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Abstract

Unsupervised learning has recently significantly
gained in popularity, especially with deep
learning-based approaches. Despite numerous
successes and approaching supervised-level per-
formance on a variety of academic benchmarks,
it is still hard to train and evaluate SSL models
in practice due to the unsupervised nature of the
problem. Even with networks trained in a super-
vised fashion, it is often unclear whether they will
perform well when transferred to another domain.

Past works are generally limited to assessing the
amount of information contained in embeddings,
which is most relevant for self-supervised learning
of deep neural networks. This works chooses to
follow a different approach: can we quantify how
easy it is to linearly separate the data in a stable
way? We survey the literature and uncover three
methods that could be potentially used for eval-
uating quality of representations. We also intro-
duce one novel method based on recent advances
in understanding the high-dimensional geometric
structure of self-supervised learning.

We conduct extensive experiments and study the
properties of these metrics and ones introduced
in the previous work. Our results suggest that
while there is no free lunch, there are metrics that
can robustly estimate embedding quality in an
unsupervised way.

1. Introduction

With proliferation of unsupervised and self-supervised deep
learning methods in the recent years, there is an increasing
need to quantify the quality of representations produced
by such methods. Across different domains, this is com-
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monly done with training linear classifiers (probes) against
known labels (Perozzi et al., 2014; Chen et al., 2020). How-
ever, in unsupervised settings there are no labels to begin
with. How can we do model selection, optimize methods’
hyperparameters, or even verify the method worked at all?

In search of such metrics, we turn our attention to different
sub-fields of numerical linear algebra, machine learning
and optimization, and high-dimensional probability. We
identify three promising candidate metrics and introduce one
based on the expected distribution of embedding distances.
We then proceed to test them on two conceptually novel
domains: supervised model selection and shallow single-
layer graph embedding learning.

Our experimental results indicate there is no “free lunch”—
a metric that is universally dominating—thus calling for
a comprehensive suite of evaluation metrics. Despite that,
metrics introduced in this work exhibit, like stable rank and
coherence, display stronger correlation to downstream task
performance of the supervised models, are more computa-
tionally stable, and suit shallow embedding models much
better than state-of-the-art ones.

We summarize our key contributions as follows:

e We identify three different perspectives on evaluation
of embedding quality in unsupervised manner and in-
troduce four metrics based on these perspectives.

e We experimentally study two novel settings for embed-
ding quality evaluation, showing that standard metrics
often fail when shallow models are being studied.

e We conduct a study on computational stability of all
metrics and identify the minimum viable sample sizes.

e We demonstrate that the proposed metrics are at least
as effective as state-of-the-art ones in terms of down-
stream quality prediction while having more intuitive
behavior for shallow embedding models.

2. Related Work

The literature on evaluating representations in unsupervised
way is still sparse. Arguably, dimensional collapse (Hua
et al., 2021) has sparked initial interest in the area. In dimen-
sional collapse, some dimensions become non-meaningful
(collapse) during training. Because of that problem, three
concurrent metrics, which we introduce below, all study the
problem of measuring such collapse from different angles.
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a-ReQ (Agrawal et al., 2022) fits a power-law to the sin-
gular values of representations, meaning \; o i~ %. Log-
arithmic decay of the spectrum with slope @ = 1 was re-
cently proven to provide the best generalization in infinite-
dimensional analysis of linear regression (Bartlett et al.,
2020). In practice, a simple linear regression estimator on
a log-log scale is used to estimate the value of «. This ap-
proach for estimating the power-law exponent is considered
inaccurate (Clauset et al., 2009).

RankMe (Garrido et al., 2022; Roy & Vetterli, 2007) is a
method based on estimating the effective rank of a matrix.
In a strict numerical linear algebraic sense, most embed-
ding matrices are full-rank. “Softer” definitions allow to
capture not only fully collapsed dimensions but also general
underutilization of the parameter space.

Definition 2.1. Given a matrix M € R"*"2 with SVD
M = UXV', its effective rank is the entropy of its nor-
malized singular values, defined as

g

RankMe(M) = *sz' logp;, pi= =N

NESum (He & Ozay, 2022) analyzes eigenspectrum of
the covariance matrix of representations. It is introduced as
a heuristic metric complementing the analysis of features
learned by the barlow twins loss (Zbontar et al., 2021).

Definition 2.2. Given a matrix M € R™ *"2 with covari-
ance that can be decomposed as C = UAU:

i
NES M) = —
um(M) Z N
with convention of § = 0.

3. Three Perspectives on Embedding Quality

We now study three different perspectives on estimating
embedding “quality”. All measures we have discussed so
far aim to answer an information-theoretic question on rep-
resentations: Do embedding carry as much information as
their size allows? However, there are different questions
worth answering. This paper introduces four novel met-
rics for embedding quality evaluation based on different
perspectives on the embedding quality.

The following section pursues the linear classifier perspec-
tive on representation quality (Mohri & Talwalkar, 2011). It
asks: How hard it is to find a suitable transformation from
the representations to the targets of the downstream task?
We show that this is an inherent property of the represen-
tations themselves (and the target matrix too, if it’s not a
classification task).

3.1. Linear Classifier Perspective

Let our downstream task be a classification with a target
matrix Y € {0,1}"*¢ and a linear probe h = XW + b
with weight matrix W and bias vector b. In what follows,
we argue that it is easier to find & that yields high accuracy
when applied to the input matrix X with higher coherence.

Without loss of generality, we can drop the bias term. For
the ease of exposition, we will adopt the Mean-Squared Er-
ror loss (£ = ||[Y — XW||%) for a downstream task. The
optimal weight matrix will then depend on the target and
representation matrices, i.e. from the derivative condition
XTY = X"XW. Given some A € ker(X), i.e. a ma-
trix comprised of vectors from the null space of X, we
rewrite the condition as XY = X T (A + X'Y) and get
W* = XY + A forany A € ker(X).

Assuming we can always find an optimal weight matrix,
to minimize the loss £, the representations X should be
aligned with the target matrix Y, i.e. the left singular vectors
U of X = UXV should span Uy of Y = Uy Xy Vy,
where Vy = I. when Y is a classification target matrix.

Plugging in the optimal W* into the loss,

Y - X(X'Y + A2 =Y - UZZUTY|2
= |(I-ULUT)Y|%
= [|(I-L)U" Y3
= [IY[|% - |U; Uy =y %,

where I; € R™*" with d ones on the diagonal, and the
minimum is reached whenever columns in U are aligned
with columns in Uvy.

Intuitively, if the representation dimensionality is larger
than number of classes in the downstream task, i.e. d > c,
and X has full rank (a consequence of most methods being
spectral embedding), then the representation basis covers
the target basis with high probability. However, to quantify
the extent of this coverage, we will need to introduce a
notion of incoherence.

Definition 3.1 (pp-incoherence). Given matrix M €
R™1 %72 with rank-r and SVD M = UXV ', M is said
to satisfy the standard incoherence condition with parame-

ter g if
Teolls < HoT Tells < Ho?
 Dax U "eill2 < o 12%>;L2||V ejllz < Ty

where e; is the i-th standard basis vector of a respective
dimension. Note that 1 < g < max(ni,n2)/r,

Informally, standard incoherence characterizes the extent
of alignment of the singular vectors to the standard basis.
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Incoherence is typically used in low-rank matrix comple-
tion problems to estimate a complexity of matrix recov-
ery (Mohri & Talwalkar, 2011). In our setting, lower in-
coherence will be indicative of high alignment with target
matrix and, thus, better performance.

Ideally, if we had access to the targets, we could use joint
incoherence p1(Z,Y) to measure the alignment directly.
More practical is the case when true labels are not available.
There, we will need to rely on the standard coherence (1 (Z)
which measures alignment to the standard basis. Our exper-
iments show that there is indeed a correlation between stan-
dard incoherence of the representations and performance on
the downstream tasks (almost perfect in some cases).

3.2. Numerical Linear Algebra Perspective

Numerical linear algebra provides us with more tools for
analysing behaviors of linear classifiers. One of the classic
ones is the condition number, or, in the case of non-square
matrices, its generalized version (Ben-Israel, 1966). For
example, ko is used to detect multicollinearity in linear and
logistic regression (Belsley et al., 2005).

Definition 3.2. Pseudo-condition number of a matrix M
with SVD M = UXV ' is defined as

=2 01
(M) = M), M, =7 2

n

We are particularly interested in ko, since it is easily
computable with SVD, as the pseudo-inverse of M is
(M™)"!M = UX~'VT, meaning | M|y = 1/o,.

In the analysis of linear regression, «9 can be used to bound
the sensitivity of the system to the change in the input.
Consider a linear system (A +AA)x = b and its perturbed
version Ax = b + Ab. Then,

1% — x||

K(A)  (I8A] | [Ab]
Bl = 1= w(a)IBAT (T + )

We use k9 to measure stability of learned representations.

