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Abstract

Recent advances in Multimodal Large Language Models (MLLMs) have signifi-
cantly improved 2D visual understanding, prompting interest in their application to
complex 3D reasoning tasks. However, it remains unclear whether these models can
effectively capture the detailed spatial information required for robust real-world
performance, especially cross-view consistency, a key requirement for accurate
3D reasoning. Considering this issue, we introduce Viewpoint Learning, a task
designed to evaluate and improve the spatial reasoning capabilities of MLLMs. We
present the Viewpoint-100K dataset, consisting of 100K object-centric image pairs
with diverse viewpoints and corresponding question-answer pairs. Our approach
employs a two-stage fine-tuning strategy: first, foundational knowledge is injected
to the baseline MLLM via Supervised Fine-Tuning (SFT) on Viewpoint-100K,
resulting in significant improvements across multiple tasks; second, generalization
is enhanced through Reinforcement Learning using the Group Relative Policy
Optimization (GRPO) algorithm on a broader set of questions. Additionally, we
introduce a hybrid cold-start initialization method designed to simultaneously learn
viewpoint representations and maintain coherent reasoning thinking. Experimental
results show that our approach significantly activates the spatial reasoning ability of
MLLM, improving performance on both in-domain and out-of-domain reasoning
tasks. Our findings highlight the value of developing foundational spatial skills
in MLLMs, supporting future progress in robotics, autonomous systems, and 3D
scene understanding.

1 Introduction

Multimodal Large Language Models (MLLMs) [17, 28, 36, 39, 1, 7, 8, 42] have recently achieved
significant advances in visual understanding and inference. Naturally, the researchers [34, 33, 30, 45]
demonstrate considerable interest in their abilities for spatial reasoning tasks.
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Figure 1: We aim to activate the MLLM’s spatial reasoning ability with Viewpoint Learning and the
two-stage fine-tuning strategy.

In the computer vision field, addressing 3D tasks typically requires first establishing cross-view
consistency through methods such as camera calibration [40] and stereo matching [4, 2]. However,
recent studies [29, 30] aim to enable MLLMs to directly perceive such consistency from multi-view
images or sequential video frames, allowing accurate spatio-temporal reasoning. This development
raises a critical question: Do these MLLMs have the potential to capture the fine-grained 3D spatial
information needed for robust and reliable visual-spatial performance in real-world 3D scenarios?

As a rule, all 3D objects maintain 3D consistency in space, characterized by stable spatial relationships
and geometric properties. This consistency ensures that objects retain 2D continuity in timeline
when projected onto a 2D plane. Our key concern is whether existing MLLMs, which are trained
primarily on video data emphasizing 2D continuity, can achieve an understanding of spatial 3D
consistency, as opposed to merely tracking continuous pixel-level evolution or correlated pixel
mappings. Furthermore, the camera projection commonly introduces subtle distortions, imperceptible
to humans, which complicate the establishment of relationships between 2D continuity and 3D
consistency.

Previous work [45, 21, 48] has made it evident that current MLLMs still struggle to capture cross-
view consistency. However, additional spatial information [21, 9] and visual prompts [22, 19]
can effectively improve their spatial reasoning ability. Although MLLMs do not seem to have
acquired an explicit understanding of fundamental 3D mapping relationships, they demonstrate
sensitivity to simple prompts that implicitly relate to these spatial concepts. We believe that the
visual-spatial intelligence [45] of MLLMs has not been fully exploited due to inappropriate data
utilization. Exploring how to effectively leverage existing data to teach MLLMs to reason and solve
problems in 3D space represents a highly valuable research direction.

In response to this challenge, we focus on a fundamental yet essential task, Viewpoint Learning,
aimed at evaluating and activating the spatial reasoning ability in MLLM. Identifying viewpoints in
image pairs or videos constitutes a pivotal step towards achieving an understanding of 3D consistency.
This task is advantageous due to its straightforward data acquisition process, ease of ground-truth
calculation, and simple evaluation metrics. Capitalizing on these benefits, we introduce the Viewpoint-
100K dataset, which comprises 100K real-world, object-centric image pairs captured from distinct
viewpoints, each paired with ego-centric or object-centric question-answer pairs (QAs).

To effectively activate the spatial reasoning ability of MLLMs, we propose a two-stage fine-tuning
strategy. The first stage is dedicated to the injection of foundational knowledge, emphasizing the
critical importance of viewpoint understanding in both video comprehension and spatial reasoning.
For this purpose, we use Supervised Fine-Tuning (SFT) with our Viewpoint-100K dataset, which
ensures that the model develops a correct understanding of spatial relationships and viewpoint
transformations. To maintain the coherent reasoning process and instruction-following behavior, we
additionally employ a hybrid cold-start initialization enhanced by human-assisted pseudo chain-of-
thoughts (CoTs). In the second stage, our aim is to preserve the acquired viewpoint-related knowledge
while simultaneously improving the model’s generalization capacity across broader spatial tasks.
We apply Reinforcement Learning (RL) through the Group Relative Policy Optimization (GRPO)
algorithm [32], further fine-tuning the model on the SAT dataset [30], a synthetic dataset for spatial
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aptitude training. This phase is designed to refine the model’s ability to transfer knowledge from
basic viewpoint tasks to more abstract and complex spatial reasoning challenges. It enables models
to better perceive, interpret, and reason about 3D space, which are critical skills for deployment in
real-world applications requiring advanced spatial reasoning ability.

Our experiments across multiple benchmarks demonstrate the effectiveness of Viewpoint Learning
in activating the spatial reasoning ability in MLLMs. In particular, this enhancement extends to
out-of-domain inference tasks, showcasing the versatility and robustness of models trained with our
approach. As MLLMs continue to evolve, fundamental tasks like Viewpoint Learning will play a
crucial role in advancing their ability to understand and interact with the world in three dimensions,
paving the way for more sophisticated applications in autonomous systems, robotics, and beyond.

In summary, the main contributions of this work are threefold.

• We introduce viewpoint learning, by which can activate the spatial reasoning ability in MLLMs,
leading to strong out-of-domain generalization capabilities in visual and spatial reasoning.

• We propose the Viewpoint-100K dataset, including 100K auto-generated ego-centric or object-
centric QAs based on real-world, object-centric image pairs.

• We employ a two-stage fine-tuning strategy that involves foundational knowledge injection and
generalization enhancement, aiming to effectively achieve viewpoint learning. We further present
a hybrid cold-start initialization method to maintain the reasoning thinking.

2 Related Work

2.1 Multimodal Large Language Models for Spatial Reasoning.

MLLMs [17, 28, 36, 39, 1, 7, 8, 42] have demonstrated exceptional capability across various tasks.
Recently, several studies [21, 14, 9, 27, 5, 33, 34, 29, 30, 49, 15, 41] have been devoted to applying
MLLMs to the field of 3D Reasoning.

