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ABSTRACT
We study off-policy evaluation (OPE) in the slate contextual ban-

dits where a policy selects multi-dimensional actions known as

slates. This problem is widespread in recommender systems, search

engines, marketing, to medical applications, however, the typical

Inverse Propensity Scoring (IPS) estimator suffers from substan-

tial variance due to large action spaces, making effective OPE a

significant challenge. The PseudoInverse (PI) estimator has been

introduced to mitigate variance by assuming linearity in the reward

function, but this can result in significant bias as this assumption

is hard-to-verify from observed data and is often substantially vio-

lated. To address the limitations of previous estimators, we develop

a novel estimator for OPE of slate bandits, called Latent IPS (LIPS),
which defines importance weights in a low-dimensional slate ab-

straction space where we optimize slate abstractions to minimize

the bias and variance of LIPS in a data-driven way. By doing so,

LIPS can substantially reduce the variance of IPS without impos-

ing restrictive assumptions on the reward function structure like

linearity. Through empirical evaluation, we demonstrate that LIPS

substantially outperforms existing estimators, particularly in sce-

narios with non-linear rewards and large slate spaces.
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1 INTRODUCTION
Slate bandits play a pivotal role in many online services, such as

recommender and advertising systems. In these services, a decision-

making algorithm or policy selects a combinatorial and potentially

high-dimensional slate composed of multiple sub-actions. For in-

stance, visual advertisements consist of various components such

as title, key visual, and background image. Each of these compo-

nents significantly influences user interests and revenue outcomes.

Another relevant application is in medical treatment, where the

aim is to find the optimal combination of doses to improve medical

outcomes. Although these systems typically have an abundance of

logged data, accurately estimating the performance of a counterfac-

tual policy through Off-Policy Evaluation (OPE) can be exceedingly

challenging. This challenge arises largely due to the exponential
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variance associated with slate-wise importance weighting, particu-

larly when dealing with combinatorial actions or slate spaces [36].

Despite the challenges in OPE with slate structures, it remains a

crucial task for safely evaluating and improving the effectiveness of

real-world interactive systems [26]. Therefore, several PseudoInverse
(PI) estimators have been proposed [33, 36, 41]. These estimators

use slot-wise importance weights to reduce the variance of IPS

and have been shown to enable unbiased OPE under the linear-
ity assumption on the reward. This assumption requires that the

expected reward should be linearly decomposable, ignoring inter-

action effects among different slots. While PI often outperforms

IPS under linear reward structures, it can still produce significant

bias when linearity does not hold. In addition, the variance of PI re-

mains extremely high if there are many unique sub-actions [28]. It is

worth noting that while several estimators have been developed for

OPE in ranking action spaces [16–18, 21], they are not applicable to

evaluate slate bandits. This is because these estimators assume that

the rewards are available for every position in a ranking, whereas

in our setup, only slate-wise rewards are available.

To overcome the limitations of slate OPE, we propose a novel ap-

proach called Latent IPS (LIPS), which redefines importance weights

in a low-dimensional slate abstraction space. LIPS is inspired by

recent advances in OPE for large action spaces where the marginal-

ized IPS (MIPS) estimator leverages pre-defined action embeddings

to provably reduce variance [28, 29], but our estimator does not

assume that action embeddings are already observed in the logged

data a priori as MIPS. Through theoretical analysis, we show that

LIPS can substantially reduce variance compared to IPS while also

being unbiased if the slate abstraction is sufficient in that it re-

tains sufficient information to characterize the reward function.

In addition, LIPS can achieve lower bias and variance than PI un-

der appropriate slate abstractions since our sufficiency condition

is more relaxed than the linearity assumption and the variance

of LIPS only depends on the size of the abstraction space, which

can be more compact than the sub-action spaces. Interestingly,

our analysis on the bias and variance of LIPS also implies that its

mean-squared-error (MSE) may be minimized when strategically

using an insufficient slate abstraction, potentially resulting in even

greater variance reduction while being nearly unbiased. Based on

this theoretical analysis, we also develop a procedure to optimize

slate abstraction to directly minimize the bias and variance of LIPS.

This is a particular distinction of LIPS from MIPS [28] and its exten-

sion [29], which assume that useful action embeddings already exist.

Empirical results on extreme classification datasets (which can be

transformed into bandit feedback with slate actions) demonstrate

that LIPS enables more accurate slate OPE than IPS, PI, a naive

extension of MIPS, and their doubly-robust variants on a variety of

non-linear reward functions and large slate action spaces.

Our contributions can be summarized below.
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• We propose the LIPS estimator, which leverages an abstrac-

tion of slates to substantially improve OPE of slate bandits.

• We develop a fully data-driven procedure to optimize an

abstraction function to directly minimize the MSE of LIPS.

• We empirically demonstrate that LIPS with an optimized

abstraction outperforms existing estimators (such as PI, IPS,

and MIPS) for a range of scenarios with non-linear rewards.

2 OFF-POLICY EVALUATION FOR SLATES
This work considers a slate contextual bandit problem where 𝒙 ∈
X ⊆ R𝑑 represents a context vector (e.g., user demographics, con-

sumption history, weather) and 𝒔 ∈ S :=
∏𝐿
𝑙=1
A𝑙 denotes a slate ac-

tion. A slate consists of several sub-actions, i.e., 𝒔 = (𝑎1, 𝑎2, . . . , 𝑎𝐿)
where each sub-action 𝑎𝑙 is chosen from the corresponding action

set A𝑙 , which may differ across different slots. For instance, in an

email campaign, A1 may be a set of subject lines, while A2 may

represent whether or not to include visuals in a promotion email.

We refer to a function 𝜋 : X → Δ(S) as a slate bandit policy,
which maps each context to a distribution over the slate space.

In particular, throughout the paper, we will focus on a factored
policy, i.e., 𝜋 (𝒔 | 𝒙) = ∏𝐿

𝑙=1
𝜋 (𝑎𝑙 | 𝒙) for brevity of exposition. Let

then 𝑟 be a reward associated with a slate 𝒔, which is considered

sampled from an unknown conditional distribution 𝑝 (𝑟 | 𝒙, 𝒔). We

are interested in OPE in this slate bandit setup, where we are given

a logged dataset D := {(𝒙𝑖 , 𝒔𝑖 , 𝑟𝑖 )}𝑛𝑖=1 collected by a logging policy

𝜋0 where (𝒙, 𝒔, 𝑟 ) ∼ 𝑝 (𝒙)𝜋0 (𝒔 |𝒙)𝑝 (𝑟 |𝒙, 𝒔). In particular, we aim to

estimate the following expected performance of a new policy 𝜋

(which is called a target policy and is often different from 𝜋0):

𝑉 (𝜋) := E(𝒙,𝒔 )∼𝑝 (𝒙 )𝜋 (𝒔 | 𝒙 ) [𝑞(𝒙, 𝒔)],
where 𝑞(𝒙, 𝒔) := E[𝑟 | 𝒙, 𝒔] is the expected reward function given

context 𝒙 and slate 𝒔. In particular, our goal is to develop an es-

timator 𝑉 capable of accurately estimating the performance of 𝜋

relying only on the logged data D. The accuracy of an estimator is

measured by the mean-squared-error (MSE):

MSE(𝑉 (𝜋)) : = ED
[ (
𝑉 (𝜋) −𝑉 (𝜋 ;D)

)
2
]

= Bias(𝑉 (𝜋 ;D))2 + VD
[
𝑉 (𝜋 ;D)

]
,

where the bias and variance of 𝑉 are defined respectively as

Bias(𝑉 (𝜋 ;D)) := ED [𝑉 (𝜋 ;D)] −𝑉 (𝜋),

VD
[
𝑉 (𝜋 ;D)

]
:= ED

[ (
𝑉 (𝜋 ;D) − ED [𝑉 (𝜋 ;D)]

)
2
]
.

Existing estimators. We now summarize key existing estima-

tors and their limitations.

Inverse Propensity Scoring (IPS) [32]. IPS reweighs the observed
rewards by the ratios of slate probabilities under the target and

logging policies (slate-wise importance weight) as

𝑉IPS (𝜋 ;D) :=
1

𝑛

𝑛∑︁
𝑖=1

( 𝐿∏
𝑙=1

𝜋 (𝑎𝑖,𝑙 | 𝒙𝑖 )
𝜋0 (𝑎𝑖,𝑙 | 𝒙𝑖 )

)
𝑟𝑖 =

1

𝑛

𝑛∑︁
𝑖=1

𝑤 (𝒙𝑖 , 𝒔𝑖 )𝑟𝑖 , (1)

where𝑤 (𝒙, 𝒔) := 𝜋 (𝒔 |𝒙)/𝜋0 (𝒔 |𝒙) is the slate-wise importanceweight.

IPS is unbiased under some identification assumptions such as com-

mon support (i.e., 𝜋 (𝒔 | 𝒙) > 0→ 𝜋0 (𝒔 | 𝒙) > 0, ∀(𝒙, 𝒔)). However,
its critical issue is its exponential variance, which arises due to the

potentially astronomical size of slate action spaces [36].

PseudoInverse (PI) [36]. To deal with the exponential variance

of IPS, the PI estimator leverages only the slot-wise importance

weights (compared to slate-wise importance weighting of IPS) as

𝑉PI (𝜋 ;D) :=
1

𝑛

𝑛∑︁
𝑖=1

(
𝐿∑︁
𝑙=1

𝜋
(
𝑎𝑖,𝑙 | 𝒙𝑖

)
𝜋0

(
𝑎𝑖,𝑙 | 𝒙𝑖

) − 𝐿 + 1) 𝑟𝑖 . (2)

Since PI relies only on slot-wise importance weights, its variance

only scales with the number of unique sub-actions (i.e.,

∑𝐿
𝑙=1
|A𝑙 |).

Thus, the variance of PI is often smaller than that of IPS whose

weight scales with the cardinality of the slate space (i.e.,

∏𝐿
𝑙=1
|A𝑙 |).

PI has also been shown to enable an unbiased performance evalu-

ation, i.e, ED [𝑉PI (𝜋 ;D)] = 𝑉 (𝜋), under the linearity assumption,

which requires that the reward function is linearly decomposable

and there exists some (latent) intrinsic reward functions {𝜙𝑙 }𝐿𝑙=1
such that 𝑞(𝒙, 𝒔) = ∑𝐿

𝑙=1
𝜙𝑙 (𝒙, 𝑎𝑙 ) for every context 𝑥 and slot 𝑙 .

In other words, this assumption essentially ignores every possible

interactions across different slots.

Although PI improves the MSE over IPS under linear reward

functions, its bias is no longer controllable when linearity does

not hold, which is often the case in highly non-linear real-world

environments. In addition, PI may still suffer from extremely high

variance when

∑𝐿
𝑙=1
|A𝑙 | is large (i.e., when there are many unique

sub-actions). These limitations of PI and IPS motivate the develop-

ment of a new estimator for slate OPE that can substantially reduce

the variance while being (nearly) unbiased without any unrealistic

assumptions on the reward function structure.