3.2.1. STABLE RANK

Stable rank (also called effective rank or intrinsic dimension
of a matrix) is another fundamental quality in numerical
analysis of random matrices.

Definition 3.3. Numerical rank of a matrix M is defined as

M|l
M =
SRV TE

Note that (M) < rank(M), and that bound is sharp. Stable
rank is a useful tool that guides fundamental numerical prob-
lems, including matrix sampling and covariance estimation.

Let us restate Theorem 1.1 from Rudelson & Vershynin
(2007):

Theorem 3.4. Let A be an n X d matrix with stable rank r.
Lete,6 € (0,1), and let m < n be an integer such that

= () e ()

Consider a m x d matrix A, which consists of m normalized
rows of A picked independently with replacement, with
probabilities proportional to the squares of their Euclidean
lengths. Then with probability at least 1 — 2exp(—</5) the
Jollowing holds. For a positive integer k, let Py, be the
orthogonal projection onto the top k left singular vectors of
A. Then,

[A — APk|| = o1 (A) + 2| All2.

This suggests that the numerical rank determines how hard it
is to estimate the matrix by subsampling its rows. Intuitively,
a well-distributed representations should be hard to estimate;
we will observe that this is indeed the case in practice.

3.3. High-dimensional Probability Perspective

In self-supervised learning, Assran et al. (2023) shows that
several contrastive learning methods try to distribute repre-
sentations equally in the space. High-dimensional prob-
ability can provide us with an estimate of pairwise dis-
tances when embeddings are distributed uniformly on a
d-dimensional unit sphere S?.

Given Ly normalized embeddings W &€ R™*4 3 measure
of clustering can be defined using the norm of the pairwise
dot product matrix Q = ||[WW T ||z. Since the expected
dot product of high-dimensional isotropic random vectors
(x,y) =< % (Vershynin, 2018, Remark 3.2.5), we can es-
timate E[Q] = n + %. The maximum metric value
Q = n? can only be achieved in the collapsed case. Com-
bining all normalizations to get a metric upper-bounded that

is upper-bounded by 1, we get:

Definition 3.5.
WW ||p —pn — 2=
SelfCluster(W) = I lr—n a
_A|WW || —n(d+n—1)
B (d=1)n—=1)n )

SelfCluster allows us to estimate how much the embeddings
are clustered in the embedding space compared to random
distribution on a sphere. The downside of this metric is the
requirement of pairwise computations, which is expensive
for large number of points. We now proceed to study the
proposed metrics on real-world data.
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4. Experiments

In contrast to previous work (Agrawal et al., 2022; Gar-
rido et al., 2022), we shift our attention from self-supervised
learning to novel, more generally applicable settings. We ex-
perimentally study proposed metrics on two novel use-cases:
(i) supervised representation learning with deep neural net-
works and (ii) unsupervised graph embeddings. Supervised
representation learning allows us to gain insights into per-
formance of semi-supervised learning systems. Graph em-
bedding, on the other hand, has very different architecture—
shallow single-layer network—and optimization.

Section 4.1.2 further provides a novel study on computa-
tional stability of different embedding quality evaluation
metrics. Stability is important for many practical applica-
tion, since the most computationally stable metrics can be
even computed during training for monitoring purposes.

4.1. Supervised Network Performance Prediction

We used Wightman (2019) repository of supervised PyTorch
models, accessed May 2023. (Deng et al., 2009) We ran
inference of all available models, as permitted by GPU
memory, on the validation set, and a subset of models!—on
the full training set. Inference was performed on a single
16-core machine with NVIDIA RTX 4090 and 64Gb RAM.

4.1.1. DOWNSTREAM QUALITY CORRELATION

Figures 1 and 2 present rank correlation of the different
embedding quality metrics to downstream prediction qual-
ity on ImageNet, measured for training and validation set
embeddings respectively. We do not report SelfCluster met-
ric results on the training set because of its quadratic time
complexity. Since RankMe is dependent on the dimension-
ality of the data, we normalize its values and call the metric
RankMe*. This new metric has the range between 0 and 1,
and represents relative utilization of the embedding space.

On the training set evaluation, a-ReQ, NESum, pseudo-
condition number, and coherence all show significant cor-
relation to the test set performance. Out of these metrics,
a-ReQ is the only metric with significant outliers, possibly
due to the power law estimation issues (Clauset et al., 2009).
High stable rank, NESum, and coherence seem to indicate
good test test performance of the model. Note that the mod-
els we selected for training set evaluation are pareto-optimal
in terms of either parameter size or inference speed. This
allowed us to significantly restrict the model set size without
affecting representativeness of selected models.

On the validation set performance with expanded model set,
the correlation between many metrics and test set perfor-
mance drops to near-zero. This can be attributed to both

"Full list available in the Appendix.
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Figure 1. Representation quality metrics on the ImageNet training
set for over 30 pre-trained models. Spearman rank correlation p
to the test set accuracy displayed per metric in the title. Methods
introduced in this work are highlighted in colored bold.

expanded model set, which has many under-performing
models as well as the general instability of the computa-
tion on the smaller example set. We further examine the
computational stability considerations in the next section.
Only NESum, stable rank and self clustering achieve signif-
icant correlation to the test set performance. Across both
training and validation sets, NESum demonstrates strong
downstream performance correlation while both variants of
RankMe are not able to successfully predict supervised task
performance.

4.1.2. METRIC STABILITY

It is important to have stable metrics for embedding quality
evaluation, especially in low-data regimes. Moreover, if
a metric is stable up to very small batch sizes, it can be
evaluated during training, greatly enhancing its usability.
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Figure 2. Representation quality metrics on the ImageNet valida-
tion set of over 1000 pre-trained models. Spearman rank corre-
lation p to the test set accuracy displayed per metric in the title.
Methods introduced in this work are highlighted in colored bold.

To do that, we sample embeddings for ImageNet training set
with batch sizes from 128 to 65536, log-space (27—216) and
compare the sampled metric value to the value computed
on the whole dataset. The results are presented in Table 1.
Numerical rank-based methods are among the most stable,
followed by NESum. One advantage of RankMe over its
numerical rank estimation counterpart is that it offers a
strong lower-bound in terms of the sample size. Coherence
appears to be strongly data-dependent and least stable.

4.2. Graph Embedding Quality Prediction

Graph embedding is a common way to solve many tasks
arising in the graph mining domain from node classification,
link prediction, and community detection. In the graph
embedding process, each node in a graph is mapped to a
vector in R%, and distances in the embedding space should
resemble some similarity metric defined between the nodes

review of modern graph embedding approaches, readers are
referred to Chami et al. (2022) survey.

For our experiments, we study representations of the Deep-
Walk (Perozzi et al., 2014) model as it is a de-facto standard
in the field of unsupervised embedding of graphs with no
features. We use 10 different graph datasets that include
both natural and constructed graphs. We report the dataset
statistics in Table 2 and provide a brief description below:

e Cora, Citeseer, and Pubmed (Sen et al., 2008) are ci-
tation networks; nodes represent papers connected by
citation edges; features are bag-of-word abstracts, and
labels represent paper topics. We use a re-processed
version of Cora from (Shchur et al., 2018) due to errors
in the processing of the original dataset.

e Amazon {PC, Photo} (Shchur et al., 2018) are two
subsets of the Amazon co-purchase graph for the com-
puters and photo sections of the website, where nodes
represent goods with edges between ones frequently
purchased together; node features are bag-of-word re-
views, and class labels are product category.

o OGB-ArXiv (Hu et al., 2020) is a paper co-citation
dataset based on arXiv papers indexed by the Microsoft
Academic graph. Nodes are papers; edges are citations,
and class labels indicate the main category of the paper.
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Table 3. Average Spearman rank correlation on two dataset corruption types: naive (N) and component-preserving (C). We highlight
datasets where there is a consistent correlation pattern, meaning the same sign and approximately the same magnitude of correlation.
Methods proposed in this work exhibit stronger and more consistent correlation patterns across all datasets.

