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ABSTRACT

The study of proteins is crucial in various scientific disciplines, but understanding
their intricate multi-level relationships remains challenging. Inspired by the se-
quence and structure understanding of Large Protein Models (LPMs), we introduce
a new Mamba-based ProteinAdapter, to efficiently transfer the broad knowledge
encapsulated in multiple LPMs, e.g., ESM-1b and ESM-IF, to task-specific insights.
ProteinAdapter could largely save labor-intensive analysis on the 3D position and
the amino acid order. Specifically, (1) with a modest number of additional pa-
rameters, ProteinAdapter facilitates multi-level protein representation learning by
integrating both sequence and geometric structure embeddings from LPMs; (2)
based on the learned embedding, we further scale up the proposed ProteinAdapter
to various tasks with a unified Multi-Scale Predictor, which optimally harnesses
the learned embeddings through task-specific attention. Albeit simple, the pro-
posed method is scalable to multiple downstream tasks without bells and whistles.
Extensive experiments on over 20 tasks show that ProteinAdapter outperforms
state-of-the-art methods under both single-task and multi-task scenarios.

1 INTRODUCTION

Proteins serve as vital constituents and functional units for life, underscoring the significance of
protein research for life sciences. As understanding their intricate structure-function relationships
remains costly and time-consuming, there is an urgent need to develop a discriminative protein
representation for enhancing various computational biological analyses. Recently, Large Protein
Models (LPMs) have been verified as superior representation learners from different structure levels,
containing 1D Protein Language Models (PLMs) (Rives et al., 2021; Meier et al., 2021; Lin et al.,
2022) and 3D Protein Structure Models (PSMs) (Hsu et al., 2022; Zhang et al., 2023b;a). These
works motivate us to ride on the coattails of LPMs, seize the windfalls of multi-level proteomic
knowledge, and explore multi-level protein embeddings for efficient protein representation learning.
However, considering the complex characteristics of proteins, there remain two key challenges: (1)
multi-level complementarity, and (2) multi-scale integration. On the one hand, for various protein
tasks, different levels of structure, such as amino acid sequences (primary structure) and geometric
coordinates (tertiary structure) exhibit complementarity. Namely, for the protein-protein interaction
prediction task, 1D sequence information can be used to predict potential protein partners, while 3D
coordinate information can further help clarify the specific details of these interactions. On the other
hand, a protein can encompass multiple smaller substructures that are meaningful at different scales.
Namely, for the protein function classification task, the sequence lengths of different functional
regions or domains exhibit variability, ranging from a few amino acid residues to hundreds.

In an attempt to address both limitations, we propose a new Mamba-based multi-level adapter,
called ProteinAdapter, to take advantage of existing pre-trained large models for efficient protein
representation learning. Our ProteinAdapter explicitly captures the interrelations and complementarity
among multi-level protein representations. Specifically, (1) to facilitate multi-level interrelations,
the proposed ProteinAdapter directly takes the intermediate feature from pretrained ESM-1b (Rives
et al., 2021) and ESM-IF1 (Hsu et al., 2022) as inputs, and outputs a multi-level mixed representation
embedding containing knowledge from both 1D and 3D structure levels. ProteinAdapter consists of
a pre-alignment module and stacked Mamba Fusion Block (MFBlock), in which the mamba-based
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Figure 1: Overview of the proposed framework. The primary 1D sequence and the tertiary 3D
structure are first individually fed into two Large Protein Models (LPMs) to obtain their corresponding
embeddings. The proposed ProteinAdapter is to fuse the complementary embeddings from both
levels to obtain the multi-level embedding. Finally, the merged multi-level embedding is fed into a
multi-scale predictor to further take both local and global protein properties into consideration.

pre-align module effectively captures long-range features from single-level protein embeddings while
the MFBlock aims to combine complementary information from multi-level protein features. (2)
Aiming at multi-scale integration, as a minor contribution, we further design a multi-scale predictor
for various downstream tasks. Specifically, the predictor adopts a hierarchical pyramid structure that
dynamically adjusts the weights between different sizes to ensure a comprehensive understanding of
the mixed representation. Furthermore, different from conventional multi-task methods using single-
scale generic representations, our multi-scale predictor naturally enables applicability in multi-task
scenarios. Our contributions can be summarized as follows:

• A Mamba-based multi-level adapter, dubbed ProteinAdapter, is proposed for parameter-
efficient fine-tuning on pre-trained large protein models, which effectively merges protein
embeddings from different structure levels.