[21] introduces coarse, object-level correspondences into the input images, enhancing the spatio-
temporal reasoning capabilities of MLLMs without the need for fine-tuning. This work reveals that
current MLLMs struggle to capture cross-view consistency but that this limitation can be mitigated
by providing additional cross-view information. Several recent studies [14, 9, 27, 5] have similarly
advanced the integration of MLLMs with 3D environments by incorporating rich 3D inputs and
features, further demonstrating the potential of grounding language models in spatial contexts. Spatial-
MLLM [41] aims to improve spatial understanding through high-quality, diverse multi-task data
and additional 3D features introduced via a VGGT [38] backbone. MLLM-for3D [15] treats 3D
consistency as an external prior to align 2D reasoning results across views in 3D space and gains
significant improvements in spatial tasks. In a related direction, SpatialMM [33] shows that the
inclusion of bounding boxes and scene graphs significantly improves spatial reasoning performance,
particularly for tasks that involve fewer reasoning steps.

Based on these findings, recent studies have increasingly emphasized the need to develop targeted
training strategies that address specific deficiencies in visual-spatial reasoning. However, many
existing work focus on high-level reasoning capabilities, they often overlook the importance of
foundational tasks for spatial reasoning such as viewpoint estimation and spatial transformation.

2.2 Benchmarks for Spatial Reasoning

Benchmarks play a crucial role in evaluating and advancing models’ capabilities in spatial reasoning.
Various datasets [10, 48, 23, 30, 45, 18, 34, 12, 20, 26, 44, 35] have been developed to assess
different aspects of spatial understanding, such as identifying reference frames [48, 23, 25], handling
multi-view data [30, 45], and interpreting complex scene graphs [34, 43, 26].

BLINK [12] and 3DSRBench [25] focus on various perception and reasoning tasks. SAT [30]
addresses spatial reasoning through a procedurally generated, multi-task dataset built on synthetic
data. It also identifies the limitations of MLLM in handling camera movement and out-of-domain
relations. VSR [23] highlights the importance of identifying reference frames in spatial reasoning,
showing that this capability significantly enhances the accuracy and contextual awareness of 3D
environment interpretations. COMFORT [48] further explores how MLLMs respond to different
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Figure 2: 2D Continuity and 3D Consistency. 2D continuity refers to the high similarity between
adjacent frames, whereas 3D consistency focuses on preserving spatial and geometric relationships
across frames. Top: Verifying 3D consistency requires estimating the camera pose and comparing
these spatial properties in 3D space. Bottom: Adjusting the scale of each video frame slightly can
destroy 3D consistency while maintaining 2D continuity.

frames of reference, revealing their sensitivity to such variations and a tendency to favor English-
specific conventions when resolving spatial ambiguities. VSI-Bench [45] presents eight tasks in
three categories to assess visual-spatial intelligence. It indicates that most errors stem from spatial
reasoning challenges, particularly relational reasoning mistakes and difficulties in transforming
between egocentric and allocentric perspectives. The study also finds that linguistic prompting
techniques can be detrimental to spatial reasoning performance.

Together, these works highlight the strong potential of MLLMs in understanding and reasoning about
visual-spatial information. In this paper, we aim to investigate how such spatial reasoning ability can
be effectively activated and leveraged in MLLMs for complex visual and spatial reasoning tasks.

3 Overview

For the successful execution of spatial tasks using 2D data representations such as images and videos,
it is essential to recognize and leverage the inherent 3D consistency of objects. While 2D continuity
in videos focuses on seamless transitions between frames through subtle changes that ensure a
smooth visual experience, true 3D consistency requires preserving spatial integrity and geometric
relationships across frames, including depth, scale, and object positions. This makes 3D consistency
inherently more complex than 2D continuity. Although 3D consistency can be maintained after
projecting to 2D planes, achieving 2D continuity alone does not guarantee 3D consistency (Figure.
2). This distinction is crucial for tasks such as 3D reconstruction, SLAM, and pose estimation.

In recent progress in video generation, models [24, 3, 16] still struggle to replicate 3D properties in
the real world, such as perspective consistency and vanishing points. Interestingly, humans, despite
living in a 3D world, often fail to detect such inconsistencies in 2D sequences, revealing the subtlety
of spatial perception. MLLMs, typically trained on 2D data and constrained by low frame rates due to
memory limits, face significant challenges in achieving reliable 3D reasoning without explicit spatial
supervision or enriched multimodal inputs.

We argue that activating MLLMs’ spatial reasoning ability hinges on correcting their conceptual
understanding of visual input, specifically the ability to recognize and leverage the 3D consistency
of objects. Images and videos should not be seen merely as sequences of changing pixels but as
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Figure 3: Overview of our pipeline. We introduce Actial, which comprises a novel dataset and
a two-stage fine-tuning strategy. In the knowledge injection phase, we employ a hybrid cold-start
initialization to enhance the model’s foundational spatial skills and leverage pseudo CoTs to ensure
robust reasoning capabilities. Subsequently, we enhance the model’s generalization capabilities
through a specialized generalization enhancement stage.

continuous projections of 3D space onto a 2D plane. Recognizing that 2D continuity is supported by
3D consistency enables models to better interpret and reason about spatial structure.

4 Method

Given the strong generalization capabilities of MLLMs, the key challenge is enabling them to grasp
the structure of 3D space. Our goal is to make these models realize that multi-view images and videos
are not merely sequences of 2D representations but rather projections of 3D-consistent objects onto a
2D plane. As shown in Figure. 3, we introduce Viewpoint Learning in the Section. 4.1, Foundational
Knowledge Injection in the Section. 4.2, Hybrid Cold-Start Initialization in the Section. 4.3 and
Generalization Enhancement in the Section. 4.4.

4.1 Viewpoint Learning

To teach MLLMs how to handle 3D visual tasks, it is essential to help them perceive 3D consistency.
Specifically, 3D consistency ensures that objects in 3D space maintain 2D continuity when projected
onto a 2D plane. This property enables us to perform 3D reasoning based on the correlations among
2D images captured from different viewpoints. To recognize this consistency, MLLMs must first
understand the concept of viewpoints.

It is hard to ask MLLMs to directly regress accurate camera poses from multi-view images. To
make the question easier for the MLLMs, we decide to simplify the problem. Considering that the
movement of the camera in space can be decomposed into two stages: translation and rotation. We
will separate these two problems and abstract them into simpler multiple-choice questions, rather
than precise regression problems.

Question Setting. The challenges of top-down and left-right relative positioning are fundamentally
similar. As most images in MVImgNet are captured through horizontal loop shooting, we limit our
question generation to horizontal transformations (horizontal translation and rotation).