Cora Citeseer Pubmed Amazon PC Amazon Photo
metric N C N C N C N C N C
a-ReQ -1.00 -1.00 -1.00 -1.00 -1.00 0.43 0.01 0.98 0.01 0.97
NESum 1.00 0.03 1.00 0.10 0.94 -0.66 0.09 -1.00 -0.15 -1.00
RankMe 1.00 1.00 1.00 1.00 1.00 -0.37 -0.05 -0.99 -0.43 -0.99
Stable rank 1.00 0.66 1.00 0.30 1.00 0.66 0.31 -1.00 0.09 -1.00
Cond. number 1.00 0.83 1.00 1.00 1.00 0.26 0.20 -0.99 0.10 -1.00
SelfCluster -1.00 -1.00 -1.00 -0.60 1.00 1.00 1.00 0.99 1.00 1.00
Coherence 1.00 1.00 0.90 1.00 0.94 1.00 0.99 0.98 0.99 0.98
MSA-Physics OGB-arXiv MNIST CIFAR-10

metric N C N C N C N C
a-ReQ -0.70 0.94 -0.81 1.00 -1.00 0.98 0.96 0.99
NESum 0.51 -0.98 0.84 -1.00 0.99 -0.92 -0.84 -0.99
RankMe 0.59 -0.92 0.85 -1.00 1.00 -0.96 -0.94 -1.00
Stable rank 0.52 -0.97 0.99 -0.99 1.00 -0.78 -0.85 -0.99
Cond. number 0.52 -0.97 0.92 -1.00 1.00 -0.96 -0.95 -0.99
SelfCluster 0.96 0.98 1.00 1.00 1.00 1.00 1.00 0.99
Coherence 0.97 0.99 0.90 1.00 0.89 1.00 0.98 0.99

e CIFAR and MNIST (Krizhevsky et al., 2009; LeCun
et al., 1998) are e-nearest neighbor graphs with ¢ such
that the average node degree is 100.

Instead of changing the parameters of the model, we con-
trollably change the quality of data itself. We sparsify each
graph in two different ways:

e Naive sparsification: we randomly pick nd edges
from the original edge set. This method may produce
disconnected components, which are known to be diffi-
cult to embed correctly.

e Component-preserving sparsification: we first en-
sure the resulting graph is connected by sampling a
random spanning tree. Then, we sample n(d — 1)
edges randomly and output the combined graph.

It is easy to see both versions create a controllably worse
version of the data. As such, one could expect that represen-
tation quality degrades with the sparsity of the input graph,
perhaps faster for the naive algorithm, since it does not
preserve the component information. As we will observe
later, surprisingly, this is very much not the case for many
embedding quality metrics we study.

We sparsify to a fixed number of edges corresponding to a
target average node degree from the range [1.1, 10]. Some
graphs in our studies have an average node degree < 10
naturally (cf. Table 2), in this case, we stop at that number.
We embed each graph 10 times, run a downstream node
classification 100 times, and average the result. We report
Spearman rank correlation coefficient p (Spearman, 1904)
between the classification accuracy and each quality metric.

Table 4. Average Spearman rank correlation on two dataset cor-
ruption types: naive and component-preserving. We highlight
rows where there is a consistent correlation pattern. Two methods
introduced in this work strongly and consistently correlate with
the downstream classification performance.

metric Naive Connected
a-ReQ -0.50 0.48
NESum 0.49 -0.71
RankMe 0.45 -0.47
Stable rank 0.56 -0.46
Cond. number 0.53 -0.43
SelfCluster 0.55 0.60
Coherence 0.95 0.99

First, we report aggregated results across all datasets in
Table 4. Surprisingly, most metrics completely revert the
correlation sign between two sparsification strategies. Only
SelfCluster and Coherence are aligned with the downstream
evaluation, and between them, Coherence displays a near-
perfect correlation with the downstream task performance.

Table 3 provides a more nuanced per-dataset view. We can
observe that while some metrics have strong and consis-
tent correlation patterns on some datasets, the trend can be
completely reversed on others. This calls for more com-
prehensive evaluations on multiple datasets and machine
learning tasks for embedding quality evaluation metrics.
Overall, only coherence provides strong signal in a single
direction across all the datasets and perturbation methods.
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Figure 3. Pairwise density plots of ImageNet representations, as measured on training and validation sets. NEsum is well-correlated to
Stable rank. Coherence is moderately correlated to a-ReQ and RankMe.

4.3. Metric Similarity

Since there are no clear winners in the experiments, it is

important to use multiple metrics in real-world applications.

Figure 3 presents pairwise correlations and kernel densities
of different metrics on the training and validation sets of
ImageNet. Overall, there are two clusters of the metrics:
NESum and Stable rank as one and Coherence, a-ReQ,
RankMe and condition number in another.

5. Conclusions

Is it possible to estimate embedding quality based on its
statistical properties? This paper demonstrates it is possible
in two scenarios outside of the known one of self-supervised
learning. We introduced four new metrics based on ideas
from numerical linear algebra, analysis of linear regression
and high-dimensional probability.

We conducted a large-scale study on two novel domains for
unsupervised embedding quality evaluation: prediction of
supervised test set performance and predicting performance
of much simpler single-layer graph embedding methods. In
case of supervised models, there seem to be no one-size-
fits-all dominant solution, however, we identify numerically
stable metrics that have strong correlation with downstream
task performance. In the shallow model case, metrics intro-
duced in this work show favorable downstream performance
correlation consistently across 9 different datasets.

References

Agrawal, K. K., Mondal, A. K., Ghosh, A., and Richards,
B. «a-ReQ: Assessing representation quality in self-
supervised learning by measuring eigenspectrum decay.
NeurlIPS, 2022. Cited on pages 2 and 4.



Unsupervised Embedding Quality Evaluation

Assran, M., Balestriero, R., Duval, Q., Bordes, F., Misra,
L., Bojanowski, P., Vincent, P., Rabbat, M., and Ballas,
N. The hidden uniform cluster prior in self-supervised
learning. In ICLR, 2023. Cited on page 3.

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A.
Benign overfitting in linear regression. PNAS, 2020. Cited
on page 2.

Belsley, D. A., Kuh, E., and Welsch, R. E. Regression
diagnostics: Identifying influential data and sources of
collinearity. John Wiley & Sons, 2005. Cited on page 3.

Ben-Israel, A. On error bounds for generalized inverses.
SIAM Journal on Numerical Analysis, 1966. Cited on
page 3.

Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., and Mur-
phy, K. Machine learning on graphs: A model and com-
prehensive taxonomy. JMLR, 2022. Cited on page 5.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In ICML, 2020. Cited on page 1.

Clauset, A., Shalizi, C. R., and Newman, M. E. Power-law
distributions in empirical data. SIAM review, 2009. Cited
on pages 2 and 4.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In CVPR, 2009. Cited on page 4.

Garrido, Q., Balestriero, R., Najman, L., and Lecun, Y.
Rankme: Assessing the downstream performance of
pretrained self-supervised representations by their rank.
arXiv preprint arXiv:2210.02885, 2022. Cited on pages
2 and 4.

He, B. and Ozay, M. Exploring the gap between collapsed
& whitened features in self-supervised learning. In ICML,
2022. Cited on page 2.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020. Cited on page 5.

Hua, T., Wang, W., Xue, Z., Ren, S., Wang, Y., and Zhao, H.
On feature decorrelation in self-supervised learning. In
CVPR, 2021. Cited on page 1.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009. Cited on page 6.

LeCun, Y., Cortes, C., and Burges, C. J. C. The MNIST
database of handwritten digits.  http://yann. lecun.
com/exdb/mnist/, 1998. Cited on page 6.

Mohri, M. and Talwalkar, A. Can matrix coherence be
efficiently and accurately estimated? In AISTATS, 2011.
Cited on pages 2 and 3.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online
learning of social representations. In KDD, 2014. Cited
on pages | and 5.

Roy, O. and Vetterli, M. The effective rank: A measure of
effective dimensionality. In European signal processing
conference. IEEE, 2007. Cited on page 2.

Rudelson, M. and Vershynin, R. Sampling from large matri-
ces: An approach through geometric functional analysis.
Journal of the ACM, 2007. Cited on page 3.

Sen, P,, Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. Al magazine, 2008. Cited on page 5.

Shchur, O., Mumme, M., Bojchevski, A., and Giinnemann,
S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018. Cited on page 5.

Spearman, C. The proof and measurement of association
between two things. 1904. Cited on page 6.

Tsitsulin, A., Mottin, D., Karras, P., and Miiller, E. Verse:
Versatile graph embeddings from similarity measures. In
WWW, 2018. Cited on page 5.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018. Cited on page 3.

Wightman, R. Pytorch image models. https://github.
com/rwightman/pytorch-image-models,

2019. Cited on page 4.

Zbontar, J., Jing, L., Misra, 1., LeCun, Y., and Deny, S.
Barlow twins: Self-supervised learning via redundancy
reduction. In ICML, 2021. Cited on page 2.


https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Unsupervised Embedding Quality Evaluation

A. Appendix.

Here we present the list of models we used for experimenting on the training and validation sets of ImageNet.