• A multi-scale hierarchical predictor is further designed to utilize the merged multi-level
protein representation for various protein tasks, which fully integrate and utilize the protein
embeddings across different scales.

• Due to the use of frozen protein models and the lightweight adapter, our method is more
compute-efficient than existing state-of-the-arts. Extensive experiments on over 20 tasks
show that the proposed method surpasses previous methods by large margins. Furthermore,
our ProteinAdapter trained in a multi-task setting still consistently outperforms existing
counterparts on most tasks, indicating the ability of protein representation and generalization.

2 RELATED WORK

Protein Representation Learning. Proteins exhibit multi-level structures. Existing protein represen-
tation methods mainly focus on the 1D primary and the 3D tertiary structures understanding. For
the primary structure, regarding protein sequences as the language of life, many Protein Language
Models (PLMs) (Bepler & Berger, 2019; Strodthoff et al., 2020; Vig et al., 2020; Rives et al., 2021;
Amidi et al., 2018; Elnaggar et al., 2023) have been proposed for sequence-based protein representa-
tion learning with large-scale protein sequence corpora. For the tertiary structure, several Protein
Structure Models (PSMs) (Hsu et al., 2022; Fan et al., 2022; 2023; Hermosilla et al., 2020; Zhang
et al., 2023b) propose to extract features directly from the geometric information of amino acids or
atoms. Since each structure of the protein has its own merit and driving forces in describing specific
characteristics, several works (Wang et al., 2023; Zhang et al., 2023a; Fan et al., 2022; 2023) have
been proposed to explicitly model the complementary information between different levels. However,
due to the computation limits, these methods usually process adjacent amino acids within limited
neighboring graph nodes (Zhang et al., 2023b; Sun et al., 2022) or small convolution kernels (Fan
et al., 2022; 2023) with stacked downsampling to expand the receptive field for global perception.
The former local propagation pattern with a fixed small region limits the perception field for protein
functional regions. The latter downsampling operations with fixed length also break the relation
between neighbor functional regions in proteins. Moreover, these methods still require pretraining
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from scratch on large protein datasets, followed by fine-tuning for deployment to each subtask. In this
work, we directly use the power of previous well-trained Large Protein Models (LPMs) to acquire
discriminative protein embeddings. Different from these methods, our ProteinAdapter leverages the
trend of large models by directly utilizing two single-level models focused on different structures (i.e.,
ESM-1b (Rives et al., 2021) for 1D sequence and ESM-IF1 (Hsu et al., 2022) for 3D coordinates),
and achieves multi-level protein representations through an efficient Mamba-based adapter.

State Space Model (SSM). State Space Models (SSM) (Gu et al., 2021a;b; Smith et al., 2022),
originating from classical control theory, have become practical components for constructing deep
networks due to their cutting-edge performance in analyzing long sequential data. Structured State
Space Sequence Models (S4) (Gu et al., 2021a) introduces the concept of normal plus low-rank,
thereby effectively reducing the computational complexity associated with the SSM. Subsequently,
S5 (Smith et al., 2022) and H3 (Fu et al., 2022) further introduce a parallel scan on a diagonalized
linear SSM, narrowing the performance gap between the SSM and Transformer. Mamba (Gu &
Dao, 2023) further proposes a selection mechanism for dynamically extracting features from input
data, which outperforms Transformer on various 1D datasets while requiring significantly fewer
computational resources. However, the methods discussed above primarily focus on Mamba’s
application and directionality, leaving the potential of the SSM in protein representation largely
unexplored. Recently, ProteinMamba (Xu et al., 2024) introduces a Mamba-based two-stage model
for protein representation, yet the performance is severely limited due to only considering the
sequence information, and it still requires time-consuming pretraining on large-scale datasets. In
contrast, our ProteinAdapter is able to leverage both primary and tertiary protein information and can
be efficiently deployed to various downstream tasks with a minimal number of parameters.

