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Abstract

Optimizing objectives under constraints, where both the objectives and constraints
are black box functions, is common in real-world applications such as medical
therapy design, industrial process optimization, and hyperparameter optimization.
Bayesian Optimization (BO) is a popular approach for tackling these complex
scenarios. However, constrained Bayesian Optimization (CBO) often relies on
heuristics, approximations, or relaxation of objectives, leading to weaker theo-
retical guarantees compared to canonical BO. In this paper, we address this gap
by focusing on identifying the interior optimum of the constrained objective, de-
liberately excluding boundary candidates susceptible to noise perturbations. Our
approach leverages the insight that jointly optimizing the objective and learning
the constraints can help pinpoint high-confidence regions of interest (ROI) likely to
contain the interior optimum. We introduce an efficient CBO framework, which
intersects these ROIs within a discretized search space to determine a general ROI.
Within this ROI, we optimize the acquisition functions, balancing the learning of
the constraints and the optimization of the objective. We showcase the efficiency
and robustness of our proposed CBO framework through the high probability regret
bounds for the algorithm and extensive empirical validation.

1 Introduction

Bayesian optimization (BO) has been extensively studied over the past few decades as a powerful
framework for addressing expensive black-box optimization tasks in machine learning, engineering,
and science. In many real-world applications, these optimization tasks often involve black-box
constraints that are costly to evaluate Digabel and Wild [2015]. Examples include choosing from a
plethora of untested medical therapies under safety constraints [Sui et al., 2015]; determining optimal
pumping rates in hydrology to minimize operational costs under constraints on plume boundaries
[Gramacy et al., 2016]; or tuning hyperparameters of a neural network under memory constraints
[Gelbart et al., 2014]. It is common to model constraints analogously to the objectives via Gaussian
processes (GP) and then utilize an acquisition function to trade off the learning and optimization to
decide subsequent query points.

Recently, significant advancements have been made in several directions to address constrained BO
(CBO). For instance, extended Expected Improvement approaches [Bernardo et al., 2011, Gelbart
et al., 2014, Gardner et al., 2014, Zhang et al., 2021, Bachoc et al., 2020] learn the constraints
passively and calibrate the acquisition with feasibility. The augmented lagrangian (AL) methods
[Gramacy et al., 2016, Picheny et al., 2016, Ariafar et al., 2019] convert constrained optimization into
unconstrained optimization with additional hyperparameters. The entropy-based methods [Takeno
et al., 2022] optimize the lower bound of the mutual information concerning the underlying optimum
within the feasible region.
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In this paper, we propose a novel framework that integrates active learning for level-set estimation (AL-
LSE) [Gotovos et al., 2013, Nguyen et al., 2021] with BO for constrained Bayesian optimization. Our
approach leverages the theoretical advantages of both paradigms, allowing for a rigorous performance
analysis of the CBO method. A brief illustration of the framework design is shown in figure 2. The
subsequent sections of this paper are structured as follows. First, we formally state the CBO problem
and discuss the definition of a probabilistic regret as a performance metric that enables rigorous
performance analysis. Following the problem statement, we propose the novel CBO framework,
offer the corresponding performance analysis, and provide empirical evidence for the efficacy of
the proposed algorithm. Finally, we reflect on the key takeaways of our framework and discuss its
potential implications for future work.

2 Problem Statement

This section introduces a few useful notations and formalizes the problem. Consider a compact
search space X ⊆ Rd. We aim to find a maximizer x∗ ∈ argmaxx∈X f(x) of a black-box function
f : X→ R, subject to M black-box constraints Cm(x) (m ∈M = {1, 2, 3, ...,M}) such that each
constraint is satisfied by staying above its corresponding threshold hm.

For simplicity and without loss of generality, we let all hm = 0. Thus, formally, our goal can be
formulated as finding the interior optimum:

max
x∈X

f(x) s.t. Cm(x) > 0,∀m ∈M

We maintain a Gaussian process (GP) as the surrogate model for each black-box function, pick a point
xt ∈ X at iteration t by maximizing the acquisition function α : X→ R, and observe the function
values perturbed by additive noise: yf,t = f(xt) + ϵ and yCm,t = Cm(xt) + ϵ, with ϵ ∼ N (0, σ2)
being i.i.d. Gaussian noise.

The definition of reward plays an important role in analyzing online learning algorithms. Throughout
the rest of the paper, we define the reward of CBO as the following and defer the detailed discussion
of alternative reward choices to Appendix E.

r(xt) =

{
yf,t if I(yCm(xt) ≥ 0) ∀m ∈M

− inf o.w.
(1)

We want to locate the global maximizer efficiently
x∗ = argmax

x∈X,∀m∈M,Cm(x)>0

f(x)

3 The COBAR Algorithm

We start by introducing necessary notions from active learning for level-set estimation, followed
by a detailed description of our proposed algorithm. The pseudocode and additional discussion are
available in Appendix H.

3.1 Active learning for level-set estimation

We follow the common practice and assume the objective and each unknown constraint is sam-
pled from a corresponding independent Gaussian process (GP) [Hernández-Lobato et al., 2015,
Gelbart et al., 2014, Gotovos et al., 2013] to treat the epistemic uncertainty. We could derive
pointwise confidence interval estimation with the GP for each black-box function. We define
the upper confidence bound UCBt(x) ≜ µt−1(x) + β

1/2
t σt−1(x) and lower confidence bound

LCBt(x) ≜ µt−1(x)−β
1/2
t σt−1(x), where σt−1(x) = kt−1(x,x)

1/2 and βt acts as a scaling factor
corresponding to certain confidence.

For each unknown constraint Cm, we follow the notations from Gotovos et al. [2013] and define
the superlevel-set to be the areas that meet the constraint Cm with high confidence SCm,t ≜ {x ∈
X | LCBCm,t(x) > 0}. We define the sublevel-set to be the areas that do not meet the constraint
Cm with high confidence LCm,t ≜ {x ∈ X | UCBCm,t(x) < 0}, and the undecided set is defined as
UCm,t ≜ {x ∈ X | UCBCm,t(x) ≥ 0,LCBCm,t(x) ≤ 0}, where the points remain to be classified.
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3.2 Region of interest identification for efficient CBO

In the CBO setting, we only care about the superlevel-set SCm,t and undecided-set UCm,t, where
the global optimum is likely to lie in. Hence, we define the region of interest for each constraint
function Cm as X̂Cm,t ≜ SCm,t ∪ UCm,t = {x ∈ X | UCBCm,t(x) ≥ 0}. Similarly, for the objective
function, though there is no pre-specified threshold, we could use the maximum of LCBf (x) on the
intersection of superlevel-set SC,t ≜

⋂M
m SCm,t

LCBf,t,max ≜

{
maxx∈SC,t

LCBf,t(x), if SC,t ̸= ∅
−∞, o.w.

as the high confidence threshold for the UCBf,t(x) to identify a region of interest for the optimization
of the objective. Given that UCBf,t(x

∗) ≥ f∗ ≥ f(x) ≥ LCBf,t(x) with the probability specified by
the choice of βt, we define the ROI for the objective optimization as X̂f,t ≜ {x ∈ X | UCBf,t(x) ≥
LCBf,t,max}. By taking the intersection of the ROI of each constraint, we could identify the ROI for
identifying the feasible region X̂C,t ≜

⋂M
m X̂Cm,t. The combined ROI for CBO is determined by

intersecting the ROIs of constraints and the objective:

X̂t ≜ X̂f,t ∩ X̂C,t (2)

3.3 Combining acquisition functions for CBO

Acquisition function for optimizing the objective To optimize the unknown objective f when X̂t

is established, we can employ the following acquisition function 2

αf,t(x) ≜

{
UCBf,t(x)− LCBf,t,max SC,t ̸= ∅
UCBf,t(x)− LCBf,t(x) o.w.

(3)

At given t, to efficiently optimize the black-box f we evaluate the point xt = argmaxx∈X̂t
αf,t(x).

Since at a given t, when LCBf,t,max is constant, the acquisition function is equivalent to UCBf,t(x).

Acquisition function for learning the constraints When we merely focus on identifying the
feasible region defined by a certain unknown constraint Ck, we could apply the following active
learning acquisition function.

αCm,t(x) ≜ UCBCm,t(x)− LCBCm,t(x) (4)

At given t, we evaluate the point xt = argmaxx∈UCm,t∩X̂t
αCm,t(x) to efficiently identify the

feasible region defined by Cm. Note that the acquisition function αCm,t(x) is not maximized on the
full X̂Cm,t, but only on UCm,t ∩ X̂t. The active learning on the superlevel-set SCm,t ∩ X̂t doesn’t
contribute to identifying the corresponding feasible region.