Training set models
beitv2_base_patchl6_224.inlk_ft_in22k_inlk
coat_tiny
convnext_base.fb_in22k_ft_inlk_384
convnext_femto_ols.dl_inlk

dlad6x_c

edgenext_base

edgenext_small

edgenext_x_small

edgenext_xx_small
eva_giant_patchl4_560.m30m_ft_in22k_inlk
eva_large_patchl4_196.in22k_ft_in22k_inlk
eva_large_patchl4_336.in22k_ft_in22k_inlk
lcnet_050.ra2_inlk

lcnet_075.ra2_inlk

lcnet_100.ra2_inlk

levit_128s
maxvit_base_tf_512.in21k_ft_inlk
maxvit_large_tf 512.in21k_ft_inlk
mobilenetv3_large_100.miil_in21k_ ft_inlk
mobilenetv3_small_075.lamb_inlk
mobilenetv3_small_100.lamb_inlk
mobilevit_xs

mobilevit_xxs

mobilevitv2_100

mobilevitv2_ 150_384_in22ftlk

regnetz_d8

rexnet_100

swin_large_patch4_windowl2_384
tf_efficientnet_bO.ns_jft_inlk
tf_efficientnet_b3.ns_jft_inlk
tf_efficientnet_b4d.ns_jft_inlk
tf_efficientnet_b5.ns_jft_inlk
tf_efficientnet_b6.ns_jft_inlk
tf_efficientnet_b7.ns_jft_inlk
tf_efficientnetv2_b0.inlk
tf_mobilenetv3_small_100.inlk
tinynet_e.inlk
vit_base_patchl6_clip_224.laion2b_ft_inl2k_inlk
vit_base_patchl6_clip_384.laion2b_ft_inl2k_inlk
vit_base_patch32_clip_224.laion2b_ft_inl2k_inlk
vit_base_patch32_clip_384.laion2b_ft_inl2k_inlk
volo_dl_384

volo_d2_384

volo_d3_448

volo_d4_448

xcit_nano_12_p8_384_dist
xcit_small_12_p8_384_dist
xcit_small_24_p8_384_dist
xcit_tiny_12_p8_384_dist
xcit_tiny_24_p8_384_dist
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Validation set models

adv_inception_v3
beit_base_patchl6_224.in22k_ft_in22k
beit_base_patchl6_384.in22k_ft_in22k_inlk
beit_large_patchl6_224.in22k_ft_in22k_inlk
beit_large_patchl6_512.in22k_ft_in22k_inlk
beitv2_base_patchl6_224.inlk_ft_in22k_inlk
beitv2_large_patchl6_224.inlk_ft_in22k_inlk
cait_m36_384

cait_s24_224

cait_s36_384

cait_xxs24_224

cait_xxs36_224

coat_lite_mini

coat_lite_tiny

coat_tiny

coatnet_1_rw_224.sw_inlk
coatnet_2_rw_224.sw_inl2k_ft_inlk
coatnet_bn_0_rw_224.sw_inlk
coatnet_rmlp_1_rw2_224.sw_inl2k
coatnet_rmlp_1_rw_224.sw_inlk
coatnet_rmlp_2_rw_224.sw_inl2k_ft_inlk
coatnet_rmlp_2_rw_384.sw_inl2k_ft_inlk
coatnext_nano_rw_224.sw_inlk

convit_small

convmixer_1024_20_ks9_pl4

convmixer_768_32

convnext_atto_ols.a2_inlk
convnext_base.clip_laion2b_augreg
convnext_base.clip_laion2b_augreg_ft_inl2k_inlk
convnext_base.clip_laion2b_augreg_ft_inlk
convnext_base.clip_laiona_320
convnext_base.clip_laiona_augreg_ft_inlk_384
convnext_base.fb_in22k
convnext_base.fb_in22k_ft_inlk_384
convnext_femto_ols.dl_inlk
convnext_large.fb_in22k
convnext_large.fb_in22k_ft_inlk_384
convnext_large_mlp.clip_laion2b_augreg_ft_inl2k_384
convnext_large_mlp.clip_laion2b_augreg_ft_inlk_384
convnext_large_mlp.clip_laion2b_ft_soup_320
convnext_large_mlp.clip_laion2b_soup_ft_inl2k_384
convnext_large_mlp.clip_laion2b_soup_ft_inl2k_inlk_384
convnext_nano.inl2k

convnext_nano_ols.dlh_inlk
convnext_pico_ols.dl_inlk
convnext_small.fb_in22k
convnext_small.fb_in22k_ft_inlk_384
convnext_small.inl2k_ft_inlk
convnext_tiny.fb_inlk

convnext_tiny.fb_in22k_ft_inlk
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bat_resnext26ts.ch_inlk
beit_base_patchl6_224.in22k_ft_in22k_inlk
beit_large_patchl6_224.in22k_ft_in22k
beit_large_patchl6_384.in22k_ft_in22k_inlk
beitv2_base_patchl6_224.inlk_ft_in22k
beitv2_large_patchl6_224.inlk_ft_in22k
botnet26t_256

cait_m48_448

cait_s24_384

cait_xs24_384

cait_xxs24_384

cait_xxs36_384

coat_lite_small

coat_mini

coatnet_0_rw_224.sw_inlk
coatnet_2_rw_224.sw_inl2k
coatnet_3_rw_224.sw_inl2k
coatnet_nano_rw_224.sw_inlk
coatnet_rmlp_1_rw2_224.sw_inl2k_ft_inlk
coatnet_rmlp_2_rw_224.sw_inl2k
coatnet_rmlp_2_rw_224.sw_inlk
coatnet_rmlp_nano_rw_224.sw_inlk
convit_base

convit_tiny

convmixer_1536_20

convnext_atto.d2_inlk
convnext_base.clip_laion2b
convnext_base.clip_laion2b_augreg_ft_inl2k
convnext_base.clip_laion2b_augreg_ft_inl2k_inlk_384
convnext_base.clip_laiona
convnext_base.clip_laiona_augreg_320
convnext_base.fb_inlk
convnext_base.fb_in22k_ft_inlk
convnext_femto.dl_inlk
convnext_large.fb_inlk
convnext_large.fb_in22k_ft_inlk
convnext_large_mlp.clip_laion2b_augreg
convnext_large_mlp.clip_laion2b_augreg_ft_inlk
convnext_large_mlp.clip_laion2b_ft_320
convnext_large_mlp.clip_laion2b_soup_ft_inl2k_320
convnext_large_mlp.clip_laion2b_soup_ft_inl2k_inlk_320
convnext_nano.dlh_inlk
convnext_nano.inl2k_ft_inlk
convnext_pico.dl_inlk
convnext_small.fb_inlk
convnext_small.fb_in22k_ft_inlk
convnext_small.inl2k
convnext_small.inl2k_ft_inlk_384
convnext_tiny.fb_in22k

convnext_tiny.fb_in22k_ft_inlk_384
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convnext_tiny.inl2k
convnext_tiny.inl2k_ft_inlk_384
convnext_xlarge.fb_in22k
convnext_xlarge.fb_in22k_ft_inlk_384
convnext_xxlarge.clip_laion2b_soup
convnextv2_atto.fcmae
convnextv2_base. fcmae
convnextv2_base.fcmae_ft_in22k_inlk
convnextv2_femto.fcmae
convnextv2_huge.fcmae
convnextv2_huge.fcmae_ft_in22k_inlk_384
convnextv2_large.fcmae
convnextv2_large.fcmae_ft_in22k_inlk
convnextv2_nano.fcmae
convnextv2_nano.fcmae_ft_in22k_inlk
convnextv2_pico.fcmae
convnextv2_tiny.fcmae
convnextv2_tiny.fcmae_ft_in22k_inlk
crossvit_15_240
crossvit_15_dagger_408
crossvit_18_dagger_240
crossvit_9_240

crossvit_base_240

crossvit_tiny_240

cs3darknet_focus_m

cs3darknet_m

cs3edgenet_x

cs3sedarknet_1

cspdarknet53

cspresnext50

darknetaa53

davit_small.msft_inlk
deit3_base_patchl6_224.fb_inlk
deit3_base_patchl6_384.fb_inlk
deit3_huge_patchl4_224.fb_inlk
deit3_large_patchl6_224.fb_inlk
deit3_large_patchl6_384.fb_inlk
deit3_medium_patchl6_224.fb_inlk
deit3_small_patchl6_224.fb_inlk
deit3_small_patchl6_384.fb_inlk
deit_base_distilled_patchl6_224.fb_inlk
deit_base_patchl6_224.fb_inlk
deit_small_distilled_patchl6_224.fb_inlk
deit_tiny_distilled_patchl6_224.fb_inlk
densenetl121

densenet169

densenetblurl2ld

dlalO2x

dlalé69

dlad6_c

dla60

dla60_res2next

dla60x_c

dm_nfnet_fl.dm_inlk
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convnext_tiny.inl2k_ft_inlk
convnext_tiny_hnf.a2h_inlk
convnext_xlarge.fb_in22k_ft_inlk
convnext_xxlarge.clip_laion2b_rewind
convnext_xxlarge.clip_laion2b_soup_ft_inlk
convnextv2_atto.fcmae_ft_inlk
convnextv2_base.fcmae_ft_inlk
convnextv2_base.fcmae_ft_in22k_inlk_384
convnextv2_femto.fcmae_ft_inlk
convnextv2_huge.fcmae_ft_inlk
convnextv2_huge.fcmae_ft_in22k_inlk_512
convnextv2_large.fcmae_ft_inlk
convnextv2_large.fcmae_ft_in22k_inlk_384
convnextv2_nano.fcmae_ft_inlk
convnextv2_nano.fcmae_ft_in22k_inlk_384
convnextv2_pico.fcmae_ft_inlk
convnextv2_tiny.fcmae_ft_inlk
convnextv2_tiny.fcmae_ft_in22k_inlk_384
crossvit_15_dagger_240