Parameter Efficient Fine-Tuning (PEFT). To utilize the rich evolutionary and biological patterns
from these pretrained LPMs, ESM-GearNet (Zhang et al., 2023a) makes the first attempt by replacing
the original graph node with the well-learned 1D sequence embedding produced by ESM-1b (Rives
et al., 2021). However, this method mainly focuses on the pretraining of a complex local structure
encoder from scratch. To fully unleash and efficiently utilize the power of the off-the-shelf large
models, Parameter-Efficient Fine-Tuning (PEFT) methods (Li & Liang, 2021; Lester et al., 2021; Liu
et al., 2022; Houlsby et al., 2019; Hu et al., 2021) have prevailed recently in both Natural Language
Processing (NLP) and Computer Vision (CV) communities. Existing PEFT methods can be roughly
divided into three parts: Prefix-tuning (Li & Liang, 2021; Lester et al., 2021; Liu et al., 2022),
Adapter-tuning (Houlsby et al., 2019), and LoRA (Hu et al., 2021). In this paper, we resort to the
adapter by adding only a few trainable parameters for different downstream protein tasks, while the
parameters of the original LPMs are fixed. To the best of our knowledge, this is the first adapter-based
work exploring the parameter-efficient fine-tuning of pre-trained Large Protein Models (LPMs).

3 METHODS

Aiming at efficient utilization of off-the-shelf pre-trained models for protein representation learning,
there are two key properties that differentiate protein language from natural language: multi-level and
multi-scale. First, a protein can target various structural levels to carry out its functions. Each level
possesses distinct advantages and underlying factors in elucidating particular attributes. Consequently,
it is necessary to consider both 1D and 3D structures for comprehensive protein representation.
Second, due to their distinct biological functions, the scale of functional regions in different proteins
typically varies. Likewise, due to genetic differences, the scale of the same functional regions is often
inconsistent across different species (Gabaldón, 2008). Thus the predictor should possess multi-scale
perceptual capabilities to fully leverage the protein representation for various downstream tasks.
Considering these two properties, as shown in Figure 1, our method consists of three key components:
pre-trained protein models, a multi-level ProteinAdapter, and a multi-scale predictor.

3.1 ACQUIRING MULTI-LEVEL PROTEIN EMBEDDINGS WITH PRE-TRAINED MODELS

Recently, large Protein Language Models (PLMs) (Vig et al., 2020; Rao et al., 2020; Rives et al.,
2021) have demonstrated strong capabilities in understanding protein sequences, which encourages
us to leverage pre-trained sequence embeddings with rich information In our approach, we use a
powerful PLM, ESM-1b (Rives et al., 2021), as our 1D protein encoder, which takes protein sequences
as input and outputs the sequence embedding Eseq .
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Figure 2: Architecture of the ProteinAdapter, which consists of a pre-alignment module and multiple
MFBlocks. The sequence embedding Eseq and structure embedding Estr from pretrained LPMs first
undergo processing through their respective Mamba blocks, after which they are summed to obtain
the initial fused embedding. The processed single-level embedding E

′

str, E
′

str, and the preliminary
multi-level embedding E

′

fusion are then jointly fed into a series of MFBlocks for deep integration.

However, considering that PLMs do not directly incorporate protein structures as input, they are
limited in capturing intricate structural features. Given the importance of protein structures in
determining functions, we adopt another Protein Structure Model (PSM), ESM-IF1(Hsu et al., 2022),
as the 3D structure encoder. As a multi-level complement to the sequence embedding, the structure
embedding Estr obtained with ESM-IF1 effectively encapsulates geometric information on proteins
within sequence embedding Eseq .

