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ABSTRACT

Transfer learning plays a key role in advancing machine learning models, yet
conventional supervised pretraining often undermines feature transferability by
prioritizing features that minimize the pretraining loss. In this work, we adapt
a self-supervised learning regularization technique from the VICReg method to
supervised learning contexts, introducing Variance-Covariance Regularization
(VCReg). This adaptation encourages the network to learn high-variance, low-
covariance representations, promoting learning more diverse features. We outline
best practices for an efficient implementation of our framework, including applying
it to the intermediate representations. Through extensive empirical evaluation, we
demonstrate that our method significantly enhances transfer learning for images
and videos, achieving state-of-the-art performance across numerous tasks and
datasets. VCReg also improves performance in scenarios like long-tail learning and
hierarchical classification. Additionally, we show its effectiveness may stem from
its success in addressing challenges like gradient starvation and neural collapse.
In summary, VCReg offers a universally applicable regularization framework that
significantly advances transfer learning and highlights the connection between
gradient starvation, neural collapse, and feature transferability.

1 INTRODUCTION

Transfer learning enables models to apply knowledge from one domain to enhance performance in
another, particularly when data are scarce or costly to obtain (Pan & Yang, 2010; Weiss et al., 2016;
Zhuang et al., 2020; Bommasani et al., 2021). One of the key challenges arises during the supervised
pretraining phase. In this phase, models often lack detailed information about the downstream tasks
to which they will be applied. Nevertheless, they must aim to capture a broad spectrum of features
beneficial across various applications (Bengio, 2012; Caruana, 1997; Yosinski et al., 2014). Without
proper regularization techniques, these supervised pretrained models tend to overly focus on features
that minimize supervised loss, resulting in limited generalization capabilities and issues such as
gradient starvation and neural collapse (Zhang et al., 2016; Neyshabur et al., 2017; Zhang et al., 2021;
Pezeshki et al., 2021; Papyan et al., 2020; Shwartz-Ziv, 2022).

To tackle these challenges, we adapt the regularization techniques of the self-supervised VICReg
method (Bardes et al., 2021) for the supervised learning paradigm. Our method, termed Variance-
Covariance Regularization (VCReg), aims to encourage the learning of representations with high
variance and low covariance, thus avoiding the overemphasis on features that merely minimize
supervised loss. Instead of simply applying VCReg to the final representation of the network, we
explore the most effective ways to incorporate it throughout intermediate representations.

The structure of the paper is as follows: we begin with an introduction of our method, including an
outline of a fast implementation strategy designed to minimize computational overhead. Following
this, we present a series of experiments aimed at validating the method’s efficacy across a wide range
of tasks, datasets, and architectures. Subsequently, we conduct analyses on the learned representations
to demonstrate VCReg’s effectiveness in mitigating common issues in transfer learning, such as
neural collapse and gradient starvation.

Our paper makes the following contributions:
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Figure 1: VCReg regularizes the network by encouraging the intermediate representations to have high
variance and low covariance. VCReg is applied to the output of each network block to make all the intermediate
representations capture diverse features.

1. We introduce a robust strategy for applying VCReg to neural networks, including integrating
it into the intermediate layers.

2. We propose a computationally efficient implementation of VCReg. This implementation
is optimized to ensure minimal additional computational overhead, allowing for seamless
integration into existing workflows.

3. Through extensive experiments on benchmark datasets both in images and videos, we
demonstrate that VCReg suppresses the prior state-of-the-art results in transfer learning
performance across various network architectures, including ResNet (He et al., 2016),
ConvNeXt (Liu et al., 2022), and ViT (Dosovitskiy et al., 2020). Moreover, we also
show that VCReg improves performance in diverse scenarios like long-tail learning and
hierarchical classification.

4. We investigate the representations learned by VCReg, revealing its effectiveness in combat-
ing challenges such as gradient starvation (Pezeshki et al., 2021), neural collapse (Papyan
et al., 2020), information compression (Shwartz-Ziv, 2022), and sensitivity to noise.

Before delving into VCReg’s details in the following sections, it is key to note its divergence from
VICReg, namely by omitting the invariance loss and focusing on variance and covariance loss for
a wider application, especially in transfer learning. This approach tackles challenges like gradient
starvation and neural collapse, improving neural network training across various architectures. Our
work further distinguishes itself by exploring optimal regularization strategies, moving beyond
generic application to significantly enhance its effectiveness.

2 RELATED WORK

2.1 VARIANCE-INVARIANCE-COVARIANCE REGULARIZATION (VICREG)

VICReg (Bardes et al., 2021) is a novel SSL method that encourages the learned representation to
be invariant to data augmentation. However, focusing solely on this invariance criterion can result
in the network producing a constant representation, making it invariant to both data augmentation
and the input data itself. VICReg primarily regularizes the network by combining variance loss
and covariance loss. The variance loss encourages high variance in the learned representations,
thereby promoting the learning of diverse features. The covariance loss, on the other hand, aims
to minimize redundancy in the learned features by reducing the overlap in information captured by
different dimensions of the representation. This dual-objective optimization framework effectively
promotes diverse feature learning for SSL (Shwartz-Ziv et al., 2022). To improve the performance of
supervised network training, we adapt the SSL feature collapse prevention mechanism from VICReg
and propose a variance-covariance regularization method.

To calculate the loss function of VICReg with a batch of data {x1 . . . xn}, we first need to have
a pair of inputs (x′

i, x
′′
i ) such that x′

i and x′′
i are two augmented versions of the original input xi.

Given the neural network fθ(·) and the final representations z′i = fθ(x
′
i) and z′′i = fθ(x

′′
i ) such that

2
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z′i, z
′′
i ∈ RD, VICReg minimizes the following loss:

ℓVICReg(z
′
1 . . . z

′
n, z

′′
1 . . . z′′n) = αℓvar(z

′
1, . . . , z

′
n) + αℓvar(z

′′
1 , . . . , z

′′
n) (1)

+ βℓcov(z
′
1, . . . , z

′
n) + βℓcov(z

′′
1 , . . . , z

′′
n) +

n∑
i=1

ℓinv(z
′
i, z

′′
i ).