The COBAR acquisition criterion With the two acquisitions discussed above and the ROIs
discussed in section 3.2, we propose the algorithm COnstrained BO through Adaptive Region of
Interest Acquisition (COBAR). COBAR essentially picks a data point with the maximum acquisition
function value across all the acquisition functions defined on different domains. The maximization
of different acquisition functions allows an adaptive tradeoff between the active learning of the
constraints and the Bayesian Optimization of the objective on the feasible region. The intersection of
ROIs allows for efficient search space shrinking for CBO. The full procedure is detailed in algorithm 2.
We also illustrate the detailed procedure on a 1D toy example in figure 3 of Appendix A.

3.4 Theoretical Analysis

In the following, we show that we could bound the simple regret of COBAR after sufficient rounds.
Concretely, in Theorem 1, we provide an upper bound on the width of the confidence interval for the
global optimum f∗ = f(x∗). We defer additional results and proofs to Appendix B3.

2Same criterion has been studied under the unconstrained setting [Zhang et al., 2023].
3With additional assumptions on the regularization of the underlying function, we derive the analogous

analysis on continuous search space in Appendix C.
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Figure 1: The input dimensionality, the number of constraints, and the approximate portion of the
feasible region in the whole search space for each task are denoted on the titles. We run the algorithms
on each task for at least 15 independent trials. The curves show the average simple regret after
standardization, while the shaded area denotes the 95% confidence interval through the optimization.

Theorem 1. Under the proper assumptions, with a constant β = 2 log( 2(M+1)|D̃|T
δ ) and the

acquisition function from algorithm 2, there exists an ϵf ≤ ϵC , such that after at most T ≥ βγ̂TC1

ϵ2f

iterations, we have P [|CIf∗,T | ≤ ϵf , f
∗ ∈ CIf∗,T ] ≥ 1− δ Here, C1 = 8/ log(1 + σ−2).

4 Experiments

We empirically study the performance of COBAR against three baselines, including (1) cEI, the
extension of EI into CBO from Gelbart et al. [2014], (2) cMES-IBO, a state-of-the-art information-
based approach by Takeno et al. [2022], and (3) SCBO, a recent Thompson Sampling (TS) method
tailored for scalable CBO from Eriksson and Poloczek [2021]. The results are illustrated in figure 1.
We abstain from comparison against Augmented-Lagrangian methods, following the practice of
Takeno et al. [2022], as past studies have illustrated its inferior performance against sampling methods
[Eriksson and Poloczek, 2021] or information-based methods [Takeno et al., 2022, Hernández-Lobato
et al., 2014]. We defer the comparison against CONFIG Xu et al. [2023] to Appendix G, due to
the difference in objective and a resulting instability on our benchmarks. We compare COBAR
against the aforementioned baselines across six CBO tasks. The first two synthetic CBO tasks are
constructed from conventional BO benchmark tasks [Balandat et al., 2020]. Among the other four
real-world CBO tasks, the first three are extracted from Tanabe and Ishibuchi [2020], offering a broad
selection of multi-objective multi-constraints optimization tasks. The fourth one is a 32-dimensional
optimization task extracted from the UCI Machine Learning repository [mis, 2019]. Further details
about the datasets are available in Appendix F.

5 Conclusion

Bayesian optimization with unknown constraints poses challenges in the adaptive tradeoff between
optimizing the unknown objective and learning the constraints. We introduce COBAR, which is
backed by rigorous theoretical guarantees, to efficiently address constrained Bayesian optimization.
Our key insights include: (1) the ROIs determined through adaptive level-set estimation can con-
gregate and contribute to the overall Bayesian optimization task; (2) acquisition functions based on
independent GPs can be unified in a principled way. Through extensive experiments, we validate the
efficacy and robustness of our proposed method across various tasks finding the interior optimum.
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A Additional Illustration

We put the illustration of the pipeline of proposed algorithm COBAR here.

Gaussian Processes Acquisition Functions on ROI

Update model with new observations

… …

Constraint(s)

Objective Acquisition for Objective

Acquisition for Constraint(s)

General Acquisition

(1) Maximum of Acquisitions

(2) Intersection of ROI

Figure 2: Pipeline of proposed algorithm COBAR. In the left box, we maintain a Gaussian process
as the surrogate model for the unknown objective and each constraint. The dotted curve shows the
actual function, the red curve shows the predicted mean, and the shaded area denotes the confidence
interval. In the right box, we first derive the acquisitions from each Gaussian process defined on a
corresponding region of interests and define the general acquisition function by combining them all.
Each time, the algorithm maintains the model, maximizes the general acquisition function to pick the
candidate to evaluate, and then updates the model with the new observation. In the Algorithm section,
we will elaborate on the filtered gray gap in the acquisition.

We put the illustration of a 1D Toy Example in figure 3.
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Figure 3: Illustration of COBAR on a synthetic noise-free 1D example. The first two rows show
the GP for the C, the superlevel-set SC , the region of interest X̂C and the corresponding acquisition
function αCm,t(x) as defined in equation 4. The following two rows show the GP for f , the region
of interest X̂f , and the corresponding acquisition function αf,t(x) defined in equation 3. We show
that after identifying SC , we could define the threshold for ROI identification of f accordingly. The
bottom row demonstrates that the general ROI X̂ as defined in equation 2 is identified by taking
the intersection ROI for f and C. The general acquisition function is defined as the maximum of
the acquisition for f and C and is maximized on the X̂. The scaling and length scale of the GPs are
learned via maximum likelihood estimation.
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B Analysis and Missing Proofs

B.1 Assumptions

We first state a few assumptions that provide insights into the convergence properties of COBAR.
The first one follows Srinivas et al. [2009] as a standard assumption for BO.
Assumption 1. The objective and constraints are sampled from independent Gaussian processes.
Formally, for all t < T and x ∈ X, f(x) is a sample from GPf,t, and Cm(x) is a sample from
GPCm,t, for all m ∈M.
Assumption 2. A global optimum exists within the feasible region. The distance between this
global optimum and the boundaries of the feasible regions is uniformly bounded below by ϵC . More
specifically, for all m ∈ M, ∃ϵm > 0 such that Cm(x∗) > ϵm, then it holds that Cm(x∗) > ϵC =
minm∈M ϵm.
Assumption 3. Given a proper choice of βt that is non-increasing, the confidence intervals are
consistent. Concretely, ∀t1 < t2 < T and x ∈ X, if βt1 ≥ βt2 , then UCBt1(x) ≥ UCBt2(x) and
LCBt1(x) ≤ LCBt2(x).

This is a mild assumption as long as βt is non-increasing, given recent work by Koepernik and
Pfaff [2021] showing that if the kernel is continuous and the sequence of sampling points lies
sufficiently dense, the variance of the posterior GP converges to zero almost surely monotonically if
the function is in metric space. If the assumption is violated, the technique of taking the intersection
of all historical confidence intervals introduced by Gotovos et al. [2013] could similarly guarantee
a monotonically shrinking confidence interval. That is, when ∃t1 < t2 < T,x ∈ X, if we have
UCBt1(x) < UCBt2(x) or LCBt1(x) > LCBt2(x), we let UCBt2(x) = UCBt1(x) or LCBt2(x) =
LCBt1(x) to guarantee the monotonocity. To allow for a plug-in of the intersection technique, and
without loss of accuracy, we keep using the notation UCB and LCB without further parsing the value
in the following discussion of algorithm design and theoretical analysis. The cost of violating the
Assumption 3 has been studied in corollary 3 by Zhang et al. [2023]. We refrain from repeating the
analysis here.

B.2 Lemma 1

The following lemma justifies the definition of the regions(s) of interest X̂t defined in equation 2. For
clarity, we denote D̃X̂t

= D̃ ∩ X̂t, and CIf∗,t = [maxx∈D̃X̂t

LCBt(x),maxx∈D̃X̂t

UCBt(x)].

Lemma 1. Under the assumptions above, the regions of interest X̂t, as defined in equation 2, contain
the global optimum with high probability. Formally, for all δ ∈ (0, 1), T ≥ t ≥ 1, and any finite
discretization D̃ of X that contains the optimum x∗ = argmaxx∈X f(x) where Cm(x∗) > ϵC for all

m ∈M and βt = 2 log(2(M+1)|D̃|πt/δ) with
∑

T≥t≥1 π
−1
t = 1, we have P

[
x∗ ∈ D̃X̂t

]
≥ 1−δ.

To guarantee βt to be non-increasing, we could let πt = T and therefore β = 2 log( 2(M+1)|D̃|T
δ ) is

a constant. The lemma shows that with proper choice of prior and β, the X̂f,t remains nonempty
during optimization.