Inspired by [18, 48], which propose the importance of frames of reference (FoR). We generate mainly
three types of question. They are ego-centric camera translation and rotation centered around the
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camera’s perspective and object-centric camera translation centered around the object’s perspective.
Examine the two types of thinking, translation and rotation, of MLLMs in viewpoint cognition, as
well as their spatial perception ability in two reference frames (ego-centric and object-centric).

Data Generation. We automatically generate Viewpoint-100K from MVImgNet [47], including
100K object-centric image pairs and the corresponding QAs. MVImgNet is a large-scale multi-view
image dataset containing approximately 6.5 million real-captured frames, along with precise camera
calibrations. For each subject, the dataset provides a comprehensive set of object-centric images,
including corresponding object masks, camera intrinsic and extrinsic parameters, depth maps, and
point clouds.

For each sample in the Viewpoint-100K dataset, we generate image pairs by randomly selecting two
images of the same subject with different viewpoints from MVImgNet. We ensure that the horizontal
angle between the camera viewpoints is between 20 and 100 degrees. Using the provided camera
parameters, we compute the relative translation and rotation between the two views. As specified in
the problem setup, we only consider the camera translation along the horizontal axis and its rotation
around its own vertical axis. The final dataset encompasses a total of 10,813 distinct objects, which
belong to 205 different object classes.

4.2 Foundational Knowledge Injection

When evaluating MLLMs on the Viewpoint-100K dataset, we observed that baseline models primarily
depend on 2D visual cues for viewpoint-related tasks (shown in the Figure. 4), resulting in accuracy
levels near random guessing. This finding indicates that these models do not take advantage of 3D
consistency for spatial reasoning across multiple views. Our goal is to enhance these models so
that they can effectively utilize 3D spatial features rather than rely solely on superficial 2D features.
This shift from 2D cues to 3D consistency is essential for achieving robust performance in complex,
multi-view spatial reasoning tasks.

Inspired by prior research [13, 32], we initially employed reward-based fine-tuning using the Group
Relative Policy Optimization (GRPO) algorithm to guide the model towards more sophisticated
3D spatial reasoning. Despite these efforts, we observed consistently high KL divergence during
training, indicating a significant departure from the initial policy and suggesting an entrenched bias
towards 2D reasoning inherent in the pre-trained models. This outcome reveals that straightforward
reinforcement learning strategies are inadequate for overcoming the strong inductive biases acquired
during large-scale pre-training. This emphasizes the necessity for adopting more targeted methods to
foster effective 3D spatial reasoning in MLLMs.

We find that directly applying Supervised Fine-Tuning (SFT) on the Viewpoint-100K dataset leads to
a substantial improvement in the model’s spatial reasoning ability. Since viewpoint understanding is
a core aspect of 3D perception and a direct indicator of spatial reasoning ability, explicit supervision
on this task helps mitigate the 2D-centric biases acquired during pre-training. Our experiments
demonstrate that SFT-based training on Viewpoint-100K not only strengthens the model’s spatial
reasoning capabilities but also reduces its dependence on superficial 2D visual cues, fostering a more
structured and accurate understanding of 3D spatial relationships.

4.3 Hybrid Cold-Start Initialization

We note that the instruction-following capability and the thinking process of the model is affected
after SFT. Drawing inspiration from [13], we propose to address this issue by introducing the cold-
start initialization. To protect the integrity of the injected knowledge, we present to use the hybrid
cold-start initialization. This means combining the CoT templates with the Viewpoint-100K dataset
as the input for SFT, make the model can simultaneously learn viewpoint representations and maintain
coherent reasoning thinking.

Directly having MLLMs generate CoT based on the problem often leads to incorrect thinking patterns.
As an alternative, we manually constructed a correct CoT template based on MLLM’s raw output.
Then we provide the template, images, questions, and corresponding correct answers to MLLM,
allowing it to analyze the images based on the template and attempt to answer the questions with
reference to the correct answers we provide. Specifically, we use Gemini 2.5 Pro [36] to generate
1K pseudo CoTs upon Viewpoint-100K. It should be noted that there are still some analyses in the
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Given the two images:<image><image>, where the primary objects captured remain stationary in both frames. The camera capturing 
the second image may have both translation and rotation relative to the camera capturing the first image.  
1. Determine the horizontal translation of the second camera relative to the first camera:

- 'l' for left
- 'r' for right
- 'n' for no horizontal movement

2. Determine the rotation of the second camera around its own vertical axis relative to the first camera's orientation:
- Estimate the rotation angle in degrees.
- A positive value indicates rightward rotation.
- A negative value indicates leftward rotation.
- Choose the option from the list below that best represents the estimated rotation angle:
A: -84, B: +50, C: +0, D: +38, E: -26, F: +25

Provide your answer in the format: direction,option_letter
For example: r,A or n,C

l，F
In the first image, the bag is 
positioned more towards the center. 
In the second image, the bag appears 
to have moved to the right side of 
the frame. This indicates that the 
second camera has moved to the left 
relative to the first camera.

In the first image, the bag is 
oriented with the front facing the 
camera. In the second image, the bag 
is turned slightly to the left, 
indicating a leftward rotation of 
the camera. The slight leftward 
rotation of the bag suggests the 
camera rotated a bit to the left. 
The best match is option F (+25).

l，E
In the first image, the handbag is 
positioned more towards the right 
side of the frame. In the second 
image, the handbag appears more 
centered in the frame. The handbag 
has moved to the left relative to 
the frame, indicating that the 
camera capturing the second image 
has moved to the left.

The stars and moons on the fabric 
are oriented differently in the two 
images. In the second image, the 
pattern appears rotated slightly 
counterclockwise. The rotation is 
not very large but noticeable. A 
rough estimate would be around 25 
degrees counterclockwise.

l，A
In the first image, the bag is 
somewhat centered, perhaps slightly 
left-of-center. In the second image, 
the bag appears shifted towards the 
right side of the frame compared to 
its position in the first image.
When the primary object appears to 
shift right in the image frame, it 
means the camera capturing the 
second image moved left relative to 
the position of the first camera. 

The first image shows the handbag 
viewed slightly from its front-right 
side. The second image shows the 
handbag viewed more from its front-
left side and end. The camera had to 
rotate around its vertical axis to 
the left.

l，F
The second image shows a shift in 
the camera's position, where the 
bag's position and orientation 
relative to the background and stars 
appear to have moved slightly to the 
right. In particular, the chain on 
the bag has moved, indicating a 
horizontal translation to the right.

As for rotation, based on the 
perspective in the images, there is 
no significant noticeable rotation 
of the camera around its vertical 
axis. The primary difference between 
the images is in horizontal 
translation rather than rotation, so 
the camera has likely moved slightly 
to the right but without significant 
rotation.