3 THE LIPS ESTIMATOR
To deal with the issues of IPS and PI, we now propose the LIPS esti-

mator that enables more effective OPE by leveraging slate abstrac-
tion rather than positing restrictive assumptions on the reward. At a

high level, LIPS defines importance weights in a (low-dimensional)

latent slate spaceZ, which can either be discrete or continuous
1

and is induced via a slate abstraction function 𝜙𝜃 : S → Z,

parametrized by 𝜃 . Specifically, our LIPS estimator is defined as

𝑉LIPS (𝜋 ;D) :=
1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝜙𝜃 (𝒔𝑖 ) | 𝒙𝑖 )
𝜋0 (𝜙𝜃 (𝒔𝑖 ) | 𝒙𝑖 )︸             ︷︷             ︸
:=𝑤 (𝒙𝑖 ,𝜙𝜃 (𝒔𝑖 ) )

𝑟𝑖 (3)

where 𝜋 (𝑧 |𝒙) := ∑
𝒔∈{𝒔′∈S|𝜙𝜃 (𝒔′ )=𝑧} 𝜋 (𝒔 |𝒙) is a marginal distri-

bution of an abstracted slate induced by policy 𝜋 , and 𝑤 (𝒙, 𝑧) :=
𝜋 (𝑧 |𝒙)/𝜋0 (𝑧 |𝒙) is the latent importance weight. Note that we can
readily extend LIPS to the case with a context-dependent and

stochastic abstraction based on a parameterized distribution 𝑝𝜃 :

X × S → Δ(Z). This means that we can generalize Eq. (3) as

𝑉LIPS (𝜋 ;D) :=
1

𝑛

𝑛∑︁
𝑖=1

𝑝𝜃 (𝑧𝑖 | 𝒙𝑖 ;𝜋)
𝑝𝜃 (𝑧𝑖 | 𝒙𝑖 ;𝜋0)

𝑟𝑖

where 𝑧𝑖 ∼ 𝑝𝜃 (· | 𝒙𝑖 , 𝒔𝑖 ) and 𝑝𝜃 (𝑧 | 𝒙 ;𝜋) :=
∑
𝒔∈S 𝜋 (𝒔 | 𝒙)𝑝𝜃 (𝑧 | 𝒙, 𝒔)

=
∑
𝒔∈S 𝑝𝜃 (𝒔, 𝑧 | 𝒙 ;𝜋). This extension allows for a flexible control

of the bias-variance tradeoff of LIPS and ensures a tractable opti-

mization of abstraction. The central idea of LIPS is to circumvent

1
In the remainder of the paper, we rely on a discrete abstraction for ease of exposition,

but a continuous abstraction space can also be considered under stochastic abstraction.



Off-Policy Evaluation of Slate Bandit Policies via Optimizing Abstraction Woodstock ’24, June 03–05, 2018, Woodstock, NY

the reliance on slate- or slot-wise importance weights, substan-

tially improving the variance from IPS and PI while avoiding the

linear-reward assumption like PI. The following formally analyzes

LIPS and shows its statistical advantages over existing estimators.

We also develop a data-driven optimization procedure for slate

abstractions to directly minimize the MSE of LIPS.

3.1 Theoretical Analysis
First, we analyze the bias of LIPS based on the notion of sufficient
slate abstraction (but we will later show that intentionally using

an insufficient slate abstraction is indeed a better implementation

and present how to data-drivenly obtain a better slate abstraction.)

Definition 3.1. (Sufficient Slate Abstraction) A slate abstraction

function 𝜙𝜃 is said to be sufficient if it satisfies 𝑞(𝒙, 𝒔) = 𝑞(𝒙, 𝒔′)
for all 𝒙 ∈ X, 𝒔 ∈ S, and 𝒔′ ∈ {𝒔′′ ∈ S | 𝜙𝜃 (𝒔) = 𝜙𝜃 (𝒔′′)}.

An abstraction function is sufficient if it aggregates only slates that

have the same expected reward, and it means that the latent slate

spaceZ retains sufficient information to characterize the reward

function. For example, identity abstraction 𝜙 (𝒔) = 𝒔 is always

sufficient (LIPS is reduced to IPS in this case). Note here that this

notion of sufficiency does not impose any particular restriction on

the reward function form such as linearity. Furthermore, sufficient

slate abstractions may not be unique, and there could potentially

be many sufficient slate abstractions.

The following demonstrates that LIPS is unbiased when given a

sufficient abstraction function. We also characterize the bias of LIPS

when we use a stochastic abstraction, which may not be sufficient.

Theorem 3.2. (Unbiasedness of LIPS) LIPS is unbiased, i.e.,

ED [𝑉LIPS (𝜋 ;D)] = 𝑉 (𝜋),
if a given slate abstraction function 𝜙𝜃 is sufficient. See Appendix B.3
for the proof.

Theorem 3.3. (Bias of LIPS) The bias of LIPS given a stochastic
slate abstraction 𝑝𝜃 is

Bias(V̂LIPS (𝜋 ;D)) (4)

= E𝑝 (𝒙 )𝑝𝜃 (𝑧 |𝒙 ;𝜋0 )
[ ∑︁
𝑗<𝑘≤ |S |

𝑝𝜃 (𝒔 𝑗 | 𝒙, 𝑧;𝜋0)𝑝𝜃 (𝒔𝑘 | 𝒙, 𝑧;𝜋0) (5)

× (𝑞(𝒙, 𝒔 𝑗 ) − 𝑞(𝒙, 𝒔𝑘 )) × (𝑤 (𝒙, 𝒔𝑘 ) −𝑤 (𝒙, 𝒔 𝑗 ))
]
,

where 𝑝𝜃 (𝒔 | 𝒙, 𝑧;𝜋) = 𝑝𝜃 (𝒔, 𝑧 | 𝒙;𝜋)/𝜋 (𝑧 | 𝒙). See Appendix B.4 for
the proof.

In particular, Theorem 3.3 implies that the bias of LIPS is character-

ized by the following factors.

(1) identifiability of the slates from their abstractions:

𝑝𝜃 (𝒔 𝑗 |𝒙, 𝑧;𝜋0)𝑝𝜃 (𝒔𝑘 |𝒙, 𝑧;𝜋0)
(2) difference in the expected rewards between a pair of slates:

𝑞(𝒙, 𝒔 𝑗 ) − 𝑞(𝒙, 𝒔𝑘 )
(3) difference in the slate-wise importance weights between a

pair of slates:𝑤 (𝒙, 𝒔𝑘 ) −𝑤 (𝒙, 𝒔 𝑗 )
When slate 𝒔 is near-deterministic given (𝒙, 𝑧), 𝑝𝜃 (𝒔 𝑗 |𝒙, 𝑧;𝜋0) ap-
proaches either zero or one, making 𝑝𝜃 (𝒔 𝑗 |𝒙, 𝑧;𝜋0)𝑝𝜃 (𝒔𝑘 |𝒙, 𝑧;𝜋0)
(the first factor) close to zero. This suggests that if the latent slate

space contains sufficient information to reconstruct the original

slates, the bias of LIPS remains small even with a stochastic slate ab-

straction. Moreover, the second factor indicates how predictive the

rewards are with latent variable 𝑧. In particular, when the latent vari-

able is nearly sufficient in the sense that the slates that have similar

expected rewards have similar abstraction distribution, 𝑞(𝒙, 𝒔 𝑗 ) −
𝑞(𝒙, 𝒔𝑘 ) becomes small when 𝑝𝜃 (𝒔 𝑗 |𝒙, 𝑧;𝜋0)𝑝𝜃 (𝒔𝑘 |𝒙, 𝑧;𝜋0) is large,
leading to a reduced bias of LIPS. Thus, the analysis implies that the

bias of LIPS remains small if the latent slate space is finer-grained

and abstraction is closer to deterministic, which makes the latent

variable 𝑧 more predictive of slate 𝒔 and reward 𝑟 .

Next, we analyze the variance reduction of LIPS against IPS,

which can be substantially large depending on the coarseness and

stochasticity of the latent slate space.

Theorem 3.4. (Variance Reduction) Given a sufficient slate ab-
straction function 𝜙𝜃 , we have

𝑛
(
VD [𝑉IPS (𝜋 ;D)] − VD [𝑉LIPS (𝜋 ;D)]

)
= E𝑝 (𝒙 )𝜋0 (𝜙𝜃 (𝒔 ) |𝒙 )

[
E𝑝 (𝑟 |𝒙,𝜙𝜃 (𝒔 ) ) [𝑟

2] V𝜋0 (𝒔 |𝒙,𝜙𝜃 (𝒔 ) ) [𝑤 (𝒙, 𝒔)]
]
.

(6)

See Appendix B.5 for the proof.

There are two key factors that characterize the extent of variance re-

duction. The first factor is the second moment of the reward, which

becomes large when the reward is noisy. The second factor is the

variance of the slate-wise importance weight𝑤 (𝒙, 𝒔) with respect to
the conditional distribution 𝜋0 (𝒔 |𝒙, 𝜙 (𝒔)) (= 𝜋0 (𝒔 |𝒙)/𝜋0 (𝜙 (𝒔) |𝒙)),
which becomes large when (i) 𝑤 (𝒙, 𝒔) takes large values and (ii)
𝜋0 (𝒔 |𝑥, 𝜙 (𝒔)) remains adequately stochastic. This implies that the

variance reduction of LIPS can be exponential as the variance of

the slate importance weight can grow exponentially with the slate

size 𝐿. Moreover, we can control the extent of variance reduction

via the cardinality of the latent slate space and entropy of slate

abstraction, i.e., a coarser and more stochastic abstraction reduces

variance more. This theoretical observation indeed implies that a

sufficient abstraction may not minimize the MSE of LIPS. Table 1

provides a toy example illustrating a situation where LIPS with an

insufficient abstraction can indeed achieve a lower MSE than that

with a sufficient abstraction. Specifically, LIPS with a sufficient ab-

straction achieves the MSE of 1.0 with zero bias as per Theorem 3.2.

However, a lower MSE can be realized by intentionally using an

insufficient abstraction. This is because we can gain a large variance

reduction (0.2 - 1.0 = -0.8) by allowing only a small squared bias

(+0.25), and hence using a sufficient abstraction does not result in

the optimal MSE of LIPS. Therefore, instead of discussing how to

find a sufficient abstraction, the following describes a data-driven

approach to optimize it in a way that minimizes the MSE of LIPS.

3.2 Optimizing Slate Abstractions
The analysis from the previous section indicates that the bias-
variance tradeoff of LIPS is determined by the granularity of
the latent slate spaceZ and stochasticity of slate abstraction
distribution 𝑝𝜃 (𝑧 | 𝒙, 𝒔), which also suggests that the MSE of LIPS

might be minimized with an insufficient abstraction that yields even
greater variance reduction while producing only some small bias.

This insight naturally encourages us to directly minimize the bias

and variance of LIPS when optimizing slate abstraction rather than
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Table 1: A toy example illustrating the potential advantage of strategic variance reduction with an insufficient abstraction. LIPS
with an insufficient (but optimized) abstraction produces much smaller variance while introducing some small bias, resulting
in a smaller MSE than LIPS with a sufficient abstraction.

bias variance MSE (= bias
2
+ variance)

LIPS with a sufficient abstraction 0.0 1.0 1.00 (= (0.0)2 + 1.0 )
LIPS with an insufficient (but optimized) abstraction 0.5 0.2 0.45 (= (0.5)2 + 0.2)

myopically searching for a sufficient abstraction. Specifically, we

propose to optimize slate abstraction distribution 𝑝𝜃 via

( ˆ𝜃, ˆ𝜓, �̂�) = argmax

𝜃,𝜓

min

𝜔

𝑛∑︁
𝑖=1

L(𝒙𝑖 , 𝒔𝑖 , 𝜋0;𝜃,𝜓, 𝜔) (7)

where

L(𝒙, 𝒔, 𝜋0;𝜃,𝜓, 𝜔) = E𝑝𝜃 (𝑧 | 𝒙,𝒔;𝜋0 )
[
log𝑝𝜓 (𝒔 | 𝒙, 𝑧;𝜋0)

]︸                                      ︷︷                                      ︸
bias reduction: 𝑝𝜃 (𝒔 𝑗 | 𝒙,𝑧;𝜋0 )𝑝𝜃 (𝒔𝑘 | 𝒙,𝑧;𝜋0 )

(8)

+E𝑝𝜃 (𝑧 | 𝒙,𝒔;𝜋0 )
[
(𝑟 − 𝑞𝜔 (𝒙, 𝑧))2

]︸                                  ︷︷                                  ︸
bias reduction: 𝑞 (𝒙,𝒔 𝑗 )−𝑞 (𝒙,𝒔𝑘 )

−𝛽KL(𝑝𝜃 (𝑧 | 𝒙, 𝒔;𝜋0) | | 𝑝𝜓 (𝑧 | 𝒙 ;𝜋0))︸                                          ︷︷                                          ︸
variance reduction: 𝑝𝜃 (𝒔 | 𝒙,𝑧;𝜋0 )

. (9)

𝜃 , 𝜓 , and 𝜔 are the parameters of slate abstraction 𝑝𝜃 (𝑧 |𝒙, 𝒔;𝜋0),
slate reconstruction 𝑝𝜓 (𝒔 |𝒙, 𝑧;𝜋0), and reward construction𝑞𝜔 (𝒙, 𝑧)
models.