Subsequently, let’s define the maximum information gain about function f after T rounds: γf,T =
maxA⊂D̃:|A|=T I (yA; fA) and

γ̂T =
∑

g∈{f}∪{Cm}m∈M

γg,T (5)

Proof. With probability at least 1− 1/2δ, ∀x ∈ D̃,∀T ≥ t ≥ 1,∀g ∈ {f} ∪ {Cm}m∈M,

|g(x)− µg,t−1(x)| ≤ β
1/2
t σg,t−1(x)

Note that we also take the union bound on g ∈ {f} ∪ {Cm}m∈M.

This is similarly derived as lemma 5.1 of Srinivas et al. [2009] or lemma 1 of Zhang et al. [2023].
Different from previous proofs, we do not require the lemma to hold for ∀t ≥ 1. Instead, we require it
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to hold for ∀T ≥ t ≥ 1. This alleviates the need of the convergence of the series
∑

t≥1 π
−1
t = 1 to∑T

t≥1 π
−1
t = 1 when taking the union bound. Specifically, we could set πt = T , which essentially

makes βt = 2 log( 2(M+1)|D̃|T
δ ) a constant. Hence, we use the β in the following instead of βt as

traditionally used to highlight this difference.

First, by definition SC,t ≜
⋂M

m SCm,t, we have ∀t ≤ T,x ∈ D̃ ∩ SC,t,∀m ∈M

P [Cm(x) ≥ LCBCm,t(x) > 0] ≥ 1− 1/2δ

meaning with probability at 1− δ, x lies in the feasible region. At the same time, we have, ∀t ≤ T ,
∀m ∈M, given Cm(x) > 0

P [UCBf,t(x
∗) ≥ f(x∗) ≥ f(x) ≥ LCBf,t(x) ] ≥ 1− 1/2δ

Given the mutual independency between the objective f and the constraints Cm, and by the definition
of the threshold LCBf,t,max, we have ∀t ≤ T , when ∃x ∈ D̃ ∩ SC,t,

P [UCBf,t(x
∗) > LCBf,t,max] ≥ 1− δ

Note when D̃ ∩ SC,t = ∅, LCBf,t,max = −∞, we have P [UCBf,t(x
∗) > LCBf,t,max] = 1.

In summary, we’ve shown that with probability at least 1− δ, x∗ ∈ D̃ ∩ X̂f,t.

Next, by the definition of x∗ = argmaxx∈X f(x) s.t. Cm(x∗) > ϵC we have ∀t ≤ T, ∀m ∈M

P [UCBCm,t(x
∗) ≥ Cm(x∗) > 0] ≥ 1− 1/2δ

meaning with probability at least 1− 1/2δ, x∗ ∈ D̃∩ X̂Cm,t. And in general, we have ∀t ≤ T, ∀m ∈
M

P
[
x∗ ∈ D̃ ∩ X̂t

]
≥ 1− δ

B.3 Proof of Theorem 1

The following lemmas show that the maximum of the acquisition functions equation 3 and 4 are both
bounded after sufficient evaluations.
Lemma 2. Under the conditions assumed in Theorem 1 except for Assumption 2, let αt =

maxg∈G αg,t(xg,t) as in Algorithm 2, with β = 2 log( 2(M+1)|D̃|T
δ ) that is a constant, after at

most T ≥ βγ̂TC1

ϵ2f
iterations, αT ≤ ϵf Here C1 = 8/ log(1 + σ−2).

The inequation T ≥ βγ̂TC1

ϵ2f
has T on both side, which follows the convention in Gotovos et al. [2013].

Proof. We first unify the notation in the acquisition functions.
∀T ≥ t ≥ 1,∀g ∈ {Cm}m∈M, when D̃X̂t

∩ Ug,t ̸= ∅,

max
x∈D̃X̂t

∩Ug,t

UCBg,t(x)− LCBg,t(x) ≤ αt (6)

∀T ≥ t ≥ 1,∀g ∈ {Cm}m∈M, when D̃X̂t
∩ UCm,t = ∅, let

max
x∈D̃X̂t

∩Ug,t

UCBg,t(x)− LCBg,t(x) = 0 ≤ αt (7)

∀T ≥ t ≥ 1, g = f , when SC,t = ∅, we have

max
x∈D̃X̂t

UCBf,t(x)− LCBf,t(x) ≤ αt (8)

∀T ≥ t ≥ 1, g = f , when SC,t ̸= ∅, we have

max
x∈D̃X̂t

UCBf,t(x)− LCBf,t.max ≤ αt (9)
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By lemma 5.1, 5.2 and 5.4 of Srinivas et al. [2009], with β = 2 log( 2(M+1)|D̃|T
δ ), ∀g ∈ {f} ∪

{Cm}m∈M and ∀xt ∈ D̃X̂t
⊆ D̃, we have

∑T
t=1(2β

1/2σg,t−1, (xt))
2 ≤ C1βγg,T . By definition of

αt , we have the following

T∑
t=1

α2
t ≤

T∑
t=1

max
g∈{f}∪{Cm}m∈M

(2β1/2σg,t−1(xg,t))
2

≤
T∑

t=1

∑
g∈{f}∪{Cm}m∈M

(2β1/2σg,t−1(xt))
2

≤
∑

g∈{f}∪{Cm}m∈M

C1βγg,T

= C1βγ̂T

The last line holds due to the definition in equation 5. By Cauchy-Schwarz, we have

1

T
(

T∑
t=1

αt)
2 ≤ C1βγ̂T

With Assumption 3, ∀g ∈ {Cm}m∈M, ∀1 ≤ t1 < t2 ≤ T , ∀g ∈ {Cm}m∈M, we have Ug,t2 ⊆ Ug,t1

and X̂t2 ⊆ X̂t1 , and most importantly, αt2 ≤ αt1 . Therefore

αT ≤
1

T

T∑
t=1

αt ≤
√

C1βγ̂T
T

As a result, after at most T ≥ βγ̂TC1

ϵ2f
iterations, we have αT ≤ ϵf .

With Lemma 2, we could first prove that after adequately T rounds of evaluations such that ϵf ≤
minm∈M ϵm is sufficiently small, with certain probability, x∗ ∈ SC,T . Then LCBf,t,max ̸= −∞,
and therefore the width of [maxx∈D̃X̂t

LCBf,T (x),maxx∈D̃X̂t

UCBf,T (x)], which is a the high
confidence interval of f∗, is bounded by ϵf .

Proof. We first prove that after at most T ≥ βγ̂TC1

ϵ2f
iterations, P

[
x∗ ∈ D̃X̂t

∩ SC,T

]
≥ 1 − 1/2δ.

Given equation 6 and 7 and Lemma 2, we have ∀g ∈ {Cm}m∈M,

max
x∈D̃X̂T

∩Ug,T

UCBg,T (x)− LCBg,T (x) ≤ ϵf ≤ min
m∈M

ϵm

According to the definition of Ug,T , ∀x ∈ D̃X̂T
∩ Ug,T ,∀g ∈ {Cm}m∈M

UCBg,T (x) ≤ ϵf + LCBg,T (x) ≤ ϵf ≤ min
m∈M

ϵm

According to Assumption 2, and Lemma 1, ∀m ∈M, we have

P

[
UCBCm,T (x

∗) > max
x∈D̃X̂t

∩UCm,t

UCBCm,T (x)

]
≥ 1− 1/2δ

Given = D̃X̂T
∩ SC,T = D̃X̂t

∩ X̂C,T \ ∪m∈M UCm,T , when t = T , we have

P
[
x∗ ∈ D̃X̂T

∩ SC,T

]
≥ 1− 1/2δ (10)

As a result
P [LCBf,T,max ̸= −∞] ≥ 1− 1/2δ
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Next, we prove the upper bound for the width of the high-confidence interval of f∗. Given that
LCBf,T,max ̸= −∞, we have

max
x∈D̃X̂T

UCBf,T (x)− max
x∈D̃X̂T

LCBf,T (x)

≤ max
x∈D̃X̂T

UCBf,T (x)− LCBf,T,max

≤ αT

≤ ϵf

Combining it with the observation that with probability 1− 1/2δ,

max
x∈D̃X̂T

LCBf,T (x) < f(x∗) ≤ max
x∈D̃X̂T

UCBf,T (x)

we attain the final result that after T ≥ βγ̂TC1

ϵ2 iterations,

P [|CIf∗,T | ≤ ϵ, f∗ ∈ CIf∗,T ] ≥ 1− δ

B.4 Corollary 1

One direct result of Theorem 1 is that if any point belongs to D̃ that lies in the feasible set defined
by the unknown constraints bears a suboptimal gap on the reward except for the global optimum,
then after sufficient query, the algorithm will identify x∗ as the only point in the ROI. In that case,
COBAR will only query x∗ and achieve zero regret afterward.