Qwen2.5-VL-72B-InstructGPT-o4-mini-high Gemini-2.5-Pro InternVL3-latest

Figure 4: Thoughts on viewpoint question. Current MLLMs tend to rely on 2D cues to address
viewpoint-related problems, which often leads to incorrect reasoning and erroneous results.

pseudo CoTs that contradict correct 3D knowledge or do not match the input image. Therefore, we
maintain a relatively small proportion of pseudo CoTs in the hybrid cold-start initialization to avoid
disrupting the model’s learning of accurate viewpoint knowledge.

4.4 Generalization Enhancement

Given the critical role of viewpoint tasks in achieving cross-view consistency, we observed significant
performance improvements across multiple benchmarks after incorporating foundational knowledge.
However, focusing solely on a single viewpoint task during fine-tuning risks overfitting, which can
limit the model’s effectiveness in broader perception and inference tasks. To cover this issue, we
propose a second phase of fine-tuning on a more diverse dataset. This additional phase aims to
broaden the model’s capabilities, ensuring it can perform robustly across a wider range of tasks and
scenarios. By extending fine-tuning to a richer and more varied dataset, we expect to achieve even
greater performance enhancements and improve the model’s adaptability for complex real-world
applications.

We select the SAT dataset [30] for our generalization enhancement phase. SAT is a synthetic spatial
aptitude training dataset designed to evaluate both static and dynamic spatial reasoning. We employ
Reinforcement Learning, specifically the Group Relative Policy Optimization (GRPO) algorithm.
Reward-based optimization encourages the model to generate its own reasoning chains and apply the
spatial knowledge acquired earlier, fostering deeper and more flexible understanding. By avoiding
direct supervision on intermediate reasoning steps, our approach ensures that the model retains its
previous knowledge about viewpoints and effectively leverages newly acquired spatial reasoning
capabilities. This enhancement significantly improves the model’s adaptability and robustness,
facilitating superior performance on both in-domain and out-of-domain tasks. Furthermore, it enables
the model to effectively accommodate a broader range of datasets.

5 Experiments

5.1 Datasets and Details

Training datasets. Actial performs the two-stage fine-tuning strategy. We use Viewpoint-100K
training set for knowledge injection and SAT training set [30] for generalization enhancement.
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Table 1: Evaluation on 3DSRBench [25], CV-Bench [37], and BLINK [12]. We color the best ,
second-best , and third-best results. We also color the better ablation results. ↑ indicates improve-

ment over the baseline. K.I. means knowledge injection (SFT phase), G.E. means generalization
enhancement (GRPO phase).

Model 3DSRBench CV-Bench BLINK

Avg. Height Loc. Orient. Multi. Avg. Rel. Count Disp. Depth Avg. MultiView RelDep SpRel

Chance

Chance Level (Random) - - - - - - 50.0 22.5 50.0 50.0 - 50.0 50.0 50.0

Proprietary Models

GPT-4o 44.6 51.6 60.1 21.4 40.2 79.4 85.7 65.9 78.2 87.8 62.7 55.6 59.7 72.7
Gemini-1.5-Flash - - - - - 71.6 76.9 66.0 68.3 75.3 59.0 51.1 62.9 62.9
Gemini-1.5-Pro 50.3 52.5 65 36.2 43.3 77.7 85.2 70.4 72.8 82.4 59.2 36.8 70.2 70.6
Gemini-2.0-Flash 49.8 49.7 68.9 32.2 41.5 - - - - - - - - -
QwenVLMax 52.4 45.5 70.5 39.7 44.8 - - - - - 71.1 40.6 84.7 88.1

Open-Source Models

Robopoint-13B - - - - - 69.7 79.4 53.6 71.3 74.7 58.4 48.1 51.6 75.5
LLaVA-v1.5-7B 38.1 39.1 46.9 28.7 34.7 - - - - - - - - -
LLaVA-v1.5-13B (+SAT) - - - - - 76.2 89.7 61.5 73.0 80.7 64.6 44.4 76.6 72.7
LLaVA-Vid-7B (+SAT) - - - - - 78.7 81.2 66.2 79.3 88.2 62.6 48.1 66.1 73.4
Cambrian-8B 42.2 23.2 53.9 35.9 41.9 - - - - - - - - -

Baseline

Qwen-2.5-VL-7B-Instruct 45.8 42.8 59.3 39.3 38.8 71.2 79.3 56.9 79.6 69.1 73.4 53.3 78.2 88.8

Actial-7B (Ours) 47.7↑ 46.4↑ 60.3↑ 35.5 43.0 ↑ 83.5 ↑ 91.2 ↑ 68.7 ↑ 85.6 ↑ 88.5 ↑ 87.6 ↑ 99.2 ↑ 79.0 ↑ 84.6

- w/o K.I. 47.6 44.9 57.2 39.4 44.1 83.1 90.3 71.5 84.8 86.1 74.9 55.6 83.8 85.3
- w/o G.E. 46.6 47.1 63.3 27.9 41.2 73.1 88.6 61.5 59.0 83.5 86.6 99.2 79.0 81.8

Evaluation benchmarks. We use 3DSRBench [25], CV-Bench [37], and BLINK [12] to evaluate
the model’s abilities for spatial reasoning.

Training details. We use Qwen2.5-VL-7B-Instruct [1] as our baseline model. In the SFT phase, we
trained for 2 epochs with a learning rate of 5e-6, a batch size of 128 and 50 warm-up steps. We mix
the Viewpoint-100K dataset and pseudo CoT data as inputs. The interleave ratio is set to 0.9:0.1.

In the GRPO phase, we trained for 150 steps with a learning rate of 1e-6 and a batch size of 1024.
The model is trained from post-SFT model with an 4K token generation limit, sampling 16 samples
per input. During training, we set the Kullback–Leibler (KL) penalty [32, 31] to 0.2 and 1e-2 for the
hyper-parameters ϵ and β, respectively. Within the reward function, the format reward and the result
reward are each assigned a score of 0.5.

5.2 Evaluations

We evaluate Actial across multiple benchmarks using VLMEvalKit [11]. The performance results of
various MLLMs on 3DSRBench are primarily sourced from its paper [25]. We then post-process
the results of 3DSRBench using the official script [25]. Additionally, the performances of MLLMs
on CV-Bench and BLINK are primarily derived from [30]. The average score on CV-Bench is
recalculated following [37]. The results are shown in the Table. 1.

On the 3DSRBench, both knowledge injection and generalization enhancement lead to performance
gains in the model. Our ultimate model showcases a harmonious balance of the various improvements,
leading to optimize overall performance. Despite improvements, Actial remains slightly behind the
previous state-of-the-art models on this benchmark, limited by the baseline method’s performance.