crossvit_18_240

crossvit_18_dagger_408
crossvit_9_dagger_240

crossvit_small_240

cs3darknet_focus_1

cs3darknet_1

cs3darknet_x

cs3se_edgenet_x

cs3sedarknet_x

cspresnet50

darknet53

davit_base.msft_inlk
davit_tiny.msft_inlk
deit3_base_patchl6_224.fb_in22k_ft_inlk
deit3_base_patchl6_384.fb_in22k_ft_inlk
deit3_huge_patchld_224.fb_in22k_ft_inlk
deit3_large_patchl6_224.fb_in22k_ft_inlk
deit3_large_patchl6_384.fb_in22k_ft_inlk
deit3_medium_patchl6_224.fb_in22k_ft_inlk
deit3_small_patchl6_224.fb_in22k_ft_inlk
deit3_small_patchl6_384.fb_in22k_ft_inlk
deit_base_distilled_patchl6_384.fb_inlk
deit_base_patchl6_384.fb_inlk
deit_small_patchl6_224.fb_inlk
deit_tiny_patchl6_224.fb_inlk
densenetl61l

densenet201

dlal02

dlal02x2

dla34

dladéx_c

dla60_res2net

dla60x

dm_nfnet_f0.dm_inlk

dm_nfnet_f2.dm_inlk
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dm_nfnet_f3.dm_inlk
dm_nfnet_f5.dm_inlk

dpnl07

dpn68

dpn92

eca_botnext26ts_256
eca_nfnet_10.ra2_inlk
eca_nfnet_12.ra3_inlk
eca_resnext26ts.ch_inlk
ecaresnetl10ld_pruned.miil_inlk
ecaresnet26t.ra2_inlk
ecaresnet50d_pruned.miil_inlk
ecaresnet50t.a2_inlk
ecaresnet50t.ra2_inlk
edgenext_base

edgenext_small_rw
edgenext_xx_small
efficientformer_13.snap_dist_inlk
efficientformerv2_1.snap_dist_inlk
efficientformerv2_sl.snap_dist_inlk
efficientnet_b0.ra_inlk
efficientnet_bl_pruned.inlk
efficientnet_b2_pruned.inlk
efficientnet_b3_pruned.inlk
efficientnet_b5.inl2k
efficientnet_el.ra_inlk
efficientnet_em.ra2_inlk
efficientnet_es_pruned.inlk
efficientnetv2_rw_m.agc_inlk
efficientnetv2_rw_t.ra2_inlk
ese_vovnetl9b_dw
eva02_base_patchl4_224.mim_in22k

eva02_base_patchl4_448.mim_in22k_ft_in22k

eva02_large_patchl4_224
eva02_large_patchl4_448
eva02_large_patchl4_448
eva02_large_patchl4_448

eva02_small_patchl4_224

.mim_in22k
.mim_in22k_ft_inlk
.mim_in22k_ft_in22k_inlk
.mim_m38m_ft_in22k

.mim_in22k

eva02_tiny_patchl4_224.mim_in22k

eva_giant_patchl4_224.
eva_giant_patchl4_336.
eva_large_patchl4_196.

eva_large_patchl4_336.

clip_ft_inlk
m30m_ft_in22k_inlk
in22k_ft_inlk

in22k_ft_inlk

fbnetc_100.rmsp_inlk
fbnetv3_d.ra2_inlk
flexivit_base.1000ep_in21k
flexivit_base.300ep_inlk
flexivit_base.600ep_inlk
flexivit_base.patch30_in21k
flexivit_large.300ep_inlk
flexivit_small.1200ep_inlk
flexivit_small.600ep_inlk
focalnet_base_srf.ms_inlk

focalnet_huge_f1l4.ms_in22k

12

dm_nfnet_f4.dm_inlk

dm_nfnet_f6.dm_inlk

dpnl31

dpn68b

dpn98

eca_halonext26ts

eca_nfnet_1l1l.ra2_inlk
eca_resnet33ts.ra2_inlk
ecaresnet10ld.miil_inlk
ecaresnet269d.ra2_inlk
ecaresnet50d.miil_inlk
ecaresnet50t.al_inlk

ecaresnet50t.a3_inlk
ecaresnetlight.miil_inlk

edgenext_small

edgenext_x_small
efficientformer_ll.snap_dist_inlk
efficientformer_17.snap_dist_inlk
efficientformerv2_s0.snap_dist_inlk
efficientformerv2_s2.snap_dist_inlk
efficientnet_bl.ft_inlk
efficientnet_b2.ra_inlk
efficientnet_b3.ra2_inlk
efficientnet_lb4.ra2_inlk
efficientnet_p5.inl2k_ft_inlk
efficientnet_el_pruned.inlk
efficientnet_es.ra_inlk
efficientnet_liteO.ra_inlk
efficientnetv2_rw_s.ra2_inlk
ens_adv_inception_resnet_v2

ese_vovnet39b
eva02_base_patchl4_448.mim_in22k_ft_inlk
eva02_base_patchl4_448.mim_in22k_ft_in22k_inlk
eva02_large_patchl4_224.mim_m38m
eval2_large_patchl4_448.mim_in22k_ft_in22k
eval2_large_patchl4_448.mim_m38m_ft_inlk
eva02_large_patchl4_448.mim_m38m_ft_in22k_inlk
eva02_small_patchl4_336.mim_in22k_ft_inlk

eva02_tiny_patchl4_336.mim_in22k_ft_inlk

eva_giant_patchl4_336.
eva_giant_patchl4_560.
eva_large_patchl4_196.

eva_large_patchl4_336.

clip_ft_inlk
m30m_ft_in22k_inlk
in22k_ft_in22k_inlk

in22k_ft_in22k_inlk

fbnetv3_b.ra2_inlk
fbnetv3_g.ra2_inlk
flexivit_base.1200ep_inlk
flexivit_base.300ep_1in21k
flexivit_base.patchl6_in21k
flexivit_large.1200ep_inlk
flexivit_large.600ep_inlk
flexivit_small.300ep_inlk
focalnet_base_lrf.ms_inlk
focalnet_huge_f13.ms_in22k

focalnet_large_f13.ms_in22k
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focalnet_large_fl4.ms_in22k
focalnet_small_srf.ms_inlk
focalnet_tiny_srf.ms_inlk
focalnet_xlarge_fl4.ms_in22k
gcresnet33ts.ra2_inlk
gcresnext26ts.ch_inlk

gcvit_base

gcvit_tiny

gcvit_xxtiny
gernet_m.idstcv_inlk
ghostnet_100

gluon_xceptioné65
gmlp_sl6_224.ra3_inlk

halonet26t

haloregnetz_b

hardcorenas_b

hardcorenas_d

hardcorenas_f

hrnet_wl8_small

hrnet_w30

hrnet_w40

hrnet_w48

inception_resnet_v2

inception_v4

jx_nest_small
lambda_resnet26rpt_256
lambda_resnet50ts
lcnet_050.ra2_inlk
lcnet_100.ra2_inlk
legacy_seresnet101
legacy_seresnetl8
legacy_seresnet50
legacy_seresnext26_32x4d
levit_128.fb_dist_inlk
levit_128s
levit_256.fb_dist_inlk
levit_conv_128.fb_dist_inlk
levit_conv_192.fb_dist_inlk
levit_conv_384.fb_dist_inlk
maxvit_base_tf_384.inlk
maxvit_base_tf_512.inlk
maxvit_large_tf_224.inlk
maxvit_large_tf_384.in21k_ft_inlk
maxvit_large_tf_512.in21k_ft_inlk
maxvit_rmlp_base_rw_224.sw_inl2k
maxvit_rmlp_base_rw_384.sw_inl2k_ft_inlk
maxvit_rmlp_pico_rw_256.sw_inlk
maxvit_rmlp_tiny_rw_256.sw_inlk
maxvit_small_tf_384.inlk
maxvit_tiny_rw_224.sw_inlk
maxvit_tiny_tf_384.inlk
maxvit_xlarge_tf_384.in21k_ft_inlk
maxxvit_rmlp_nano_rw_256.sw_inlk

maxxvitv2_nano_rw_256.sw_inlk
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focalnet_small_lrf.ms_inlk
focalnet_tiny_lrf.ms_inlk
focalnet_xlarge_fl3.ms_in22k
gc_efficientnetv2_rw_t.agc_inlk
gcresnet50t.ra2_inlk
gcresnext50ts.ch_inlk
gcvit_small

