in the non-convex setting.

1.1. Related Work

Centralized ZO Optimization: Adversarial convex bandit
problems have been long studied in the zero-order domain.

Flaxman et al. introduce a one-point gradient estimator
to the online gradient descent technique to compete with
oblivious and adaptive adversaries, which accomplishes a
regret bound of O(K

3
4 ) (2004). Agarwal et al. then extend

the problem to the multi-point gradient estimate (2010);
In the noise-free setting, this estimate has bounded and
sometimes vanishing variance. Their algorithm acquires
regret bounds of O(

√
K) and of O(log(K)) for strongly

convex loss functions. Nesterov and Spokoiny study the
complexity with a two-point estimator in different noise-
free settings (2017). In a stochastic convex case and another
static non-convex case, a convergence rate of O( 1√

K
) is

attained.

Roy et al. present and examine noise-free stochastic algo-
rithms for general non-convex stochastic objective functions
that change with time (2022). They propose nonstationary
versions of regret measures and defineWK as a bound on the
amount of nonstationarity. WK is allowed to increase with
K. They present a gradient descent algorithm that achieves
a regret bound of O(

√
KWK) with a two-point gradient

estimator and O(K
2
3W

1
3

K) with a one-point estimator.

Balasubramanian and Ghadimi also propose and investigate
zeroth-order algorithms for stochastic objective functions
(2018) in the noiseless setting. They employ structural
sparsity assumptions in gradient descent to deal with high
dimensions. With a two-point estimate, they acquire a rate
of O( 1

4√
K

) for non-convex optimization and O( 1√
K

) for
convex one.

Distributed ZO Optimization: Li and Assaad present a
distributed stochastic gradient descent technique in networks
with a one-point gradient estimator based on a stochastic
perturbation (2021). The communication in the network
is restricted to a partial exchange of the observation of the
agents’ local objectives that each agent uses to estimate the
global objective. This objective is subject to a stochastic
process, and its solution is distributed where each agent is
responsible for optimizing its own scalar variable. Their
convergence rate evolves as O( 1√

K
) with the assumption of

a strongly concave objective function.

Tang et al. present two consensus-aiming stochastic multi-
agent optimization techniques in the static non-convex set-
ting (2021). One technique is based on a 2-point gradient
estimator without gradient tracking, and the other is based
on a noise-free 2d-point with gradient tracking. The first
achieves a rate of O( 1√

K
logK).

Gradient Tracking with FO Information: All Qu and Li
(2018), Lorenzo and Scutari (2016), Nedic et al. (2017), Shi
et al. (2015), Li et al. (2022), and Jiang et al. (2022) present
a variant of the technique with the assumption of accurate
gradient information availability.
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Table 1. A summary of convergence rates attained in related work.

REFERENCE
GRADIENT
ESTIMATE

DECISION GT SETTING
CONVERGENCE

RATE

FLAXMAN ET AL. (2004) ONE-POINT CENTRALIZED - CONVEX O( 1
4√
K
)

ROY ET AL. (2022) ONE-POINT CENTRALIZED - NON-CONVEX O(
3
√

WK
3√
K

)

BALASUBRAMANIAN AND GHADIMI (2018) TWO-POINT CENTRALIZED - NON-CONVEX O( 1
4√
K
)

LI AND ASSAAD (2021) ONE-POINT DISTRIBUTED × STRONGLY CONVEX O( 1√
K
)

TANG ET AL. (2021) TWO-POINT DISTRIBUTED × NON-CONVEX O( 1√
K

logK)

PU AND NEDIĆ (2018) UNBIASED/BV DISTRIBUTED
√

STRONGLY CONVEX O( 1
K
)

TANG ET AL. (2021) 2d-POINT DISTRIBUTED
√

NON-CONVEX O( 1
K
)

MHANNA AND ASSAAD (2022) ONE-POINT DISTRIBUTED
√

STRONGLY CONVEX O( 1√
K
)

THIS PAPER ONE-POINT DISTRIBUTED
√

NON-CONVEX O( 1
3√
K
)

Other references assume access to local stochastic first-order
oracles where the gradient estimate is unbiased, and with a
bounded variance (Pu & Nedić, 2018; Xin et al., 2019; Pu,
2020; Lu et al., 2019; Koloskova et al., 2022). The first three
references consider smooth and strongly convex local objec-
tive functions, and the convergence rate is linear when the
step size is constant. When the step size is decreasing, it is
that of O( 1

K ) (Pu & Nedić, 2018). Pu and Nedić propose a
distributed stochastic gradient tracking method (DSGT) and
a gossip-like stochastic gradient tracking method (GSGT)
that allows the agent to wake up at each round with a cer-
tain probability (2018). Xin et al. extend the technique to
strongly connected graphs (2019). Pu then extends it to
directed graphs assuming noisy information exchange be-
tween agents (2020). Both Lu et al. (2019) and Koloskova
et al. (2022) study the technique in the non-convex stochas-
tic setting and achieve a convergence rate of O( 1√

K
) under

constant step size.

While those are all good rates, comparing with them is not
fair as there is naturally a gap in the convergence rate be-
tween first-order and zero-order methods. In zero-order
techniques, a biased estimate of the gradient is obtained,
contrary to first-order methods, where an unbiased estimate
is considered. Besides, the use of a constant step size guar-
antees a convergence near the optimal/stationary point and
not to the point itself.

Gradient Tracking with ZO Information: In their gra-
dient tracking method, Tang et al. consider a non-convex
static setting (2021). They employ a noise-free 2d-point gra-
dient estimator, which has a vanishing variance, and their
algorithm acquires a rate of O( 1

K ) with constant step size.
Mhanna and Assaad then extend this technique to a one-
point gradient estimate achieving a rate of O( 1√

K
), but they

assume strong convexity of the objective function (2022).