Corollary 1. We assume the aforementioned conditions hold, and ∀x ∈ D̃, when ∀m ∈ M,
Cm(x) > 0, x ̸= x∗, it holds that ∃ϵC ≥ 2ϵf > 0, f∗ − f(x) > 2ϵf . In addition, we use

β = 2 log( 2(M+1)|D̃|T
δ ) and the acquisition function from Algorithm 2. After at most t ≥ βγ̂tC1

ϵ2f

iterations, we have P [Rt = 0] ≥ 1− δ. Here, C1 = 8/ log(1 + σ−2) and t ≤ T .

Proof. We simply need to show that after t ≥ βγ̂tC1

ϵ2f
iterations, with probability at least 1− δ, x∗ is

the only member in D̃X̂t
.

Similar to Theorem 1, we have P [|CIf∗,t| ≤ ϵf , f
∗ ∈ CIf∗,t] ≥ 1− δ. At the same time, given the

proof of Lemma 2, we have ∀x ∈ D̃X̂t
, 2β1/2σf,t−1(x) ≤ ϵf .

Then if ∃x ̸= x∗ and x ∈ D̃X̂t
, we have f∗ − f(x) > 2ϵf , while

P
[
f∗ − f(x) ≤ |CIf∗,t|+ UCBf,t(x)− LCBf,t(x) ≤ 2β1/2σf,t−1(x) + ϵf ≤ 2ϵf

]
≥ 1− δ

This contradiction means with probability at least 1− δ, x∗ is the only member in D̃X̂t
, and xt = x∗.

As a result, P [Rt = 0] ≥ 1− δ, when T ≥ t ≥ βγ̂tC1

ϵ2f
.

B.5 Corollary 2

Similarly, if a group of suboptimal candidates lies in the feasible area and is sufficiently close to x∗,
then Assumption 2 also holds for those suboptimal points. In this condition, the algorithm achieves a
sublinear cumulative regret after identifying this near-optimal region.

Corollary 2. We assume the aforementioned conditions hold, and ∀x ∈ D̃, when ∀m ∈ M,
Cm(x) > 0, x ̸= x∗, ∃ϵC ≥ ϵf > 0, f∗ − f(x) ≤ 2ϵf , it holds that ∀m ∈ M, Cm(x) ≥ ϵC . In

addition, we use β = 2 log(2(M+1)|D̃|T
δ ) and the acquisition function from Algorithm 2. After at

most t′ ≥ βγ̂t′C1

ϵ2f
iterations, we have, P

[∑T
t=t′ r(x

∗)− r(xt) ≤
√
(T − t′)βγTC1

]
≥ 1− δ. Here,

C1 = 8/ log(1 + σ−2) and t′ ≤ T .
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Proof. We follow the same path as the proof of Corollary 1.

Similar to Theorem 1, we have P [|CIf∗,t| ≤ αt ≤ ϵf , f
∗ ∈ CIf∗,t] ≥ 1−δ. At the same time, given

the proof of Lemma 2, we have ∀x ∈ D̃X̂t
, 2β1/2σf,t−1(x) ≤ αt ≤ ϵf .

Then ∀x ̸= x∗ and x ∈ D̃X̂t
, we have

P [f∗ − f(x) ≤ |CIf∗,t|+ UCBf,t(x)− LCBf,t(x) ≤ 2αt ≤ 2ϵf ] ≥ 1− δ

Then by assumption, ∀x ∈ D̃X̂t
, ∀m ∈ M, we have probability at least 1 − δ, Cm(x) ≥ ϵC , and

hence x /∈ UCm,t. According to the algorithm, it regresses to GP-UCB by Srinivas et al. [2009]
between t′ and T .

T∑
t=t′

(r(x∗)− r(xt))
2 ≤ βC1(γT − γt′)

≤ βC1γT (1− t′/T )

By Cauchy-Schwarz, we have

T∑
t=t′

(r(x∗)− r(xt)) ≤

√√√√(T − t′)

T∑
t=t′

(r(x∗)− r(xt))2

≤
√

(T − t′)2

T
βC1γT

≤
√
(T − t′)βC1γT

B.6 Corollary 3

Following the path of proof for Theorem 1, with Lemma 2, we can show that the algorithm can
identify infeasibility when all points in the search space violate at least one of the constraints at least
ϵ′C . Concretely, ∀x ∈ X, if it holds that ∃m ∈M, Cm(x) < −ϵ′C , with high probability the identified
D̃X̂T

= ∅.
Corollary 3. When the assumptions except for Assumption 2 hold, ∀x ∈ X, if ∃m ∈M, Cm(x) <

−ϵ′C , then with a constant β = 2 log( 2(M+1)|D̃|T
δ ) and the acquisition function from Algorithm 2,

after at most T ≥ βγ̂TC1

ϵ′2C
iterations, we have P

[
D̃X̂T

= ∅
]
≥ 1− δ. Here, C1 = 8/ log(1 + σ−2).

Proof. We assume D̃X̂T
̸= ∅ and prove by contradiction. Given equation 6 and 7 and Lemma 2, we

have ∀g ∈ {Cm}m∈M,

max
x∈D̃X̂T

∩Ug,T

UCBg,T (x)− LCBg,T (x) ≤ ϵ′C

According to the definition of Ug,T , ∀x ∈ D̃X̂T
∩ Ug,T ,∀g ∈ {Cm}m∈M, with probability at least

1− 1/2δ, we have

Cm(x) ≤ UCBCm,T (x) ≤ ϵ′C + LCBg,T (x) ≤ ϵ′C + Cm(x)

Then we have ∀x ∈ D̃X̂T
∩ Ug,T , ∃m ∈M

P [Cm(x) ≤ ϵ′C + Cm(x) < 0] ≥ 1− 1/2δ

This contradiction means ∀g ∈ {Cm}m∈M, D̃X̂T
∩ Ug,T = ∅ with probability as least 1− 1/2δ.

According to the definition of Sg,T , ∀x ∈ D̃X̂T
∩ Sg,T ,∀g ∈ {Cm}m∈M

LCBg,T (x) ≥ ϵ′C
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Then we have ∀x ∈ D̃X̂T
∩ Sg,T , ∃g ∈ {Cm}m∈M

P [−ϵ′C ≥ Cm(x) ≥ LCBg,T (x) ≥ ϵ′C ] ≥ 1− 1/2δ

This contradiction means ∀g ∈ {Cm}m∈M, D̃X̂t
∩ Sg,T = ∅ with probability as least 1− 1/2δ.

Combining the above contradictions, we have at least when t = T ,

P
[
D̃X̂T

= ∅
]
≥ 1− δ

C Continuous Search Space

C.1 Theoretical Results

In the following, we introduce the additional assumption that bounds the unknown functions’ com-
plexity when they are members of an RKHS space and enables the performance analysis when
applying COBAR on continuous search space X instead of D̃.
Assumption 4. The objective and constraints all lie in the RKHSHk corresponding to the kernel
k(x,x′), and the corresponding norm is bounded by B. Formally, f : X → R is a member of
the RKHS of real-valued functions on X with kernel k, with RKHS norm ∥f∥k ≤ B. Similarly,
Cm : X→ R is a member of the RKHS of real-valued functions on X with kernel k, with RKHS norm
∥Cm∥k ≤ B, for all m ∈M.

Then, we could derive similar results mapping from Lemma 1.
Lemma 1. Under the assumptions above, the regions of interest X̂t, as defined in equation 2, contain
the global optimum with high probability. Formally, for all δ ∈ (0, 1), T ≥ t ≥ 1, and the search
space X that contains the optimum x∗ = argmaxx∈X f(x) where Cm(x∗) > ϵC for all m ∈M and

β
1/2
t = B + σ

√
2(γ̂T + 1 + ln(2(M + 1)/δ)), we have P

[
x∗ ∈ X̂t

]
≥ 1− δ.

Proof. Similar to theorem 2 of Chowdhury and Gopalan [2017], with probability at least 1− 1/2δ,
∀x ∈ D̃,∀T ≥ t ≥ 1,∀g ∈ {f} ∪ {Cm}m∈M,

|g(x)− µg,t−1(x)| ≤ β
1/2
t σg,t−1(x)

Note that we also take the union bound on g ∈ {f} ∪ {Cm}m∈M.

First, by definition SC,t ≜
⋂M

m SCm,t, we have ∀t ≤ T,x ∈ SC,t,∀m ∈M

P [Cm(x) ≥ LCBCm,t(x) > 0] ≥ 1− 1/2δ

meaning with probability at 1− δ, x lies in the feasible region. At the same time, we have, ∀t ≤ T ,
∀m ∈M, given Cm(x) > 0

P [UCBf,t(x
∗) ≥ f(x∗) ≥ f(x) ≥ LCBf,t(x) ] ≥ 1− 1/2δ

Given the mutual independency between the objective f and the constraints Cm, and by the definition
of the threshold LCBf,t,max, we have ∀t ≤ T , when ∃x ∈ SC,t,

P [UCBf,t(x
∗) > LCBf,t,max] ≥ 1− δ

Note when SC,t = ∅, LCBf,t,max = −∞, we have P [UCBf,t(x
∗) > LCBf,t,max] = 1.