2
The first two terms of the loss function aim for bias re-

duction, while the last term controls variance reduction of LIPS.

More specifically, the first term measures the identifiability of the

slates and the second term measures how predictive the rewards

are based on the latent variable. In contrast, the last term works

as a regularization to control the stochasticity of 𝑝𝜃 (𝒔 |𝒙, 𝑧;𝜋0) by
making 𝑝𝜃 (𝑧 | 𝒙, 𝒔;𝜋0) closer to 𝑝𝜓 (𝑧 | 𝒙 ;𝜋0). This will indeed reg-

ularize the latent importance weights and make them close to 1

everywhere (as described in the appendix in detail), and thus we

can expect a larger variance reduction of LIPS when the last term is

dominant. The regularization weight 𝛽 is thus considered the key

hyper-parameter that governs the bias-variance tradeoff of LIPS

(i.e., a smaller 𝛽 implies a smaller bias and larger variance of LIPS,

while a larger 𝛽 leads to a larger bias and smaller variance). This

hyper-parameter can be tuned by existing parameter tuning meth-

ods such as SLOPE [34] and PAS-IF [39], which are feasible using

only observed logged data D. Section 5 empirically investigates

how LIPS works with these existing parameter tuning methods.

4 RELATEDWORK
Off-Policy Evaluation. Off-Policy Evaluation (OPE) has gained

increasing attention in fields ranging from recommender systems

to personalized medicine as a safe alternative to online A/B tests,

which might be risky, slow, and sometimes even unethical [15, 27].

Among many OPE estimators studied in the single-action setting,

DM and IPS [32] are commonly considered baseline estimators. DM

2
The pseudo-code (Algorithm 1) of this abstraction optimization procedure can be

found in the appendix. Appendix B provides a more extensive bias-variance analysis

of LIPS when given a stochastic abstraction 𝑝𝜃 .

trains a reward prediction model to estimate the policy value. Al-

though DM does not produce large variance, it can be highly biased

when the reward predictor is inaccurate. In contrast, IPS allows for

unbiased estimation under standard identification assumptions, but

it often suffers from high variance due to large importance weights.

Doubly Robust (DR) [9] is a hybrid method that combines DM and

IPS to improve variance while remaining unbiased. However, its

variance can still be very high under large action spaces [28]. As a

result, the primary objective of OPE research has been to effectively

balance the bias and variance, and numerous estimators have been

proposed to address this statistical challenge [22, 33, 42].

In comparison, the slate contextual bandit setting has been rela-

tively under-explored despite its prevalence in real practice [8, 13,

36] and the necessity for significant variance reduction due to com-

binatorial action spaces. Existing approaches, such as PI [36] and

its variants [33, 41], strongly rely on the linearity assumption of the

reward function. However, when this assumption does not hold, PIs

are no longer unbiased. Moreover, their variance can be substantial

when there are many unique sub-actions. Compared to PIs, LIPS im-

proves the variance without making restrictive assumptions about

the reward function form via leveraging slate abstraction. LIPS can

have a much lower bias and variance than PI when slate abstrac-

tion is appropriately optimized. Our approach is also relevant to

the MIPS [28] and OffCEM [29] estimators, which employ action

embeddings in the single-action setting. Although they assume that

useful action embeddings are already present in the logged data,

we develop a novel method to optimize slate abstractions based on

the logged bandit data to directly improve the resulting estimator.

The next section empirically demonstrates that our data-driven

optimization procedure to obtain an appropriate slate abstraction

is a crucial component of LIPS to outperform existing estimators

(IPS and PI) as well as MIPS [28].

It is important to note that there exists a relevant line of research

called OPE of ranking policies, where the action space consists of

ordered sets of items [16–18, 21]. While this ranking setting closely

resembles that of the slate, all existing estimators require the obser-

vation of slot-wise rewards, which makes them inapplicable to our

slate setup, where only the reward for each slate is observed (thus

the slate OPE problem is fundamentally more difficult). However,

the idea of abstraction could be effective in ranking OPE as well,

and we consider this to be a valuable future direction.

Abstraction in Bandits. Action abstraction is often used in ban-
dits to accelerate policy learning through efficient exploration [20,

23, 30, 31]. For instance, [20, 31] introduce a tree-based hierarchical

structure in the action space, where each node of the tree can be

seen as an action abstraction that aggregates similar actions in

its child nodes. In this way, these methods reduce the number of
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effective actions during exploration, thereby improving sample effi-

ciency in online policy learning. A similar approach has also been

studied for enabling more efficient learning of ranking policies [30].

While these ideas serve as inspiration of our approach, their focus

is policy learning, and no existing work considers leveraging action

abstraction to improve OPE for slate bandits.

Representation Learning for Causal Inference and Recom-
mendations. Latent variable modeling has been deemed effective

in causal inference when identifying confounders from proximal

variables [19] or recovering confounders and treatments from high-

dimensional data such as texts [12, 40, 44]. Among them, the closest

to ours is Veitch et al. [40], which takes into account reward pre-

diction and treatment reconstruction loss when optimizing latent

text representations to perform causal inference regarding text data.

However, these methods have been developed for the conventional

task of estimating the average treatment effect, and we are not

aware of any similar approaches or loss functions in OPE.

In another line of research, latent action representations are often

learned to exploit the structure in the action space in reinforcement

learning [3, 6, 7, 46, 47]. In particular, Deffayet et al. [7] use a

Variational AutoEncoder (VAE) model to pretrain latent slate space

from logged data to improve recommendations. Consequently, they

achieve a better exploration-exploitation tradeoff regarding long-

term objectives and item diversity through VAE. While the VAE

model of [7] is somewhat similar to our optimization procedure for

slate abstraction described in Section 3.2, our loss function is derived

from the theoretical analysis of LIPS and aims to directly improve

the MSE in slate OPE rather than recommendation effectiveness.

5 EMPIRICAL EVALUATION
This section empirically compares LIPS with many relevant estima-

tors on two real-world datasets, namely Wiki10-31K and Eurlex-4K

provided in the Extreme Classification repository [5]. Our code is

available in an anonymous Google Drive folder and will be made

public on a GitHub repository upon publication.

5.1 Experiment Setup
We follow the standard "supervised-to-bandit" procedure to conduct

an OPE experiment based on classification data, as used in many

previous studies [11, 33, 35, 42]. Specifically, we use the extreme clas-

sification datasets called Wiki10-31K and Eurlex-4K. These datasets

consist of many documents associated with a large number of labels,

which are approximately 31K for Wiki10-31K and 4K for Eurlex-4K.

More detailed dataset statistics are provided in Appendix A.

To simulate a slate bandit scenario, we regard the documents as

contexts (𝒙). Wiki10-31K and Eurlex-4K inherently contain some

text data that represent the documents, and we apply Sentence-

Transformer [25] and PCA [1] to encode the raw texts into 20-

dimensional contexts for both these datasets. Next, to define the

slate action space, we first extract the top 1,000 dense labels in terms

of the number of positive documents. Then, we randomly sample

𝐿 × 10 labels to form 𝐿 disjoint action sets {A𝑙 }𝐿𝑙=1 corresponding
to 𝐿 distinct slots, with each set having a size of |A𝑙 | = 10. For each

action 𝑎 ∈ A𝑙 , we first define 𝑞𝑙 (𝒙, 𝑎) = 1 − 𝜂𝑎 if the action has

a positive label and 𝑞𝑙 (𝒙, 𝑎) = 𝜂𝑎 otherwise, where 𝜂𝑎 is a noise

parameter sampled separately for each action from a uniform dis-

tribution with range [0, 0.5]. Given that we never know the nature

of real-world reward functions within a slate, we simulate various

non-linear relationships (where linearity of PI is violated) that bring
complex interactions across different slots. Specifically, we use the

following synthetic reward functions.

• reward model (1)

𝑞(𝒙, 𝒔) = 1

⌊𝐿/2⌋

⌊𝐿/2⌋∑︁
𝑙=1

𝑞𝑙 (𝒙, 𝑎𝑙 ) +
1

⌊𝐿/2⌋ − 1

⌊𝐿/2⌋−1∑︁
𝑙=1

𝑤 (𝑎𝑙 , 𝑎𝑙+1)

• reward model (2)

𝑞(𝒙, 𝒔) = 1

⌊𝐿/2⌋

(
𝑞1 (𝒙, 𝑎1) +

⌊𝐿/2⌋∑︁
𝑙=2

𝑤 (𝑎𝑙−1, 𝑎𝑙 )𝑞𝑙 (𝒙, 𝑎𝑙 )
)

• reward model (3)

𝑞(𝒙, 𝒔) = 1

2

( ⌊𝐿/2⌋
min

𝑙=1
𝑞𝑙 (𝒙, 𝑎𝑙 ) +

⌊𝐿/2⌋
max

𝑙=1
𝑞𝑙 (𝒙, 𝑎𝑙 )

)
where ⌊𝑐⌋ := max{𝑛 ∈ Z | 𝑛 ≤ 𝑐} is the floor function.𝑤 (𝑎𝑙 , 𝑎𝑙+1)

is a scalar value to represent the co-occurrence effect between 𝑎𝑙
and 𝑎𝑙+1 and it is sampled from the standard normal distribution.

Note that, when defining these reward functions, we use only 50%

of the slots 𝑙 = 1, 2, . . . , ⌊𝐿/2⌋ among total of 𝐿 slots. By doing so,

we can make (𝑎1, 𝑎2, · · · , 𝑎⌊𝐿/2⌋ ) a sufficient abstraction, which en-

ables us to study if LIPS achieves more accurate estimation (lower

MSE) by intentionally using an insufficient abstraction obtained by

the optimization procedure from Section 3.2.

Given these reward functions, we sample reward 𝑟 from a normal

distribution as 𝑟 ∼ N(𝑞(𝒙, 𝒔), 𝜎2) with a standard deviation of

𝜎 = 0.1. To obtain logging (𝜋0) and evaluation (𝜋 ) policies, we first

train a base classifier 𝑞(𝒙, 𝒔) via the REINFORCE method [43] and

then define the policies as follows:

𝜋0 (𝒔 | 𝒙) =
𝐿∏
𝑙=1

(
(1 − 𝜖0)

exp(𝛾0 · 𝑞(𝒙, 𝑎𝑙 ))∑
𝑎∈A𝑙

exp(𝛾0 · 𝑞(𝒙, 𝑎))
+ 𝜖0

|A𝑙 |

)
,

𝜋 (𝒔 | 𝒙) =
𝐿∏
𝑙=1

(
(1 − 𝜖) I{𝑎𝑙 = 𝑎∗𝑙 } +

𝜖

|A𝑙 |

)
,

where 𝑎∗
𝑙
:= argmax𝑎∈A𝑙

𝑞(𝒙, 𝑎). 𝛾 ∈ R and 𝜖0, 𝜖 ∈ [0, 1] are the
experiment parameters that control the stochasticity of 𝜋0 and 𝜋 .

We use (𝛾, 𝜖0, 𝜖) = (−1.0, 0.1, 0.3) in the main text.