1.2. Challenges and Contribution

The first challenge of our work is that when the objective
function is stochastic, the underlying stochastic law is not
supposed to be known. Thus, the expectation cannot be
computed. And when the observation is noisy, the algo-
rithm’s performance would be especially affected as both
the variance and the norm squared of the gradient estimate
would increase. Our next obstacle involves analyzing the
convergence of existing algorithms in non-convex optimiza-
tion problems without relying on the assumption that the
functions involved are strongly convex. In this scenario,
convergence analysis requires us to verify that the norm of
the exact gradient approaches zero. However, due to the bias
in our gradient estimate w.r.t. to the true gradient, even if the
estimate approaches zero, it remains challenging to prove
that the exact gradient also converges to zero. While all esti-
mates are subject to bias, multi-point cases differ because
their variance E[‖∇F − g‖2] is always bounded when there
is no noise present in the optimization process. However,
in our case, for single-point estimates, this variance is un-
bounded (Liu et al., 2020), meaning the estimate can deviate
significantly from the true gradient. This demonstrates both
technical and intuitive difficulties. Unlike convex optimiza-
tion, where the characteristics of the function can guide the
algorithm, non-convex optimization lacks such guidance.
Additionally, we face the challenge of having access only to
the expectation of our gradient estimate at a specific point
while aiming to prove that the gradient at the agents’ av-
erage of that point vanishes. This further complicates the
problem. Nevertheless, we successfully overcome all of
these challenges in our analyses of convergence and rate.

In this paper, we focus on single-point distributed zero-
order optimization, which is motivated by the fact that it’s
not always possible to query multiple points, especially in
stochastic environments, as mentioned earlier. Our contri-
bution can then be summarized as follow:
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• We extend the gradient tracking technique in the
stochastic non-convex setting to the case where we
don’t have FO information and have to estimate the
gradient with a noisy one-point query.

• We overcome the technical challenges of non-
convexity, the stochastic impact of the environment,
and biasedness alongside the unlimited variance of our
gradient estimate.

• We prove the convergence of the proposed algo-
rithm theoretically using stochastic approximation tech-
niques.

• We prove a convergence rate of O( 1
3√
K

) is attainable
using this algorithm which is comparable to that of ZO
non-convex methods as shown in Table 1.

1.3. Notation

Vectors are column-shaped unless otherwise specified and 1
denotes the vector of all entries equal to 1. For two vectors
a, b ∈ Rn, 〈a, b〉 is the inner product. For two matrices A,
B ∈ Rn×d, 〈A,B〉 is the Frobenius inner product. ‖.‖ is
the 2-norm for vectors and the Frobenius norm for matrices.

1.4. Problem Assumptions

In this section, we introduce the assumptions necessary for
convergence of our algorithm.

Assumption 1.1. (the local functions) We assume the Lip-
schitz continuity of all local objective functions x 7−→
fi(x, ξ),

‖fi(x, ξ)−fi(x′, ξ)‖ ≤ Lξ‖x−x′‖, ∀x, x′ ∈ Rd,∀i ∈ N ,
(6)

where Lξ denotes the Lipschitz constant. Further, we as-
sume Eξfi(x, ξ) <∞,∀i ∈ N , to ensure the boundedness
of the objective F(x).

Assumption 1.2. (the objective function) Both∇Fi(x) and
∇2Fi(x) exist and are continuous, and there exists a con-
stant σ1 > 0 such that

‖∇2Fi(x)‖ ≤ σ1, ∀x ∈ Rd,∀i ∈ N .

Hence, we can say that the stochastic objective function
x 7−→ F(x) is L-smooth for some positive constant L,

‖∇F(x)−∇F(x′)‖ ≤ L‖x− x′‖, ∀x, x′ ∈ Rd, (7)

or alternatively,

F(x) ≤ F(x′) + 〈∇F(x′), x− x′〉+
L

2
‖x− x′‖2. (8)

Assumption 1.3. (the additive noise) ζi is a zero-mean un-
correlated noise with bounded variance, meaningE(ζi) = 0,
E(ζ2i ) = σ2 <∞, ∀i ∈ N , and E(ζiζj) = 0 if i 6= j.

Assumption 1.4. (the graph) The network is described by an
undirected and connected graph, meaning communication
links work in both directions, and between any two agents,
we can find a path of links.

We then define the agents’ coupling matrix W = [wij ] ∈
Rn×n, where agents i and j are connected iff wij = wji >
0 (wij = wji = 0 otherwise). We assume W is a non-
negative matrix and doubly stochastic, i.e., W1 = 1 and
1TW = 1T . All diagonal elements wii are strictly positive.

2. Algorithm Description
This section describes our proposed distributed stochastic
gradient tracking method in the non-convex setting with
a one-point gradient estimator (1P-DSGT-NC). In the GT
technique, every agent i must keep and tend to two vari-
ables, a local copy xi ∈ Rd of the decision variable and
another auxiliary variable yi ∈ Rd. GT entails one ‘gradient
descent’ step and one auxiliary variable update step. The
reason for the technique’s name is that the auxiliary variable
update usually allows it to track the gradient of the global
objective function in the network. The gradient descent step
updates the local optimization variables using the auxiliary
variable, which itself tracks the global gradient. As shown
in Algorithm 1, yi is the sum of its previous iteration and the
difference between the new and the old gradient estimates
so that the update may include only the new information
brought by the new estimate. wij is the weight of the link
between agents i and j, so finally, the algorithm evolves
by considering a weighted sum of neighboring updates and
never sharing the local objective function nor its gradient
(estimate). Moreover, we assume that every local function
is influenced by a stochastic variable ξi ∈ Rm, and its query
is subject to an additive scalar noise ζi. At iteration k, the
variables are denoted as xi,k, yi,k, ξi,k, and ζi,k.

By querying the function once per algorithm iteration k ∈ N,
agent i assembles its one-point gradient estimator gi,k:

gi,k = zi,kf̃i(xi,k + γkzi,k, ξi,k)

= zi,k(fi(xi,k + γkzi,k, ξi,k) + ζi,k),
(9)

where zi,k ∈ Rd is a random perturbation vector generated
by agent i, and γk > 0 is a vanishing step size. We let
ηk > 0 be another vanishing step size, and we summa-
rize the algorithm updates in Algorithm 1. We note that
at every iteration, every agent i ∈ N updates its variables
independently and in parallel with all other agents in the
network.