The variance and covariance loss functions are respectively defined as:

ℓvar =
1

D

D∑
i=1

max(0, 1−
√
Cii), ℓcov =

1

D(D − 1)

∑
i̸=j

C2
ij (2)

where C = 1
N−1

∑N
i=1(zi − z̄)(zi − z̄)T denotes the covariance matrix, and z̄ represents the mean

vector, given by z̄ = 1
N

∑N
i=1 zi.

Building on insights from prior studies (Shwartz-Ziv, 2022; Shwartz-Ziv et al., 2023), it is understood
that the invariance term does not play a pivotal role in diversifying features. Consequently, in adapting
to the supervised regime, we exclude the invariance term from the regularization.

2.2 REPRESENTATION WHITENING AND FEATURE DIVERSITY REGULARIZERS

Representation whitening is a technique for processing inputs before they enter a network layer. It
transforms the input so that its components are uncorrelated with unit variance (Kessy et al., 2018).
This transformation achieves enhanced model optimization and generalization. It uses a whitening
matrix derived from the data’s covariance matrix and results in an identity covariance matrix, thereby
aiding gradient flow during training and acting as a lightweight regularizer to reduce overfitting and
encourage robust data representations (LeCun et al., 2002).

In addition to whitening as a processing step, additional regularization terms can be introduced to
enforce decorrelation in the representations. Various prior works have explored these feature diversity
regularization techniques to enhance neural network training (Cogswell et al., 2015; Ayinde et al.,
2019; Laakom et al., 2023). These methods encourage diverse features in the representation by adding
a regularization term. Recent methods like WLD-Reg (Laakom et al., 2023) and DeCov (Cogswell
et al., 2015) also employ covariance-matrix-based regularization to promote feature diversity, similarly
to our approach.

However, the studies above mainly focus on the benefits of optimization and generalization for the
source task, often neglecting their implications for supervised transfer learning. VCReg distinguishes
itself by explicitly targeting enhancements in transfer learning performance. Our results indicate
that such regularization techniques yield only modest performance improvements in in-domain
evaluations.

2.3 GRADIENT STARVATION AND NEURAL COLLAPSE

Gradient starvation and neural collapse are two recently recognized phenomena that can significantly
affect the quality of learned representations and a network’s generalization ability (Pezeshki et al.,
2021; Papyan et al., 2020; Ben-Shaul et al., 2023). Gradient starvation occurs when certain parameters
in a deep learning model receive very small gradients during the training process, thereby leading
to slower or non-existent learning for these parameters (Pezeshki et al., 2021). Neural collapse,
on the other hand, is a phenomenon observed during the late stages of training when the internal
representations of the network tend to collapse towards each other, resulting in a loss of feature
diversity (Papyan et al., 2020). Both phenomena are particularly relevant in the context of transfer
learning, where models are initially trained on a source task before being fine-tuned for a target task.
Our work, through the use of VCReg, seeks to mitigate these issues, offering a pathway to more
effective transfer learning.
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3 VARIANCE-COVARIANCE REGULARIZATION

3.1 VANILLA VCREG

Consider a labeled dataset comprising N samples, denoted as {(x1, y1) . . . (xN , yN )} and a neural
network fθ(·), which takes these inputs xi and produces final predictions ỹi = fθ(xi). In standard
supervised learning, the loss is defined as Lsup = 1

N

∑N
i=1 ℓsup(ỹi, yi).

The core objective of the Vanilla VCReg is to ensure that the D-dimensional input representations
{hi}Ni=1 to the last layer of the network exhibit both high variance and low covariance. To achieve
this, we employ variance and covariance regularization, same as mentioned in equation 1:

ℓvcreg(h1 . . . hN ) = αℓvar(h1 . . . hN ) + βℓcov(h1 . . . hN ) (3)

Intuitively speaking, the covariance matrix captures the interdependencies among the dimensions
of the feature vectors hi. Maximizing ℓvar encourages each feature dimension to contain unique,
non-redundant information, while minimizing ℓcov aims to reduce the correlation between different
dimensions, thus promoting feature independence. The overall training loss, which includes also the
supervised loss, then becomes:

Lvanilla = αℓvar(h1 . . . hN ) + βℓcov(h1 . . . hN ) +
1

N

N∑
i=1

ℓsup(ỹi, yi). (4)

Here, α and β serve as hyperparameters to control the strength of each regularization term.

3.2 EXTENDING VCREG TO INTERMEDIATE REPRESENTATIONS

While regularizing the final layer in a neural network offers certain benefits, extending this approach
to intermediate layers via VCReg provides additional advantages (for empirical evidence supporting
this claim, please refer to Appendix A). Regularizing intermediate layers enables the model to capture
more complex, higher-level abstractions. This strategy minimizes internal covariate shifts across
layers, which in turn improves both the stability of training and the model’s generalization capabilities.
Furthermore, it fosters the development of feature hierarchies and enriches the latent space, leading
to enhanced model interpretability and improved transfer learning performance.

To implement this extension, VCReg is applied at M strategically chosen layers throughout the
neural network. For each intermediate layer j, we denote the feature representation for an input xi as
h
(j)
i ∈ RDj . This culminates in a composite loss function, expressed as follows:

LVCReg =

M∑
j=1

[
αℓvar(h

(j)
1 . . . h

(j)
N ) + βℓcov(h

(j)
1 . . . h

(j)
N )

]
+

1

N

N∑
i=1

ℓsup(ỹi, yi). (5)

Spatial Dimensions However, applying VCReg to intermediate layers of real-world neural networks
presents challenges due to the spatial dimensions in these intermediate representations. Naively
reshaping these representations into long vectors would lead to unmanageably large covariance
matrices, thereby increasing computational costs and risking numerical instability. To address this
issue, we adapt VCReg to accommodate networks with spatial dimensions. Each vector at a different
spatial location is treated as an individual sample when calculating the covariance matrix. Both the
variance loss and the covariance loss are then calculated based on this modified covariance matrix.
In terms of practical implementation, VCReg is usually applied subsequently to each block within
the neural network architecture, often succeeding residual connections. This placement allows for
seamless incorporation into current network architectures and training paradigms.