Compared estimators. We compare LIPS with Direct Method

(DM) [4], IPS [32], PI [36], and MIPS [28]. DM is a regression-based

estimator that estimates the policy value based on an estimated

reward function 𝑞(𝒙, 𝒔), which is learned by a neural network in

our experiment. For LIPS, we employ a discrete abstraction whose

dimension is 100 (|Z| = 100). When optimizing a slate abstraction,

we select the hyper-parameter 𝛽 from {0.01, 0.1, 1.0, 10.0} based
only on the available logged data via the SLOPE algorithm [34, 38].

Appendix A provides some more details of SLOPE and describes

how we parameterize and optimize the slate abstraction distribu-

tion 𝑝𝜃 . Note that MIPS defines its importance weight taking only

relevant slots (i.e., 𝑙 = 1, 2, . . . , ⌊𝐿/2⌋) into account and is defined

as𝑉MIPS (𝜋 ;D) := 1

𝑛

∑𝑛
𝑖=1

( ∏⌊𝐿/2⌋
𝑙=1

𝜋 (𝑎𝑖,𝑙 | 𝒙𝑖 )
𝜋0 (𝑎𝑖,𝑙 | 𝒙𝑖 )

)
𝑟𝑖 ,where the impor-

tance weights use only the first ⌊𝐿/2⌋ slots as an action embedding

https://drive.google.com/drive/folders/1eg4CV9a1-mgXIblWsjg_syv-PmQUHM2F?usp=sharing
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Figure 1: Comparison of the estimators’ MSE (normalized by the true value𝑉 (𝜋)) with varying slate sizes (𝐿) and with reward
functions (1) - (3) on the Wiki10-31K dataset.

Figure 2: Comparison of the estimators’ MSE (normalized by the true value𝑉 (𝜋)) with varying slate sizes (𝐿) and with reward
functions (1) - (3) on the Eurlex-4K dataset.

leveraging the fact that the reward functions (1) - (3) depend only

on these slots. MIPS is unbiased and has a lower variance than

IPS, however, it is infeasible in practice since we do not know the

true reward function. We include MIPS in our experiments since it

is useful to investigate the effectiveness of intentionally using an

insufficient abstraction.

In addition to these baselines, we also report the results of “LIPS

(w/ best 𝛽)” as a reference. It indicates LIPS with the best value

of 𝛽 selected based on the ground-truth MSE, which provides the

best accuracy achievable by our LIPS framework with an oracle

hyper-parameter selection.

5.2 Results and Discussion
The following reports and discusses the results obtained by running

OPE simulations with 50 different logged datasets generated under

different random seeds. We compare estimators’ accuracy by their

MSE normalized by the true policy value of the target policy, which

is defined as MSE(𝑉 (𝜋))/𝑉 (𝜋). Note that we use 𝐿 = 8, |A𝑙 | =
10 (∀𝑙 ∈ [𝐿]), and 𝑛 = 4000 as default experiment parameters.

Figures 1 and 2 report estimators’ MSE with varying slate sizes

(𝐿) and reward functions (1)-(3) on Wiki10-31K and Eurlex-4K, re-

spectively. The results show that LIPS clearly outperforms existing

estimators across a range of slate sizes (𝐿 ∈ {4, 6, . . . , 12}) and vari-
ous non-linear reward functions. In contrast, we find that PI is likely

to produce higher MSEs with growing slate sizes 𝐿 on some reward

functions. This is due to the fact that it produces larger variance

when the slate size becomes larger. It is also true that the violation

of linearity is likely to produce a larger bias with larger slate sizes

where the interaction effects between slots could be larger. DM

often performs worse than LIPS due to its high bias that arises from

the estimation error of its reward predictor 𝑞. We also observe that

LIPS substantially outperforms IPS and MIPS due to substantially

reduced variance via latent importance weighting. The observation

that LIPS consistently performs much better than MIPS is particu-

larly intriguing since MIPS uses a sufficient abstraction based on

the knowledge about the true reward functions. This observation

empirically demonstrates that LIPS and its associated optimization

procedure can strategically exploit an insufficient slate abstraction,
leading to substantial variance reduction while introducing only

a small amount of bias. Moreover, the comparison between LIPS

and LIPS (w/ best 𝛽) implies that the feasible procedure of tun-

ing the hyper-parameter 𝛽 via SLOPE [34] is often near-optimal

even though it uses only observable data D, while LIPS can still be

slightly improved with a more refined tuning method.

We also obtain similar observations in Figures 3 and 4 where we

compare estimatorswith varying data sizes (𝑛 ∈ {1000, 2000, . . . , 16000})
on the Wiki10-31K and Eurlex-4K datasets. We observe that PI

struggles particularly when the sample size is small due to its high

variance and the linearity assumption. DM is highly biased on both

datasets and performs even worse than PI in many cases because

estimating the reward function in large slate spaces is particularly

challenging. IPS and MIPS produce much larger variance than other

methods due to slate-wise importance weighting, and we see that

they do not converge even with the largest data size, suggesting
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Figure 3: Comparison of the estimators’ MSE (normalized by the true value 𝑉 (𝜋)) with varying data sizes (𝑛) and with reward
functions (1) - (3) on the Wiki10-31K dataset.

Figure 4: Comparison of the estimators’ MSE (normalized by the true value 𝑉 (𝜋)) with varying data sizes (𝑛) and with reward
functions (1) - (3) on the Eurlex-4K dataset.

that they need even larger logged dataset to be effective. Finally,

LIPS performs much better than other estimators in most cases with

a feasible hyper-parameter selection by SLOPE, providing a further

argument about its effectiveness for non-linear reward functions.
3

Beyond basic comparisons against DM, IPS, PI, and MIPS, we

finally compare LIPS with a set of hybrid estimators including

DR [10], PI-DR [33], and OffCEM [29] (Appendix A defines these

estimators in detail with math notations). Figures 5 and 6 show this

comparison on Wiki10-31K and Eurlex-4K for varying slate sizes

(𝐿 ∈ {4, 6, . . . , 12}). Figures 7 and 8 compare the methods on the

datasets for varying data sizes (𝑛 ∈ {1000, 2000, . . . , 16000}). The
results demonstrate that LIPS outperforms these hybrid estimators

for a range of experiment values (𝐿 and 𝑛) and non-linear reward

functions. This is because DR has a variance issue due to its slate-

wise importance weighting while PI-DR suffers from bias due to its

linearity assumption and variance due to its slot-wise importance

weighting. OffCEM is an extension of MIPS and uses a sufficient

abstraction, but it is not optimized towards the MSE, and thus

produces much larger variance than LIPS. Note that we also observe

the similar trend on an additional dataset as reported in Appendix A.

These empirical observations suggest that, for OPE of slate bandits,

tuning the definition of importance weights by optimizing slate

abstractions with our method is more crucial and effective than

adding a reward estimator (𝑞) as done in the hybrid estimators.

3
In addition to Wiki10-31K and Eurlex-4K, we performed the same experiments with

varying slate and data sizes on an additional dataset and observed similar trends as

reported in Appendix A.

6 CONCLUSION AND FUTUREWORK
This paper studied OPE of slate contextual bandits where existing

estimators encounter significant challenges in terms of bias and

variance due to combinatorial action spaces and restrictive assump-

tions on the reward function. To overcome these limitations, we

proposed LIPS, a novel estimator that is built on slate abstraction

to substantially reduce variance. Our analysis demonstrates that

LIPS can be unbiased given a sufficient abstraction, and provides

a substantial reduction in variance. We also observed that the ad-

vantages of LIPS may be maximized when we intentionally use

an insufficient abstraction. Based on this analysis, we presented a

method for optimizing slate abstraction to minimize the bias and

variance of LIPS, which differentiates our work from MIPS [28] and

OffCEM [29]. Our experiments illustrate that LIPS enables consid-

erably more accurate OPE for slate actions than existing estimators,

including IPS, PI, MIPS, and their DR variants.

Our work also highlights several promising directions for future

research. First, LIPS can also be applied to OPE of ranking policies

where each slot has observable reward [16, 21]. Furthermore, it

would be practically valuable to incorporate control variates into

LIPS to further improve its variance, which is considered a non-

trivial extension since it would change the way we should optimize

slate abstractions. Lastly, it would be intriguing to explore the ap-

plication of recent advances in diffusion models [2, 45] to optimize

slate abstractions more effectively.
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Figure 5: Comparison between LIPS and DR estimators wrt their MSE (normalized by the true value 𝑉 (𝜋)) under varying
slate sizes (𝐿) and with reward functions (1) - (3) on the Wiki10-31K dataset.

Figure 6: Comparison between LIPS and DR estimators wrt their MSE (normalized by the true value 𝑉 (𝜋)) under varying
slate sizes (𝐿) and with reward functions (1) - (3) on the Eurlex-4K dataset.

Figure 7: Comparison between LIPS and DR estimators wrt their MSE (normalized by the true value 𝑉 (𝜋)) under varying
data sizes (𝑛) and with reward functions (1) - (3) on the Wiki10-31K dataset.

Figure 8: Comparison between LIPS and DR estimators wrt their MSE (normalized by the true value 𝑉 (𝜋)) under varying
data sizes (𝑛) and with reward functions (1) - (3) on the Eurlex-4K dataset.
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Algorithm 1 Optimization procedure for slate abstraction used in LIPS

Input: logged data D, bias-variance tradeoff hyper-parameter 𝛽 , learning rates for slate abstraction model 𝜏𝜃 , slate reconstruction

model 𝜏𝜓 , and reward construction model 𝜏𝜔 , maximum gradient steps 𝑇 , batch size 𝐵

Output: optimized slate abstraction distribution 𝑝𝜃 (𝑧 | 𝒙, 𝒔)
1: Initialize the parameters of the slate abstraction model, slate reconstruction model, and reward construction model (𝜃,𝜓, 𝜔)
2: for 𝑡 ∈ {1, 2, · · · ,𝑇 } do
3: Sample size 𝐵 of mini-batch data D (𝑡 )

𝐵
∼ D

4: for 𝑖 ∈ {1, 2, · · · , 𝐵} do
5: Retrieve data tuple (𝒙𝑖 , 𝒔𝑖 , 𝑟𝑖 ) ∼ D (𝑡 )𝐵
6: Sample a slate abstraction as 𝑧𝑖 ∼ 𝑝𝜃 (· | 𝒙𝑖 , 𝒔𝑖 )
7: end for
8: Compute the slate reconstruction loss as

ˆL𝑏1 (𝒙, 𝒔, 𝜋0;𝜃,𝜓 ) = 1

𝐵

∑
𝑖∈[𝐵 ] log𝑝𝜓 (𝒔𝑖 | 𝒙𝑖 , 𝑧𝑖 )

9: Compute the reward construction loss as

ˆL𝑏2 (𝒙, 𝒔, 𝜋0;𝜃, 𝜔) = 1

𝐵

∑
𝑖∈[𝐵 ] (𝑟𝑖 − 𝑞𝜔 (𝒙𝑖 , 𝑧𝑖 ))2

10: Compute the KL (regularization) loss as

ˆL𝑣1 (𝒙, 𝒔, 𝜋0;𝜃 ) = 1

𝐵

∑
𝑖∈[𝐵 ] (log𝑝𝜃 (𝑧𝑖 |𝒙𝑖 , 𝒔𝑖 ) −𝐶)

(where 𝐶 = −log( |Z|) is the log of the prior distribution of 𝑝𝜓 (𝑧 |𝒙, 𝒔) = |Z|−1)
11: Compute the total loss as

ˆL(𝒙, 𝒔, 𝜋0;𝜃,𝜓, 𝜔) = ˆL𝑏1 (𝒙, 𝒔, 𝜋0;𝜃,𝜓 ) + ˆL𝑏2 (𝒙, 𝒔, 𝜋0;𝜃, 𝜔) − 𝛽 ˆL𝑣1 (𝒙, 𝒔, 𝜋0;𝜃 )
12: Update the parameters of the slate abstraction and reconstruction models

𝜃𝑡 ← 𝜃𝑡−1 + 𝜏𝜃 ∇𝜃 ˆL(𝒙, 𝒔, 𝜋0;𝜃,𝜓, 𝜔)
𝜓𝑡 ← 𝜓𝑡−1 + 𝜏𝜓 ∇𝜓 ˆL(𝒙, 𝒔, 𝜋0;𝜃,𝜓, 𝜔)

13: Update the parameter of the reward construction model

𝜔𝑡 ← 𝜔𝑡−1 − 𝜏𝜔 ∇𝜔 ˆL𝑏2 (𝒙, 𝒔, 𝜋0;𝜃, 𝜔)
14: end for

A EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS
We describe the detailed experimental settings and additional results omitted in the main text.