We next let xk := [x1,k, x2,k, . . . , xn,k]T and
yk := [y1,k, y2,k, . . . , yn,k]T ∈ Rn×d, and their
means x̄k := 1

n1
Txk and ȳk := 1

n1
Tyk ∈ R1×d,

respectively. The perturbation matrix is defined as
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Algorithm 1 The 1P-DSGT-NC Algorithm
Input: Initial arbitrary value xi,0 ∈ Rd, the agents’ cou-
pling matrix W , the initial step-sizes η0 and γ0, and setting
yi,0 = gi,0

1: for k = 0 to K − 1, in parallel on all agents i, do
2: Send xi,k and yi,k to neighbors
3: Update the decision variable:

xi,k+1 =
∑n
j=1 wij(xj,k − ηkyj,k)

4: Sample zi,k+1 and update ηk+1 and γk+1

5: Query the local function fi at the point:
xi,k+1 + γk+1zi,k+1

6: Assemble gi,k+1 according to (9)
7: Update the auxiliary variable:

yi,k+1 =
∑n
j=1 wijyj,k + gi,k+1 − gi,k

8: end for

zk := [z1,k, z2,k, . . . , zn,k]T , all ∈ Rn×d. Denot-
ing the concatenated stochastic variables as ξk :=
[ξ1,k, ξ2,k, . . . , ξn,k]T ∈ Rn×m, then gk := g(xk, ξk) :=
[g1(x1,k, ξ1,k), g2(x2,k, ξ2,k), . . . , gn(xn,k, ξn,k)]T ∈
Rn×d denotes the concatenated gradient estimate of all
agents and its mean is ḡ := 1

n1
Tg ∈ R1×d.

The algorithm’s updates can thus be written in matrix nota-
tion:

xk+1 = W (xk − ηkyk)

Query at: xk+1 + γk+1zk+1

yk+1 = Wyk + gk+1 − gk,

(10)

with
ȳk = ḡk and x̄k+1 = x̄k − ηkḡk, (11)

where the first equality in (11) is by y0 = g0 and the recur-
sion of the algorithm’s updates, and the second equality is
due to the doubly stochastic property of W .
Remark 2.1. We only use matrix notation to simplify the
analysis. In fact, all agents perform the update xi,k+1 =∑n
j=1 wij(xj,k − ηkyj,k) in parallel, so the per-iteration

cost is O(nd) (as wij is a scalar and both xj,k and yj,k)
are of dimension d). Same for step 7 in Algorithm 1. The
sparsity of matrix W helps the complexity by considering
at most m < n neighbors for any agent i, then we obtain
O(md).

3. Convergence Result
In this section, we present the convergence results of Algo-
rithm 1. We begin by introducing necessary assumptions on
the algorithm parameters.
Assumption 3.1. (the step-sizes) ηk and γk are two decreas-
ing step sizes that converge to 0 as k →∞ such that

∞∑
k=1

ηkγk =∞,
∞∑
k=1

ηkγ
3
k <∞, and

∞∑
k=1

η2k <∞.

An example of the step sizes satisfying Assumption 3.1 is
the following form:

ηk = η0(1 + k)−υ1 and γk = γ0(1 + k)−υ2 . (12)

Then, it’s sufficient to find υ1 and υ2 such that 0 < υ1 +
υ2 ≤ 1, υ1 + 3υ2 > 1, and υ1 > 0.5.

Assumption 3.2. (the random perturbation) The perturba-
tion vector zi,k = (z1i,k, z

2
i,k, . . . , z

d
i,k)T has the same di-

mension as the local gradient. It is chosen independently
by every agent i ∈ N from others and previous samples.
Besides, it has i.i.d elements with E(z

dj
i,k)2 = σ3 > 0, ∀dj ,

∀i and there exists a constant σ4 > 0 such that ‖zi,k‖ ≤ σ4,
∀i.

To generate a perturbation vector satisfying Assumption 3.2,
we can choose every dimension of zi,k from the symmetric
Bernoulli distribution on {− 1√

d
, 1√

d
}. Then, we would have

σ3 = 1
d and σ4 = 1.

Let ∇Fi(xi) ∈ R1×d and ∇2Fi(xi) ∈ Rd×d denote the
gradient of Fi at the local variable and its Hessian matrix,
respectively. Then, the gradient at x ∈ Rn×d is defined as

∇F (x) := [∇F1(x1),∇F2(x2), . . . ,∇Fn(xn)]T ∈ Rn×d.
(13)

Let h(x) := 1
n1

T∇F (x) ∈ R1×d and denote by
Hk = {x0,y0, ξ0, . . . ,xk−1,yk−1, ξk−1,xk} the history
sequence.

Proposition 3.3. (Li & Assaad, 2021; Mhanna & Assaad,
2022) Let Assumptions 1.3 and 3.2 hold. Then, gi,k is a
biased estimator of the agent’s gradient∇Fi(xi,k), ∀i ∈ N ,
and

Ez,ξ,ζ [gi,k|Hk] = σ3γk[∇Fi(xi,k) + bi,k], (14)

where bi,k denotes the bias with respect to the true gradient.
Refer to Appendix A for details.

Lemma 3.4. When Assumptions 1.1, 1.3, and 3.2 are sat-
isfied and ‖xk‖ <∞ almost surely, there exists a bounded
constant M > 0, such that E[‖gk‖2|Hk] < M almost
surely.

Proof: Refer to Appendix A.1.

Lemma 3.5. By Assumption 1.2, we have

‖∇F(x̄k)− h(xk)‖ ≤ L√
n
‖xk − 1x̄k‖. (15)

Lemma 3.6. (Qu & Li, 2018) Let Assumption 1.4 hold, then

‖Wω − 1ω̄‖ ≤ ρw‖ω − 1ω̄‖, ∀ω ∈ Rn×d, (16)

where ρw < 1 is the spectral norm of the matrixW − 1
n11

T

and ω̄ = 1
n1

Tω.
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The main idea is that we use the smoothness property of the
objective function in (7). This property means that when the
variable is varied, the gradient’s variation does not shoot to
infinity and stays confined within a scale of the variable’s
variation. We then study the variation at the average of
the variable from one iteration to the next employing the
algorithm’s properties in (11). The variation is quantized
by a step size multiplied by the average estimate. We use
the facts that the expectation of estimate gives us biased
access to the exact gradient (Proposition 3.3) and that the
norm squared of the estimate is bounded (Lemma 3.4). The
smoothness inequality allows finding an upper bound on the
exact gradient’s norm where the key players are the step
sizes: (updating γk) How far away from the variable do we
need to go to query the function and find an estimate of
the gradient at that variable, and (updating αk) how far the
algorithm should advance when updating a descent step?
Answering these question provide the right assumptions
on the step sizes (Assumption 3.1). Finally, taking the
telescoping sum of (8) provides the following technical
result and justifies the summation assumptions on the step-
sizes.