Addressing Outliers with Smooth L1 Loss After treating spatial locations as independent samples
for covariance computation, the resulting samples are no longer statistically independent. This can
lead to outliers in the covariance matrix and unstable gradient updates. To address this, we introduce
a smooth L1 penalty into the covariance loss term. Specifically, we replace the traditional squared
covariance values Cij in ℓcov with a smooth L1 function:

SmoothL1(x) =
{
x2, if |x| ≤ δ

2δ|x| − δ2, otherwise
(6)
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Table 1: Transfer Learning Performance with ImageNet Supervised Pretraining
The table shows performance metrics for different architectures. Each model is pretrained on the full ImageNet
dataset and then tested on different downstream datasets using linear probing. Application of VCReg consistently
improves performance and beats other feature diversity regularizer. Averages are calculated excluding ImageNet
results.

Architecture iNat18 Places Food Cars Aircraft Pets Flowers DTD Average

ResNet-50 42.8% 50.6% 69.1% 43.6% 54.8% 91.9% 77.1% 68.7% 62.33%
ResNet-50 (DeCov) 43.1% 50.4% 69.0% 45.7% 55.5% 90.6% 79.2% 69.1% 62.83%
ResNet-50 (WLD-Reg) 43.9% 51.2% 70.2% 43.9% 58.7% 91.4% 80.7% 69.0% 63.63%
ResNet-50 (VCReg) 45.3% 51.2% 71.7% 54.1% 70.5% 92.1% 88.0% 70.8% 67.96%

ConvNeXt-T 51.6% 53.8% 78.4% 62.9% 74.7% 93.9% 91.3% 72.9% 72.44%
ConvNeXt-T (VCReg) 52.3% 54.7% 79.6% 64.2% 76.3% 94.1% 92.7% 73.3% 73.40%

ViT-Base-32 39.1% 47.9% 70.6% 51.2% 63.8% 90.3% 84.6% 66.1% 64.20%
ViT-Base-32 (VCReg) 40.6% 48.1% 70.9% 52.0% 65.8% 91.0% 86.6% 66.5% 65.19%

By implementing this modification, we ensure that the loss function increases in a more controlled
manner with respect to large covariance values. Empirically, this minimizes the impact of outliers,
thereby enhancing the stability of the training process.

3.3 FAST IMPLEMENTATION

To optimize VCReg speed, we use the fact that VCReg only affects the loss function and not the
forward pass. This allows us to focus on modifying the backward function for improvements. Specifi-
cally, we sidestep the usual process of calculating the VCReg loss and subsequent backpropagation.
Instead, we directly adjust the computed gradients, which is feasible since the VCReg loss calculation
relies solely on the current representation. Further details of this speed-optimized technique are
outlined in Appendix B. Our optimized VCReg implementation exhibits similar latency as batch
normalization layers and is more than 5 times faster than the naive VCReg implementation. The
results are presented in Table 8.

4 EXPERIMENTS

In this section, we first outline the experimental framework and findings highlighting the effectiveness
of our proposed regularization approach, VCReg, within the realm of transfer learning that utilizes
supervised pretraining for both images and videos. Subsequently, we extend our experiments to
three specialized learning scenarios: 1) class imbalance via long-tail learning, 2) synergizing with
self-supervised learning frameworks, and 3) hierarchical classification problems. The objective
is to assess the adaptability of VCReg across various data distributions and learning paradigms,
thereby evaluating its broader utility in machine learning applications. For details on reproducing our
experiments, please consult Appendix C.

4.1 TRANSFER LEARNING FOR IMAGES

In this section, we adhere to evaluation protocols established by seminal works such as (Chen et al.,
2020; Kornblith et al., 2021; Misra & Maaten, 2020) for our transfer learning experiments. Initially, we
pretrain models using three different architectures: ResNet-50 (He et al., 2016), ConvNeXt-Tiny (Liu
et al., 2022), and ViT-Base-32 (Dosovitskiy et al., 2020), on the full ImageNet dataset. We follow the
standard PyTorch recipes (Paszke et al., 2019) for all networks and do not modify any hyperparameters
other than those related to VCReg to ensure a fair baseline comparison. Subsequently, we perform a
linear probing evaluation across 9 different benchmark to evaluate the transfer learning performance.
For ResNet-50, we include two other feature diversity regularizer methods for comparison: DeCov
(Cogswell et al., 2015) and WLD-Reg (Laakom et al., 2023). We conduct experiments solely with
ResNet-50 because it is the principal architecture used in the WLD-Reg paper. To ensure a fair
comparison, we source hyperparameters from Laakom et al. (2023) for both DeCov and WLD-Reg.
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Table 2: Transfer Learning Performance with Kinetics-400 and Kinetics-710 pretrained models: The table
shows fine-tuning performance of Kinetics pre-trained models on HMDB51. VideoMAE-S, VideoMAE-B, and
ViViT-B are pretrained on Kinetics-400 dataset while VideoMAEv2-S and VideoMAEv2-B are pre-trained on
Kinetics-710. We apply VCReg only to the networks’ output preceding the classification head. The results show
that VCReg can boost the transfer learning classification performance for networks pre-trained on video data.