gcvit_xtiny

gernet_l.idstcv_inlk
gernet_s.idstcv_inlk
gluon_inception_v3
gmixer_24_224.ra3_inlk
halo2botnet50ts_256

halonet50ts

hardcorenas_a

hardcorenas_c

hardcorenas_e

hrnet_wl8

hrnet_wl8_small_v2

hrnet_w32

hrnet_wdé4

hrnet_w64

inception_v3

jx_nest_base

jx_nest_tiny

lambda_resnet26t
lamhalobotnet50ts_256
lcnet_075.ra2_inlk
legacy_senet154
legacy_seresnet152
legacy_seresnet34
legacy_seresnext101_32x4d
legacy_seresnext50_32x4d
levit_128s.fb_dist_inlk
levit_192.fb_dist_inlk
levit_384.fb_dist_inlk
levit_conv_128s.fb_dist_inlk
levit_conv_256.fb_dist_inlk
maxvit_base_tf_224.inlk
maxvit_base_tf_384.in21k_ft_inlk
maxvit_base_tf_512.in21k_ft_inlk
maxvit_large_tf_384.inlk
maxvit_large_tf_512.inlk
maxvit_nano_rw_256.sw_inlk
maxvit_rmlp_base_rw_224.sw_inl2k_ft_inlk
maxvit_rmlp_nano_rw_256.sw_inlk
maxvit_rmlp_small_rw_224.sw_inlk
maxvit_small_tf_ 224.inlk
maxvit_small_tf 512.inlk
maxvit_tiny_tf 224.inlk
maxvit_tiny_tf_512.inlk
maxvit_xlarge_tf_512.in21k_ft_inlk
maxxvit_rmlp_small_rw_256.sw_inlk

maxxvitv2_rmlp_base_rw_224.sw_inl2k
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maxxvitv2_rmlp_base_rw_224.sw_inl2k_ft_inlk maxxvitv2_rmlp_base_rw_384.sw_inl2k_ft_inlk

mixer_bl6_224.goog_in21lk mixer_bl6_224.goog_in21k_ft_inlk
mixer_bl6_224.miil_in21k mixer_pbl6_224.miil_in21k_ft_inlk
mixer_116_224.goog_in21lk mixer_116_224.goog_in21k_ft_inlk
mixnet_1.ft_inlk mixnet_m.ft_inlk
mixnet_s.ft_inlk mixnet_xl.ra_inlk
mnasnet_100.rmsp_inlk mnasnet_small.lamb_inlk
mobilenetv2_050.lamb_inlk mobilenetv2_100.ra_inlk
mobilenetv2_110d.ra_inlk mobilenetv2_120d.ra_inlk
mobilenetv2_140.ra_inlk mobilenetv3_large_100.miil_in21k

mobilenetv3_large_100.miil_in21k_ft_inlk mobilenetv3_large_100.ra_inlk
mobilenetv3_rw.rmsp_inlk mobilenetv3_small_050.lamb_inlk
mobilenetv3_small_075.lamb_inlk mobilenetv3_small_100.lamb_inlk

mobilevit_s mobilevit_xs

mobilevit_xxs
mobilevitv2_075

mobilevitv2_125

mobilevitv2_050
mobilevitv2_100

mobilevitv2_150

mobilevitv2_150_384_in22ftlk mobilevitv2_150_1in22ftlk
mobilevitv2_175 mobilevitv2_175_384_in22ftlk
mobilevitv2_175_in22ftlk mobilevitv2_200
mobilevitv2_200_384_in22ftlk mobilevitv2_200_in22ftlk
mvitv2_base mvitv2_large
mvitv2_small mvitv2_tiny
nasnetalarge nf_regnet_bl.ra2_inlk
nf_resnet50.ra2_inlk nfnet_10.ra2_inlk
pit_b_224 pit_b_distilled_224
pit_s_224 pit_s_distilled_224
pit_ti_224 pit_ti_distilled_224
pit_xs_224 pit_xs_distilled_224
pnasnet5large poolformer_m36
poolformer_m48 poolformer_sl2
poolformer_s24 poolformer_s36
pvt_v2_b0 pvt_v2_bl

pvt_v2_b2 pvt_v2_b2_1i

pvt_v2_b3 pvt_v2_b4

pvt_v2_b5 regnetv_040.ra3_inlk
regnetv_064.ra3_inlk regnetx_002.pycls_inlk
regnetx_004.pycls_inlk regnetx_004_tv.tv2_inlk
regnetx_006.pycls_inlk regnetx_008.pycls_inlk
regnetx_008.tv2_inlk regnetx_016.pycls_inlk
regnetx_016.tv2_inlk regnetx_032.pycls_inlk
regnetx_032.tv2_inlk regnetx_040.pycls_inlk
regnetx_064.pycls_inlk regnetx_080.pycls_inlk
regnetx_080.tv2_inlk regnetx_120.pycls_inlk
regnetx_160.pycls_inlk regnetx_160.tv2_inlk
regnetx_320.pycls_inlk regnetx_320.tv2_inlk
regnety_002.pycls_inlk regnety_004.pycls_inlk
regnety_004.tv2_inlk regnety_006.pycls_inlk
regnety_008.pycls_inlk regnety_008_tv.tv2_inlk
regnety_016.pycls_inlk regnety_016.tv2_inlk
regnety_032.pycls_inlk regnety_032.ra_inlk
regnety_032.tv2_inlk regnety_040.pycls_inlk
regnety_040.ra3_inlk regnety_064.pycls_inlk
regnety_064.ra3_inlk regnety_080.pycls_inlk
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regnety_080.ra3_inlk
regnety_120.pycls_inlk
regnety_120.sw_inl2k_ft_inlk
regnety_1280.seer_ft_inlk
regnety_1280.swag_lc_inlk
regnety_160.1lion_inl2k_ft_inlk
regnety_160.sw_inl2k
regnety_160.swag_ft_inlk
regnety_160.tv2_inlk
regnety_320.pycls_inlk
regnety_320.seer_ft_inlk
regnety_320.swag_lc_inlk
regnety_640.seer
regnetz_040.ra3_inlk
regnetz_bl6.ra3_inlk
regnetz_cl6_evos.ch_inlk
regnetz_d8
regnetz_d8_evos.ch_inlk
repvgg_a2.rvgg_inlk
repvgg_bl.rvgg_inlk
repvgg_b2.rvgg_inlk
repvgg_b3.rvgg_inlk
res2netl01_26w_4s
res2net50_26w_4s
res2net50_26w_8s
res2next50
resmlp_12_224.fb_distilled_inlk
resmlp_24_224.fb_dino
resmlp_24_224.fb_inlk
resmlp_36_224.fb_inlk
resmlp_big_24_224.fb_inlk
resnestl0le

resnest200e

resnest26d
resnest50d_1s4x24d
resnetl0l.al_inlk
resnetl0l.a2_inlk
resnetl0l.gluon_inlk
resnetl0l.tv_inlk
resnet10ld.gluon_inlk
resnetl0ls.gluon_inlk
resnetl4t.c3_inlk
resnet152.alh_inlk
resnetl52.a3_inlk
resnetl52.tv2_inlk
resnetl52c.gluon_inlk
resnetl52d.ra2_inlk
resnetl8.al_inlk
resnetl8.a3_inlk
resnetl8.fb_swsl_iglb_ft_inlk
resnetl8.tv_inlk
resnet200d.ra2_inlk
resnet26d.bt_inlk

resnet32ts.ra2_inlk
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regnety_080_tv.tv2_inlk
regnety_120.sw_inl2k
regnety_1280.seer
regnety_1280.swag_ft_inlk
regnety_160.deit_inlk
regnety_160.pycls_inlk
regnety_160.sw_inl2k_ft_inlk
regnety_160.swag_lc_inlk
regnety_2560.seer_ft_inlk
regnety_320.seer
regnety_320.swag_ft_inlk
regnety_320.tv2_inlk
regnety_640.seer_ft_inlk
regnetz_040_h.ra3_inlk
regnetz_cl6.ra3_inlk
regnetz_d32.ra3_inlk
regnetz_d8.ra3_inlk
regnetz_e8.ra3_inlk
repvgg_b0.rvgg_inlk
repvgg_blg4.rvgg_inlk
repvgg_b2g4.rvgg_inlk
repvgg_b3g4.rvgg_inlk
res2net50_14w_8s
res2net50_26w_6s
res2net50_48w_2s
resmlp_12_224.fb_dino
resmlp_12_224.fb_inlk
resmlp_24_224.fb_distilled_inlk