Theorem 3.7. Suppose there exists F∗ := infx∈Rd F >
−∞ and denote δk = F(x̄k) − F∗. Suppose also that
‖xk‖ < ∞ almost surely. Then, when Assumptions 1.1-
1.4 and 3.1-3.2 hold, the consensus error ‖xk − 1x̄k‖2
converges to 0 as k →∞ and

+∞∑
k=0

ηkγk‖∇F(x̄k)‖2 <∞, (17)

which implies

lim
k→∞

‖∇F(x̄k)‖ = 0 (18)

almost surely.

Proof: Refer to Appendix B.

4. Convergence Rate
We begin by defining the following constant terms:

A1 =
2

σ3η0γ0
δ0 +

4L2

n

1

1− ρ2w
‖x0 − 1x̄0‖2

A2 =
σ6
4σ

2
1

2σ2
3

γ20(υ1 + 3υ2)

A3 = 2
LM̄η0
σ3γ0

υ1

A4 =
12L2G2η20

n

ρ2w(1 + ρ2w)

(1− ρ2w)2
υ1

(19)

where M̄,G > 0 are defined such that the norm squared of
the mean estimate ‖ḡk‖2 ≤ M̄ and the gradient tracking

error ‖yk−1ȳk‖2 ≤ G2 (refer to (34) in Appendix B.1 and
to (51) in Appendix C.1, respectively).

As the convergence relies on the step sizes, we provide a
form to the step sizes to locate an upper bound on the con-
vergence rate. We present the resulting rate in the following
theorem.

Theorem 4.1. Let the step sizes satisfy (12) with the further
assumption 0 < υ1 + υ2 < 1 and suppose ‖xk‖ < ∞
almost surely. When Assumptions 1.1-1.4 and 3.1-3.2 are
fulfilled,

∑K
k=0 ηkγkE

[
‖∇F(x̄k)‖2

]∑K
k=0 ηkγk

≤ (1− υ1 − υ2)

(K + 2)1−υ1−υ2 − 1

×

(
A1 +

A2

υ1 + 3υ2 − 1
+

A3

2υ1 − 1
+

A4

3υ1 − 1

)
.

(20)

Proof: Refer to Appendix C.

Optimizing for the time-varying part O( 1
K1−υ1−υ2 ), we find

that the best choice for the exponents is υ1 = 0.5 and υ2 =
1
6 for a rate of O( 1

3√
K

). To avoid the constant term growing
too large, one can take υ1 = 0.5+ ε

2 and υ2 = 1
6 + ε

2 , for an
arbitrarily small ε > 0, which achieve a rate O

(
1

K
1
3
−ε

)
. We

remark that when we use the perturbation vector example
in Section 3, our bound scales as O(d2) in terms of the
problem’s dimension.

Another interesting aspect of our bound is that the em-
ployment of a biased one-point gradient estimate without
bounded variance did not affect the dependence on the net-
work size n as compared with the first order-based gradi-
ent tracking method, for example, in (Pu & Nedić, 2018).
The only dependence on n remains through the spectral
norm ρw, as G = O(

√
n) and M̄ = O(1) and the quantity

1
n‖x0−1x̄0‖2 = 1

n

∑n
i=1 ‖xi,0−xi,0‖2 generally does not

depend on n as it’s the average of the initial agents’ decision
variables. Thus, the graph topology determines the bounds’
dependence on n.

5. Numerical Example
This section presents a numerical example of our developed
algorithm 1P-DSGT-NC to verify its efficacy. We aim to
classify m images of two digits taken from the MNIST
data set (LeCun & Cortes, 2005) using logistic regression.
These images labeled with y = {−1,+1} are represented
by 784-dimensional vectors X , which are then compressed
to dimension d = 10 using a lossy autoencoder. They are
split equally between n agents, where every agent i can
only access their mi = m

n images. The collective objective
is to locate θ ∈ Rd that minimizes the following binary

6
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non-convex loss function:

min
θ∈Rd

1

n

n∑
i=1

1

m

mi∑
j=1

Eu
1

1 + exp(−uijyij .XT
ijθ)

+ c‖θ‖2,

(21)
where u ∼ N (1, σu) is a random variable modeling stochas-
tic variations on the querying of local functions. For exam-
ple, unstable communications while fetching the data points
from a local server. c is the regularization constant.

5.1. Simulation Setup

A connected Erdős-Rényi random graph with probability 0.3
is used to model our agent network. We assemble the weight
matrixW using the Laplacian method (Qu & Li, 2018). Our
algorithm is compared with a distributed stochastic gradient
tracking method (DSGT-NC) based on an unbiased estima-
tor with a bounded variance where the objective function
is deterministic. This estimator is formed by calculating
the exact gradient and adding noise. The final results are
simulations averaged over 30 instances.

We first classify the images of the digits 6 and 7. They are
m = 12183 images in total and divided equally over n = 31
agents. Our parameters are generated as follows. The query-
ing noise is ζi,k ∼ N (0, 1), ∀i ∈ N , the stochastic vari-
able’s standard deviation is σu = 0.01, the regularization
constant is c = 0.1, the step sizes are ηk = 1.5(k + 1)−0.51

and γk = 3.5(k + 1)−0.17, and every dimension of the per-
turbation vector zk is chosen from {− 1√

d
, 1√

d
} with equal

probability. For the DSGT-NC algorithm, the step size is
ηk = 2.5(k + 1)−0.51, and no other noise than that on the
exact gradient is considered. Both algorithms are initialized
with the same random weights vectors θi,0 ∼ U([−1, 1]d),
∀i ∈ N , per simulation instance.

We then classify images of digits 1 and 2, splitting the
total m = 12700 images over n = 50 agents first and
n = 100 agents second and varying ρw for n = 100 agents
to see its effect. When we kept the same model of Erdős-
Rényi, we obtained a smaller ρw for a bigger n, i.e for 100
agents, which makes sense for the same probability of edges.
To obtain the same ρw as for 50 agents, we decreased the
probability to 0.2. All other parameters are left the same.

5.2. Simulation Results

Figure 1 describes the development of the expected loss
function for the digits 6 and 7 as the iterations advance. As
FO methods naturally have better rates, it makes sense that
DSGT-NC converges faster than our algorithm. However,
the difference is still very small. On the other hand, the
much faster convergence of the expected consensus error
attained by our algorithm in Figure 2 is surprising. To get
a sense of the rate of convergence of this error, we add to
the plot in Figure 3 the two graphs S1

k+1 and S2

k+1 , where

Figure 1. The evolution of the expected loss function for the digits
6 and 7.

Figure 2. The evolution of the consensus error for the digits 6 and
7.