In summary, we’ve shown that with probability at least 1− δ, x∗ ∈ X̂f,t.

Next, by the definition of x∗ = argmaxx∈X f(x) s.t. Cm(x∗) > ϵC we have ∀t ≤ T, ∀m ∈M

P [UCBCm,t(x
∗) ≥ Cm(x∗) > 0] ≥ 1− 1/2δ

meaning with probability at least 1− 1/2δ, x∗ ∈ X̂Cm,t. And in general, we have ∀t ≤ T, ∀m ∈M

P
[
x∗ ∈ X̂t

]
≥ 1− δ

14



Remark 2. The proof of Lemma 1 substitutes the β in the proof of Lemma 1 and alleviates the
need for a discretization D̃ with the additional assumption on the complexity of the unknown
functions in Assumption 4. Note the β

1/2
t = B + σ

√
2(γ̂T + 1 + ln(2(M + 1)/δ)), we have

P
[
x∗ ∈ X̂t

]
≥ 1− δ is larger than the original value in the theorem 2 of Chowdhury and Gopalan

[2017] to make sure βt is the same for all ∀T ≥ t ≥ 1 and to guarantee a union bound on
g ∈ {f} ∪ {Cm}m∈M. In the following, since βt is constant, we substitute it with β.

Then, we could trivially map the Theorem 1 when maximizing the acquisition functions on X̂t

instead of D̃X̂t
as in line 9 of Algorithm 2 and on X̂t ∩ UCm,t instead of D̃X̂t

∩ UCm,t as in line 8 of
Algorithm 2. The proof would be identical to section B except for the different β and search space.

Algorithm 1 COnstrained BO through Adaptive Region of Interest Acquisition on Continuous
Space(COBAR-CS)

1: Input:Search space X, initial observation S0, horizon T , confidence factor δ, confidence coeffi-
cient β;

2: for t = 1 to T do
3: Update the posteriors of GPf,t and GPCm,t

4: Identify ROIs X̂t, and undecided sets UCm,t

5: for m ∈M do
6: if UCm,t ̸= ∅ then
7: Candidate for learning of each constraint:

xCm,t ← argmaxx∈X̂t∩UCm,t
αCm,t(x) (4)

8: G ← G ∪ Cm,t

9: Candidate for optimizing the objective:
xf,t ← argmaxx∈X̂t

αf,t(x) as in equation 3
10: G ← G ∪ f
11: Maximize the acquisition from different aspects:

gt ← argmaxg∈G αg,t(xg,t)
12: Pick the candidate to evaluate: xt ← xgt,t

13: Update the observation set
St ← St−1 ∪ {(xt, yf,t, {yCm,t}m∈M)}

Theorem 3. Under the aforementioned assumptions, with a constant β
1/2
t ≜ β1/2 = B +

σ
√
2(γ̂T + 1 + ln(2(M + 1)/δ)) and the acquisition function from Algorithm 1, there exists an

ϵf ≤ ϵC , such that after at most T ≥ βγ̂TC1

ϵ2f
iterations, we have P [|CIf∗,T | ≤ ϵf , f

∗ ∈ CIf∗,T ] ≥
1− δ Here, C1 = 8/ log(1 + σ−2).

C.2 Efficient Discretization

Aiming at a continuous search space demands additional consideration when implementing a practical
ROI identification on the continuous search space or requires a better coverage by the discretization of
the dense search space for COBAR in practice. This problem is more outstanding in high-dimensional
tasks. Here, we briefly discuss potential remedies if we still resort to an efficient discretization. The
random linear projection has been used for discretizing the search space to mitigate the dependency
on the dimensionality while, with high probability, preserving the original geometry [Dasgupta, 1999,
Nayebi et al., 2019]. To efficiently discretize the dense search space for COBAR (in high-dimensional
applications), one option is to apply the random projection and its reverse studied by Nayebi et al.
[2019], which shows strong empirical performance when combined with other BO algorithms and
offers the following theoretical guarantee.

Definition 1. (ε-subspace embedding [Nayebi et al., 2019]) Given a matrix V ∈ RD×d with
orthonormal columns, an integer d ≤ D and an approximation parameter ε ∈ (0, 1), an ε-subspace
embedding for V is a map H : Rd → RD such that ∀x ∈ Rd:

(1− ε)∥V x∥22 ≤ ∥HV x∥22 ≤ (1 + ε)∥V x∥22
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Problem COBAR CMES-IBO SCBO cEI
Ackley-40D-2C 75.87 281.47 34.33 185.07

Table 1: Average wall time (sec) of different CBO Methods collected from 15 independent trials.

Theorem 4. (Theorem 2 of Nayebi et al. [2019]) Consider a Gaussian process that acts directly
in the unknown active subspace of dimension de with mean and variance functions µ(·), σ2(·). Let
µ̂(·), σ̂2(·) be their approximations using an ε-subspace embedding for the active subspace. Then we
have for every x ∈ X

1. |µ(x)− µ̂(x)| ≤ 5ε∥x∥∥X − f̂∥
2. σ2(x)− σ̂2(x) ≤ 12ε∥x∥2

For a comprehensive survey on the treatments of high-dimensional search space for BO, we refer
to the recent survey by Binois and Wycoff [2022]. Besides the random projection [Nayebi et al.,
2019, Wang et al., 2016, Letham et al., 2020], variable selection Hellsten et al. [2023], tree-structure
partition [Eriksson and Jankowiak, 2021], and Markov Chain Monte Carlo sampling [Yi et al., 2024]
on the search space could all be applied as plugins to improve the discretization efficiency for
COBAR.

C.3 Case Study

We illustrate the effectiveness of integrating Hashing-enhanced Subspace BO (HeSBO) [Nayebi et al.,
2019] into CBO algorithms. We construct the following 40-dimensional CBO task that makes any
grid discretization containing a feasible candidate on the original embedding intractable.

Ackley-40D-2C f(x) = 20 exp (−0.2
√

1/d
∑d

i x
2
i ) + exp (1/d

∑d
i cos(2πxi)) + 20 +

exp(1), d = 5 where x ∈ [−5, 10]40. We construct two constraints to enforce a feasible area
taking up less than 0.6% of the search space. The first constraint C1 = 1 − (

∑5
i xi). The second

constraint C2 = 6− (
∑5

i x
2
i ).

We find that COBAR fails in the original search space [−5, 10]40 due to the intractability of any
discretization containing sufficient feasible candidates. We integrate HeSBO into all the tested CBO
algorithms to allow the algorithms to process on a 5-dimensional embedding space [−1, 1]5. COBAR
relies on a random sampling containing 200000 candidates. The simple regret curves are shown in
figure 4. Though the point-wise comparison of COBAR is not tractable in the original 40-dimensional
search space, integrating HeSBO allows COBAR to optimize the high-dimensional CBO toy problem
efficiently. Table 1 shows that COBAR could efficiently optimize the embedding space, benefited
from the reduced dimensionality and the ROI identification that further reduces computation need
dynamically.

D Dealing with Boundary Optimum

Here, we discuss the treatment and theoretical behavior when dealing with the boundary optimum.
First, we extend the results in Theorem 1, when not assuming the Assumption 2 hold. We uniformly
shift the constraints by a small amount ϵC to satisfy Assumption 2 with the modified constraints.
Formally, ∀m ∈M, C′m(x) = Cm(x) + ϵC . Then, running COBAR with these adjusted constraints,
C′m, instead of the original Cm, we have the following guarantee, which is a direct extension of
Theorem 1. We denote the f̃∗ = f(x̃∗), Here x̃∗ = argmaxx∈X,∀m∈M,C′

m(x)>0 f(x).

Corollary 4. Under the aforementioned assumptions and modifications, with a constant β =

2 log(2(M+1)|D̃|T
δ ) and the acquisition function from Algorithm 2, there exists an ϵf ≤ ϵC , such

that after at most T ≥ βγ̂TC1

ϵ2f
iterations, we have P

[
|CIf̃∗,T | ≤ ϵf , f̃

∗ ∈ CIf̃∗,T

]
≥ 1− δ. Here,

C1 = 8/ log(1 + σ−2).
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Figure 4: The figure illustrates the simple regret for Ackley-40D-2C. All the tested algorithms rely on
the low-dimensional embedding in HeSBO. The results are collected from 15 independent trials. The
shaded area denotes the standard error.