resmlp_36_224.fb_distilled_inlk

resmlp_big_24_224.fb_distilled_inlk

resmlp_big_24_224.fb_in22k_ft_inlk

resnestl4d
resnest269e
resnest50d
resnest50d_4s2x40d
resnetl0l.alh_inlk
resnetl10l.a3_inlk
resnet101.tv2_inlk
resnetl0lc.gluon_inlk
resnetl0ld.ra2_inlk
resnetl0t.c3_inlk
resnetl52.al_inlk
resnet152.a2_inlk
resnetl52.gluon_inlk
resnetl52.tv_inlk
resnet152d.gluon_inlk
resnetl52s.gluon_inlk
resnetl8.a2_inlk
resnetl8.fb_ssl_yfcclOOm_£ft_inlk
resnetl8.gluon_inlk
resnetl8d.ra2_inlk
resnet26.bt_inlk
resnet26t.ra2_inlk

resnet33ts.ra2_inlk
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resnet34.al_inlk
resnet34.a3_inlk
resnet34.gluon_inlk
resnet34d.ra2_inlk
resnet50.alh_inlk
resnet50.a3_inlk
resnet50.blk_inlk
resnet50.bt_inlk
resnet50.c2_inlk
resnet50.fb_ssl_yfcclO0m_ft_inlk
resnet50.gluon_inlk
resnet50.ram_inlk
resnet50.tv_inlk
resnet50c.gluon_inlk
resnet50d.a2_inlk
resnet50d.gluon_inlk
resnet50s.gluon_inlk
resnet6lg.ra2_inlk
resnetaalOld.sw_inl2k_ft_inlk
resnetaa50d.d_inl2k
resnetaa50d.sw_inl2k_ft_inlk
resnetrsl0l.tf_inlk
resnetrs200.tf_inlk
resnetrs350.tf_inlk
resnetrs50.tf_inlk
resnetv2_101xl_bit.goog_in21lk
resnetv2_101x3_bit.goog_in2lk

resnetv2_152x2_bit.goog_in21k

resnet34.a2_inlk
resnet34.bt_inlk
resnet34.tv_inlk
resnet50.al_inlk
resnet50.a2_inlk
resnet50.am_inlk
resnet50.b2k_inlk
resnet50.cl_inlk
resnet50.d_inlk
resnet50.fb_swsl_iglb_ft_inlk
resnet50.ra_inlk
resnet50.tv2_inlk
resnet50_gn.alh_inlk
resnet50d.al_inlk
resnet50d.a3_inlk
resnet50d.ra2_inlk
resnet5lqg.ra2_inlk
resnetaalOld.sw_inl2k
resnetaa50.alh_inlk
resnetaa50d.sw_inl2k
resnetblur50.bt_inlk
resnetrsl52.tf inlk
resnetrs270.tf_inlk
resnetrs420.tf_inlk
resnetv2_101.alh_inlk
resnetv2_101x1_bit.goog_in21k_ft_inlk
resnetv2_101x3_bit.goog_in2lk_ft_inlk

resnetv2_152x2_bit.goog_in21k_ft_inlk

resnetv2_152x2_bit.goog_teacher_in2lk_ft_inlk resnetv2_152x2_bit.goog_teacher_in2lk_ft_inlk_384

resnetv2_152x4_bit.goog_in21lk
resnetv2_50.alh_inlk
resnetv2_50d_gn.ah_inlk
resnetv2_50x1_bit.goog_in2lk
resnetv2_50x3_bit.goog_in21lk
resnext101_32x16d.fb_ssl_yfcclOOm_ft_inlk
resnext101_32x16d.fb_wsl_iglb_ft_inlk
resnext101_32x4d.fb_ssl_yfcclOOm_ft_inlk
resnext101_32x4d.gluon_inlk
resnext101_32x8d.fb_swsl_iglb_ft_inlk
resnextl101_32x8d.tv2_inlk
resnextl101l_64x4d.cl_inlk
resnext101_64x4d.tv_inlk
resnext50_32x4d.al_inlk
resnext50_32x4d.a2_inlk
resnext50_32x4d.fb_ssl_yfcclOOm_ft_inlk
resnext50_32x4d.gluon_inlk
resnext50_32x4d.tv2_inlk
resnext50d_32x4d.bt_inlk

rexnet_100

rexnet_150.nav_inlk

rexnet_300.nav_inlk
rexnetr_200.sw_1inl2k_ft_inlk
rexnetr_300.sw_inl2k_ft_inlk

sehalonet33ts
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resnetv2_152x4_bit
resnetv2_50d_evos.
resnetv2_50x1_bit.
resnetv2_50x1_bit.
resnetv2_50x3_bit.
resnext101_32x16d.

resnext101_32x32d.

.goog_in21k_ft_inlk
ah_inlk
goog_distilled_inlk
goog_1in21k_ft_inlk
goog_in21k_ft_inlk
fb_swsl_iglb_ft_inlk

fb_wsl_iglb_ft_inlk

resnext101_32x4d.fb_swsl_iglb_ft_inlk
resnext101_32x8d.fb_ssl_yfcclOOm_ft_inlk
resnext101_32x8d.fb_wsl_iglb_ft_inlk
resnext101_32x8d.tv_inlk
resnext101_64x4d.gluon_inlk
resnext26ts.ra2_inlk
resnext50_32x4d.alh_inlk
resnext50_32x4d.a3_inlk
resnext50_32x4d.fb_swsl_iglb_ft_inlk
resnext50_32x4d.ra_inlk
resnext50_32x4d.tv_inlk
rexnet_100.nav_inlk
rexnet_130.nav_inlk
rexnet_200.nav_inlk
rexnetr_200.sw_inl2k
rexnetr_300.sw_inl2k

sebotnet33ts_256

selecslsd2b
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selecsls60

semnasnet_075.rmsp_inlk
senet154.gluon_inlk

sequencer2d_m

seresnetl52d.ra2_inlk

seresnet50.al_inlk

seresnet50.a3_inlk
seresnext101_32x4d.gluon_inlk
seresnext101_64x4d.gluon_inlk
seresnext26d_32x4d.bt_inlk
seresnext26ts.ch_inlk
seresnext50_32x4d.racm_inlk
seresnextaalO0ld_32x8d.sw_inl2k
seresnextaall0ld_32x8d.sw_inl2k_ft_inlk_288
skresnet34

spnasnet_100.rmsp_inlk
swin_base_patch4_windowl2_384.ms_in22k
swin_base_patch4_window7_224.ms_inlk
swin_base_patch4_window7_224.ms_1in22k_ft_inlk
swin_large_patch4_windowl2_384.ms_in22k_ft_inlk
swin_large_patch4_window7_224.ms_in22k
swin_s3_base_224.ms_inlk
swin_s3_tiny_224.ms_inlk
swin_small_patch4_window7_224.ms_in22k
swin_tiny_patch4_window7_224.ms_inlk
swin_tiny_patch4_window7_224.ms_in22k_ft_inlk
swinv2_base_windowl2tol6_192to0256.ms_in22k_ft_inlk
swinv2_base_windowl6_256.ms_inlk
swinv2_cr_small_224.sw_inlk
swinv2_cr_tiny_ns_224.sw_inlk
swinv2_large_windowl2tol6_192to256.ms_in22k_ft_inlk
swinv2_small_windowl6_256.ms_inlk
swinv2_tiny_windowl6_256.ms_inlk
tf_efficientnet_b0.aa_inlk
tf_efficientnet_b0.ns_jft_inlk
tf_efficientnet_bl.ap_inlk
tf_efficientnet_b2.aa_inlk
tf_efficientnet_b2.ns_jft_inlk
tf_efficientnet_b3.ap_inlk
tf_efficientnet_b4.aa_inlk
tf_efficientnet_b4.ns_jft_inlk
tf_efficientnet_b5.ns_jft_inlk
tf_efficientnet_b6.aa_inlk
tf_efficientnet_b6.ns_jft_inlk
tf_efficientnet_b7.ns_jft_inlk
tf_efficientnet_b8.ap_inlk
tf_efficientnet_cc_b0_4e.inlk
tf_efficientnet_cc_bl_8e.inlk
tf_efficientnet_em.inlk
tf_efficientnet_lite0.inlk
tf_efficientnet_lite2.inlk
tf_efficientnet_lited.inlk
tf_efficientnetv2_bl.inlk

tf_efficientnetv2_b3.inlk
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selecsls60b

semnasnet_100.rmsp_inlk

sequencer2d_1

sequencer2d_s

seresnet33ts.ra2_inlk
seresnet50.a2_inlk

seresnet50.ra2_inlk
seresnext101_32x8d.ah_inlk
seresnext101d_32x8d.ah_inlk
seresnext26t_32x4d.bt_inlk
seresnext50_32x4d.gluon_inlk
seresnextaal0ld_32x8d.ah_inlk
seresnextaal0ld_32x8d.sw_inl2k_ft_inlk
skresnetl8