While on CV-Bench, Actial achieves a substantial performance gain over the baseline and outper-
forms existing proprietary models. The improvements highlight the effectiveness of our proposed
approach to activate the spatial reasoning capabilities of MLLMs, leading to more accurate and
robust performance on visual-spatial tasks. This outcome underscores the importance of structured
knowledge injection and targeted training strategies in advancing the visual reasoning abilities of
large-scale models.

We mainly report the spatial tasks in BLINK following [30, 49]. The results of the multi-view
component (which is similar to the subtask of our Viewpoint-100K) demonstrate that mastering
foundational viewpoints is relatively straightforward for MLLMs. It provides evidence of the
capability of MLLMs to perceive and reason about spatial information, highlighting their potential
for advanced visual-spatial tasks. However, prior to specific activation and fine-tuning, existing
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Okay, here is the reasoning process for the question:
1. **Identify the objects**: 
We have two objects highlighted in the image - a door (in a red box) and a lamp (in a blue box). The door is on the left side of the 
image, and the lamp is positioned higher up on the right side.
2. **Understand the perspective**: 
The photo appears to be taken from a standing position, looking slightly towards the right side of the room where the door is located. 
The viewpoint seems to be from the counter area or slightly lower than the lamp.
3. **Compare the apparent sizes**: 
The door, despite being further away (on the opposite side of the room), appears larger in the frame compared to the lamp. The lamp, 
being higher up and further back, appears smaller.
4. **Analyze the perspective lines**: 
The lines receding from the door (like the implied horizontal line of the door frame) seem to converge towards the right side of the
image. The vertical lines of the door appear slightly distorted by perspective, appearing more compressed at the top. In contrast, the 
lamp, while high, does not show such strong perspective distortion in its apparent size compared to its distance.
5. **Answer question 1 (3D space)**: 
Based on the visual information and perspective cues, the door is further away from the camera's position than the lamp.
6. **Answer question 2 (Image frame)**: 
The door takes up more vertical space in the image frame compared to the lamp, indicating it is closer *within the frame* of the photo.
7. **Synthesize the answer**: 
If the user refers to "closer" in the context of the photo's frame, the door is closer. If "closer" refers to 3D space, the lamp is
closer. The prompt doesn't clarify, but the visual interpretation of "appears closer" in the frame often implies 3D position.

Q: Which object is closer to the camera taking this photo, the door (highlighted by a red box) or the 
lamp (highlighted by a blue box)?

The user is asking to compare the 
distance of two objects from the 
camera.
The door is highlighted by a red box 
and the lamp by a blue box.Looking
at the image, the lamp is on the 
ceiling, and appears further away 
than the door.
The door is on the wall, and is 
larger in the image, suggesting it's 
closer. 
The door (highlighted by a red box) 
is closer to the camera.

Gemini-2.5-Pro

Actial(Ours)

Figure 5: The reasoning process. Actial uses the correct spatial thinking approach.

large models perform at a level comparable to random guessing. This indicates the importance of
developing foundational spatial skills for spatial reasoning.

We aim to demonstrate three key points through our experiments and address the questions raised at
the beginning of this paper. First, current MLLMs have not yet fully mastered certain foundational
spatial skills, such as viewpoint understanding. The random performance on BLINK’s multi-view
task can evident this. Second, despite being trained on large-scale 2D data, these models possess
significant potential for learning 3D spatial perception. This is supported by our strong performance
on the viewpoint task, achieving a score of 99.2. Third, explicitly training MLLMs on basic spatial
skills can effectively enhance their spatial reasoning capabilities, leading to improved performance
across a variety of tasks. Our improvement compared to baseline on multiple tasks is consistent with
this point. Collectively, these findings highlight the critical importance of developing foundational
spatial abilities in MLLMs as a necessary step toward enabling them to tackle more complex and
nuanced visual reasoning tasks.

5.3 Ablation Studies

Knowledge Injection (SFT phase). The experimental results across most tasks indicate that knowl-
edge injection effectively improves model performance, highlighting its beneficial impact on the
learning process. Since SFT is task-specific and uses limited data diversity, it typically harms per-
formance on tasks outside the fine-tuning distribution. This explains the occasional instances of
marginally lower performance (e.g., the Orient. in 3DSRBench and the RelDep in Blink) compared
to the ablation model. However, we were pleasantly surprised to find that fine-tuning on viewpoint
tasks led to performance improvements on out-of-domain tasks, such as Height, Depth, and Relation.
This highlights the importance of viewpoint learning for enhancing the model’s overall spatial ability.

Generalization Enhancement (GRPO phase). The evaluation across various benchmarks demon-
strates that although our knowledge injection approach enhances model performance on specific
tasks, the homogeneity of these tasks and the training methods can result in performance degradation
on others. The subsequent generalization enhancement phase not only retains the improvements
achieved through knowledge injection but also effectively addresses the observed performance de-
clines. Moreover, this phase facilitates additional performance gains on tasks where the model
initially demonstrated strong capabilities, thereby achieving even greater improvement. However,
we also observed that generalization enhancement can lead to a decrease in metrics for some tasks
compared to the knowledge injection stage. For instance, on 3DSRBench, knowledge injection
improved the model’s understanding of height and location, but after generalization enhancement,
performance in these areas declined while improving in two other tasks. This suggests that relying
solely on result-based rewards can still affect the previously injected foundational knowledge to some
extent.
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6 Conclusion, Limitation and Impact

This study aims to activate the spatial reasoning ability within Multimodal Large Language Models.
Motivated by the need to bridge the gap between 2D visual understanding and robust 3D spatial
reasoning, we introduce Viewpoint Learning, a task designed to evaluate and improve MLLMs’
spatial reasoning abilities. We employ a two-stage fine-tuning strategy: first, SFT with hybrid cold-
start initialization on Viewpoint-100K injects foundational knowledge, followed by Reinforcement
Learning using the GRPO algorithm to enhance generalization. Our results show that this approach
significantly improves the model’s performance in both in-domain and out-of-domain reasoning tasks,
demonstrating a meaningful activation of its spatial reasoning ability. Although current MLLMs lack
an explicit understanding of 3D geometry, our findings indicate that targeted training strategies can
effectively unlock their potential for spatial reasoning. However, the scenarios and tasks included in
our dataset are relatively constrained, with all data being object-centric, which simplifies the problems
compared to more varied and complex settings. The tasks in our dataset primarily address the basic
aspects of Viewpoint Learning, when compared with more challenging tasks such as camera pose
estimation. Cultivating these foundational spatial skills is crucial for advancing MLLMs towards
more complex visual tasks. This work provides a practical pathway for improving 3D perception in
MLLMs, with direct applications in robotics, autonomous navigation, and 3D scene understanding.
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paper’s contributions and scope?