This Corollary 4 allows us to depict the width of the global optimum defined in the enlarged feasible
region similarly. Since the optimum is defined in the enlarged area, it could be an upper bound of the
global optimum defined in the original feasible region, including the feasible region boundaries. That
is

f̃∗ ≥ argmax
x∈X,∀m∈M,Cm(x)≥0

f(x)

This allows us to extend further the Corollary 2 that depicts the partial cumulative regret after
sufficient iterations and the upper bound of the violations.

Corollary 5. Under the aforementioned assumptions and modifications, when ∀m ∈M, C′m(x) > 0,
x ̸= x∗, ∃ϵC > ϵ′C ≥ ϵf > 0, f∗ − f(x) ≤ 2ϵf , it holds that ∀m ∈ M, C′m(x) ≥ ϵ′C . We use

β = 2 log( 2(M+1)|D̃|T
δ ) and the acquisition function from Algorithm 2. After at most t′ ≥ βγ̂t′C1

ϵ′2f

iterations, we have, P
[∑T

t=t′ r(x
∗)− r(xt) ≤

√
(T − t′)βγTC1,∀x ∈ D̃, Cm(xt) ≥ −ϵC

]
> 1−

δ. Here, C1 = 8/ log(1 + σ−2) and t′ ≤ T .

Proof. First, we have ∀x ∈ D̃X̂t
, 2β1/2σf,t−1(x) ≤ αt ≤ ϵf .

Then ∀x ̸= x̃∗ and x ∈ D̃X̂t
, we have

P
[
f̃∗ − f(x) ≤ |CIf̃∗,t|+ UCBf,t(x)− LCBf,t(x) ≤ 2αt ≤ 2ϵf

]
≥ 1− δ

Then by assumption, ∀x ∈ D̃X̂t
, ∀m ∈M, we have probability at least 1− δ, C′m(x) ≥ ϵ′C . Hence

we have both Cm(x) ≥ ϵC − ϵ′C and x /∈ UC′
m,t. According to the algorithm, it regresses to GP-UCB

by Srinivas et al. [2009] between t′ and T .

T∑
t=t′

(r(x∗)− r(xt)) ≤
T∑

t=t′

(r(x̃∗)− r(xt))
2

≤ βC1(γT − γt′)

≤ βC1γT (1− t′/T )
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Figure 5: The figure illustrates the simple regret for Ackley-10D-2C. The results are collected from 15
independent trials. The shaded area denotes the 98% confidence interval. We reproduce the reported
performance of SCBO using the corresponding Botorch tutorial. Then, we fix the kernel choices and
other hyperparameters to make a fair comparison. For COBAR-EPSILON, we set ϵC = 1.2.

By Cauchy-Schwarz, we have

T∑
t=t′

(r(x∗)− r(xt)) ≤

√√√√(T − t′)

T∑
t=t′

(r(x∗)− r(xt))2

≤
√

(T − t′)2

T
βC1γT

≤
√
(T − t′)βC1γT

Note that by enlarging the feasible region with ϵC , we don’t risk losing the feasible region to enable
COBAR to identify both interior and boundary optimum. We don’t change the definition of f∗.
Instead, we only leverage the modified running constraints and verify the feasibility with the original
constraints. For the algorithms aiming at violation tolerant objectives like CONFIG [Xu et al., 2023],
there is no similar guarantee with straightforward modification, e.g., adding small ϵC to the threshold
while not risking losing the feasible region. We denote the modified COBAR as COBAR-EPSILON.
We include the corresponding comparison on the noise-free Ackley-10D-2C as exactly defined in
Eriksson and Poloczek [2021], where the feasible region is less than 2.2 ∗ 10−3% of the whole search
space, and the optimum lies on the boundary of feasible region by construction.

As is shown in figure 5, COBAR is initially outperformed by SCBO while converging to the near-
optimal area after the sufficient budget as SCBO. COBAR-EPSILON archives the best convergence
throughout the optimization with the proposed minor tweak. In contrast, CONFIG fails to converge
to the global optimum, possibly due to its tolerance of the constraints violation, and by definition, no
reward is incurred for a point outside the feasible region.

E Reward Function

E.1 Reward choice 1: product of reward and feasibility

The definition of reward plays an important role in online machine learning performance analysis. In
the CBO setting, one possible definition of constrained reward derived from the constraint nature
is r(x) = f(x)

∏
m ICm(x)≥hm

when assuming the f(x) > 0. Considering both the aleatoric and
epistemic uncertainty on the constraints, we could transform the problem into finding the maximizer

argmax
x∈X

r(x) = argmax
x∈X

f(x)
∏
m

P [YCm(x) ≥ hm]
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Here YCm(x) denotes the observation of the constraint Cm at x.

The problem with this product reward, on the one hand, is that it is likely to incur a Pareto front if we
regard the problem as a multi-objective optimization where the objectives are composed of f(x) and
P [YCm

(x) ≥ hm]. The multi-objective nature and resulting Pareto front indicate that the optimization
could be more challenging to converge than the single-objective unconstrained BO problem, though
the unique global optimum is not always expected there either. More critically, when the feasibility
of reaching a certain threshold, we prefer to focus on optimizing the objective value rather than the
product for the following reasons.

Firstly, the marginal gain on improving feasibility by increasing the value of the constraint function
drops after the feasibility reaches 0.5 assuming it follows a Gaussian. Especially in the tail region,
improving the feasibility and then the product of feasibility and objective value by optimizing the
constraint function is prohibitively difficult.

Secondly, in most real-world scenarios except for certain applications that focus on feasibility
(where the feasibility should be treated as another objective and make it in nature a multi-objective
optimization), the actual marginal gain, in general, increases the feasibility decay faster than the
increase of objective value. (e.g., when choosing between doubling the feasibility from 0.25 to 0.5 or
doubling the objective value drop from 25 to 50, we probably favor the former as 0.25, meaning it is
unlikely to happen. However, when choosing between increasing feasibility from .8 to .9 or increasing
the objective drop from 80 to 90, there would be no such clear preference.) Then, the user would
possibly favor the gain on the objective function after the feasibility reaches a certain level. Therefore,
we propose the following reward for constrained optimization tasks according to this insight.

E.2 Reward choice 2: objective function after the feasibility reaching certain threshold

Instead of defining the reward as the product of the objective value and feasibility, we have to look
into the probabilistic constraints and distinguish the epistemic uncertainty and aleatoric uncertainty.
First, when assuming the observation on the constraints are noise-free, namely YCm

(x) = Cm(x), we
could simply use the indicator function µm for each constraint to turn the feasibility function into an
indicator function. This definition accommodates the scenarios where the infeasible region does not
incur credible reward as discussed by Sacher et al. [2018], Bachoc et al. [2020] due to simulation
failures

r(x) =

{
f(x) if I(Cm(x) ≥ hm) ∀m ∈M

−inf o.w
(11)

Next, if the observation on the constraints is perturbed with a known Gaussian noise, namely
YCm

(x) ∼ N (Cm(x), σ), we could deal with the aleatoric uncertainty with a user-specific confidence
level for each constraint χm ∈ (0, 1), ∀m ∈ M. Then we could turn I(YCm

(x) ≥ hm) into
probabilistic constraints following the definiation proposed by Gelbart et al. [2014] and

P [YCm(x) ≥ hm] ≥ χm

to explicitly deal with the aleatoric uncertainty. With the percentage point function (PPF), we
could transform the probabilistic constraints into a deterministic constraint I(Cm(x) ≥ ĥm) with
ĥm = PPF(hm, σ, µm), meaning ĥ is the χm percent point of a Gaussian distribution with hm and
σ as its mean and standard deviation. Hence, we could unify the form of rewards of noise-free and
noisy observation on the constraints with the user-specified confidence levels. For simplicity and
without loss of generalization, we stick to the definition in equation 1 and let all ĥm = 0.

F Additional Experiment Details

In the benchmarks, we applied the deep Gaussian process [Wilson et al., 2016]. Here, we offer a more
detailed discussion of the construction of the six CBO tasks studied in section 4.
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F.1 Synthetic Tasks

We study two synthetic CBO tasks constructed from conventional BO benchmark tasks. Here, we
rely on the implementation contained in BoTorch’s [Balandat et al., 2020] test function module.

Rastrigin-1D-1C The Rastrigin function is a non-convex function used as a performance test
problem for optimization algorithms. It was first proposed by Rastrigin [1974] and used as a popular
benchmark dataset [Pohlheim, 2006]. It is constructed to be highly multimodal, with local optima
being regularly distributed to trap optimization algorithms. Concretely, we negate the 1D Rastrigin
function and try to find its maximum: f(x) = −10d−

∑d
i=1 (x

2
i − 10 cos(2πxi)), d = 1. The range

of x is [−5, 5], and we construct the constraint to be c(x) = |x+ 0.7|1/2. When setting the threshold
as
√
2, we essentially exclude the global optimum from the feasible area. The constraint enforces the

optimization algorithm to explore feasibility rather than allowing algorithms to improve the reward
by merely optimizing the objective. Then, the feasible region takes up approximately 60% of the
search space. This one-dimensional task is designed to illustrate the necessity of adaptively trade-off
learning of constraints and optimization of the objective.

