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Abstract
Multi-fidelity learning is popular in computational
physics. While the fidelity is often up to the
choice of mesh spacing and hence is continu-
ous in nature, most methods only model finite,
discrete fidelities. The recent work (Li et al.,
2022a) proposes the first continuous-fidelity sur-
rogate model, named infinite-fidelity coregional-
ization (IFC), which uses a neural Ordinary Dif-
ferential Equation (ODE) to capture the rich in-
formation within the infinite, continuous fidelity
space. While showing state-of-the-art predictive
performance, IFC is computationally expensive in
training and is difficult for uncertainty quantifica-
tion. To overcome these limitations, we propose
Infinite-Fidelity High-Order Gaussian Process (IF-
HOGP), based on the recent GP high-dimensional
output regression model HOGP. By tensorizing
the output and using a product kernel at each
mode, HOGP can highly efficiently estimate the
mapping from the PDE parameters to the high-
dimensional solution output, without the need for
any low-rank approximation. We made a sim-
ple extension by injecting the continuous fidelity
variable into the input, and applying a neural net-
work transformation before feeding the input into
the kernel. On three benchmark PDEs, IF-HOGP
achieves prediction accuracy better than or close
to IFC, yet gains 380x speed-up and 87.5% mem-
ory reduction. Meanwhile, uncertainty calibration
for IF-HOGP is straightforward.

1 Method

Physical simulation is the cornerstone of modern engineer-
ing and scientific applications. The central task in physi-
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cal simulation is to solve a variety of partial differential
equations (PDEs). Given the PDE parameters and ini-
tial/boundary conditions, conventional numerical methods
discretize the PDEs (on a mesh) and convert solving them
into iteratively solving a linear system of equations. While
successful, the traditional methods are known to be com-
putationally expensive. To reduce the cost, it is natural to
consider training a surrogate model with examples of PDE
solutions generated by the numerical methods. Given new
PDE parameters, one can use the surrogate model to pre-
dict the solution, e.g., via a forward pass of a deep neural
network, which is therefore much more efficient.

However, collecting the training data still demand we run the
numerical solvers, which is a costly bottleneck. To further
reduce the cost, one can consider generating multi-fidelity
solution examples. High-fidelity examples are computed
with dense meshes, and are accurate but expensive. Low-
fidelity examples are computed from coarse meshes, and
therefore are cheap yet inaccurate. Despite the discrepancy
in accuracy, low-fidelity and high-fidelity examples can
be strongly correlated since they are based on the same
PDE(s). Many multi-fidelity surrogate learning methods
have therefore been proposed to synergnize examples at
different fidelities to improve the prediction accuracy while
reducing the data cost, such as (Parussini et al., 2017; Xing
et al., 2021b; Wang et al., 2021).

Despite the success, existing approaches build surrogate
models on a pre-specified set of finite, discrete fidelities.
However, the fidelity is often determined by the mesh spac-
ing (or finite element size) used in the numerical solvers,
and hence is continuous in nature. In other words, one can
choose infinitely many fidelities to generate solution data.
To extract and leverage the rich information within the in-
finite, continuous fidelity space, Li et al. (2022a) proposed
IFC, the first infinite fidelity surrogate learning approach for
high-dimensional physical simulation outcomes. Note that
continuous-fidelity modeling has been studied in Bayesian
optimization literature(Kandasamy et al., 2017; Wu & Fra-
zier, 2018), but that line of work focus on single-output
(objective) functions, and cannot scale to massive function
outputs.

Given the continuous fidelity m and PDE parameters x,
IFC first models a low-dimensional latent output h(m,x)
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with a neural Ordinary Differential Equation (ODE) (Chen
et al., 2018), and then predicts the high-dimensional solution
output via a linear transformation,

∂h

∂m
= NN(h,m,x), y(m,x) = B(m) · h, (1)

where NN denotes a neural network, y(m,x) is the solu-
tion prediction, and B is the basis matrix that varies along
with m. To estimate B(m), Li et al. (2022a) proposed two
methods. One is to assign a Gaussian process (GP) prior
over each element of B(m), denoted by IFC-GPODE, and
the other is to use a neural ODE to model each [B(m)]i,j ,
denoted by IFC-ODE2.