Answer: [Yes]

Justification: Our contributions are claimed in abstract and introduction.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in Section. 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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Justification: This paper does not give the theoretical result and proof.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have reported the experiment details.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: The open accesses to the data and code are in progress. But not completed yet.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have reported the experiment details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not display error bars in the figures and tables, but we report the average
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have reported the experiment details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential societal impacts in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any data or models with high risks in this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have achieved these.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets in our paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

We display the additional experiment results in Section. A and analyze the training process in Section.
B. We further present dataset examples and the utilized prompts in Section. C and Section. D,
respectively.

A Additional Experiments

A.1 Results on Viewpoint-100K

The test set of Viewpoint-100K consists of 1,000 examples. To assess human performance, we
randomly sampled 100 instances from the test set and conducted a human evaluation with three
annotators, resulting in an average accuracy of 97.67%. This high level of performance can be
attributed to our deliberate design choices during data construction; specifically, to ensure a reasonable
level of task difficulty, we restricted the angular difference between image pairs to a range of ±20 to
±100 degrees, which maintains a challenging yet discriminable task for both humans and models. In
comparison, the Qwen base model achieved an accuracy of only 12.9%, indicating limited capability
in handling the viewpoint estimation task without further training. After SFT, the model’s accuracy
improved significantly to 92.2%, demonstrating the effectiveness of training on labeled exemplars.
However, when GRPO was applied following SFT, the performance decreased to 81.4%, suggesting
that the RL objective may not align well with the downstream task or that the reward signal requires
further refinement.

A.2 Results on MMSI-Bench

To further illustrate the effectiveness and generalization capability of our approach on more complex
tasks, we conduct additional experiments on the more comprehensive and challenging MMSI-Bench
[46]. Due to our long CoT template length, we set the max tokens to 32K. As shown in Table. A1,
Actial achieves comprehensive improvements in many subtasks when compared to the baseline model.
Moreover, our model, with only 7B parameters, achieves performance comparable to that of larger
models and GPT-4o, and even outperforms them on certain tasks. The significant difference on the
MSR task is due to Actial generating excessively long reasoning chains when handling multi-step
inference, causing the output to be truncated before the correct answer is reached. This prevents
the model from producing complete and accurate responses. Addressing this issue by optimizing
reasoning efficiency and managing output length will be an important direction for future work.

A.3 Additional Ablation Study

We conducted this additional ablation experiment by mixing Viewpoint-100K, pseudo CoTs, and
SAT. We only use SFT (without GRPO) to fine-tune Qwen2.5-VL-7B-Instruct using the same training
parameters as in the previous experiments. We trained for a total of 2,000 steps (approximately 1.5
epochs). The ablation results are presented in the bottom section of Table. A1. The significant gap
demonstrates the effectiveness of our two-stage training framework and highlight the significant
performance gains achieved through GRPO in OOD tasks.

Table A1: Evaluation on MMSI-Bench. We color the best and the second-best results. ↑ indicates
improvement over the baseline.

MMSI-Bench Cam.-Cam. Obj.-Obj. Reg.-Reg. Cam.-Obj. Obj.-Reg. Cam.-Reg. Means. Appr. Motion-Cam. Motion-Obj. MSR Avg.

GPT-4o 34.4 24.5 23.5 19.8 37.6 27.7 32.8 31.8 35.1 36.8 30.8 30.3
Qwen2.5-VL-72B 25.8 34.0 34.6 23.3 34.1 36.1 45.3 27.3 27.0 30.3 27.3 30.7
InternVL2.5-78B 23.7 22.3 39.5 29.1 31.8 42.2 35.9 19.7 17.6 26.3 27.3 28.5
Qwen2.5-VL-7B-Instruct 23.7 24.5 19.8 25.6 32.9 33.7 42.2 24.2 18.9 30.3 23.2 26.5

Actial-7B(Ours) 29.0 ↑ 31.9 ↑ 28.4↑ 41.9 ↑ 28.2 33.7 31.3 22.7 27.0 ↑ 32.9 ↑ 20.7 28.9↑
Ablation Model 19.4 29.8↑ 27.2↑ 31.4 ↑ 30.6 34.9↑ 29.7 19.7 25.7↑ 25.0 26.3↑ 27.2↑
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(a) Response Length during GRPO

1 Epoch

(b) KL Loss during GRPO (c) Train Loss during SFT

Figure A1: Metrics changes during the training process.

B Training Analysis

Figure A1(a) presents the evolution of the model’s response length throughout the GRPO phase. Our
observations align with those reported in [13], where Actial displays an initial reduction followed
by a subsequent adjustment in response length. When contrasted with direct fine-tuning of the
baseline model, Actial demonstrates an extended reasoning length. The green line (without hybrid
cold-start initialization) reflects no significant increase in response length, attributable mainly to the
Supervised Fine-Tuning (SFT) stage. This stagnation can be explained by the composition of our
Viewpoint-100K dataset, which comprises exclusively multiple-choice questions devoid of reasoning
templates. Consequently, the model struggles to accurately achieve format rewards during the GRPO
process, and we introduce the hybrid cold-start initialization to improve such issue.

Figure A1(b) depicts the evolution in KL Divergence across different variants. The green line, which
represents the direct application of Viewpoint-100K for GRPO, exhibits a growing offset relative
to the initial strategy, suggesting that the baseline model’s original spatial reasoning capabilities
are inadequate for handling viewpoint-specific tasks. Conversely, utilizing the SAT dataset leads
to substantially lower KL divergence, underscoring the unique spatial reasoning demands posed by
our Viewpoint-100K dataset. Following knowledge injection, the KL divergence becomes notably
smoother, indicating the efficacy of integrating foundational viewpoint knowledge.

Figure A1(c) illustrates the pairwise loss observed during the Supervised Fine-Tuning (SFT) training
phase. Notably, when using our Viewpoint-100K dataset, there is a sudden and significant improve-
ment in performance (a trend also reflected in the validation curve). This rapid decrease excludes the
possibility of the model simply memorizing the answers since it appears within one single epoch.
Additionally, when using a hybrid cold-start initialization, which requires the model to learn reasoning
templates, the loss curve becomes more smoother. However, the sudden insight remains clearly
evident, reflecting its relevance to our viewpoint-based questions. We believe that this phenomenon
mainly comes from two reasons. First, our dataset consists of relatively simple multiple-choice
questions with only three options (one of which is a distractor), making it easy for the model to select
the correct answer even without proper reasoning. However, such correctness achieved through flawed
reasoning is insufficient for the model to truly understand and solve viewpoint-related problems,
leading to a oscillation phase of loss fluctuation. Second, as mentioned in the main text, existing
MLLMs tend to rely on incorrect 2D cues when solving 3D tasks. In contrast, viewpoint problems
require the model to learn how to properly utilize 3D spatial cues, resulting in a period where the
loss remains stagnant. Nevertheless, MLLMs do possess latent 3D perception capabilities. Once
the model learns to shift its perspective appropriately (seems to be like the activation), it can rapidly
generalize this understanding to similar tasks, leading to a sudden drop in loss.