S1 = E[‖x1−1x̄1‖2] the starting expected consensus error
resulting from 1P-DSGT-NC and S2 = E[‖x1−1x̄1‖2] that
resulting from DSGT-NC. We notice that 1P-DSGT-NC has
a slightly better rate than O( 1

K ) and DSGT-NC a slightly
worse rate.

Figure 4 illustrates the expected gradient tracking error.
While both this paper and that of (Pu & Nedić, 2018) prove
that this error is bounded by constant and is linear in n, it
could be that their constant is affected by other factors, and
thus it’s much greater.

In Figure 5, we test the accuracy of both algorithms against
an independent test set of size 1986 images using the mean
decision variable θ̄k = 1

n

∑n
i=1 θi,k as weight. The final

7
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Figure 3. The evolution of the consensus error for the digits 6 and
7 as compared with the rate O( 1

K+1
).

Figure 4. The evolution of the gradient tracking error for the digits
6 and 7.

accuracy achieved by our algorithm is 98.494461% against
98.539778% of the baseline. We conclude that, finally, the
convergence rate did not impact the classification quality as
both algorithms achieved excellent results.

Similarly, Figures 6-10 show the same results as previ-
ous ones. In Figure 9, the test set is of size 2167 images
and the final accuracy with 1P-DSGT-NC is 97.303492%
for (n, ρw) = (50, 0.67), 97.285033% for (100, 0.67),
and 97.340409% for (100, 0.58). With DSGT-NC it is
98.681741% for (50, 0.67), 98.777111% for (100, 0.67),
and 98.780188% for (100, 0.58). We notice a slight im-
provement in the accuracy’s convergence rate with the ad-
dition of agents for both algorithms in Figures 9 and 10,
despite keeping ρw the same for one of the examples. The
final performance generally stays the same for all cases,

Figure 5. The evolution of the accuracy for the digits 6 and 7.

Figure 6. The evolution of the expected loss function for the digits
1 and 2.

with the edge given to the smaller ρw. This is an interesting
result as it proves that this algorithm is indeed scalable.

In Figure 8, the linear dependence on n is clear for both
algorithms, with a much better bound for 1P-DSGT-NC.

6. Conclusion
In this paper, we have analyzed and demonstrated the con-
vergence of the gradient tracking technique with non-convex
objective functions that are subject to a stochastic process.
Under the assumption that the gradient is not available and
that only noisy single queries of the objective function are
available at a time, we assembled a biased estimate of the
gradient and proved a convergence rate of O( 1

3√
K

) is possi-
ble. We then confirmed the efficacy of our algorithm with a
binary logistic classification simulation model.

8
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Figure 7. The evolution of the consensus error for the digits 1 and
2.

Figure 8. The evolution of the gradient tracking error for the digits
1 and 2.

Figure 9. The evolution of the accuracy for the digits 1 and 2.

Figure 10. Zooming on the evolution of the accuracy for the digits
1 and 2.
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A. Estimated gradient
In this part, we elaborate on the properties of our gradient estimate. Denote by ği,k = Ez,ξ,ζ [gi,k|Hk] the expected gradient
estimate given the history sequence. Then,

ği,k = Ez,ξ,ζ [zi,k(fi(xi,k + γkzi,k, ξi,k) + ζi,k)|Hk]

= Ez,ξ[zi,kfi(xi,k + γkzi,k, ξi,k)|Hk]

= Ez[zi,kFi(xi,k + γkzi,k)|Hk].

(22)

By Taylor’s theorem and the mean-valued theorem, there exists x̃i,k ∈ [xi,k, xi,k + γkzi,k] such that

Fi(xi,k + γkzi,k) = Fi(xi,k) + γk〈zi,k,∇Fi(xi,k)〉+
γ2k
2
〈zi,k,∇2Fi(x̃i,k)zi,k〉. (23)

Substituting in the expected gradient estimate,

ği,k = Fi(xi,k)Ez[zi,k] + γkEz[zi,kzTi,k]∇Fi(xi,k) +
γ2k
2
Ez[zi,kzTi,k∇2Fi(x̃i,k)zi,k|Hk]

= σ3γk[∇Fi(xi,k) + bi,k],

(24)

where

bi,k =
ği,k
σ3γk

−∇Fi(xi,k)

=
γk
2σ3

Ez[zi,kzTi,k∇2Fi(x̃i,k)zi,k|Hk].
(25)

By Assumptions 1.2 and 3.2,

‖bi,k‖ ≤
γk
2σ3

Ez[‖zi,k‖2‖zTi,k‖2‖∇2Fi(x̃i,k)‖2‖zi,k‖2|Hk]

≤ γk
σ3
4σ1

2σ3
.

(26)

Thus, the expected value of the mean gradient estimate is

g̃k = E[ḡk|Hk]

=
1

n

n∑
i=1

E[gi,k|Hk]

=
1

n

n∑
i=1

σ3γk[∇Fi(xi,k) + bi,k]

= σ3γk[h(xk) + b̄k],

(27)

where the mean bias is

‖b̄k‖ = ‖ 1

n

n∑
i=1

bi,k‖

≤ 1

n

n∑
i=1

‖bi,k‖

≤ 1

n

n∑
i=1

γk
σ3
4σ1

2σ3

= γk
σ3
4σ1

2σ3
.

(28)

12



Single Point-Based Distributed ZO Optimization with a Non-Convex Stochastic Objective Function

A.1. Gradient Estimate Norm Squared Bound

We start by bounding the expected norm squared of the individual gradient estimates. ∀i ∈ N ,

E[‖gi,k‖2|Hk] = E[‖zi,k(fi(xi,k + γkzi,k, ξi,k) + ζi,k)‖2|Hk]

= E[‖zi,k‖2‖fi(xi,k + γkzi,k, ξi,k) + ζi,k‖2|Hk]

(a)

≤ σ2
4E[(fi(xi,k + γkzi,k, ξi,k) + ζi,k)2|Hk]

(b)
= σ2

4E[f2i (xi,k + γkzi,k, ξi,k)|Hk] + σ2
4σ2

(c)

≤ σ2
4E[(‖fi(0, ξi,k)‖+ Lξi,k‖xi,k + γkzi,k‖)2|Hk] + σ2

4σ2
(d)

≤ 2σ2
4E[µ2

ξi,k
+ L2

ξi,k
(‖xi,k‖+ γkσ4)2|Hk] + σ2

4σ2

(e)
= 2σ2

4(µ+ L′(‖xi,k‖+ γkσ4)2) + σ2
4σ2

:= Mi

<∞,

(29)

where (a) is by Assumption 3.2, (b) Assumption 1.3, (c) Assumption 1.1. In (d), we denote ‖fi(0, ξi,k)‖ = µξi,k and the

inequality is due to x+y
2 ≤

√
x2+y2

2 , ∀x, y ∈ R. In (e), µ = E[µ2
ξi,k

] and L′ = E[L2
ξi,k

].