A.1 Baseline estimators
Below, we summarize the definition and properties of the baseline estimators.

Direct Method (DM) [4] DM is a model-based approach, which first trains a reward predictor 𝑞(𝒙, 𝒔) ≈ E[𝑟 |𝒙, 𝒔] and then estimates the

policy performance of 𝜋 using 𝑞 as follows.

𝑉DM (𝜋 ;D) :=
1

𝑛

𝑛∑︁
𝑖=1

∑︁
𝒔∈S

𝜋 (𝒔 |𝒙𝑖 )𝑞(𝒙𝑖 , 𝒔)
(
=

1

𝑛

𝑛∑︁
𝑖=1

E𝒔∼𝜋 (𝒔 |𝒙𝑖 ) [𝑞(𝒙𝑖 , 𝒔)]
)

The accuracy of DM depends on the accuracy of 𝑞(𝒙, 𝒔), and the prediction error of 𝑞(𝒙, 𝒔) introduces bias and makes DM no longer consistent.

Oftentimes, DM has high bias because overfitting and model mis-specification are not easily detectable when training 𝑞(𝒙, 𝒔) on logged data.

Inverse Propensity Scoring (IPS) [32] As described in the main text, IPS applies the importance sampling technique to reweigh the

observed rewards and correct the distribution shift between 𝜋 and 𝜋0 as follows.

𝑉IPS (𝜋 ;D) :=
1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝒔𝑖 |𝒙𝑖 )
𝜋0 (𝒔𝑖 |𝒙𝑖 )

𝑟𝑖 =
1

𝑛

𝑛∑︁
𝑖=1

(
𝐿∏
𝑙=1

𝜋 (𝑎𝑖,𝑙 |𝒙𝑖 )
𝜋0 (𝑎𝑖,𝑙 |𝒙𝑖 )

)
𝑟𝑖

IPS is unbiased under some identification assumption. However, it has exponential variance due to combinatorially large slate space [36].

PseudoInverse (PI) [36] PI assumes that the expected reward is linearly attributed to each slot as 𝑞(𝒙, 𝒔) = ∑𝐿
𝑙=1

𝜙𝑙 (𝒙, 𝑎𝑙 ), where {𝜙𝑙 }𝐿𝑙=1
is some (latent) intrinsic reward function. Based on this assumption, PI corrects the distribution shift of 𝜋 and 𝜋0 by only applying slot-level
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importance sampling, as shown in the main text.

𝑉PI (𝜋 ;D) :=
1

𝑛

𝑛∑︁
𝑖=1

(
𝐿∑︁
𝑙=1

𝜋 (𝑎𝑖,𝑙 |𝒙𝑖 )
𝜋0 (𝑎𝑖,𝑙 |𝒙𝑖 )

− 𝐿 + 1
)
𝑟𝑖

PI is unbiased when the linearity assumption holds, while it introduces non-negligible bias when the assumption does not hold. In addition,

while the variance of PI is much smaller than IPS, PI may still suffer from a high variance when there are many unique sub-actions and∑𝐿
𝑙=1
|A𝑙 | becomes large [28].

Marginal IPS (MIPS) [28] MIPS is originally defined in a contextual bandit setting where some action embeddings (i.e., the genre of a

video or sentiment of a movie) are observed. Specifically, MIPS considers the following data generation process:

(𝒙, 𝑎, 𝒆, 𝑟 ) ∼ 𝑝 (𝒙)𝜋 (𝑎 |𝒙)𝑝 (𝒆 |𝑎)𝑝 (𝑟 |𝒙, 𝑎, 𝒆) (10)

where 𝒙 ∈ X is a context, 𝑎 ∈ A is an action, 𝒆 ∈ E is an embedding (vector), and 𝑟 ∈ R is a reward. We should note here that the embeddings

in (10) are strictly different from abstractions defined in our formulation in the main text. First, embeddings are observed in the logged data,

while our abstraction is unobservable. Moreover, whereas embeddings are sampled from a pre-defined embedding distribution 𝑝 (𝒆 |𝒙, 𝒂),
even a "true" abstraction distribution does not exist and 𝑝 (𝑧 |𝒙, 𝒔) should rather be optimized in our problem setting. Then, given the data

generation process described in (10), MIPS applies the importance sampling on the embedding space E as follows.

𝑉
(original)

MIPS
:=

1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝒆𝑖 |𝒙𝑖 )
𝜋0 (𝒆𝑖 |𝒙𝑖 )

𝑟𝑖 =
1

𝑛

𝑛∑︁
𝑖=1

∑
𝑎∈A 𝜋 (𝑎 |𝒙𝑖 )𝑝 (𝒆𝑖 |𝑎)∑
𝑎∈A 𝜋0 (𝑎 |𝒙𝑖 )𝑝 (𝒆𝑖 |𝑎)

𝑟𝑖

where 𝜋 (𝒆 |𝒙) = ∑
𝑎∈A 𝜋 (𝑎 |𝒙)𝑝 (𝒆 |𝑎) is the marginal probability of a policy 𝜋 chooses the actions associated with the embedding 𝒆. MIPS is

unbiased when the following no direct effect assumption holds.

Assumption A.1. (Assumption 3.2 of Saito and Joachims [28]) Action 𝑎 has no direct effect on reward, i.e., 𝑎 ⊥ 𝑟 | 𝑥, 𝒆.

Assumption A.1 means that the reward distribution is expressed as 𝑝 (𝑟 |𝑥, 𝑎, 𝑒) = 𝑝 (𝑟 |𝑥, 𝑒). While the (slate) embeddings are unavailable in

our setting, a sufficient slate abstraction defined in Definition 3.1 satisfies the no direct effect assumption (Assumption A.1) if we regard 𝜙 (𝒔)
as a pseudo-embedding. Therefore, in our experiment, we regard the following estimator, which satisfies the no direct effect assumption, as

MIPS, given that 𝑞(𝒙, 𝒔) is only affected by 𝒔 = (𝑎1, 𝑎2, · · · , 𝑎⌊𝐿/2⌋ ).

𝑉MIPS (𝜋 ;D) :=
1

𝑛

𝑛∑︁
𝑖=1

𝜋 (𝒔𝑖 |𝒙𝑖 )
𝜋0 (𝒔𝑖 |𝒙𝑖 )

𝑟𝑖
©«= 1

𝑛

𝑛∑︁
𝑖=1

©«
⌊𝐿/2⌋∏
𝑙=1

𝜋 (𝑎𝑖,𝑙 |𝒙𝑖 )
𝜋0 (𝑎𝑖,𝑙 |𝒙𝑖 )

ª®¬ 𝑟𝑖ª®¬
MIPS is unbiased and reduces the variance compared to IPS. However, its variance remains high because the combinatorial action space can

still be large even when we consider the sufficient slate space of 𝒔 rather than the original slate space of 𝒔.

Doubly Robust (DR) [9] DR is a hybrid estimator that combines both model-based and importance sampling-based approaches. Specifically,

DR uses 𝑞(𝒙, 𝒔) as a control variate and applies importance sampling only on the residual to reduce the variance as follows.

𝑉DR (𝜋 ;D) :=
1

𝑛

𝑛∑︁
𝑖=1

{
𝜋 (𝒔𝑖 |𝒙𝑖 )
𝜋0 (𝒔𝑖 |𝒙𝑖 )

(𝑟𝑖 − 𝑞(𝒙𝑖 , 𝒔𝑖 )) +
∑︁
𝒔∈S

𝜋 (𝒔 |𝒙𝑖 )𝑞(𝒙𝑖 , 𝒔)
}

=
1

𝑛

𝑛∑︁
𝑖=1

(
𝐿∏
𝑙=1

𝜋 (𝑎𝑖,𝑙 |𝒙𝑖 )
𝜋0 (𝑎𝑖,𝑙 |𝒙𝑖 )

)
(𝑟𝑖 − 𝑞(𝒙𝑖 , 𝒔𝑖 )) +𝑉DM (𝜋 ;D)

DR is unbiased and reduces the variance of IPS when |𝑞(𝒙, 𝒔) − 𝑞(𝒙, 𝒔) | ≤ 𝑞(𝒙, 𝒔) holds for any (𝒙, 𝒔) ∈ X × S. However, DR can still suffer

from high variance when the importance weight is large or 𝑞(𝒙, 𝒔) is inaccurate [28].

PI-DR [33, 41] PI-DR is a DR-variant of PI, which estimates the policy performance as follows.

𝑉PI-DR (𝜋 ;D) :=
1

𝑛

𝑛∑︁
𝑖=1

{(
𝐿∑︁
𝑙=1

𝜋 (𝑎𝑖,𝑙 |𝒙𝑖 )
𝜋0 (𝑎𝑖,𝑙 |𝒙𝑖 )

− 𝐿 + 1
)
(𝑟𝑖 − 𝑞(𝒙𝑖 , 𝒔𝑖 )) +

∑︁
𝒔∈S

𝜋 (𝒔 |𝒙𝑖 )𝑞(𝒙𝑖 , 𝒔)
}

=
1

𝑛

𝑛∑︁
𝑖=1

(
𝐿∑︁
𝑙=1

𝜋 (𝑎𝑖,𝑙 |𝒙𝑖 )
𝜋0 (𝑎𝑖,𝑙 |𝒙𝑖 )

− 𝐿 + 1
)
(𝑟𝑖 − 𝑞(𝒙𝑖 , 𝒔𝑖 )) +𝑉DM (𝜋 ;D)

PI-DR is unbiased when the linearity assumption holds. However, its bias becomes high when the assumption does not hold. PI-DR also

reduces the variance of PI under a reasonable assumption about reward prediction (|𝑞(𝒙, 𝒔) − 𝑞(𝒙, 𝒔) | ≤ 𝑞(𝒙, 𝒔)), while the variance problem
can remain when

∑𝐿
𝑙=1
|A𝑙 | is large or 𝑞(𝒙, 𝒔) is inaccurate.
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OffCEM [29] OffCEM is another hybrid estimator that combines model-based and importance sampling-based approaches building on the

MIPS estimator as follows.

𝑉
OffCEM

(𝜋 ;D) := 1

𝑛

𝑛∑︁
𝑖=1

{
𝜋 (𝒔𝑖 |𝒙𝑖 )
𝜋0 (𝒔𝑖 |𝒙𝑖 )

(𝑟𝑖 − 𝑞(𝒙𝑖 , 𝒔𝑖 )) +
∑︁
𝒔∈S

𝜋 (𝒔 |𝒙𝑖 )𝑞(𝒙𝑖 , 𝒔)
}

=
1

𝑛

𝑛∑︁
𝑖=1

©«
⌊𝐿/2⌋∏
𝑙=1

𝜋 (𝑎𝑖,𝑙 |𝒙𝑖 )
𝜋0 (𝑎𝑖,𝑙 |𝒙𝑖 )

ª®¬ (𝑟𝑖 − 𝑞(𝒙𝑖 , 𝒔𝑖 )) +𝑉DM (𝜋 ;D)
OffCEM is unbiased either when no direct effect assumption holds about 𝒔 or when the reward predictor accurately captures the pair-wise

value difference between two slates within the same slate cluster (i.e., 𝑞(𝒙, 𝒔1) − 𝑞(𝒙, 𝒔2) = 𝑞(𝒙, 𝒔1) − 𝑞(𝒙, 𝒔2),∀𝒔1, 𝒔2, 𝒔1 = 𝒔2). OffCEM also

reduces the variance of DR, however, the degree of variance reduction remains small when the slate space of 𝑠 remains large.