While IFC has shown the state-of-the-art predictive perfor-
mance on a series of benchmark tasks, it falls short in two
aspects. First, IFC is computationally expensive in train-
ing. The challenge is rooted in the ODE formulation (1).
To calculate the model likelihood (training objective), one
has to run a numerical integrator, like RK45, to solve the
ODE, which typically needs many evaluations of the ODE
dynamics over a small step-size. To back-propagate the
gradient w.r.t the model parameters, one can either use com-
putational graphs to perform automatic differentiation or
the adjoint state method to solve a backward companion
ODE. For the former, the computational graph grows fast
and can easily exhaust the memory. The computation is
costly since it has to track a large number of steps in the
forward solving. Though the latter is more memory effi-
cient, the computation is even slower and is often unstable
(solving the adjoint ODE in backward/reverse time is easy
to diverge) (Gholaminejad et al., 2019). Second, IFC is
difficult to quantify the uncertainty, especially for the pre-
diction. Due to the ODE modeling, estimating a posterior
distribution of the model parameters is challenging. We
followed (Dandekar et al., 2020) to try a variety of popular
Bayesian inference methods, including variational inference,
Hamiltonian Monte-Carlo (HMC), stochastic HMC, stochas-
tic gradient Langevin dynamics (SGLD), which however,
deteriorate the predictive performance yet not guaranteeing
a reasonable uncertainty estimate.

To address these problems, we propose a new infinite-
fidelity surrogate learning approach based on the recent
GP high-dimensional output regression model, HoGP (Zhe
et al., 2019). The advantage of HoGP is twofold. First,
HoGP does not involve any numerical integration, and is
highly efficient in both the computation speed and memory
usage. Second, as a GP model, HoGP can conveniently
compute the posterior distribution of the prediction. We
henceforth named our approach as IFHoGP. Specifically, we
combine the continuous fidelity m and PDE parameters x
as the input vector. To improve the representation power, we
apply an NN to obtain a transformed input x̃ = NN(x,m).
We then feed x̃ into the HoGP model. To handle the high-

dimensional output, HoGP tensorizes the output as an s-
mode tensor, D = d1×d2×· · ·×ds, where D is the output
dimension, and {d1, . . . ds} are the dimensions of each ten-
sor mode. We then introduce dj feature vectors to represent
each coordinate 1, . . . , dj in mode j. We denote the feature
matrix by Vj = [vj

1, . . . ,v
j
dj
]⊤. Accordingly, we construct

a product kernel to model the covariance between arbitrary
two elements in the output tensors,

κ(yi(m,x), yj(m
′,x′))

= κ (NN(m,x),NN(m′,x′)) ·
s∏

k=1

κ(vk
ik
,vk

jk
) (2)

where i = (i1, . . . , is) and j = (j1, . . . , js) are indices of
two tensor elements, yi(m,x) and yj(m

′,x′) represent the
output element of y(m,x) indexed by i, and of y(m′,x′)
indexed by j, respectively. Accordingly, given the train-
ing dataset D = {(m1,x1,y1), . . . , (mN ,xN ,yN )}, the
marginal likelihood of IFHoGP is given by

p(Y) = N (vec(Y)|0,K1 ⊗ · · · ⊗Ks ⊗K+ τ−1I) (3)

where Y is a d1 × . . . × ds × N tensor which stacks all
the N tensorized training outputs, Kj = κ(Vj ,Vj ;θj)
is the covariance matrix at mode j, K = κ(X,X;θ) is
the covariance matrix for the transformed training inputs
X = [NN(m1,x1), . . . ,NN(mN ,xN )]⊤, θ and θj are the
kernel parameters, and τ is the inverse noise variance. We
maximize (3) to estimate all the model parameters. Due to
the structure in the covariance, we can use the Kronecker
product properties and tensor algebra to avoid computing
the full covariance matrix and its inverse/determinant dur-
ing training and avoid computing the full cross covariance
during prediction. Instead, we can restrict the kernel matrix
computation to be at each mode, and use the tensor-matrix
product to combine the results across different modes. In
this way, the training and prediction is highly efficient yet
we do not need any low rank approximation. The details are
provided in (Zhe et al., 2019).

2 Experiment

We evaluated IFHoGP in predicting the solution of several
benchmark PDEs, including Poisson’s, Heat, and Burgers’
equations (Olsen-Kettle, 2011). To collect the training data,
we ran the numerical solvers with four meshes — 8 × 8,
16×16, 32×32 and 64×64 — to generate examples of four
fidelities for each PDE. The number of training examples
for each fidelity is 200, 100, 50 and 20, respectively. For
testing, we generated 128 examples with the highest fidelity.
Both the training and testing inputs were uniformly sampled
from the domain. The input includes the parameters in the
equation, the boundary and/or the initial conditions. We
followed (Li et al., 2022a) to map the lowest fidelity to
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Figure 1: Normalized Root-Mean-Square Error (nRMSE) in predicting the solution fields of Poisson’s, and Heat and Burgers’ equations.
K is the dimension of the latent output for IFC, DRC and DMF, and the dimension of the coordinate feature vector for IFHoGP.