We also vary the threshold to control the portion of the feasible region to study the robustness
of COBAR. Figure 6 shows the distribution of the objective function and feasible regions on the
samples.

Ackley-5D-2C The Ackley function is also a popular benchmark for optimization algorithms.
Compared with the Rastrigin function, it is similarly highly multimodal, while the region near the
center is growingly steep. Same as what is done for Rastrigin, we negate the 5D Ackley function

and try to find its maximum: f(x) = 20 exp (−0.2
√

1/d
∑d

i x
2
i )+ exp (1/d

∑d
i cos(2πxi))+ 20+

exp(1), d = 5. The search space is restricted to [−5, 3]5. We construct two constraints to enforce a
feasible area approximately taking up 14% of the search space. The first constraint (∥x−1∥2−5.5)2−1
constructs two feasible regions. One of them lies in the center, and the other is close to the boundary
of the search space. The second constraint −∥x∥2∞ + 9 allows one hypercube feasible region in the
center.

F.2 Real-world Tasks

We study four real-world CBO tasks. The first three are extracted from Tanabe and Ishibuchi [2020],
which offers a broad selection of real-world multi-objective multi-constraints optimization tasks. The
fourth one is a 32-dimensional optimization task extracted from the UCI Machine Learning repository
[mis, 2019].

Vessel-4D-3C The pressure vessel design problem aims to optimize the total cost of a cylindrical
pressure vessel. The four variables represent the thicknesses of the shell, the head of a pressure vessel,
the inner radius, and the length of the cylindrical section. The problem is originally studied in Kannan
and Kramer [1994], and we follow the formulation in RE2-4-3 in Tanabe and Ishibuchi [2020]. The
feasible regions take up approximately 78% of the whole search space.

Spring-3D-6C The coil compression spring design problem aims to optimize the volume of spring
steel wire, which is used to manufacture the spring [Lampinen and Zelinka, 1999] under static loading.
The three input variables denote the number of spring coils, the outside diameter of the spring, and
the spring wire diameter, respectively. The constraints incorporate the mechanical characteristics of
the spring in real-world applications. We follow the formulation in RE2-3-5 in Tanabe and Ishibuchi
[2020]. The feasible regions take up approximately 0.38% of the whole search space.

Car-7D-8C The car cab design problem includes seven input variables and eight constraints. The
problem is originally studied in Deb and Jain [2013]. We follow the problem formulation in RE9-7-1
in Tanabe and Ishibuchi [2020] and focus on the objective of minimizing the weight of the car while
meeting the European enhanced Vehicle-Safety Committee (EEVC) safety performance constraints.
The seven variables indicate the thickness of different parts of the car. The feasible region takes up
approximately 13% of the whole search space.
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Converter-32D-3C This UCI dataset we use consists of positions and absorbed power outputs of
wave energy converters (WECs) from the southern coast of Sydney. The applied converter model
is a fully submerged three-tether converter called CETO. 16 WECs 2D-coordinates are placed and
optimized in a size-constrained environment [mis, 2019]. The input is, therefore, 32 dimensional. We
place three constraints on the tasks, including the absorbed power of the first two converters being
above a certain threshold of 96000 and the general position being not too distant with the two-norm
below 2000. The feasible region takes up approximately 27% of the whole search space.

G Additional Experiments

Here, we provide additional experiment results on COBAR.

G.1 Different Portion of Feasible Region for Rastrigin-1D
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Figure 6: We use black dots and purple dots to show the infeasible region and feasible region in
the first row correspondingly. Each column corresponds to a certain threshold choice for the single
constraint c(x) = |x + 0.7|1/2 in the Rastrigin-1D-1C task. The search space contains a certain
portion of the feasible region, denoted on each figure and title. The first row shows the distribution of
1000 samples from the noise-free distribution objective function, and the figures are differentiated
with different feasible regions. The second row shows corresponding simple regret curves. We test
each method with 15 independent trails and impose observation noises sampled from N (0, 0.1) not
shown in the first row. The scaling and length scale of the GPs are learned via maximum likelihood
estimation.

G.2 Robustness to Choices of β

As is shown in figure 7, the algorithm is robust to moderate values of β. Except from the Ackley
β = 0.1 where the filtering of ROI is over-aggressive and traps the model on a certain locality when
a very small number of candidates remain in ROI. We observe that certain β choices could be slightly
better but don’t impact the convergence and lack statistical significance. We believe the acquisitions
in Eq. (4) and Eq. (3), together with the X̂ identification when the models are well-fitted, contribute to
this robustness. Different from conventional GP-UCB [Srinivas et al., 2009], the acquisition functions
are standardized with the (maximum) lower confidence bound. The search domains are filtered when
historical observations suggest poor performance in nearby areas.

G.3 Wall Time

We show the wall time of COBAR compared with the baselines in table 2. The results demonstrate the
efficiency of COBAR due to the ROI filtering reducing the search space, though the ROI identification
incurs additional cost for membership check.
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Figure 7: The figure illustrates the simple regret for a different choice of constant β for COBAR.
Here the theoretical β are 6.51 for Rastrigin-1D-1C, 6.47 for Ackley-5D-2C, and 6.51 for Converter-
36D-3C. The results are collected from 15 independent trials.

Problem COBAR CMES-IBO SCBO cEI
Rastrigin-1D-1C 144.29 545.83 32.39 231.12
Ackley-5D-2C 96.19 565.10 25.43 180.39
Converter-36D-3C 190.05 660.27 31.73 267.36

Table 2: Average wall time (sec) of different CBO Methods collected from 15 independent trials.

G.4 Additional Comparison with CONFIG

Though the objective is defined differently, we add additional baseline CONFIG from Xu et al. [2023].
The results are shown in figure 8 and figure 9. We observe that COBAR outperforms or at least
matches CONFIG in all the problems in our setting. Specifically, in the early stage of the Rastrigin-
1D-1C task and through the Ackley-5D-2C, where the underlying objective is highly fluctuating, as is
shown in figure 8 for Rastrigin-1D-1C, CONFIG fails to enter the feasible region consistently even
after exhausting sufficient budget and gets stuck in learning the constraints passively.

At the same time, we observe that on Converter-32D-3C, Vessel-4D-3C, and Spring-3D-6C, CONFIG
generally matches the performance of COBAR. We hypothesize that in these applications, the
constraint learning part of COBAR is not as beneficial as directly optimizing the underlying function
is possibly feasible regions, as the unknown feasibility coincides with the optimality of the underlying
objectives. Still, COBAR bears higher consistency in all the benchmarks, highlighting the efficiency
and necessity of the adaptive trade-off of active learning and optimization in COBAR when assuming
no reward is incurred outside the feasible region. This difference also highlights the necessity of
actively learning the complex underlying constraints to guarantee a stable convergence to a feasible
optimum.

G.5 Additional Comparison with SVM-CBO

SVM-CBO [Antonio, 2021] offers a practicality-oriented solution. It uses the SVM to learn the
feasibility bound to estimate the decision boundary efficiently. The challenge of analyzing the learning
of SVM combined with the coverage-oriented first-phase acquisition function poses a challenge
to regret analysis. In addition, SVM-CBO requires a specific split of feasibility identification and
optimization within the feasible region and demands different performance metrics for evaluation.
This split makes direct comparisons with COBAR, which is somewhat challenging and does not
explicitly split the two processes. Nonetheless, we follow the practice in the paper that uses a 10:60:30
split for the random sampling, phase 1 and phase 2 of SVM-CBO, and report the simple regret.
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Figure 8: We use black dots and purple dots to show the infeasible region and feasible region in
the first row correspondingly. Each column corresponds to a certain threshold choice for the single
constraint c(x) = |x + 0.7|1/2 in the Rastrigin-1D-1C task. The search space contains a certain
portion of the feasible region, denoted on each figure and title. The first row shows the distribution of
1000 samples from the noise-free distribution objective function, and the figures are differentiated
with different feasible regions. The second row shows corresponding simple regret curves. We test
each method with 15 independent trails and impose observation noises sampled from N (0, 0.1) not
shown in the first row. The scaling and length scale of the GPs are learned via maximum likelihood
estimation.
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Figure 9: The input dimensionality, the number of constraints, and the approximate portion of the
feasible region in the whole search space for each task are denoted on the titles. The curves show
the average simple regret after standardization, while the shaded area denotes the 95% confidence
interval through the optimization.

Table 3 shows the simple regret of the end of both phases of SVM-CBO. We emphasize the best
simple regret achieved. The results demonstrate that COBAR ultimately outperforms or matches the
best baseline in the end.