Then, we can write

E[‖gk‖2|Hk] =

n∑
i=1

E[‖gi,k‖2|Hk] < n× sup
i∈N

Mi := M <∞. (30)

B. Proof of Convergence
Lemma B.1. If all Assumptions 1.1, 1.3, 1.4, 3.1, and 3.2 are fulfilled and the inequality ‖xk‖ <∞ holds almost surely,
then limk→∞ ‖xk − 1x̄k‖2 = 0. In addition, both sums

∞∑
k=0

‖xk − 1x̄k‖2 <∞ and
∞∑
k=0

γkηk‖xk − 1x̄k‖2 <∞ (31)

converge almost surely.

Proof: See Appendix C.1.

B.1. Proof of Theorem 3.7

As a reminder of (11), x̄k+1 = x̄k − ηkḡk. By the L-smoothness of the objective function in Assumption (1.2), we have

F(x̄k+1) ≤ F(x̄k)− ηk〈∇F(x̄k), ḡk〉+
η2kL

2
‖ḡk‖2. (32)

Taking the conditional expectation givenHk on both sides,

13



Single Point-Based Distributed ZO Optimization with a Non-Convex Stochastic Objective Function

E[F(x̄k+1)|Hk]
(a)

≤ F(x̄k)− σ3ηkγk〈∇F(x̄k), h(xk) + b̄k〉+
η2kL

2
M̄

= F(x̄k)− σ3ηkγk〈∇F(x̄k), h(xk) + b̄k + F(x̄k)−F(x̄k)〉+
LM̄

2
η2k

= F(x̄k)− σ3ηkγk‖∇F(x̄k)‖2 − σ3ηkγk〈∇F(x̄k), b̄k〉+ σ3ηkγk〈∇F(x̄k),F(x̄k)− h(xk)〉+
LM̄

2
η2k

(b)

≤ F(x̄k)− σ3ηkγk‖∇F(x̄k)‖2 + σ3ηkγk‖∇F(x̄k)‖‖b̄k‖+ σ3ηkγk‖∇F(x̄k)‖‖F(x̄k)− h(xk)‖

+
LM̄

2
η2k

(c)

≤ F(x̄k)− σ3ηkγk‖∇F(x̄k)‖2 +
σ3ηkγk

4
‖∇F(x̄k)‖2 + σ3ηkγk‖b̄k‖2 +

σ3ηkγk
4
‖∇F(x̄k)‖2

+ σ3ηkγk‖F(x̄k)− h(xk)‖2 +
LM̄

2
η2k

= F(x̄k)− σ3ηkγk
2
‖∇F(x̄k)‖2 + σ3ηkγk‖b̄k‖2 + σ3ηkγk‖F(x̄k)− h(xk)‖2 +

LM̄

2
η2k

(d)

≤ F(x̄k)− σ3ηkγk
2
‖∇F(x̄k)‖2 +

σ6
4σ

2
1

4σ3
ηkγ

3
k +

σ3L
2

n
ηkγk‖xk − 1x̄k‖2 +

LM̄

2
η2k.

(33)

where (a) is by (27) and (34), (b) is by Cauchy-Schwarz inequality, (c) is by−2ε× 1
ε 〈a, b〉 = −2〈εa, 1ε b〉 ≤ ε

2‖a‖2+ 1
ε2 ‖b‖

2,
and (d) is by (28) and Lemma 3.5.

By Lemma 3.4,

‖ḡk‖2 = ‖ 1

n

n∑
i=1

gi,k‖2 ≤
n

n2

n∑
i=1

‖gi,k‖2 =
1

n

n∑
i=1

‖gi,k‖2 ≤ M̄ <∞, almost surely. (34)

By taking the telescoping sum of (33),

E[F(x̄K+1)|HK ] ≤ F(x̄0)− σ3
2

K∑
k=0

ηkγk‖∇F(x̄k)‖2 +
σ6
4σ

2
1

4σ3

K∑
k=0

ηkγ
3
k +

σ3L
2

n

K∑
k=0

ηkγk‖xk − 1x̄k‖2 +
LM̄

2

K∑
k=0

η2k.

(35)

We know that δk = F(x̄k)−F∗ > 0 by definition. Then,

0 ≤ E[δK+1|HK ] ≤ δ0 −
σ3
2

K∑
k=0

ηkγk‖∇F(x̄k)‖2 +
σ6
4σ

2
1

4σ3

K∑
k=0

ηkγ
3
k +

σ3L
2

n

K∑
k=0

ηkγk‖xk − 1x̄k‖2 +
LM̄

2

K∑
k=0

η2k.

(36)

Finally,
K∑
k=0

ηkγk‖∇F(x̄k)‖2 ≤ 2

σ3
δ0 +

σ6
4σ

2
1

2σ2
3

K∑
k=0

ηkγ
3
k +

2L2

n

K∑
k=0

ηkγk‖xk − 1x̄k‖2 +
LM̄

σ3

K∑
k=0

η2k. (37)

Since as K →∞, by Assumption 3.1,
∑
k ηkγ

3
k and

∑
k η

2
k converge, and by Lemma B.1

∑
k ηkγk‖xk−1x̄k‖2 converges,

then
∑
k ηkγk‖∇F(x̄k)‖2 must converge as well.

As
∑
k ηkγk diverges, this implies that limk→∞ inf ‖∇F(x̄k)‖ = 0.

Next, let ε > 0 be an arbitrary value, and consider the event

Aε :=

{
lim
k→∞

sup ‖∇F(x̄k)‖ ≥ ε
}
.

14
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When event Aε is true, an arbitrary subsequence
(
‖∇F(x̄kl)‖

)
l∈N of ‖∇F(x̄k)‖ can always be found, such that

‖∇F(x̄kl)‖ ≥ ε− ν, ∀l, for ε− ν > 0 and ν > 0.