Method Backbone HMDB51

VideoMAE-S ViT-S 79.9%
VideoMAE-S (VCReg) ViT-S 80.6%

VideoMAE-B ViT-B 82.2%
VideoMAE-B (VCReg) ViT-B 83.0%

VideoMAEv2-S ViT-S 83.6%
VideoMAEv2-S (VCReg) ViT-S 83.9%

VideoMAEv2-B ViT-B 86.5%
VideoMAEv2-B (VCReg) ViT-B 86.9%

ViViT-B ViT-B 70.9%
ViViT-B (VCReg) ViT-B 71.6%

The results in Table 1 demonstrate that VCReg significantly enhances performance in transfer learning
for images, achieving the highest performance for 9 out of 10 datasets, and for all three architectures.
Clearly, VCReg acts as a versatile plug-in, effectively boosting transfer learning outcomes. Its
effectiveness spans ConvNet and Transformer architectures, confirming its wide-ranging applicability.

4.2 TRANSFER LEARNING FOR VIDEOS

To extend our evaluation of VCReg’s efficacy, we conduct experiments using networks pretrained
on video datasets. Specifically, we utilize models pretrained on Kinetics-400 Kay et al. (2017) and
Kinetics-710 Li et al. (2022), subsequently finetuning them for action recognition on HMDB51
Kuehne et al. (2011). We experiment with models pretrained with self-supervised learning objectives
(VideoMAE Tong et al. (2022) and VideoMAEv2 Wang et al. (2023)), as well as models pretrained
with conventional supervised learning objectives (ViViT Arnab et al. (2021)). We follow the finetuning
protocols detailed by Tong et al. (2022) and the conventional evaluation method used in the field,
where the final performance is measured by the mean classification accuracy across three provided
splits Simonyan & Zisserman (2014). To pinpoint the optimal VCReg coefficients, we conduct a
grid search based on validation set accuracy. For simplicity, in this setup, VCReg regularization is
exclusively applied to the final output of each network during finetuning, just before the classification
head.

Table 2 illustrates that incorporating VCReg as a plugin regularizer improves the transfer learning
performance for action recognition across various methods (VideoMAE, VideoMAE2, and ViViT-B)
and backbone architectures (ViT-B and ViT-S). This solidifies VCReg’s status as a practical and
versatile regularizer, capable of substantially improving the performance of pretrained networks in
transfer learning scenarios.

4.3 CLASS IMBALANCE WITH LONG-TAIL LEARNING

Class imbalance is a pervasive issue in many real-world datasets and poses a considerable challenge
to standard neural network training algorithms. We conduct experiments to assess how well VCReg
addresses this issue through long-tail learning. We evaluate VCReg using the CIFAR10-LT and
CIFAR100-LT Krizhevsky et al. (2009) datasets, both engineered to have an imbalance ratio of 100.
These experiments use a ResNet-32 backbone architecture. The per-class sample sizes ranges from
5,000 to 50 for CIFAR10-LT and from 500 to 5 for CIFAR100-LT.

Table 3 shows that models augmented with VCReg consistently outperform the standard ResNet-32
models on imbalanced datasets. These results are noteworthy because they demonstrate that VCReg
effectively enhances the model’s ability to discriminate between classes in imbalanced settings. This

6
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Table 3: Performance Comparison on Class-Imbalanced Datasets Using VCReg: This table shows the
accuracy of standard ResNet-32 with and without VCReg when trained on class-imbalanced CIFAR10-LT and
CIFAR100-LT datasets. The VCReg-enhanced models show improved performance, demonstrating the method’s
effectiveness in addressing class imbalance.

Training Methods CIFAR10-LT CIFAR100-LT

ResNet-32 69.6% 37.4%
ResNet-32 (VCReg) 71.2% 40.4%

Table 4: Impact of VCReg on Self-Supervised Learning Methods: This table presents a comparative analysis
of ResNet-50 models pretrained with SimCLR and VICReg losses on ImageNet, both with and without the
VCReg applied. The models are evaluated using linear probing on various downstream task datasets. The VCReg
models consistently outperform the non-VCReg models, showcasing the method’s broad utility in transfer
learning for self-supervised learning scenarios. Averages are calculated excluding ImageNet results.

Pretraining ImageNet iNat18 Places Food Cars Aircraft Pets Flowers DTD Average

SimCLR 67.2% 37.2% 52.1% 66.4% 35.7% 62.3% 76.3% 82.6% 68.1% 60.09%
SimCLR+VCR 67.1% 41.3% 52.3% 67.7% 40.6% 61.9% 76.6% 83.6% 69.0% 61.63%

VICReg 65.2% 41.7% 48.2% 61.0% 27.3% 51.2% 79.1% 74.3% 65.4% 56.03%
VICReg+VCR 66.3% 41.4% 49.6% 61.6% 29.3% 54.2% 79.7% 74.5% 66.5% 57.10%

establishes VCReg as a valuable tool for real-world applications where class imbalance is often a
concern.

4.4 SELF-SUPERVISED LEARNING WITH VCREG

Our subsequent investigation focuses on examining the synergy between VCReg and existing self-
supervised learning paradigms. As mentioned in the previous sections, we apply VCReg not only
to the final but also to intermediate representations. So in all of the following experiments for
self-supervised learning with VCReg, we apply the original loss function to the output of the network,
and the VCReg loss to all the intermediate representations. We employ a ResNet-50 architecture,
training it for 100 epochs under four different configurations: using either SimCLR loss or VICReg
loss, coupled with the ImageNet dataset. For evaluation, we conduct linear probing tests on multiple
downstream task datasets, following the protocols prescribed by Misra & Maaten (2020); Zbontar
et al. (2021).

As indicated in Table 4, integrating VCReg into self-supervised learning paradigms such as SimCLR
and VICReg results in consistent performance improvements for transfer learning. Specifically,
the linear probing accuracies are enhanced across nearly all the evaluated datasets. These gains
underscore the broad applicability and versatility of VCReg, demonstrating its potential to enhance
various machine learning methodologies.