H Additional Explanation of COBAR
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Experiment COBAR-70 CMES-IBO-70 cEI-70 SCBO-70 SVM-CBO-70
Rastrigin-1D-1C-60% 3.80e+00 (1.85e+00) 3.00e+00 (1.84e+00) 1.08e+01 (3.02e+00) 4.83e+00 (2.12e+00) 4.83e+00 (1.43e+00)
Ackley-5D-2C-14% 3.71e-02 (7.19e-04) 4.41e-02 (6.67e-03) 7.94e-02 (1.46e-02) 1.43e-01 (0.00e+00) 1.11e-01 (2.45e-02)

Converter-36D-3C-27% 9.50e-01 (1.77e-01) 1.32e+00 (2.31e-01) 2.23e+00 (0.00e+00) 2.23e+00 (0.00e+00) 1.09e+00 (1.52e-01)
Vessel-4D-3C-78% 2.06e-02 (1.39e-02) 1.20e+00 (3.90e-01) 2.44e-01 (2.48e-01) 3.79e+00 (1.25e+00) 2.59e-02 (3.36e-02)

Car Cabin-7D-8C-13% 8.62e+00 (3.30e+00) 1.40e+01 (2.14e+00) 6.15e+00 (2.28e+00) 5.75e+00 (2.03e+00) 6.84e+00 (3.24e+00)
Spring-3D-6C-0.38% 6.40e+01 (2.83e+01) 1.11e+02 (1.50e+01) 1.11e+02 (1.50e+01) 1.11e+02 (1.50e+01) 8.35e+01 (2.76e+01)

Experiment COBAR-100 CMES-IBO-100 cEI-100 SCBO-100 SVM-CBO-100
Rastrigin-1D-1C-60% 2.21e+00 (1.41e+00) 2.84e+00 (1.62e+00) 1.07e+01 (3.07e+00) 4.83e+00 (2.12e+00) 2.67e+00 (8.14e-01)
Ackley-5D-2C-14% 3.69e-02 (3.08e-03) 3.56e-02 (5.93e-03) 5.88e-02 (7.24e-03) 1.43e-01 (0.00e+00) 1.09e-01 (2.64e-02)

Converter-36D-3C-27% 9.29e-01 (1.27e-01) 1.22e+00 (2.02e-01) 2.14e+00 (1.75e-01) 2.23e+00 (0.00e+00) 9.73e-01 (1.45e-01)
Vessel-4D-3C-78% 1.94e-02 (1.43e-02) 6.48e-01 (3.60e-01) 1.51e-01 (1.25e-01) 3.79e+00 (1.25e+00) 2.23e-02 (8.96e-04)

Car Cabin-7D-8C-13% 6.40e+00 (2.72e+00) 1.12e+01 (2.71e+00) 5.92e+00 (2.34e+00) 5.75e+00 (2.03e+00) 6.03e+00 (2.40e+00)
Spring-3D-6C-0.38% 5.60e+01 (2.99e+01) 1.11e+02 (1.50e+01) 1.11e+02 (1.50e+01) 1.11e+02 (1.50e+01) 8.35e+01 (2.76e+01)

Table 3: Comparison of different methods’ simple regrets across experiments. The table shows
the updated experiment results after incorporating the SVM-CBO as an additional baseline. The
upper block shows the simple regret at 70 iterations, while the lower shows the simple regret at 100
iterations. The standard error is shown in parentheses.

Algorithm 2 COnstrained BO through Adaptive Region of Interest Acquisition (COBAR)

1: Input:Search space X, initial observation S0, horizon T , confidence factor δ, confidence coeffi-
cient β;

2: for t = 1 to T do
3: Update the posteriors of GPf,t and GPCm,t

4: Identify ROIs X̂t, and undecided sets UCm,t

5: for m ∈M do
6: if UCm,t ̸= ∅ then
7: Candidate for learning of each constraint:

xCm,t ← argmaxx∈D̃X̂t
∩UCm,t

αCm,t(x) (4)
8: G ← G ∪ Cm,t

9: Candidate for optimizing the objective:
xf,t ← argmaxx∈D̃X̂t

αf,t(x) as in equation 3
10: G ← G ∪ f
11: Maximize the acquisition from different aspects:

gt ← argmaxg∈G αg,t(xg,t)
12: Pick the candidate to evaluate: xt ← xgt,t

13: Update the observation set
St ← St−1 ∪ {(xt, yf,t, {yCm,t}m∈M)}

H.1 Additional Explanation of COBAR

For algorithm 2, {xgt,t} in line 11 are acquired in line 7 as xCm,t or line 9 as xf,t, since G is composed
of Cm and f . Roughly speaking, we are taking argmaxg,x, yet we avoid using such notation for two
reasons. (1) the domain where equation 5 and equation 6 are maximized are different; (2) the domain
for equation 6 could even be empty. Therefore, we are currently taking the argmax of equation 5
and equation 6 over different domains (if not empty) separately and then taking the argmax of the
corresponding acquisition function values as in line 11.

I Discussions

Here, we offer additional explanation and discussion over COBAR.

I.1 On the Comparability of Acquisition Functions over Different Underlying Functions

Both the acquisition functions for optimizing the objective and active learning are confidence interval-
based, which reflects the uncertainty and is intrinsically comparable. With Assumption 1 that the
black-box underlying functions are samples from the corresponding GPs specified by the kernels, we
use the kernels to capture the scaling of the different unknowns. Our analysis does not assume that
the kernels are the same, meaning that the theoretical results hold when the objective and constraints
are of different scales. This analysis converts the algorithm’s sensitivity to scale to the sensitivity
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to hyper-parameter misspecification. In our experiments, we report the results when following the
standard practice of kernel learning [Rasmussen and Williams, 2006] for both the proposed algorithm
and baselines, as is stated at the end of the caption of figure 6. In summary, the compatibility is
guaranteed by the properly specified kernel. Recent advancements in self-correcting BO [Hvarfner
et al., 2024] or BO with unknown hyperparameters[Berkenkamp et al., 2019] propose various methods
to address the challenge.

With regard to the practical concern over why the analysis does not require normalizing the different
acquisition functions, the answer is threefold. First, since the correlation between the constraints and
the objective is unknown, it is possible that the objective, in general, is of a smaller scale but bears
the highest gradient near the boundary, meaning that the general scale of functions does not offer
a guarantee to normalize the near-boundary uncertainties. Second, using the ROI to constrain the
acquisition helps exclude the useless uncertainty reduction as the ROI considers both the objective
and the constraints. If constraints dominate the COBAR acquisition, it suggests that the selected
points remain likely to contain the global optimum as its objective does not have a high probability
of being suboptimal. Such a query won’t be wasted. A concrete example is illustrated in figure 3.
Third, since we are assuming a universal upper bound for each constraint, the scale difference could
make certain constraints dominant in the ϵm. This could be addressed through the normalization of
observations given prior knowledge.

I.2 Difference from Other Existing CBO Methods with No-regret Guarantee

We briefly discuss the differences between COBAR and the previous theoretical results in CBO. Lu
and Paulson [2022] addresses equality constraints for instantaneous penalty-based regret. However,
the reward formulation is different. Lu and Paulson [2023] offers theoretical results on cumulative
regret and violations. Yet, they assume querying points out of the feasible region still yields rewards
and consider the violation separately.

In general, we are unaware that the existing CBO analysis results lead to a similar guarantee as in
our work when assuming querying infeasible points does not yield a reward. One key difference is
that with the active learning component and feasibility assumption, we could guarantee to query a
feasible point that bears a reward converging to optimal value with the desired confidence. In our
specific reward formulation, we regard such a guarantee and, therefore, the contribution in algorithm
design and analysis as sufficiently different from the previous work, even when only focusing on the
coupled setting.

I.3 Empty Subsets of Search Space

It is possible that certain subsets discussed in section 3 could be empty at a certain t as a result
of intersections. However, according to the assumptions in section 3.4 and Lemma 1, the properly
chosen β does not result in over-aggressive filtering with high probability. From this perspective, ROI
X̂ is soundly defined. COBAR is also robust to empty UCm,t. As shown in algorithm 2, the domain
where the acquisition functions defined in equation 4 and equation 3 are maximized allow empty
UCm,t for COBAR to proceed.

I.4 Limitations and Future Work

The limitation of COBAR includes (1) the inefficiency of identifying the ROIs due to the pointwise
comparison in current implementation relying on discretization; (2) the lack of discussion over
correlated unknowns, which are common in practice (e.g., two constraints are actually lower bound
and upper bound of the same value). Though we briefly discuss and study corresponding scenarios,
we expect the following work could improve the algorithm’s effectiveness and the comprehensiveness
of corresponding analysis accordingly.
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