skresnext50_32x4d
swin_base_patch4_windowl2_384.ms_inlk
swin_base_patch4_windowl2_384.ms_in22k_ft_inlk
swin_base_patch4_window7_224.ms_in22k
swin_large_patch4_windowl2_384.ms_in22k
swin_large_patch4_windowl2_384
swin_large_patch4_window7_224.ms_in22k_ft_inlk
swin_s3_small_224.ms_inlk
swin_small_patch4_window7_224.ms_inlk
swin_small_patch4_window7_224.ms_in22k_ft_inlk
swin_tiny_patch4_window7_224.ms_in22k
swinv2_base_windowl2_192.ms_in22k
swinv2_base_windowl2to24_192to384.ms_in22k_ft_inlk
swinv2_base_window8_256.ms_inlk
swinv2_cr_small_ns_224.sw_inlk
swinv2_large_windowl2_192.ms_in22k
swinv2_large_windowl2to24_192to384.ms_in22k_ft_inlk
swinv2_small_window8_256.ms_inlk
swinv2_tiny window8_256.ms_inlk
tf_efficientnet_b0O.ap_inlk
tf_efficientnet_bl.aa_inlk
tf_efficientnet_bl.ns_jft_inlk
tf_efficientnet_b2.ap_inlk
tf_efficientnet_b3.aa_inlk
tf_efficientnet_b3.ns_jft_inlk
tf_efficientnet_b4.ap_inlk
tf_efficientnet_b5.ap_inlk
tf_efficientnet_b5.ra_inlk
tf_efficientnet_bé6.ap_inlk
tf_efficientnet_b7.ap_inlk
tf_efficientnet_b7.ra_inlk
tf_efficientnet_b8.ra_inlk
tf_efficientnet_cc_b0_8e.inlk
tf_efficientnet_el.inlk

tf _efficientnet_es.inlk
tf_efficientnet_litel.inlk
tf_efficientnet_lite3.inlk
tf_efficientnetv2_b0.inlk
tf_efficientnetv2_b2.inlk

tf_efficientnetv2_b3.in2l1k
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tf_efficientnetv2_b3.in21k_ft_inlk
tf_efficientnetv2_1.in21k
tf_efficientnetv2_m.inlk
tf_efficientnetv2_m.in21k_ft_inlk
tf_efficientnetv2_s.in2lk
tf_efficientnetv2_x1.in2l1k
tf_inception_v3

tf_mixnet_m.inlk
tf_mobilenetv3_large_075.inlk
tf_mobilenetv3_large_minimal_100.inlk
tf_mobilenetv3_small_100.inlk
tinynet_a.inlk

tinynet_c.inlk

tinynet_e.inlk

tv_densenetl2l

twins_pcpvt_large

twins_svt_base

twins_svt_small

vggll_bn

vggl3_bn

vggl6_bn

vggl9_bn

vit_base_patchl6_224
vit_base_patchl6_224

vit_base_patchl6_224

.augreg2_in2lk_ft_inlk
.augreg_in21lk

.dino

vit_base_patchl6_224.sam

vit_base_patchl6_224 miil.

in2lk_ft_inlk

vit_base_patchl6_384.augreg_in2lk_ft_inlk

vit_base_patchl6_clip_224.
vit_base_patchlé_clip_224.
vit_base_patchlé_clip_224
vit_base_patchlé_clip_ 224
vit_base_patchl6_clip_384.

vit_base_patchl6_clip_384.

laion2b

laion2b_ft_inl2k_inlk

.openai

.openai_ft_inl2k_inlk

laion2b_ft_inl2k_inlk

openai_ft_inl2k_inlk

vit_base_patchlé_rpn_224.inlk

vit_base_patch32_224.augreg_in2lk

vit_base_patch32_224.sam

vit_base_patch32_384.augreg_in2lk_ft_inlk

vit_base_patch32_clip_224.
vit_base_patch32_clip_224.
vit_base_patch32_clip_384.

vit_base_patch32_clip_448.

laion2b_ft_inl2k_inlk
openai
laion2b_ft_inl2k_inlk

laion2b_ft_inl2k_inlk

vit_base_patch8_224.augreg_in2lk

vit_base_patch8_224.dino

vit_base_r50_s16_384.orig_.

in21k_ft_inlk

vit_gigantic_patchl4_clip_224.laion2b

vit_huge_patchl4_clip_224.

laion2b

vit_huge_patchl4_clip_224.laion2b_ft_inl2k_inlk

vit_huge_patchld_clip_336.laion2b_ft_inl2k_inlk

vit_large_patchl4_clip_224.
vit_large_patchld_clip_224.
vit_large_patchld_clip_224.
vit_large_patchl4_clip_224.

vit_large_patchl4_clip_336.

laion2b_ft_inl2k
laion2b_ft_inlk
openai_ft_inl2k
openai_ft_inlk

laion2b_ft_inlk
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tf_efficientnetv2_1.inlk

tf_efficientnetv2_1.in21k_

tf_efficientnetv2_m.in21k

tf_efficientnetv2_s.inlk

tf_efficientnetv2_s.in21k_

ft_inlk

ft_inlk

tf_efficientnetv2_x1.in2l1k_ft_inlk

tf_mixnet_1l.inlk

tf_mixnet_s.inlk

tf_mobilenetv3_large_100.inlk

tf_mobilenetv3_small_075.inlk

tf_mobilenetv3_small_minimal 100.inlk

tinynet_b.inlk
tinynet_d.inlk
tnt_s_patchl6_224
twins_pcpvt_base
twins_pcpvt_small
twins_svt_large
vggll

vggl3

vgglé

vggl9

visformer_small

vit_base_patchl6_224.augreg_inlk
vit_base_patchl6_224.augreg_in2lk_ft_inlk

vit_base_patchl6_224.orig_in2lk_ft_inlk

vit_base_patchl6_224_miil.

in21k

vit_base_patchl6_384.augreg_inlk

vit_base_patchl6_384.orig_

vit_base_patchl6_clip_224.
vit_base_patchlé_clip_224.
vit_base_patchlé_clip_224
vit_base_patchl6_clip_224
vit_base_patchl6_clip_384.

vit_base_patchl6_clip_384.

in21k_ft_inlk
laion2b_ft_inl2k

laion2b_ft_inlk

.openai_ft_inl2k

.openai_ft_inlk

laion2b_ft_inlk

openai_ft_inlk

vit_base_patch32_224.augreg_inlk

vit_base_patch32_224.augreg_in2lk_ft_inlk

vit_base_patch32_384.augreg_inlk

vit_base_patch32_clip_224.
vit_base_patch32_clip_224.
vit_base_patch32_clip_224

vit_base_patch32_clip_384

laion2b

laion2b_ft_inlk

.openai_ft_inlk

.openai_ft_inl2k_inlk

vit_base_patch8_224.augreg2_in2lk_ft_inlk

vit_base_patch8_224.augreg_in21k_ft_inlk

vit_base_r50_s16_224.orig_

in21k

vit_giant_patchl4_clip_224.laion2b

vit_huge_patchl4_224.orig_in21k

vit_huge_patchl4_clip_224.

vit_huge_patchld_clip_224.

laion2b_ft_inl2k

laion2b_ft_inlk

vit_large_patchld_clip_224.laion2b

vit_large_patchl4_clip_224.
vit_large_patchld_clip_224.
vit_large_patchld_clip_224.
vit_large_patchl4_clip_336.

vit_large_patchl4_clip_336.

laion2b_ft_inl2k_inlk
openai
openai_ft_inl2k_inlk
laion2b_ft_inl2k_inlk

openai_ft_inl2k_inlk
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vit_large_patchl6_224.augreg_in2lk vit_large_patchl6_224.augreg_in2lk_ft_inlk
vit_large_patchl6_384.augreg_in2lk_ft_inlk vit_large_patch32_224.orig_in21k
vit_large_patch32_384.orig_in21k_ft_inlk vit_large_r50_s32_224.augreg_in21lk
vit_large_r50_s32_224.augreg_in21lk_ft_inlk vit_large_r50_s32_384.augreg_in21k_ft_inlk
vit_medium_patchl6é_gap_240.inl2k vit_medium_patchlé_gap_256.inl12k_ft_inlk
vit_medium_patchlé_gap_384.inl2k_ft_inlk vit_relpos_base_patchl6_224.sw_inlk
vit_relpos_base_patchl6_clsgap_224.sw_inlk vit_relpos_base_patch32_plus_rpn_256.sw_inlk
vit_relpos_medium_patchl6_224.sw_inlk vit_relpos_medium_patchlé_cls_224.sw_inlk
vit_relpos_medium_patchl6_rpn_224.sw_inlk vit_relpos_small_patchl6_224.sw_inlk
vit_small_patchl6_224.augreg_inlk vit_small_patchl6_224.augreg_in2lk
vit_small_patchl6_224.augreg_in2lk_ft_inlk vit_small_patchl6_224.dino
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