4.5 HIERARCHICAL CLASSIFICATION

To evaluate the efficacy of the learned representations across multiple levels of class granularity, we
conduct experiments on the CIFAR100 dataset as well as five distinct subsets of ImageNet (Engstrom
et al., 2019). In each dataset, every data sample is tagged with both superclass and subclass labels,
denoted as (xi, y

sup
i , ysubi ). Note that while samples sharing the same subclass label also share the

same superclass label, the reverse does not necessarily hold true. Initially, the model is trained using
only the superclass labels, i.e., the (xi, y

sup
i ) pairs. Subsequently, linear probing is employed with

the subclass labels (xi, y
sub
i ) to assess the quality of abstract features at the superclass level.

Table 5 presents key performance metrics, highlighting the substantial improvements VCReg brings
to subclass classification. The improvements are consistent across all datasets, with the CIFAR100
dataset showing the most significant gain—an increase in accuracy from 60.7% to 72.9%. These
results underscore VCReg’s capability to assist neural networks in generating feature representations
that are not only discriminative at the superclass level but are also well-suited for subclass distinctions.

7
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Table 5: Impact of VCReg on Hierarchical Classification in ConvNeXt Models: This table summarizes the
classification accuracies obtained with ConvNeXt models, both with and without the VCReg regularization,
across multiple datasets featuring hierarchical class structures including CIFAR100 and several subsets of
ImageNet. The models were initially trained using superclass labels and subsequently probed using subclass
labels. VCReg consistently boosts performance in subclass classification tasks.

CIFAR100 living 9 mixed 10 mixed 13 geirhos 16 big 12

Superclass Count 20 9 10 13 16 12
Subclass Count 100 72 60 78 32 240

ConvNeXt 60.7% 53.4% 60.3% 61.1% 60.5% 51.8%
ConvNeXt (VCReg) 72.9% 62.2% 67.7% 66.0% 70.1% 61.5%

Figure 2: Comparative evaluation between train-
ing with and without VCReg on a “Two-Moon”
Synthetic Dataset. Decision boundaries are averaged
over ten distinct runs with random data point sampling
and model initialization. A single run’s data points are
displayed for clarity. While “No regularization” has
limitations in forming intricate decision boundaries,
VCReg is effective in generating meaningful ones.

Figure 3: Impact of VCReg amidst noisy data: This
figure shows the top-1 accuracy of VideoMAE-S and
VideoMAEv2-S when fine-tuned for action recogni-
tion using HMDB51 corrupted with synthetic noise.
We corrupt the data with Gaussian noise with stan-
dard deviation σ ∈ {1, 1.5, 2}. Models with VCReg
outperform their non-regularized counterparts in this
setting.

This attribute is particularly advantageous in real-world applications where class categorizations often
exist within a hierarchical framework.

5 EXPLORING THE BENEFITS OF VCREG

This section aims to thoroughly unpack the multi-faceted benefits of VCReg in the context of
supervised neural network training. Specifically, we discuss its capability to address challenges such
as gradient starvation (Pezeshki et al., 2021), neural collapse (Papyan et al., 2020), noisy data, and
the preservation of information richness during model training (Shwartz-Ziv, 2022).

5.1 MITIGATING GRADIENT STARVATION

In line with the original study on gradient starvation (Pezeshki et al., 2021), we observe that most
traditional regularization techniques fall short of capturing the vital features for the “two-moon”
dataset experiment. To assess the effectiveness of VCReg, we replicate this setting with a three-layer
network and apply our method during training. Our visualized results in Figure 2 make it apparent
that VCReg has a marked advantage over traditional regularization techniques, particularly in the
aspects of separation margins. Thus, it is reasonable to conclude that VCReg can help mitigate
gradient starvation. Please check section E for the detailed information about experiments related to
the “two-moon” dataset.

5.2 PREVENTING NEURAL COLLAPSE AND INFORMATION COMPRESSION

To deepen our understanding of VCReg and its training dynamics, we closely examine its learned
representations. A recent study (Papyan et al., 2020) observed a peculiar trend in deep networks
trained for classification tasks: the top-layer feature embeddings of training samples from the same
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Table 6: VCReg learns richer representation and prevents neural collapse and information compression
Metrics include Class-Distance Normalized Variance (CDNV), Nearest Class-Center Classifier (NCC), and
Mutual Information (MI). Higher values indicate reduced neural collapse and richer feature representations.

Network CDNV NCC MI

ConvNeXt 0.28 0.99 2.8
ConvNeXt (VCReg) 0.56 0.81 4.6

class tend to cluster around their respective class means, which are as distant from each other as
possible. However, this phenomenon could potentially result in a loss of diversity among the learned
features (Papyan et al., 2020), thus curtailing the network’s capacity to grasp the complexity of the
data and leading to suboptimal performance for transfer learning (Li et al., 2018). Our neural collapse
investigation includes two key metrics.

Class-Distance Normalized Variance (CDNV) For a feature map f : Rd → Rp and two unlabeled
sets of samples S1, S2 ⊂ Rd, the CDNV is defined as

Vf (S1, S2) =
σ2
f (S1) + σ2

f (S2)

2∥µf (S1)− µf (S2)∥2
, (7)

where µf (S) and σ2
f (S) signify the mean and variance of the set {f(x) | x ∈ S}. This metric

measures the degree of clustering of the features, in relation to their distance.

Nearest Class-Center Classifier (NCC) This classifier is defined as argminc∈[C] ∥f(x)− µf (Sc)∥

According to this measure, during training, collapsed feature embeddings in the penultimate layer
become separable, and the classifier converges to the “nearest class-center classifier”.