Cross-fitting technique DR-type estimators achieve minimum possible variance among the estimator class building on the same importance

weight as used in DR-type estimators, when 𝑞(𝒙𝑖 , 𝒔𝑖 ) is consistent and independent with 𝑟𝑖 (referred to as semiparametric efficiency [24]).

Therefore, to avoid potential bias caused by overfitting and derive the consistent estimation of 𝑞(𝒙, 𝒔), we use the following cross-fitting
procedure to train 𝑞 used in DM and DR-type estimators.

(1) Given size 𝑛 of logged data D, randomly split the data into 𝐾-fold partition {D𝜅 }𝐾𝜅=1, each of which contains 𝑛𝜅 = 𝑛/𝐾 samples. Let

D𝑐𝜅 := D \ D𝜅 be the subset of 𝜅-th partition.

(2) For each 𝜅 = 1, 2, · · ·𝐾 , train a reward predictors 𝑞𝜅 on the subset of the 𝜅-th partition D𝑐𝜅 .
(3) Estimate the policy performance by 𝑉 (𝜋 ;D) = 𝐾−1 ∑𝐾

𝜅=1𝑉 (𝜋 ;D𝜅 , 𝑞𝜅 ).

A.2 Hyperparameter tuning via the SLOPE algorithm [34, 38]
To tune the bias-variance tradeoff hyperparameter 𝛽 of our optimization procedure based only on the logged bandit data D, we use the

SLOPE algorithm [34, 38]. SLOPE is able to select a suitable hyperparameter 𝜆 from a candidate set Λ := {𝜆𝑚}𝑀𝑚=1
as long as an estimator

satisfies the following monotonicity condition [38].

(1) Bias(𝑉 (·; 𝜆𝑚)) ≤ Bias(𝑉 (·; 𝜆𝑚+1)),∀𝑚 ∈ [𝑀 − 1]
(2) CNF(𝑉 (·; 𝜆𝑚)) ≥ CNF(𝑉 (·; 𝜆𝑚+1)),∀𝑚 ∈ [𝑀 − 1]

where CNF(·) is a high probability bound on the deviation of 𝑉 such as the Hoeffding and Bernstein bounds [37]. Note that, LIPS and its

hyper-parameter 𝛽 satisfy this monotonicity condition, as we know that a larger value of 𝛽 reduces the variance more, while a smaller value

reduces the bias more. Specifically, SLOPE selects the hyperparameter as follows.

�̂� := max{𝑚 ∈ [𝑀] : |𝑉 (·; 𝜆𝑚) −𝑉 (·; 𝜆𝑚′ ) |

≤ CNF(𝑉 (·; 𝜆𝑚)) + (
√
6 − 1)CNF(𝑉 (·; 𝜆𝑚′ )),∀𝑚′ < 𝑚}.

When the monotonicity condition holds, SLOPE guarantees that the deviation of 𝑉 is upper bounded as below with probability 1 − 𝛿 :

|𝑉 (·; 𝜆�̂�) −𝑉 (·; 𝜆𝑚∗ ) | ≤ (
√
6 + 3) min

𝑚∈[𝑀 ]
(Bias(𝑉 (·; 𝜆𝑚)) + CNF(𝑉 (·; 𝜆𝑚))),

where �̂� is the selected hyperparameter and𝑚∗ is the best hyperparameter among the candidate set. Even when the condition does not hold

true, SLOPE guarantees the following looser bound.

|𝑉 (·; 𝜆�̂�) −𝑉 (·; 𝜆𝑚∗ ) | ≤ (
√
6 + 3) min

𝑚∈[𝑀 ]
(max

𝑗≤𝑚
Bias(𝑉 (·; 𝜆 𝑗 )) +max

𝑘≤𝑚
CNF(𝑉 (·; 𝜆𝑘 ))).

We refer the reader to [38] for the detailed theoretical analysis of SLOPE.

A.3 Models and parameters
We use a neural network with a 100-dimensional hidden layer to train 𝑞 for DM. The reward predictor uses Adam [14] to minimize the MSE

loss with a learning rate of 1e-2. We also use 80% of the logged dataset for training, while the other 20% for testing. We train the model on the

train set for 500 epochs with 10 gradient steps for each. We apply early stopping for 𝑞, when the test loss increases for 5 consequent epochs.

Note that since taking the exact expectation over the slate space (S) requires huge computational costs, we approximate the expectation

over 𝜋 (𝒔 |𝒙) by sampling 1,000 slates following 𝜋 (𝒔 |𝒙) for each context 𝒙 .
We optimize the slate abstraction for LIPS using neural networks with a 100-dimensional hidden layer to parameterize the reward

construction, slate abstraction, and slate reconstruction models. All these models are optimized using Adam [14] with a learning rate of

1e-5 for both Wiki10-31K and Eurlex-4K datasets. Note that we re-scale the reward loss in all experiments by multiplying it by 100, with

the aim to make the scale of the reward loss similar to that of the slate reconstruction loss. Initially, we train the models for 1000 epochs

when 𝛽 = 0.01, then tune the models for an additional 500 epochs for 𝛽 values of 0.1, 1.0, and 10.0. The experiments are conducted on an M1
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Table 2: Statistics of the Extreme Classification datasets used in the experiments.

dataset # of documents features of documents # of labels avg. labels per document

Wiki10-31K 14,146 (6,616) raw texts 30,938 18.64

Eurlex-4K 15,539 (3,809) raw texts 3,993 5.31

Delicious 12,920 (3,185) 500 dim. of BoW 983 19.03

Note: The column “# of documents" describes “# of train samples (# of test samples)" of the datasets. We use the training dataset for

performing slate OPE, while the test set is used for training the base classifier 𝑞 to form a logging policy. The raw texts of the Wiki10-31K

and Eurlex-4K datasets are converted to 20-dimensional feature vectors via SentenceTransformer [25] and PCA [1]. Finally, for Wiki10-31K

and Eurlex-4K, we extract the top 1,000 dense labels after removing the labels that are relevant to more than 1,000 documents.

Figure 9: Empirical distributions of the slate-wise importance weight𝑤 (𝒙, 𝒔) for each dataset used in the experiment; (Left)
Wiki10-31K (Center) Eurlex-4K (Right) Delicious.

MacBook Pro, and the optimization process for LIPS takes approximately 3 minutes with a single value of 𝛽 when 𝐿 = 4 and 𝑛 = 4000. When

𝐿 = 12, the computational time increases to about 4.5 minutes, indicating that the runtime increases sub-linearly.

A.4 Additional experiments on the Delicious dataset
In addition to the experiments described in the main text, we also compare estimators using the Delicious dataset provided in the Extreme

Classification repository [5]. The Delicious dataset consists of documents associated with approximately 1K labels, and the detailed statistics

of the dataset are described in Table 2. We basically follow the same "supervised-to-bandit" procedure as described in the main text. The only

difference is that we use 500-dimensional Bag of Words (BoW) features as contexts because the Delicious dataset does not contain raw texts.

Figures 10-13 show the comparison of LIPS and IPS-based estimators (Figures 10 and 12) and DR-based estimators (Figures 11 and 13)

with varying slate sizes 𝐿 (Figures 10 and 11) and data sizes 𝑛 (Figures 12 and 13) on the Delicious dataset. The result demonstrates similar

trends to those observed in the main text; LIPS (Ours, w/ data-driven choice of 𝛽) often performs the best among the compared estimators,

while IPS, PI, and MIPS often produce high estimation error and DM is accurate only when the reward prediction is accurate by chance.
4

These results suggest that LIPS is able to flexibly control the bias-variance tradeoff in a way to minimize MSE on various datasets.

A.5 Additional ablation experiments with varying values of 𝛽
We also conduct an ablation study of LIPS with varying values of 𝛽 (∈ {0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0}) on Wiki10-31K and Eurlex-4K

datasets where we use the default setting of 𝐿 = 8 and 𝑛 = 4, 000. Figures 14 and 15 show the MSE, squared bias, and variance of LIPS

with each value of 𝛽 , the data-driven choice (i.e., LIPS (Ours)), and the best one, respectively. The result demonstrates that there is some

bias-variance tradeoff in 𝛽 ∈ {1.0, 5.0, 10.0} while there is some instability in 𝛽 ≤ 1.0. Specifically, we observe in both the Wiki10-31K and

Eurlex-4K datasets that a small value of 𝛽 (i.e., 𝛽 = 1.0) reduces bias while having some variance, while a large value of 𝛽 (e.g., 𝛽 = 5.0, 10.0

reduces the variance more while introducing some additional bias. These observations align with the theoretical analysis discussed in

Section 3.1 and 3.2. The result also shows that there is some room for improvement in the data-driven selection of 𝛽 , however, our slate

abstraction optimization enables accurate estimation across various values of 𝛽 and demonstrates robust performance even when we choose

the value of 𝛽 using a data-driven manner, as shown in the main text. We attribute this observation to the ability of our slate abstraction

model to identify a well-optimized slate abstraction that reduces both bias and variance at the same time.

4
For the experiment with varying data sizes, we observe that 𝑞 somehow gradually increases as the data size increases. As a result, DM is accurate for 𝑛 = 4000 and 𝑛 = 8000, but is

not accurate for other configurations. It should be worth noting that verifying if 𝑞 is accurate is itself quite challenging in OPE, as the dataset contains reward signals only for the

action chosen by the logging policy (i.e., partial rewards).
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Figure 10: Comparison of the estimators’ MSE (normalized by the true value 𝑉 (𝜋)) with varying slate sizes (𝐿) and with
reward functions (1) - (3) on the Delicious dataset.

Figure 11: Comparing the LIPS’ MSE (normalized by the true value 𝑉 (𝜋)) with those of DR estimators under varying slate
sizes (𝐿) and with reward functions (1) - (3) on the Delicious dataset.

Figure 12: Comparison of the estimators’ MSE (normalized by the true value𝑉 (𝜋)) with varying data sizes (𝑛) and with reward
functions (1) - (3) on the Delicious dataset.

Figure 13: Comparing the LIPS’ MSE (normalized by the true value 𝑉 (𝜋)) with those of DR estimators under varying data
sizes (𝑛) and with reward functions (1) - (3) on the Delicious dataset.
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Figure 14: Comparison of the LIPS’ MSE, squared bias, and variance (normalized by the true value 𝑉 (𝜋)) with varying values
of 𝛽 with reward function (1) on the Wiki10-31K dataset

Figure 15: Comparison of the LIPS’ MSE, squared bias, and variance (normalized by the true value 𝑉 (𝜋)) with varying values
of 𝛽 with reward function (1) on the Eurlex-4K dataset.

B DETAILED BIAS-VARIANCE ANALYSIS OF LIPS AND OMITTED PROOFS
Here, we provide detailed discussion of bias-variance properties of LIPS and the proofs of Theorems.