3.2 INTEGRATING SEQUENCE-STRUCTURE FEATURES WITH PROTEINADAPTER

Despite the superiority of existing PLMs and PSMs in sequence and structure understanding, they are
individually trained on single-level protein data. This implies the need to effectively integrate their
embeddings while minimizing the reduction in their respective unimodal representation capabilities.
To preserve such unimodal information when injecting the cross-level information from each other,
in this subsection, we propose to integrate sequence-structure features with a new ProteinAdapter.

The current Mamba architecture cannot effectively handle multiple-feature integration as it lacks
mechanisms similar to cross-attention. As an improvement, we designed a Mamba-based fusion
mechanism in our ProteinAdapter for multi-level protein representation. As shown in Figure 2,
ProteinAdapter consists of a pre-alignment module followed by several MFBlocks.

Pre-alignment. We first deploy several respective Mamba blocks (Gu & Dao, 2023) on each single-
level embedding as feature preprocessing. Subsequently, they undergo a fuse operation by simple
addition to obtain an initial fusion feature Efusion. To reduce channel redundancy and enhance the
expressive power of different channels, we further integrate Efficient Channel Attention (ECA) (Wang
et al., 2020) to the fused embedding. Overall, the output after pre-alignment can be expressed as:

E
′

fusion = ECA(Conv(Mamba(Estr) +Mamba(Eseq))). (1)

More details on Mamba are given in the Appendix A.

Mamba Fusion Block (MFBlock). The MFBlock consists of three branches based on the Mamba
architecture, which leverages level-specific protein features to guide multi-level embedding fusion,
aiming to capture local detail characteristics from various protein levels. The input to the MFBlock
is the initial fused feature E

′

fusion derived from the pre-alignment module. Additionally, two
more branches are incorporated, each receiving protein features E

′

seq and E
′

str from distinct levels.
Each of the three branches goes through layer normalization, 1D convolution, SiLU activation, and
parameter discretization, followed by passing through the SSM to generate an output. These outputs
are modulated by a gating factor and added to the output from the previous block, producing the
final multi-level protein embedding Efusion guided by level-specific features. More details on the
MFBlock are given in Algorithm 1.
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Figure 3: Architecture of the Multi-Scale Predictor. In each stage, the input embedding first undergoes
an overlapping patch embedding block for 2× downsamping, and then undergoes the encoder for
multi-head self-attention. N and C represent the number of features and channels respectively. We
deploy an efficient transformer as the Encoder, where the key and value is downsampled with s = 4.

Finally, considering amino acids primarily react with their surrounding neighbors, we further employ
1D convolution with sliding windows after the last MFBlock, to extract local features from the
concatenated multi-level embeddings. After such alignment, the PSM is enriched by the valuable
property information within PLM, to capture the protein property information with different levels
while preserving its original representation powers.

3.3 ENHANCING PYRAMIDAL REPRESENTATIONS WITH MULTI-SCALE PREDICTOR

After thoroughly fusing the sequence and geometric embeddings through ProteinAdapter, the obtained
multi-level embedding contains rich evolutionary and biological patterns underlying both levels of
protein structures. Now we move a further step to fully utilize the multi-level embedding for
downstream tasks. As shown in Figure 3, we design a multi-scale predictor to efficiently extract and
utilize protein features in a hierarchical manner.

Patch Embedding. During each stage, an overlapping patch embedding block (Wang et al., 2021a;
2022) with downsampling rate 2 is performed to halve the protein resolution and build a pyramid
architecture. Specifically, given the embedding Ei−1 ∈ RNi−1×Ci−1 from the previous stage i− 1 as
input, we feed it to a 1D convolution to acquire the downsampled embedding Ei ∈ RNi×Ci , where
Ni is computed as N/2i. In our implementation, we set channel numbers C1, C2, C3, C4 as 512,
512, 1024, 1024. The 1D convolution is set as the stride 2, kernel size 3, zero padding size of 1, and
the kernel number of Ci. This downsampling patch embedding block flexibly adjusts the feature
scale in each stage, making it possible to construct a feature pyramid for the Transformer. In this way,
our method can handle longer input protein embedding with limited resources.