Preventing Information Compression Although effective compression often yields superior rep-
resentations, overly aggressive compression might cause the loss of crucial information about the
target task (Shwartz-Ziv et al., 2018; Shwartz-Ziv & Alemi, 2020; Shwartz-Ziv & LeCun, 2023). To
investigate the compression during the learning, we use the mutual information neural estimation
(MINE) (Belghazi et al., 2018), a method specifically designed to estimate the mutual information
between the input and its corresponding embedded representation. This metric effectively gauges the
complexity level of the representation, essentially indicating how much information it encodes.

We evaluate the learned representations of two ConvNeXt models (Liu et al., 2022), which are trained
on ImageNet with supervised loss. One model is trained with VCReg, while the other is trained
without. As demonstrated in Table 6, both types of collapse, measured by CDNV and NCC, and the
mutual information reveal that VCReg representations have significantly more diverse features and
information compared to regular training. This suggests that the VCReg mitigates the neural collapse
and prevents excessive information compression, two crucial factors that often limit the effectiveness
of deep learning models in transfer learning tasks. Our findings highlight the potential of VCReg as a
valuable addition to the deep learning toolbox, significantly increasing the generalizability of learned
representations.

5.3 PROVIDING ROBUSTNESS TO NOISE

In real-world scenarios, encountering noise is a common challenge, making robustness against noise
a crucial feature for any effective transfer learning algorithm. Recognizing the ubiquity of noise
in practical applications, we aim to evaluate the capability of VCReg to bolster transfer learning
performance in noisy environments. For this purpose, we utilize video networks initially pretrained
on Kinetics-400 and Kinetics-710, as mentioned in section 4.2. We then finetune these networks
on the HMDB51 dataset, which is deliberately subjected to varying levels of Gaussian noise. The
findings in Figure 3 reveal a clear advantage: incorporating VCReg notably improves the resilience
of VideoMAE-S and VideoMAEv2-S models to noisy data. Appendix D shows that this trend of
increased durability against noise is consistently seen in larger models, such as VideoMAE-B and
VideoMAEv2-B.
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6 CONCLUSION

In this work, we address prevalent challenges in supervised pretraining for transfer learning by intro-
ducing an efficient and adaptable regularization technique called Variance-Covariance Regularization
(VCReg). Our comprehensive evaluation revels that using VCReg yields significant improvements
in transfer learning performance across various network architectures, learning paradigms, and data
modalities. Moreover, our in-depth analysis confirms VCReg’s effectiveness in overcoming typical
transfer learning hurdles such as neural collapse, gradient starvation, and noisy data. Our work paves
the way for further research to achieve highly optimized and generalizable machine learning models.
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A EXPERIMENTAL INVESTIGATION ON EFFECTIVE APPLICATION OF VCREG
TO STANDARD NETWORKS

To determine the optimal manner of integrating the VCReg into a standard network, we conducted
several experiments utilizing the ConvNeXt-Atto architecture, trained on ImageNet following the
torchvision (Paszke et al., 2019) training recipe. To reduce the training time, we limited the net-
work training to 90 epochs with a batch size of 4096. The complete configuration comprised 90
epochs, a batch size of 4096, two learning rate of {0.016, 0.008} with a 5 epochs linear warmup
followed by a cosine annealing decay. The weight decay was set at 0.05 and the norm layers
were excluded from the weight decay. we experimented with α ∈ {1.28, 0.64, 0.32, 0.16} and
β ∈ {0.16, 0.08, 0.04, 0.02, 0.01}.

We experimented with incorporating the VCReg layers in four different locations:

1. Applying the VCReg exclusively to the second last representation (the input of the classifi-
cation layer).

2. Applying VCReg to the output of each ConvNeXt block.

3. Applying VCReg to the output of each downsample layer.

4. Applying VCReg to the output of both, each ConvNeXt block and each downsample layer.

The VCReg layer was implemented as detailed in 1, with the addition of a mean removal layer along
the batch preceding the VCReg layer to ensure that the VCReg input exhibited a zero mean.

Table 7: Transfer Learning Experiments with Different VCReg Configurations

Architecture Food Cars Aircraft Pets Flowers DTD

ConvNeXt-Atto (VCReg1) 63.2% 39.6% 55.9% 89.1% 85.3% 65.1%
ConvNeXt-Atto (VCReg2) 66.8% 48.1% 60.4% 91.1% 86.4% 66.4%
ConvNeXt-Atto (VCReg3) 64.0% 40.9% 56.5% 89.4% 85.9% 65.1%
ConvNeXt-Atto (VCReg4) 66.7% 48.3% 59.6% 90.6% 85.6% 66.1%

The results in Table 7 indicate superior performance when the VCReg layer is applied to the output
of each block (second setup) or applied to the output of blocks and downsample layers (fourth
setup) compared to the other setups. Considering architectures like ViT lack downsample layers, for
consistency across different architectures, we decided to use the second configuration for further
experiments.

B THE FAST IMPLEMENTATION OF THE VCREG

The VCRegeg does not affect the forward pass in any way, allowing us to substantially speed up
the implementation by modifying the backward function directly. Instead of computing the VCReg
loss and backpropagating it, we can directly alter the calculated gradient. This is possible since the
VCReg loss calculation only requires the current representation. The specifics of this speed-optimized
implementation are outlined in Algorithm 1.