B.1 Preliminaries
As a warm-up, we first derive an alternative expression of the latent importance weight as follows:

𝑤𝜃 (𝒙, 𝑧) =
𝑝𝜃 (𝑧 | 𝒙, 𝜋)
𝑝𝜃 (𝑧 | 𝒙, 𝜋0)

=

∑
𝒔∈S 𝑝𝜃 (𝑧 | 𝒙, 𝒔)𝜋 (𝒔 | 𝒙)

𝑝𝜃 (𝑧 | 𝒙, 𝜋0)

=

∑
𝒔∈S

𝑝𝜃 (𝑧 | 𝒙,𝜋0 )𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 )
𝜋0 (𝒔 | 𝒙 ) 𝜋 (𝒔 | 𝒙)

𝑝𝜃 (𝑧 | 𝒙, 𝜋0)

=
∑︁
𝒔∈S

𝑝𝜃 (𝒔 | 𝒙, 𝑧, 𝜋0)
𝜋 (𝒔 | 𝒙)
𝜋0 (𝒔 | 𝒙)

= E𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) [𝑤 (𝒙, 𝒔)] (11)

This means that𝑤𝜃 (𝒙, 𝑧) can be written as the conditional expectation of𝑤 (𝒙, 𝒔). Using this expression, we show how our optimization

procedure for slate abstraction can balance the bias-variance tradeoff in the following subsection.
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B.2 Bias-variance control of LIPS with the hyper-parameter 𝛽
In this section, we demonstrate that LIPS effectively interpolates between IPS and the naive average estimator (NAE). NAE is defined as the

naive empirical average of the observed rewards: 𝑉NAE (𝜋 ;D) := 1

𝑛

∑𝑛
𝑖=1 𝑟𝑖 . As NAE does not accommodate the distribution shift between 𝜋0

and 𝜋 , it often leads to a high bias. Contrarily, NAE achieves a much lower variance than IPS because it does not depend on importance

weighting. As a result, IPS and NAE exhibit opposite characteristics in terms of the bias-variance tradeoff.

Next, given a sufficiently large abstraction spaceZ, LIPS becomes identical to IPS and NAE in the special cases as follows.

• When 𝛽 = 0, LIPS becomes equal to IPS.

• As 𝛽 → +∞, LIPS gets close to NAE.

When 𝛽 = 0, the abstraction optimization procedure ignores the regularization term (the third term). Therefore, LIPS optimizes a slate

abstraction so that it can distinguish the slates accurately, leading to a one-to-one mapping between the slate and abstraction (i.e., both

𝑝𝜃 (𝑧 |𝒙, 𝒔, 𝜋0) and 𝑝𝜓 (𝒔 |𝒙, 𝑧, 𝜋0) becomes extremely close to either 0 or 1). This will make our latent importance weight equivalent to the

slate-wise importance weight of IPS, and LIPS will be identical to IPS under such a condition. On the other hand, as 𝛽 → +∞, the KL loss

becomes more dominant. In such a situation, 𝑝𝜃 (𝑧 | 𝒙, 𝒔, 𝜋0) becomes close to a (pre-defined) prior distribution 𝑝𝜓 (𝑧 | 𝒙, 𝜋0), which leads to

the following relationship about the slate abstraction distribution:

𝑝𝜃 (𝒔 | 𝒙, 𝑧, 𝜋0) = 𝜋0 (𝒔 |𝒙)
𝑝𝜃 (𝑧 | 𝒙, 𝒔, 𝜋0)
𝑝𝜃 (𝑧 | 𝒙, 𝜋0)

≈ 𝜋0 (𝒔 |𝒙)
𝑝
(𝑝𝑟𝑖𝑜𝑟 )
𝜓

(𝑧 | 𝒙, 𝜋0)

𝑝
(𝑝𝑟𝑖𝑜𝑟 )
𝜓

(𝑧 | 𝒙, 𝜋0)
= 𝜋0 (𝒔 |𝒙)

By combining this with the alternative expression of the latent importance weight derived in Appendix B.1, we have the following.

𝑤𝜃 (𝒙, 𝑧) = E𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) [𝑤 (𝒙, 𝒔)] ≈ E𝜋0 (𝒔 | 𝒂) [𝑤 (𝒙, 𝒔)] =
∑︁
𝒔∈S

𝜋0 (𝒔 | 𝒙)
𝜋 (𝒔 | 𝒙)
𝜋0 (𝒔 | 𝒙)

= 1

This means that LIPS applies no correction, i.e.,𝑤𝜃 (𝒙, 𝑧) = 1, when 𝛽 → +∞.
To summarize, by adjusting 𝛽 ∈ [0, +∞), LIPS interpolates between IPS and NAE in a way that minimizes the MSE of LIPS, without

introducing any structural assumptions on the reward function.

B.3 Proof of Theorem 3.2
The following provides the proof of Theorem 3.2.



Off-Policy Evaluation of Slate Bandit Policies via Optimizing Abstraction Woodstock ’24, June 03–05, 2018, Woodstock, NY

Proof. Given sufficient slate abstraction 𝜙𝜃 (·) s.t., ∀𝒔 ∈ S, 𝑞(𝒙, 𝒔) = 𝑞(𝒙, 𝜙𝜃 (𝒔)), we have the following.

ED [𝑉LIPS (𝜋 ;D)] = ED [𝑤𝜃 (𝒙, 𝜙𝜃 (𝒔)) 𝑟 ]
= E𝑝 (𝒙 )𝜋0 (𝒔 | 𝒙 ) [𝑤𝜃 (𝒙, 𝜙𝜃 (𝒔)) 𝑞(𝒙, 𝒔)]
= E𝑝 (𝒙 )𝜋0 (𝒔 | 𝒙 ) [𝑤𝜃 (𝒙, 𝜙𝜃 (𝒔)) 𝑞(𝒙, 𝜙𝜃 (𝒔))]

= E𝑝 (𝒙 )
[∑︁
𝒔∈S

𝜋0 (𝒔 |𝒙)
𝜋 (𝜙𝜃 (𝒔) | 𝒙)
𝜋0 (𝜙𝜃 (𝒔) | 𝒙)

𝑞(𝒙, 𝜙𝜃 (𝒔))
]

= E𝑝 (𝒙 )
[∑︁
𝒔∈S

𝜋0 (𝜙𝜃 (𝒔) | 𝒙)
𝜋0 (𝒔 |𝒙)

𝜋0 (𝜙𝜃 (𝒔) | 𝒙)
𝜋 (𝜙𝜃 (𝒔) | 𝒙)
𝜋0 (𝜙𝜃 (𝒔) | 𝒙)

𝑞(𝒙, 𝜙𝜃 (𝒔))
]

= E𝑝 (𝒙 )
[∑︁
𝒔∈S

𝜋 (𝜙𝜃 (𝒔) | 𝒙)𝜋0 (𝒔 | 𝒙, 𝜙𝜃 (𝒔)) 𝑞(𝒙, 𝜙𝜃 (𝒔))
]

= E𝑝 (𝒙 )
[ ∑︁
𝑧∈Z

𝜋 (𝑧 | 𝒙)
∑︁

𝒔∈{𝒔′∈S|𝜙𝜃 (𝒔′ )=𝑧}
𝜋0 (𝒔 | 𝒙, 𝑧) 𝑞(𝒙, 𝑧)

]
= E𝑝 (𝒙 )

[ ∑︁
𝑧∈Z

𝜋 (𝑧 | 𝒙)𝑞(𝒙, 𝑧)
]

= E𝑝 (𝒙 )
[ ∑︁
𝑧∈Z

𝜋 (𝑧 | 𝒙)
∑︁

𝒔∈{𝒔′∈S|𝜙𝜃 (𝒔′ )=𝑧}
𝜋 (𝒔 | 𝒙, 𝑧) 𝑞(𝒙, 𝑧)

]
= E𝑝 (𝒙 )

[∑︁
𝒔∈S

𝜋 (𝜙𝜃 (𝒔) | 𝒙)𝜋 (𝒔 | 𝒙, 𝜙𝜃 (𝒔)) 𝑞(𝒙, 𝜙𝜃 (𝒔))
]

= E𝑝 (𝒙 )
[∑︁
𝒔∈S

𝜋 (𝒔 | 𝒙) 𝑞(𝒙, 𝜙𝜃 (𝒔))
]

= E𝑝 (𝒙 )
[∑︁
𝒔∈S

𝜋 (𝒔 | 𝒙) 𝑞(𝒙, 𝒔)
]

= 𝑉 (𝜋)

□

Note that we use 𝜙𝜃 (𝒔) (= 𝑧) ∈ Z and S = {⋃𝑧∈Z
⋃

𝒔∈{𝒔′∈S|𝜙𝜃 (𝒔′ )=𝑧} 𝒔}.

B.4 Proof of Theorem 3.3
To prove Theorem 3.3, we first import the following lemma from [28].

Lemma B.1. (Lemma B.1. of [28]) For real-valued, bounded functions 𝑓 : N→ R, 𝑔 : N→ R, ℎ : N→ R where
∑
𝑎∈[𝑚] 𝑔(𝑎) = 1, we have

∑︁
𝑎∈[𝑚]

𝑓 (𝑎)𝑔(𝑎)
(
ℎ(𝑎) −

∑︁
𝑏∈[𝑚]

𝑔(𝑏)ℎ(𝑏)
)
=

∑︁
𝑎<𝑏≤𝑚

𝑔(𝑎)𝑔(𝑏) (ℎ(𝑎) − ℎ(𝑏)) (𝑓 (𝑎) − 𝑓 (𝑏))

Then, we provide the proof in the following.

Proof. We show this in the case of discrete slate abstraction. Similar proofs hold for continuous slate abstraction by replacing

∑
𝑧∈Z to∫

𝑧∈Z 𝑑𝑧.
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Bias(𝑉LIPS (𝜋 ;D))
= ED [𝑤𝜃 (𝒙, 𝑧) 𝑟 ] −𝑉 (𝜋)
= E𝑝 (𝒙 )𝜋0 (𝒔 | 𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝒔 ) [𝑤𝜃 (𝑥, 𝑧)𝑞(𝒙, 𝒔)] − E𝑝 (𝒙 )𝜋 (𝒔 | 𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝒔 ) [𝑞(𝒙, 𝒔)]

= E𝑝 (𝒙 )
[∑︁
𝒔∈S

𝜋0 (𝒔 | 𝒙)
∑︁
𝑧∈Z

𝑝𝜃 (𝑧 | 𝒙, 𝜋0)𝑝𝜃 (𝒔 | 𝒙, 𝑧, 𝜋0)
𝜋0 (𝒔 | 𝒙)

𝑤𝜃 (𝒙, 𝑧)𝑞(𝒙, 𝒔)
]

− E𝑝 (𝒙 )
[∑︁
𝒔∈S

𝜋 (𝒔 | 𝒙)
∑︁
𝑧∈Z

𝑝𝜃 (𝑧 | 𝒙, 𝜋0)𝑝𝜃 (𝒔 | 𝒙, 𝑧, 𝜋0)
𝜋0 (𝒔 | 𝒙)

𝑤𝜃 (𝒙, 𝑧)𝑞(𝒙, 𝒔)
]

= E𝑝 (𝒙 )
[ ∑︁
𝑧∈Z

𝑝𝜃 (𝑧 | 𝒙, 𝜋0)𝑤𝜃 (𝒙, 𝑧)
∑︁
𝒔∈S

𝑝𝜃 (𝒔 | 𝒙, 𝑧, 𝜋0)𝑞(𝒙, 𝒔)
]

− E𝑝 (𝒙 )
[ ∑︁
𝑧∈Z

𝑝𝜃 (𝑧 | 𝒙, 𝜋0)
∑︁
𝒔∈S

𝑝𝜃 (𝒔 | 𝒙, 𝑧, 𝜋0)𝑤 (𝒙, 𝒔)𝑞(𝒙, 𝒔)
]

= E𝑝 (𝒙 )
[ ∑︁
𝑧∈Z

𝑝𝜃 (𝑧 | 𝒙, 𝜋0)
(∑︁
𝒔∈S

𝑝𝜃 (𝒔 | 𝒙, 𝑧, 𝜋0)𝑤 (𝒙, 𝒔)
) ∑︁
𝒔′∈S

𝑝𝜃 (𝒔′ | 𝒙, 𝑧, 𝜋0)𝑞(𝒙, 𝒔′)
]

− E𝑝 (𝒙 )
[ ∑︁
𝑧∈Z

𝑝𝜃 (𝑧 | 𝒙, 𝜋0)
∑︁
𝒔∈S

𝑝𝜃 (𝒔 | 𝒙, 𝑧, 𝜋0)𝑤 (𝒙, 𝒔)𝑞(𝒙, 𝒔)
]

= E𝑝 (𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝜋0 )
[∑︁
𝒔∈S

𝑝𝜃 (𝒔 | 𝒙, 𝑧, 𝜋0)𝑤 (𝒙, 𝒔)
( ∑︁
𝒔′∈S

𝑝𝜃 (𝒔′ | 𝒙, 𝑧, 𝜋0)𝑞(𝒙, 𝒔′) − 𝑞(𝒙, 𝒔)
)]

= E𝑝 (𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝜋0 )
[ ∑︁
𝑗<𝑘≤ | S |

𝑝𝜃 (𝒔 𝑗 | 𝒙, 𝑧, 𝜋0)𝑝𝜃 (𝒔𝑘 | 𝒙, 𝑧, 𝜋0)

× (𝑞(𝒙, 𝒔 𝑗 ) − 𝑞(𝒙, 𝒔𝑘 )) × (𝑤 (𝒙, 𝒔𝑘 ) −𝑤 (𝒙, 𝒔 𝑗 ))
]

where the last line uses Lemma B.1. □

B.5 Proof of Theorem 3.4
Proof. Here, we use the unbiasedness of LIPS under a sufficient slate abstraction (i.e., Theorem 3.2).