Transformer Encoder. Following existing efficient transformer methods (Wang et al., 2022; Han
et al., 2023), we adopt zero padding position encoding into the transformer encoder. In our imple-
mentation, we further use a linear attention mechanism (Katharopoulos et al., 2020) that uses average
pooling to reduce the sequence length n with a pooling size s = 4 before the attention operation, as
shown in Figure 3. We also employ a focused function (Han et al., 2023)on the attention map, to
pay more attention to those effective functional regions. In our implementation, we use dynamic
batching (Rives et al., 2021) to handle variable-length sequences for higher computational efficiency.

Multi-Scale Prediction. Finally, the features from various scales are linearly mapped to the dimen-
sions corresponding to downstream tasks. Then, through a set of learnable parameters, the weights of
different scales are dynamically adjusted, thereby achieving adaptability to different tasks and the
possibility of multi-task learning.
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4 EXPERIMENTS

4.1 EVALUATION TASKS AND DATASETS

To validate the efficacy of ProteinAdapter, we conduct tests on over 20 tasks. Since our model
explicitly leverages multi-level protein data, we separately assess the model’s ability to protein
sequences and structures understanding on the PEER (Xu et al., 2022), ATOM3D (Townshend et al.,
2020), and several other benchmarks. Since the PEER benchmark only contains 1D sequences,
we further validate the performance on four sequence-structure paired datasets. We also conduct
experiments with predicted protein structures (see Section 4.2). Subsequently, we evaluate the
performance in a multi-task setting on the PEER benchmark, verifying its generalization capability.
We then compare the efficiency superiority of ProteinAdapter against the current LPMs. Finally,
we conduct a series of ablation studies to confirm the effectiveness of our multi-level adapter and
multi-scale predictor. More details on the benchmarks and each task can be found in our Appendix C.

4.2 TRAINING SETUP

For the sequence-based PEER benchmark, due to the lack of corresponding 3D coordinate information,
we simply replaced the structural embedding with another layer of sequence embedding (i.e., layer 32
and 33 of ESM-1b). Another alternative approach is to use a pre-trained structure prediction model
ESMFold (Lin et al., 2022) to generate pseudo structures. Due to computational limitations, we only
conducted multi-level performance tests on the Stability Prediction and Fold Classification tasks
for the PEER benchmark. The Stability Prediction dataset has the shortest average sequence length
(less than 70). For the Fold Classification task, we can collect the corresponding structures from
RCSB-PDB (Berman et al., 2000b). Moreover, for the PPI task that takes paired proteins as inputs,
we take the multi-level embeddings obtained for each of the two proteins, and then feed them into an
MLP predictor defined based on the concatenation of the embeddings of the two proteins. For the PLI
task which has protein-ligand inputs, we follow previous practices (Hu et al., 2019; Sun et al., 2019),
and involve an additional Graph Isomorphism Network (GIN) (Xu et al., 2018) with 4 layers and
256 hidden dimensions as the ligand graph encoder. As for the ATOM3D benchmark (Townshend
et al., 2020), we can directly extract their protein sequences from the mdb or pdb files. Our method
is implemented based on PyTorch 1.13.1 with CUDA 11.7. All experiments are conducted on one
NVIDIA Tesla A100 (80GB). As for other compared methods, we deploy the same default training
settings in the benchmark (Xu et al., 2022; Townshend et al., 2020).

4.3 SINGLE-TASK vs. MULTI-TASK

Single-Task Learning. Given a task t ∈ T from the pool T of benchmark tasks, a task-specific loss
function Lt is defined to measure the correctness of model predictions on training samples against
ground truth labels. The objective of learning this single task is to optimize model parameters to
minimize the loss Lt on this task.