We quantify the computational overhead by measuring the average time required for one NVIDIA
A100 GPU to execute both the forward and backward passes on the entire network for a batch size of
128 using the ImageNet dataset. These results are summarized in Table 8. For the sake of comparison,
we also include the latencies associated with adding Batch Normalization (BN) layers, revealing that
our optimized VCReg implementation exhibits similar latencies to BN layers and is almost 5 times
faster than the naive implementation.
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Algorithm 1: PyTorch-Style Pseudocode for Fast VCReg Implementation

# α, β and ϵ : hyperparameters
# mm: matrix-matrix multiplication

class VarianceCovarianceRegularizationFunction(Function):
# forward pass
# We assume the input has zero mean per channel
# In practice, we apply a batch demean operation before calling the function
def forward(ctx, input):

ctx.save_for_backward(input)
return input

# backward pass
def backward(ctx, grad_output):

input, = ctx.saved_tensors
# reshape the input to have (n, d) shape
flattened_input = input.flatten(start_dim=0, end_dim=-2)
n, d = flattened_input.shape
# calculate the covariance matrix
covariance_matrix = mm(flattened_input.t(), flattened_input) / (n - 1)
# calculate the gradient
diagonal = F.threshold(rsqrt(covariance_matrix.diagonal() + \epsilon), 1.0, 0.0)
std_grad_input = diagonal * flattened_input
cov_grad_input = torch.mm(flattened_input, covariance_matrix.fill_diagonal_(0))

grad_input = grad_output
- α/(d(n − 1)) * std_grad_input.view(grad_output)
+ 4β/(d(d − 1)) * cov_grad_input

return grad_input

Table 8: Average Time Required for One Forward and Backward Pass with Various Layers Inserted
Comparison of computational latencies across different configurations of ViT and ConvNeXt networks. The
table demonstrates the efficacy of the optimized VCReg layer in terms of computational time, compared to both
naive VCReg and Batch Normalization (BN) layers.

Network Number of Inserted Layers Identity VCReg (Naive) VCReg (Fast) BN

ViT-Base-32 12 0.223s 1.427s 0.245s 0.247s
ConvNeXt-T 18 0.442s 2.951s 0.471s 0.468s

C IMPLEMENTATION DETAILS

C.1 TRANSFER LEARNING EXPERIMENTS WITH IMAGENET PRETRAINING

In conducting the transfer learning experiments, we adhered primarily to the training recipe specified
by PyTorch Paszke et al. (2019) for each respective architecture during the supervised pretraining
phase. We abstained from pretraining any of the baseline models, instead opting to directly download
the weights from PyTorch’s own repository. The only modifications applied were to the parameters
associated with VCReg loss, and we experimented with α ∈ {1.28, 0.64, 0.32, 0.16} and β ∈
{0.16, 0.08, 0.04, 0.02, 0.01}.

For iNaturalist 18 Van Horn et al. (2018) and Place205 Zhou et al. (2014), we relied on the experi-
mental settings detailed in Zbontar et al. (2021) for the linear probe evaluation.

Regarding Food-101 Bossard et al. (2014), Stanford Cars Krause et al. (2013), FGVC Aircraft Maji
et al. (2013), Oxford-IIIT Pets Parkhi et al. (2012), Oxford 102 Flowers Nilsback & Zisserman
(2008), and the Describable Textures Dataset (DTD) Cimpoi et al. (2014), we complied with the
evaluation protocol provided by Chen et al. (2020); Kornblith et al. (2021). An L2-regularized
multinomial logistic regression classifier was trained on features extracted from the frozen pretrained
network. Optimization of the softmax cross-entropy objective was conducted using L-BFGS, without
the application of data augmentation. All images were resized to 224 pixels along the shorter side
through bicubic resampling, followed by a 224 x 224 center crop. The L2-regularization parameter
was selected from a range of 45 logarithmically spaced values between 0.00001 and 100000.

All experiments were run three times, with the average results presented in Table 1.
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C.2 TRANSFER LEARNING EXPERIMENTS WITH KINETICS PRE-TRAINED MODELS

In conducting experiments with video-pretrained models, we utilize the publicly available code bases
and model checkpoints provided for VideoMAE and VideoMAEv2 (https://github.com/
MCG-NJU/VideoMAE and https://github.com/OpenGVLab/VideoMAEv2). For both
VideoMAE and VideoMAEv2 we use ViT-Small and ViT-Base checkpoints. VideoMAE models are
pre-trained on Kinetics-400 while VideoMAEv2 on Kinetics-710. We use the pre-trained checkpoint
for ViViT-B (ViT-Base backbone) pre-trained on Kinetics-400 from HuggingFace. For evaluation,
we adopt the inference protocol of 10 clips × 3 crops. For VCReg hyperparameters experiments with
values for α ∈ 1, 3, 5 and β ∈ {0.1, 0..3, 0.5}. For the rest of the finetuning hyperparameters as well
as the data pre-processing and evaluation protocol, we use the configuration for HMDB51 available
in VideoMAE Tong et al. (2022) and its corresponding code base (linked above).

C.3 SUBCLASS LINEAR PROBING RESULT WITH NETWORK PRETRAINED ON SUPERCLASS
LABEL

For our subclass linear probing experiments, we employed a ConvNeXt-Atto network. Each model
was pretrained for 200 epochs using the superclasses, adhering to the same procedure detailed in the
Appendix A. Subsequent to this pretraining phase, we initiated a linear probing process using the
subclass labels. This linear classifier was trained for 100 epochs, using a base learning rate of 0.016
in conjunction with a cosine learning rate schedule. The optimizer used was AdamW, which worked
to minimize cross-entropy loss with a weight decay set at 0.05. We processed our training data in
batches of 256.

C.4 LONG-TAIL LEARNING RESULT

For our long-tail learning experiments, we use ResNet-32 as a backbone for experiments on the
CIFAR10-LT and CIFAR100-LT datasets. We trained 100 epochs with batch size 256, Adam optimizer
with two learning rate of {0.016, 0.008} with a 10-epoch linear warm-up followed by a cosine
annealing decay. The weight decay was set at 0.05 and the norm layers were excluded from the weight
decay. we experimented with α ∈ {1.28, 0.64, 0.32, 0.16} and β ∈ {0.16, 0.08, 0.04, 0.02, 0.01}.

C.5 VCREG WITH SELF-SUPERVISED LEARNING METHODS

We train a ResNet-50 model in four different setups, using either the SimCLR loss or the VICReg
loss with the ImageNet dataset. The application of the VCReg is the same as described in Appendix
A.

We closely follow the original setting in Chen et al. (2020) for SimCLR pretraining and Bardes et al.
(2021) for VICReg pretraining.