Ground-truth SF DRC DMF IFC-ODE2 IFC-GPODE IFHoGP
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Figure 2: Element-wise solution error. The left most column
is the ground-truth and the other columns are the errors of each
method. The lighter the color, the smaller the error.

m = 0 and the highest to m = 1. The data generation
details are the same as (Li et al., 2022a).

We compared with the following state-of-the-art multi-
fidelity surrogate learning methods. (1) DRC (Xing et al.,
2021a) which estimates Linear Models of Coreginalization
(LMC) on the residuals between successive fidelities. The
prediction is made by adding the prediction at the lowest
fidelity and all the residual predictions from the lowest to
the highest fidelities. (2) DMF (Li et al., 2022b), an auto-
regressive NN for multi-fidelity learning, where each NN
models one fidelity. To capture the nonlinear relationship
between successive fidelities, the latent output of each NN
is fed into the NN for the next fidelity. (3) IFC-ODE2 and
IFC-GPODE (Li et al., 2022a), which use an neural ODE for
continuous-fidelity learning and estimates the basis matrix
via an element-wise neural ODE and a GP prior, respectively.
(4) SF, the single fidelity degeneration of IFC.

All the methods were implemented by PyTorch (Paszke

(a)

(b)

Figure 3: Per-epoch running time (in seconds) and GPU memory
usage on Heat equation with K = 20. The evaluation was per-
formed on a single NVIDIA A100 GPU instance.

et al., 2019) except that DRC was implemented by MAT-
LAB. We used the hyper-parameters recommended in the
original papers for all the baselines. For our method, we
used the Square-Exponential Automatic Relevance Deter-
mination (SE-ARD) kernel. We used two layers in the NN
transformation in (2), with 40 neurons per layer. We ran
ADAM (Kingma & Ba, 2014) to train all the models, except
for DRC, it used L-BFGS and the maximum number of
iterations was set to 1000. We set the number of ADAM
epochs to 500 to ensure convergence for each method. We
varied the number of bases — the latent output dimension
(or rank) K for IFC, DRC, and DMF, from {5, 10, 15, 20}.
For a fair comparison, we also varied the dimension of the
coordinate feature vectors in the same range. For each set-
ting, we repeated the experiment for five times. We report
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the average normalized root-mean-square-error (nRMSE)
and its standard deviation in Figure 1.

As we can see, on Poisson’s and Burgers’ equations,
IFHoGP consistently outperforms all the competing meth-
ods (p < 0.05) except when the K = 5, the prediction
of IFHoGP is almost identical to IFC-GPODE. On Heat
equation, the prediction accuracy of IFHoGP overlaps with
IFC-GPODE when K = 10, 15, 20, and is slightly worse
than IFC-ODE2 yet better than IFC-GPODE when K = 5.
Overall, IFHoGP almost always shows the best performance.
There is only one case that IFHoGP is second to IFC-ODE2.
The gap between IFHoGP and IFC is much smaller as com-
pared with the gap between IFHoGP and the other compet-
ing methods. In other words, both IFHoGP and IFC out-
perform the remaining discrete-fidelity methods by a large
margin, which confirms the advantage of continuous-fidelity
learning. We then randomly selected two test examples for
Heat and Burgers’ equation to visualize the point-wise so-
lution error. As shown in Fig. 2, the local prediction error
of IFHoGP is much smaller and uniform, reflecting that
IFHoGP also better recovers the individual solution outputs.

Finally, we examined the computational efficiency and mem-
ory usage of IFHoGP and IFC. As show in Fig. 3, IFHoGP
is 380x and 95x faster than IFC-GPODE and IFC-ODE2,
respectively. In the meantime, IFHoGP uses only 1/2 and
1/8 GPU memory during the training, as compared with
IFC-GPODE and IFC-ODE2, respectively. Together the
results demonstrate that the training of IFHoGP is much
more efficient and economic, while still achieving better or
the same predictive performance.

3 Conclusion

We have presented IFHoGP, an alternative infinite-fidelity
learning approach for physical simulation. IFHoGP is based
on GPs, and avoids using the neural ODE to model the
complex relationships within the continuous fidelity space.
IFHoGP is efficient in both computation and memory usage,
while showing better or close predictive performance as
compared with IFC. In the future, we will continuous the
evaluation of IFHoGP in different problems, not only in
prediction accuracy but also in uncertainty quantification.

4 Broader Impact

This work can be used in a variety of engineering design
problems that involve intensive computation, e.g., finite ele-
ments or differences. Hence, the work has potential positive
impacts in the society if it is used to design passenger air-
crafts, biomedical devices, automobiles, and all the other
devices or machines that can benefit human lives. At the
same time, this work may have some negative consequences
if it is used to design weapons or weapon parts.
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