Multi-Task Learning. We further delve deeper into multi-task learning to validate the generalization
ability of ProteinAdapter. Similar to PEER(Xu et al., 2022), our training objective comprises a
primary task and a supportive task. Following the principle that “protein structures determine
their functions” (Hegyi & Gerstein, 1999), we employ three structure prediction tasks, i.e., contact
prediction, fold classification and secondary structure prediction, as the auxiliary task. In more detail,
when presented with a primary task tp characterized by loss Ltp and a supportive task ts characterized
by loss Lts , our multi-task model follows the framework of hard parameter sharing (Ruder, 2017).
Within this framework, we utilize a universal protein sequence encoder for all tasks, and a ligand
graph encoder for protein-ligand interaction prediction tasks. Throughout the multi-task learning
process, the network parameters are fine-tuned based on the combined loss of the primary and
supportive tasks: L = Ltp + λLts . Here, λ represents the balancing factor for the two objectives,
defaulting to 1.0 unless otherwise mentioned. The training iterations are consistent with single-task
learning on the primary task, and we only evaluate one primary task to maintain consistency with the
PEER benchmark.

Optimization Objective. Following PEER Benchmark (Xu et al., 2022), the fluorescence, stability,
β-lactamase activity, PPI affinity, PDBbind and BindingDB prediction tasks are trained with Mean
Squared Error (MSE); the solubility, subcellular localization, binary localization, fold, secondary
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Table 1: Experimental results on PEER benchmark and other datasets under single-task learning
setting. ↑ indicates that higher values correspond to better performance. To ensure a fair comparison,
we only conducted the evaluation of ProteinAdapter to other residue sequence-only methods. The
best performance is marked in blod and the second performance is underlined.

Task Vanilla Encoder Pre-trained LPMs ProteinMamba
(Xu et al., 2024)

SaProt
(Su et al., 2024)

ProteinAdapter
(w/o structure)Transformer CNN ProtBert ESM-1b ESM-2

Flu ↑ 0.643 0.682 0.679 0.701 0.697 0.683 0.699 0.703
Sta ↑ 0.649 0.639 0.771 0.779 0.735 0.753 0.755 0.785
β-lac ↑ 0.261 0.781 0.731 0.855 0.904 0.788 0.896 0.897
Sol ↑ 70.12 64.43 68.15 70.23 70.12 68.25 70.88 70.65

GB1 ↑ 0.271 0.502 0.634 0.685 0.701 0.706 0.711 0.709
AAV ↑ 0.681 0.746 0.794 0.785 0.795 0.754 0.792 0.795

Thermo ↑ 0.545 0.494 0.660 0.687 0.677 0.674 0.679 0.683

Table 2: Experiments with GT structures on various datasets. ↑ indicates higher values correspond to
better performance. The best performance is marked in blod with the second performance underlined.
(3+1)D represents methods with sequence-structure paired inputs.

Input Method Fold Classification Enzyme
Reaction ↑

Gene Ontology Enzyme
Commission ↑Fold ↑ Superfamily ↑ Family ↑ BP ↑ MF ↑ CC ↑

1D
CNN (Shanehsazzadeh et al., 2020) 11.3 13.4 53.4 51.7 0.244 0.354 0.287 0.545
Transformer (Rao et al., 2019b) 9.22 8.81 40.4 26.6 0.264 0.211 0.405 0.238
ESM-1b (Rives et al., 2021) 26.8 60.1 97.8 83.3 0.452 0.657 0.477 0.864

3D
GCN (Kipf & Welling, 2016) 16.8 21.3 82.8 67.3 0.252 0.195 0.329 0.320
GAT (Veličković et al., 2017) 12.4 16.5 72.7 55.6 0.284 0.317 0.385 0.368
3D CNN (Derevyanko et al., 2018) 31.6 45.4 92.5 72.2 0.240 0.147 0.305 0.077

(3+1)D

IEConv (Hermosilla et al., 2020) 47.6 70.2 99.2 87.2 0.421 0.624 0.431 —
GearNet-Edge (Zhang et al., 2023b) 44.0 66.7 99.1 86.6 0.403 0.580 0.450 0.810
CDConv (Fan et al., 2022) 56.7 77.7 99.6 88.5 0.453 0.654 0.479 0.820
SaProt-PDB (Su et al., 2024) 52.5 77.8 99.6 87.7 0.465 0.669 0.415 0.888
ESM-GearNet (Zhang et al., 2023a) 55.1 82.0 99.9 88.4 0.491 0.677 0.501 0.883
ProteinAdapter (w/ GT structure) 56.5 81.7 99.9 89.2 0.495 0.681 0.501 0.885

structure, yeast PPI and human PPI prediction tasks are trained with cross-entropy loss; the contact
prediction task is trained with binary cross-entropy loss. As for ATOM3D benchmark (Townshend
et al., 2020), we use MSE loss for regression tasks and cross-entropy loss for classification tasks.