Augmentation For both methods, we use the same augmentation methods. Each augmented view
is generated from a random set of augmentations of the same input image. We apply a series of
standard augmentations for each view, including random cropping, resizing to 224x224, random
horizontal flipping, random color-jittering, randomly converting to grayscale, and a random Gaussian
blur. These augmentations are applied symmetrically on two branches Geiping et al. (2022)

Architecture For SimCLR, the encoder is a ResNet-50 network without the final classification
layer followed by a projector. The projector is a two-layer MLP with input dimension 2048, hidden
dimension 2048, and output dimension 256. The projector has ReLU between the two layers and
batch normalization after every layer. This 256-dimensional embedding is fed to the infoNCE loss.

For VICReg, the online encoder is a ResNet-50 network without the final classification layer. The
online projector is a two-layer MLP with input dimension 2048, hidden dimension 8192, and output
dimension 8192. The projector has ReLU between the two layers and batch normalization after every
layer. This 8192-dimensional embedding is fed to the infoNCE loss.

For VCReg, we just applied the VCReg layers to the ResNet-50 network as described in the Appendix
A.
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Optimization We follow the training protocol in Zbontar et al. (2021). For SimCLR experiments, we
used a LARS optimizer and a base learning rate 0.3 with cosine learning rate decay schedule. We
pretrain the model for 100 epochs with 5 epochs warm-up with batch size 4096.

For VICReg, we use a LARS optimizer and a base learning rate 0.2 using cosine learning rate decay
schedule. We pretrain the model for 100 epochs with 5 epochs warm-up with batch size 4096.

Evaluation We follow the standard evaluation protocol as prescribed by Misra & Maaten (2020);
Zbontar et al. (2021), performing linear probing evaluations, on iNaturalist 18 Van Horn et al. (2018)
and Place205 Zhou et al. (2014) datasets.

D ROBUSTNESS TO NOISE

This section provides additional results on measuring VCReg’s ability to enhance transfer learn-
ing performance in the presence of noise. In these experiments we start with VideoMAE-B and
VideoMAEv2-B networks (from section 4.2) pre-trained on Kinetics-400 and Kinetics-710, respec-
tively, then fine-tune them on HMDB51 corrupted with varying levels of Gaussian noise. During
fine-tuning, we compare the transfer learning performance of VideoMAE-B and VideoMAEv2-B
networks with and without the addition of VCReg. When VCReg is added, it is only applied to the
final layer of these networks preceding the classification head. Figure 4 shows that VCReg models
outperform their non-regularized counterparts in this setting.
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Figure 4: Impact of VCReg amidst noisy data: This figure shows the top-1 accuracy of VideoMAE-B and
VideoMAEv2-B when fine-tuned for action recognition using HMDB51 with synthetic noise. We corrupt
the data with Gaussian noise with standard deviation σ ∈ {1, 1.5, 2}. Models with VCReg outperform their
non-regularized counterparts in this setting.

E TWO-MOON DATASET

In alignment with the original gradient starvation study Pezeshki et al. (2021), we notice that most
regular routine regularization techniques do not sufficiently capture the necessary features for the
“two-moon” dataset experiment. To evaluate our approach, we mirrored this setting and applied the
VCReg during the training.

The synthetic “two-moon” dataset comprises two classes of points, each forming a moon-like shape.
The gradient starvation study highlighted an issue where if the gap between the two moons is wide
enough for a straight line to separate the two classes, the network stops learning additional features
and focuses solely on a single feature. We duplicated this situation using a three-layer network and
applied all the initially tested methods in the original study. The resulting decision boundary after
training with the “two-moon” dataset is visualized in Figure 5.

From the visualization, it becomes apparent that not only does VCReg outperform other conventional
regularization techniques in separation margins, but also it shows superior performance compared to
spectral decoupling, a method specifically designed for this task. VCReg is effective in maximizing
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Figure 5: The effect of conventional regularization methods and the VCReg on a simple task of two-moon
classification. Shown decision boundaries are the average over 10 runs in which data points and the model
initialization parameters are sampled randomly. Here, only the data points of one particular seed are plotted for
visual clarity. It can be seen that conventional regularizations of deep learning seem not to help with learning a
curved decision boundary.

the variance while minimizing the covariance in the feature space, an achievement that is not obtained
by other techniques such as L2, dropout Hinton et al. (2012), and batch normalization Ioffe &
Szegedy (2015). Consequently, these other techniques yield features that are less discriminative and
informative.

F COMPUTE RESOURCES

The majority of our experiments were run using AMD MI50 GPUs. The longest pretraining for
ConvNeXt-Tiny takes about 48 hours on 2 nodes, where each node has 8 MI50 GPUs attached. We
estimate that the total amount of compute resources used for all the experiments can be roughly approx-
imated by 60 (days)×24 (hours per day)×8 (nodes)×8 (GPUs per nodes) = 92, 160 (GPU hours).

We are aware of potential environmental impact of consuming a lot of compute resources needed for
this work, such as atmospheric CO2 emissions due to the electricity used by the servers. However,
we also believe that advancements in representation learning and transfer learning can potentially
help mitigate these effects by reducing the need for data and compute resources in the future.

G LIMITATIONS

Due to a lack of compute resources, we were unable to conduct a large number of experiments with
the goal of tuning hyperparameters and searching for the best configurations. Therefore, the majority
of hyperparameters and network configurations used in this work are the same as provided by PyTorch
Paszke et al. (2019). The only hyperparameters that were tuned were α and β, the coefficients for
VCR. All the other hyperparameters may not be optimal.

In addition, all models were pretrained on the ImageNet Deng et al. (2009) and Krizhevsky et al.
(2009) dataset, so their performances might differ if pretrained with other datasets containing different
data distributions or different types of images (e.g., x-rays). We encourage further exploration in this
direction for current and future self-supervised learning frameworks.
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