C Dataset Examples

We show the examples of Viewpoint-100K in Figure. A3. We provide three types of questions,
including the horizontal translation and rotation from the camera’s perspective and the horizontal
translation from the object’s perspective. We also provide the accurate rotation angles in our dataset,
calculated from the camera parameters.
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Gemini-2.5-Pro
<think>
Okay, let's analyze the camera movement based on the two images provided.

**1. Identify the Images:**  
*Image 1: Shows an open book placed on a wooden shelf against a wood-paneled wall. The left page has minimal content, 

while the right page is partially obscured but shows some red lantern illustrations near the top. A gold-colored object 
(phone/power bank) props the book open. A sign (\"温馨提示...\") is visible on the wall to the right.*   

*Image 2: Shows the same book, shelf, wall, and gold object. The right page is now fully visible, revealing a 
detailed illustration. The sign on the wall is no longer in view, but a power outlet is now visible further to the right 
on the wall*

**2. Compare the Images - Visual Analysis:**
**From Camera's Perspective

*Framing:* In Image 1, the book occupies the center-left portion of the frame. The sign on the wall is clearly 
visible on the right. In Image 2, the book has shifted significantly to the left side of the frame. The sign is gone, 
and the power outlet, which must be located further right than the sign, is now included in the frame on the far right*   

*Perspective/Angle:* In Image 1, the camera views the book slightly from the left. The left page is more open to 
the camera, while the right page is viewed at a more oblique angle. We see the front edge and the right side (spine edge) 
of the book block. In Image 2, the camera views the book more from the right. The right page is now much more open and 
directly facing the camera, while the left page is viewed more obliquely. The front edge and right side of the book 
block are seen from a different viewpoint.*   

*Scale/Distance:* The book appears slightly larger in Image 2 compared to Image 1, suggesting a potential slight 
forward movement of the camera.*   

*Background:* The change in visible background elements (sign disappears, outlet appears) confirms a significant 
horizontal shift in the camera's position relative to the wall.*   

**From Object's (Book's) Perspective:**   
*Camera Position:* In Image 1, the camera is positioned somewhat to the left of the book's spine and slightly 

above it. In Image 2, the camera is positioned significantly to the right of the book's spine and slightly above it.*   
*Visible Surfaces:* The change in which page (left vs. right) is more directly facing the camera indicates a 

change in the camera's viewing angle relative to the book's orientation.*

**3. Analyze Specific Movements:**   
**Left/Right Translation:** The most apparent change is the shift of the book to the left within the frame and the 

appearance of background elements (power outlet) further to the right. This indicates the camera physically moved 
**right** relative to the scene between shots.*   

**Up/Down Translation:** The vertical perspective seems very similar. There's no strong indication of significant up 
or down movement. We can consider this negligible.*   

**Front/Back Translation:** The book appears slightly larger in Image 2, suggesting the camera moved slightly 
**forward** (closer to the book).*   

**Rotation (Yaw - around vertical axis):** In Image 1, the camera aims slightly towards the right relative to the 
book's spine (capturing the left page more frontally). In Image 2, the camera aims significantly towards the left 
relative to the book's spine (capturing the right page more frontally). To achieve this while translating right, the 
camera must have rotated **left** (counter-clockwise when viewed from above) around its vertical axis.*   

**Rotation (Pitch - up/down tilt):** Minimal change observed. Any change is likely negligible.*   
**Rotation (Roll - side tilt):** The horizontal lines of the shelf and wall appear consistently parallel to the 

image bottom edge. No significant roll detected.

**4. Synthesize the Trajectory:**
From taking Image 1 to Image 2, the camera primarily moved **right** and slightly **forward**. Simultaneously, it 

rotated **left** around its vertical axis (yaw). Up/down translation, pitch, and roll were minimal.

**5. Answer Question 1 (Horizontal Translation - Camera Perspective):**
From the camera's perspective, comparing its position in the second shot relative to the first, the camera moved 

horizontally to the **right**.

**6. Answer Question 2 (Horizontal Translation - Object Perspective):**   
From the object's (book's) perspective, imagine standing on the book facing forward (away from the wall). The camera, 

which was initially somewhat to your left (in Image 1), moved to be significantly to your right (in Image 2). Therefore, 
from the object's perspective, the camera's horizontal translation relative to the object was to the **left**.

**7. Answer Question 3 (Rotation around Vertical Axis - Camera Perspective):**
The camera rotated around its own vertical axis relative to its orientation in the first shot.
Direction: To change the view from favoring the left page (Image 1) to favoring the right page (Image 2) while 

physically moving right, the camera had to rotate **left** (counter-clockwise).
Estimate the angle: The change in perspective on the book's pages is significant. In Image 1, the camera is perhaps 

looking 20-30 degrees to the right of the book's spine normal. In Image 2, it's looking perhaps 20-30 degrees to the 
left of the spine normal. The total change in angle relative to the book is substantial. Estimating this change based on 
how much more \"open\" the right page becomes suggests a rotation of approximately **54 degrees** to the left.
</think>
<answer>A</answer>

Figure A2: An example of our generated pseudo CoT.
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1.<image><image>The object captured in these two photos did not 
move. From the camera's perspective, did the position of the 
camera that captured the second photo move relative to the first 
photo's camera position?

A: Move to the left  B: Move to the right  C: No movement

Select the correct option, please output only the option letter!

2.<image><image>The object captured in these two photos did not 
move. From the object's perspective, did the position of the 
camera that captured the second photo move relative to the first 
photo's camera position?

A: Move to the right  B: No movement  C: Move to the left

Select the correct option, please output only the option letter!

3.<image><image>The object captured in these two photos did not 
move. From the camera's perspective, did the orientation of the 
camera that captured the second photo rotate relative to the 
first photo's camera orientation?

A: No rotation  B: Rotate to the right  C: Rotate to the left

Select the correct option, please output only the option letter!

Figure A3: The QA examples of Viewpoint-100K. We provide three types of questions.

D Prompts

Our system prompt is copied from VLAA [6], shown as follow:

System Prompt:

You are Actial, a helpful assistant with excellent reasoning ability.
A user asks you a question, and you should try to solve it.
You should first think about the reasoning process in the mind and then provides the user with
the answer.
The reasoning process and answer are enclosed within <think> </think> and <answer>
</answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer
here </answer>"

We show an example of our generated pseudo CoT in Figure. A2. The human-assisted CoT template
is as follow:

Human-Assisted CoT Template:

Based on the content presented in the two pictures, analyze the movement trajectory of the
camera from shooting the first picture to shooting the second one, Describe the movement
trajectory specifically, including front, back, left, right, up and down, as well as rotation . and
then answer the following two questions based on the camera trajectory.