Then,

‖∇F(x̄kl+1)‖ ≥ ‖∇F(x̄kl)‖ − ‖∇F(x̄kl+1)−∇F(x̄kl)‖
≥ ε− ν − L‖x̄kl+1 − x̄kl‖
= ε− ν − Lηkl‖ḡkl‖
≥ ε− ν − LM̄ηkl ,

(38)

Since kl →∞ as l→∞, we can find a subsequence of (klp)p∈N such that klp+1
− klp > 1. Thus,

∞∑
k=0

ηk+1γk+1‖∇F(x̄k+1)‖2 ≥ (ε− ν)2
∞∑
k=0

ηk+1γk+1 − 2(ε− ν)LM̄

∞∑
k=0

ηk+1γk+1ηk + L2M̄2
∞∑
k=0

ηk+1γk+1η
2
k

≥ (ε− ν)2
∞∑
k=0

ηk+1γk+1 − 2(ε− ν)LM̄

∞∑
k=0

η2kγk + L2M̄2
∞∑
k=0

ηk+1γk+1η
2
k

= +∞,

(39)

as the first series diverges and the second and the third converge by Assumption 3.1. This implies that on Aε the series∑
k ηkγk‖∇F(x̄k)‖2 diverges. This is a contradiction as this series converges almost surely by (37). Therefore, P(Aε) = 0

and as a result,

P
(

lim
k→∞

‖∇F(x̄k)‖ > 0

)
= P

( ⋃
ε>0

Aε

)
= 0. (40)

We conclude that ∇F(x̄k) converges almost surely.

C. Rate of Convergence
Let the step sizes satisfy (12). We know that, ∀K > 0,

K∑
k=0

ηkγ
3
k = η0γ

3
0 +

K∑
k=1

ηkγ
3
k ≤ η0γ30

(
1 +

∫ K

0

(x+ 1)−υ1−3υ2dx

)
= η0γ

3
0

(
1 +

1

υ1 + 3υ2 − 1
− (K + 1)−υ1−3υ2+1

υ1 + 3υ2 − 1

)
≤ η0γ30

(
1 +

1

υ1 + 3υ2 − 1

)
= η0γ

3
0

(
υ1 + 3υ2

υ1 + 3υ2 − 1

)
.

(41)

Similarly,
K∑
k=0

η2k ≤ η20
(

2υ1
2υ1 − 1

)
and

K∑
k=0

η3k ≤ η30
(

3υ1
3υ1 − 1

)
. (42)

Next, when 0 < υ1 + υ2 < 1,

K∑
k=0

ηkγk ≥ η0γ0
∫ K+1

0

(x+ 1)−υ1−υ2dx

=
η0γ0

(1− υ1 − υ2)

(
(K + 2)1−υ1−υ2 − 1

)
.

(43)

15
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Then, substituting back in (37),

∑K
k=0 ηkγk‖∇F(x̄k)‖2∑K

k=0 ηkγk
≤ (1− υ1 − υ2)

(K + 2)1−υ1−υ2 − 1

(
2

σ3η0γ0
δ0 +

σ6
4σ

2
1

2σ2
3

γ20
υ1 + 3υ2

υ1 + 3υ2 − 1
+
LM̄η0
σ3γ0

2υ1
2υ1 − 1

+
4L2

n

1

(1− ρ2w)
‖x0 − 1x̄0‖2 +

4L2G2η20
n

ρ2w(1 + ρ2w)

(1− ρ2w)2
3υ1

3υ1 − 1

)
.

(44)

Refer to (55) and (56) for the bounding of the term
∑
k γkηk‖xk − 1x̄k‖2.

C.1. Proof of Lemma B.1

We substitute the variables by their updates in (10).

‖xk+1 − 1x̄k+1‖2 = ‖Wxk − ηkWyk − 1x̄k + ηk1ȳk‖2

= ‖Wxk − 1x̄k‖2 − 2ηk〈Wxk − 1x̄k,Wyk − 1ȳk〉+ η2k‖Wyk − 1ȳk‖2

(a)

≤ ‖Wxk − 1x̄k‖2 + ηk[
1− ρ2w
2ρ2wηk

‖Wxk − 1x̄k‖2 +
2ρ2wηk
1− ρ2w

‖Wyk − 1ȳk‖2]

+ η2k‖Wyk − 1ȳk‖2

(b)

≤ ρ2w‖xk − 1x̄k‖2 + ρ2wηk[
1− ρ2w
2ρ2wηk

‖xk − 1x̄k‖2 +
2ρ2wηk
1− ρ2w

‖yk − 1ȳk‖2]

+ ρ2wη
2
k‖yk − 1ȳk‖2

=
1 + ρ2w

2
‖xk − 1x̄k‖2 + η2k

(1 + ρ2w)ρ2w
1− ρ2w

‖yk − 1ȳk‖2,

(45)

where (a) is by −2ε× 1
ε 〈a, b〉 = −2〈εa, 1ε b〉 ≤ ε

2‖a‖2 + 1
ε2 ‖b‖

2 and (b) is by Lemma 3.6. By taking the telescoping sum,
we obtain

‖xk+1 − 1x̄k+1‖2 ≤
(

1 + ρ2w
2

)k+1

‖x0 − 1x̄0‖2 +
2ρ2w

1− ρ2w

k∑
j=0

(
1 + ρ2w

2

)j+1

η2k−j‖yk−j − 1ȳk−j‖2. (46)

By the algorithm’s updates of yk+1, we can write it in terms of current and all previous gradient estimates as

yk+1 = Wyk + gk+1 − gk

= W (Wyk−1 + gk − gk−1) + gk+1 − gk

= W 2yk−1 −Wgk−1 + (W − I)gk + gk+1

= W 2(Wyk−2 + gk−1 − gk−2)−Wgk−1 + (W − I)gk + gk+1

= W 3yk−2 −W 2gk−2 +W (W − I)gk−1 + (W − I)gk + gk+1

= . . .

= W k+1y0 −W kg0 +

k−1∑
j=0

W j(W − I)gk−j + gk+1

= W k(W − I)g0 +

k−1∑
j=0

W j(W − I)gk−j + gk+1

=

k∑
j=0

W j(W − I)gk−j + gk+1,

(47)

16



Single Point-Based Distributed ZO Optimization with a Non-Convex Stochastic Objective Function

then substituting in yk − 1ȳk, we obtain

yk − 1ȳk =

k−1∑
j=0

W j(W − I)gk−1−j + gk −
k−1∑
j=0

1

n
11TW j(W − I)gk−1−j −

1

n
11Tgk

=

k−1∑
j=0

W j(W − I)gk−1−j + gk −
k−1∑
j=0

1

n
11T (W − I)gk−1−j −

1

n
11Tgk

=

k−1∑
j=0

(W j − 1

n
11T )(W − I)gk−1−j + gk −

1

n
11Tgk

=

k−1∑
j=0

(W − 1

n
11T )j(W − I)gk−1−j + gk − 1ḡk,

(48)

where the last equality is due to the matrix W being doubly stochastic (Assumption 1.4) and can be proved by recursion:

(W − 1
n11

T )j+1 = (W j − 1
n11

T )(W − 1
n11

T ) = W j+1− 1
nW

j11T − 1
n11

TW + 1
n11

T = W j+1− 2
n11

T + 1
n11

T =
W j+1 − 1

n11
T .