𝑛

(
VD [𝑉IPS (𝜋 ;D)] − VD [𝑉LIPS (𝜋 ;D)]

)
= ED [(𝑤 (𝒙, 𝒔) 𝑟 −𝑉 (𝜋))2] + ED [(𝑤𝜃 (𝒙, 𝜙𝜃 (𝒔)) 𝑟 −𝑉 (𝜋))2]
= E𝑝 (𝒙 )𝜋0 (𝒔 | 𝒙 )𝑝 (𝑟 |𝒙,𝒔 ) [(𝑤 (𝒙, 𝒔) −𝑤 (𝒔, 𝜙𝜃 (𝒔)))

2 𝑟2]
= E𝑝 (𝒙 )𝜋0 (𝒔 | 𝒙 ) [(𝑤 (𝒙, 𝒔) −𝑤 (𝒔, 𝜙𝜃 (𝒔)))

2 E𝑝 (𝑟 | 𝒙,𝜙𝜃 (𝒔 ) ) [𝑟
2]]

= E𝑝 (𝒙 )
[∑︁
𝒔∈S

𝜋0 (𝒔 | 𝒙) (𝑤 (𝒙, 𝒔) −𝑤 (𝒔, 𝜙𝜃 (𝒔)))2 E𝑝 (𝑟 | 𝒙,𝜙𝜃 (𝒔 ) ) [𝑟
2]

]
= E𝑝 (𝒙 )

[∑︁
𝒔∈S

𝜋0 (𝜙𝜃 (𝒔) | 𝒙)
𝜋0 (𝒔 | 𝒙)

𝜋0 (𝜙𝜃 (𝒔) | 𝒙)
(𝑤 (𝒙, 𝒔) −𝑤 (𝒔, 𝜙𝜃 (𝒔)))2 E𝑝 (𝑟 | 𝒙,𝜙𝜃 (𝒔 ) ) [𝑟

2]
]

= E𝑝 (𝒙 )
[ ∑︁
𝑧∈Z

𝜋0 (𝑧 | 𝒙)
∑︁

𝒔∈{𝒔′∈S|𝜙𝜃 (𝒔′ )=𝑧}
𝜋0 (𝒔 | 𝒙, 𝑧) (𝑤 (𝒙, 𝒔) −𝑤 (𝒔, 𝑧))2 E𝑝 (𝑟 | 𝒙,𝑧 ) [𝑟2]

]
= E𝑝 (𝒙 )

[ ∑︁
𝑧∈Z

𝜋0 (𝑧 | 𝒙)
∑︁

𝒔∈{𝒔′∈S|𝜙𝜃 (𝒔′ )=𝑧}
𝜋0 (𝒔 | 𝒙, 𝑧)

·
(
𝑤 (𝒙, 𝒔) −

∑︁
𝒔∈{𝒔′∈S|𝜙𝜃 (𝒔′ )=𝑧}

𝜋0 (𝒔 | 𝒙, 𝑧)𝑤 (𝒙, 𝒔)
)
2

E𝑝 (𝑟 | 𝒙,𝑧 ) [𝑟2]
]

= E𝑝 (𝒙 )𝜋0 (𝜙𝜃 (𝒔 ) | 𝒙 ) [V𝜋0 (𝒔 | 𝒙,𝜙𝜃 (𝒔 ) ) (𝑤 (𝒙, 𝒔)) E𝑝 (𝑟 | 𝒙,𝑧 ) [𝑟
2]]

□
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B.6 MSE gain of LIPS with stochastic slate abstraction
In summary, LIPS has the following MSE gain over IPS with stochastic slate abstraction.

𝑛(MSE(𝑉IPS (𝜋 ;D)) −MSE(𝑉LIPS (𝜋 ;D)))
= E𝑝 (𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝜋0 )

[
V𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) (𝑤 (𝒙, 𝒔)) · E𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 )

[
E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟2]

] ]
+ E𝑝 (𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝜋0 )

[
Cov𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 )

(
𝑤 (𝒙, 𝒔)2, E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟2]

)]
+ 2𝑉 (𝜋)Bias(𝑉LIPS (𝜋 ;D)) + (1 − 𝑛)Bias(𝑉LIPS (𝜋 ;D))2

Below, we provide the detailed deviation.

𝑛(MSE(𝑉IPS (𝜋 ;D)) −MSE(𝑉LIPS (𝜋 ;D)))
= 𝑛(VD (𝑉IPS (𝜋 ;D)) − VD (𝑉LIPS (𝜋 ;D)) − Bias(𝑉LIPS (𝜋 ;D))2)
= VD (𝑉IPS (𝜋 ;D)) − VD (𝑉LIPS (𝜋 ;D)) − 𝑛Bias(𝑉LIPS (𝜋 ;D))2

= ED [(𝑉IPS (𝜋 ;D) − ED [𝑉IPS (𝜋 ;D)])2] − ED [(𝑉LIPS (𝜋 ;D) − ED [𝑉LIPS (𝜋 ;D)])2

− 𝑛Bias(𝑉LIPS (𝜋 ;D))2

= ED [(𝑉IPS (𝜋 ;D))2] − (ED [𝑉IPS (𝜋 ;D)])2 − (ED [(𝑉LIPS (𝜋 ;D))2] − (ED [𝑉LIPS (𝜋 ;D)])2)
− 𝑛Bias(𝑉LIPS (𝜋 ;D))2

= ED [(𝑉IPS (𝜋 ;D))2] − ED [(𝑉LIPS (𝜋 ;D))2] − ((ED [𝑉IPS (𝜋 ;D)])2 − ED [𝑉LIPS (𝜋 ;D)])2)
− 𝑛Bias(𝑉LIPS (𝜋 ;D))2

= E𝑝 (𝒙 )𝜋0 (𝒔 | 𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝒔 )𝑝 (𝑟 | 𝒙,𝒔 ) [(𝑤 (𝒙, 𝒔)𝑟 )
2 − (𝑤𝜃 (𝒙, 𝑧)𝑟 )2]

− ((𝑉 (𝜋))2 − (𝑉 (𝜋) + Bias(𝑉LIPS (𝜋 ;D)))2) − 𝑛Bias(𝑉LIPS (𝜋 ;D))2

= E𝑝 (𝒙 )𝜋0 (𝒔 | 𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝒔 )𝑝 (𝑟 | 𝒙,𝒔 ) [((𝑤 (𝒙, 𝒔))
2 − (𝑤𝜃 (𝒙, 𝑧))2) · 𝑟2]

+ 2𝑉 (𝜋)Bias(𝑉LIPS (𝜋 ;D)) + Bias(𝑉LIPS (𝜋 ;D))2 − 𝑛Bias(𝑉LIPS (𝜋 ;D))2

= E𝑝 (𝒙 )𝜋0 (𝒔 | 𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝒔 ) [(𝑤 (𝒙, 𝒔)
2 −𝑤𝜃 (𝒙, 𝑧)2) · E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟2]]

+ 2𝑉 (𝜋)Bias(𝑉LIPS (𝜋 ;D)) + (1 − 𝑛)Bias(𝑉LIPS (𝜋 ;D))2

Then, the first term is further decomposed to variance and co-variance as follows.

E𝑝 (𝒙 )𝜋0 (𝒔 | 𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝒔 ) [(𝑤 (𝒙, 𝒔)
2 −𝑤𝜃 (𝒙, 𝑧)2) · E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟2]]

= E𝑝 (𝒙 )𝜋0 (𝒔 | 𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝒔 ) [(𝑤 (𝒙, 𝒔)
2 −𝑤𝜃 (𝒙, 𝑧)2) · E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟2]]

= E𝑝 (𝒙 ) [
∑︁
𝒔∈S

𝜋0 (𝒔 | 𝒙)
∑︁
𝑧∈Z

𝑝𝜃 (𝑧 | 𝒙, 𝒔) (𝑤 (𝒙, 𝒔)2 −𝑤𝜃 (𝒙, 𝑧)2) · E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟2]]

= E𝑝 (𝒙 ) [
∑︁
𝒔∈S

𝜋0 (𝒔 | 𝒙)
∑︁
𝑧∈Z

𝑝𝜃 (𝑧 | 𝒙, 𝜋0)𝑝𝜃 (𝒔 | 𝒙, 𝑧, 𝜋0)
𝜋0 (𝒔 | 𝒙)

(𝑤 (𝒙, 𝒔)2 −𝑤𝜃 (𝒙, 𝑧)2) · E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟2]]

= E𝑝 (𝒙 ) [
∑︁
𝑧∈Z

𝑝𝜃 (𝑧 | 𝒙, 𝜋0)
∑︁
𝒔∈S

𝑝𝜃 (𝒔 | 𝒙, 𝑧, 𝜋0) (𝑤 (𝒙, 𝒔)2 −𝑤𝜃 (𝒙, 𝑧)2) · E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟2]]

= E𝑝 (𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝜋0 )𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) [(𝑤 (𝒙, 𝒔)
2 −𝑤𝜃 (𝒙, 𝑧)2) · E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟2]]

= E𝑝 (𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝜋0 )𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) [(𝑤 (𝒙, 𝒔)
2 − (E𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) [𝑤 (𝒙, 𝒔)])

2) · E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟2]]
= E𝑝 (𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝜋0 )𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) [(𝑤 (𝒙, 𝒔)

2 − (E𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) [𝑤 (𝒙, 𝒔)])
2)

· (E𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) [E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟
2]] + (E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟2] − E𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) [E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟

2]]))]
= E𝑝 (𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝜋0 )𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) [(𝑤 (𝒙, 𝒔)

2 − (E𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) [𝑤 (𝒙, 𝒔)])
2) · E𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) [E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟

2]]]
+ E𝑝 (𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝜋0 )𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) [(𝑤 (𝒙, 𝒔)

2 − (E𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) [𝑤 (𝒙, 𝒔)])
2)

· (E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟2] − E𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) [E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟
2]])]

= E𝑝 (𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝜋0 )
[
V𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 ) (𝑤 (𝒙, 𝒔)) · E𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 )

[
E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟2]

] ]
+ E𝑝 (𝒙 )𝑝𝜃 (𝑧 | 𝒙,𝜋0 )

[
Cov𝑝𝜃 (𝒔 | 𝒙,𝑧,𝜋0 )

(
𝑤 (𝒙, 𝒔)2, E𝑝 (𝑟 | 𝒙,𝒔 ) [𝑟2]

)]
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