1. From the camera’s perspective, determine the horizontal translation of the second camera
relative to the first camera.
2. From the object’s perspective, determine the horizontal translation of the second camera
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relative to the first camera.
3. From the camera’s perspective, determine the rotation of the second camera around its
own verticalaxis relative to the first camera’s orientation:
- Estimate the rotationangle in degrees.

Thinking:
I need to get the relevant content to answer the user’s question.
Here’s a thinking process to analyze the camera movement between the two images:

Understand the Goal: The user wants to know how the camera moved between taking the first
picture (1.jpg) and the second picture (2.jpg). The object did not move in any way from the
first picture to the second. The description needs to cover translation (front/back, left/right,
up/down) and rotation. Then, I need to answer two specific questions: horizontal translation
(left/right/none) and rotation angle around the camera’s vertical axis.

1.Identify the Images:
Image 1: 1.jpg (Let’s call this Pic 1)
Image 2: 2.jpg (Let’s call this Pic 2)
The object in both pictures is a red, quilted handbag with a gold chain strap, placed on a
blue-and-white striped surface with yellow stars and pink crescents.

2.Compare the Images - Visual Analysis:

From camera’s perspective:

Frames:
In Pic 1, we see more of the surface above the bag. From a camera centered perspective, we
can see the left plane of the bag, but we cannot see the right plane of the bag.
In Pic 2, from a camera-centered perspective, the front of the bag is visible, with the golden
chain strap and logo pointing toward the bottom of the image. The left side is not visible.

Perspective/Angle:
In Pic 1, from the camera’s perspective, shows more of the front and the left side of the bag.
The chain strap is clearly visible and faces towards the bottom left of the photo.
In Pic 2, from the camera’s perspective, shows more of the front side of the bag. The clasp
is still visible but from a slightly different angle, it faces towards the bottom of the photo.
The top surface of the bag seems a bit more visible in Pic 2, suggesting a slightly higher
viewpoint or a slight downward tilt.

From object’s perspective:

Frames:
In Pic 1, define the side of the bag featuring the gold chain strap and logo as its front. From
the bag’s perspective, the camera is positioned slightly to the left and above the bag, with a
viewpoint angled downward and toward the left plane of the bag.
In Pic 2, from the bag’s perspective, the camera moves to the right. It is now positioned
slightly in front of and above the bag, with a slight downward angle.

Perspective/Angle:
In Pic 1, from the bag’s perspective, both the front and left planes are visible to the camera.
In Pic 2, from the bag’s perspective, the left plane is no longer visible, indicating that the
camera has rotated to face more directly in front of the bag.

Scale/Distance: The bag appears roughly the same size in both images, suggesting minimal
movement towards or away from the object (front/back translation).
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Background: The wall/surface behind the striped fabric looks similar in both, although the
angle relative to the bag changes.

3.Analyze Specific Movements:
Left/Right Translation: If the camera undergoes only horizontal translation, we can compare
the position of the bag relative to the image frame. However, in this case, the camera
trajectory involves rotation as well. In Pic 1, both the front and left planes of the bag are
visible. In Pic 2, the left plane is no longer visible, while the front plane remains in view. The
change in visible surfaces indicates that the camera must have moved to the left relative to
the bag.

Up/Down Translation: In Pic 1, there’s more space above the bag. In Pic 2, there’s less space
above the bag, and the camera orientation seems slightly higher relative to the bag’s top
surface. This suggests the camera moved slightly up.

Front/Back Translation: The scale of the bag seems very similar. There’s no strong indication
of significant movement towards or away from the bag. Let’s assume minimal or no
front/back translation.

Rotation (Yaw - around vertical axis): In Pic 1, the front plane of the bag faces toward the
bottom-left of the photo. In Pic 2, the front plane faces toward the bottom of the photo. Given
the leftward horizontal translation of the camera, to achieve this change in perspective while
keeping the bag relatively stationary, the camera must have rotated rightward (clockwise
when viewed from above) around its vertical axis.

Rotation (Pitch - up/down tilt): The top surface seems slightly more visible in Pic 2. This
could be due to the upward translation or a slight downward tilt (pitch down). Given the
upward translation seems likely, a slight downward tilt might also be present, but the upward
movement is more apparent. Let’s focus on the dominant movements.

Rotation (Roll - side tilt): The horizontal lines of the striped fabric and the wall seem roughly
parallel to the image edges in both pictures. There’s no significant roll.

4.Synthesize the Trajectory:
From Pic 1 to Pic 2, the camera moved primarily left and slightly up. It also rotated rightward
around its vertical axis (yaw). There was likely minimal front/back movement and minimal
roll or pitch changes.

5.Answer Question 1 (Horizontal Translation in camera’s perspective):
The camera moved horizontally relative to the bag.
Did it move left or right? It moved left.
The question asks for the horizontal translation of the second camera relative to the first
camera. The answer is left.

6.Answer Question 2 (Horizontal Translation in object’s perspective):
Consider the object’s perspective, the camera now moved to the right. Did it move left or
right? It moved right.
The question asks for the horizontal translation of camera in object’s perspective.
The key point of the problem is to transform the reference frame onto the object. The answer
is left.

7.Answer Question 3 (Rotation around Vertical Axis in camera’s perspective):
The camera rotated around its vertical axis relative to its orientation in the second shot.

Did it rotate left or right? It rotated rightward.
Estimate the angle. Looking at the changes in visible parts of objects in the two photos, a
significant rotation occurred. Comparing the visible faces, the first photo includs the front
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and left part of the bag in the camera’s perspective. In Pic 2, we see the front almost squarely,
maybe slightly revealing the right edge. It looks like roughly a 80 to 90-degree change in
viewing angle relative to the bag.

Did it rotate to the left or right? Since the original left part of the bag in the first photo can
not be seen in the second photo, it represents the camera rotates to the right, resulting in more
visible part of the left side of the front of the bag.
Estimate: Let’s go with approximately 87 degrees. (This is an estimation based on the visual
change). The answer is the camera rotates 87 degrees to the right.

7.Format the Output: Combine the trajectory description and the answers to the specific
questions clearly. Ensure the answers use the specified format.

The prompt used to generate the pseudo CoTs is as follow:

Pseudo CoT Generation:

<image><image>

I’ll give you an example, please follow the example to analyze the camera movement between
the two images.

[Human-Assisted CoT Template]

Please analyze the given two images using the same approach as I provided above. Including
the Image Identify, Visual Analysis, Analyze Specific Movements, Synthesize the Trajectory,
Answer Question.

Do not use the relative position changes of objects in the image, consider the changes in
three-dimensional space.

The correct answer is: move to the gt[0] in cameraś perspective; move to the gt[1] in objectś
perspective; rotate to the gt[2] with about gt[3] degrees. Please provide a sufficiently detailed
analysis..
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