By Lemma 3.6,

‖yk − 1ȳk‖ ≤
k−1∑
j=0

‖(W − 1

n
11T )j(W − I)gk−1−j‖+ ‖gk − 1ḡk‖

≤
k−1∑
j=0

ρjw‖(W − I)gk−1−j‖+ ‖gk − 1ḡk‖.

(49)

From Lemma 3.4, we have ‖gk‖2 <∞ almost surely.

‖gk − 1ḡk‖2 =

n∑
i=1

‖gi,k −
1

n

n∑
j=1

gj,k‖2

=

n∑
i=1

(
‖gi,k‖2 − 2〈gi,k,

1

n

n∑
j=1

gj,k〉+ ‖ḡk‖2
)

= ‖gk‖2 − 2n‖ḡk‖2 + n‖ḡk‖2

= ‖gk‖2 − n‖ḡk‖2

≤ ‖gk‖2

≤M ′2 <∞

(50)

Thus, we get

‖yk − 1ȳk‖ ≤
M ′

1− ρw
‖(W − I)‖+M ′

= G <∞,
(51)

where the first term is the sum of a geometric series as ρw < 1.

1. Proof of limk→∞ ‖xk − 1x̄k‖2 = 0
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From (45), we can write

‖xk+1 − 1x̄k+1‖2 ≤
1 + ρ2w

2
‖xk − 1x̄k‖2 + η2k

(1 + ρ2w)ρ2w
1− ρ2w

‖yk − 1ȳk‖2

‖xk − 1x̄k‖2 ≤
1 + ρ2w

2
‖xk−1 − 1x̄k−1‖2 + η2k−1

(1 + ρ2w)ρ2w
1− ρ2w

‖yk−1 − 1ȳk−1‖2

. . .

‖x1 − 1x̄1‖2 ≤
1 + ρ2w

2
‖x0 − 1x̄0‖2 + η20

(1 + ρ2w)ρ2w
1− ρ2w

‖y0 − 1ȳ0‖2.

(52)

If we add all inequalities in (52), we get

‖xk+1 − 1x̄k+1‖2 ≤ −
1− ρ2w

2

k∑
i=1

‖xi − 1x̄i‖2 +
1 + ρ2w

2
‖x0 − 1x̄0‖2 +

(1 + ρ2w)ρ2w
1− ρ2w

k∑
i=0

α2
i ‖yi − 1ȳi‖2

(a)

≤ −1− ρ2w
2

k∑
i=1

‖xi − 1x̄i‖2 +
1 + ρ2w

2
‖x0 − 1x̄0‖2 +G2 (1 + ρ2w)ρ2w

1− ρ2w

k∑
i=0

α2
i

(53)

where (a) is due to (51). Let k → ∞, then the second and third terms are bounded by Assumption 3.1. We then
consider the only two possibilities:

∑
i ‖xi − 1x̄i‖2 either diverges or converges.

Assume the hypothesis H) ”
∑
i ‖xi − 1x̄i‖2 diverges.” to be true. This implies

‖xk+1 − 1x̄k+1‖2 < −∞, (54)

as − 1−ρ2w
2 < 0. However, ‖xk+1 − 1x̄k+1‖2 is positive. Thus, hypothesis H cannot be true and

∑
i ‖xi − 1x̄i‖2

converges. We conclude that limk→∞ ‖xk − 1x̄k‖2 = 0 almost surely.

2. Proof of
∑∞
k=0 γkηk‖xk − 1x̄k‖2 <∞

Substituting (46) into the sum
∑∞
k=0 γkηk‖xk − 1x̄k‖2, we get

∞∑
k=0

γkηk‖xk − 1x̄k‖2

=γ0η0‖x0 − 1x̄0‖2 +

∞∑
k=1

γkηk‖xk − 1x̄k‖2

≤γ0η0‖x0 − 1x̄0‖2 +

∞∑
k=1

γkηk

[(
1 + ρ2w

2

)k
‖x0 − 1x̄0‖2 +G2 2ρ2w

1− ρ2w

k−1∑
j=0

(
1 + ρ2w

2

)j+1

η2k−1−j

]

≤γ0η0‖x0 − 1x̄0‖2 + γ0η0
1 + ρ2w
1− ρ2w

‖x0 − 1x̄0‖2 +G2 2ρ2w
1− ρ2w

∞∑
k=1

γkηk

k−1∑
j=0

(
1 + ρ2w

2

)j+1

η2k−1−j

=
2γ0η0
1− ρ2w

‖x0 − 1x̄0‖2 +G2 2ρ2w
1− ρ2w

∞∑
k=1

γkηk

k−1∑
j=0

(
1 + ρ2w

2

)j+1

η2k−1−j ,

(55)

where the last inequality is due to the fact that γk and ηk are both decreasing step-sizes and we have a sum of a
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geometric series of ratio 1+ρ2

2 < 1. We then study the last term,

∞∑
k=1

γkηk

k−1∑
j=0

(
1 + ρ2w

2

)j+1

η2k−1−j ≤
∞∑
k=1

γk

k−1∑
j=0

(
1 + ρ2w

2

)j+1

η3k−1−j

=

∞∑
k=1

γk

k∑
j=1

(
1 + ρ2w

2

)k−j+1

η3j−1

=

∞∑
j=1

η3j−1

∞∑
k=j

γk

(
1 + ρ2w

2

)k−j+1

≤γ0
∞∑
j=1

η3j−1

∞∑
k=j

(
1 + ρ2w

2

)k−j+1

=γ0
1 + ρ2w
1− ρ2w

∞∑
j=1

η3j−1

<∞,

(56)

as
∑
η2k converges by Assumption 3.1.

Finally,
∑∞
k=0 γkηk‖xk − 1x̄k‖2 <∞.
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