4.4 COMPARISONS

Evaluation on Single-Task Learning. (1) Sequence-only input: Table 1 shows the performance
of ProteinAdapter on the PEER (Xu et al., 2022) benchmark. Notably, as the PEER benchmark is
designed for protein sequence understanding and only provides sequence information, we instead
replace the structural embedding in our baseline with sequence features from different layers of
ESM-1b, as mentioned in Section 4.2. It can be observed that for sequence-based tasks in the PEER
benchmark, our ProteinAdapter achieves favorable performance against other sequence-only encoders.
This is mainly because our adapter not only performs multi-level feature interactions but also can
optimize each single-level protein representation through Mamba. (2) Sequence-Structure input.
In addition to sequence-only experiments, we also tested our ProteinAdapter on four downstream
tasks using sequence-structure paired data to fully explore its potential in fusing multi-level protein
features. Results in Table 2 demonstrate the effectiveness of the proposed ProteinAdapter that utilizes
features from pre-trained LPMs and further addresses the multi-level complementarity through the
Mamba fusion mechanism. As for the structure-based tasks in the ATOM3D benchmark, Table 3
shows that our ProteinAdapter consistently achieves state-of-the-art performance, since our method
explicitly utilizes multi-level protein knowledge.

Evaluation on Multi-Task Learning. We then conduct multi-task learning experiments following
the settings of the PEER benchmark, the results are shown in Table 4. It can be observed that although
our method has already made full use of the sequence information, using other structure-related
prediction tasks as an auxiliary can still improve the performance of the central task to some extent.
This experiment indicates the complementary role of structural information (even when implicitly
embedded in the protein sequence) for sequence tasks, and also demonstrates that our method has
decent generalization capability.
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Table 3: Atom-level results on ATOM3D benchmark results under single-task learning. “—” indicates
a non-applicable setting. “∗” indicates that the original implementation in ATOM3D benchmark. The
best performance is marked in blod and the second performance is underlined.

Task CNN∗ GNN∗ ENN∗ GearNet-Edge
(Zhang et al., 2023b)

GVP-GNN
(Jing et al., 2021)

SiamDiff
(Zhang et al., 2024)

ProteinAdapter
(w/ GT structure)

SMP ↓ 0.754 0.501 0.052 0.067 0.049 0.023 0.019
PIP ↑ 0.844 0.669 — 0.868 0.866 0.882 0.884
RES ↑ 0.451 0.082 0.072 0.443 0.527 0.460 0.529
MSP ↑ 0.574 0.609 0.574 0.632 0.680 0.695 0.677
LBA ↓ 1.416 1.601 1.568 1.330 1.594 1.057 1.063
LEP ↑ 0.589 0.681 0.663 0.625 0.628 0.711 0.731
PSR ↑ 0.789 0.750 — 0.780 0.845 0.831 0.827
RSR ↑ 0.372 0.512 — 0.397 0.330 0.341 0.533

Table 4: PEER benchmark results under multi-task learning setting. Red means the average results
outperform the original single-task learning baseline; gray results are the same as the baseline; blue
results underperform the baseline; “-” indicates not applicable for this setting. Abbr., Ori.: original;
Avg.: average performance under three auxiliary tasks. ↑ indicates that higher values correspond to
better performance. The best performance among three auxiliary tasks is marked in blod.

Task Transformer ESM-1b ProteinAdapter (w/o structure)
Ori. +Cont +Fold +SSP Avg. ori. +Cont +Fold +SSP Avg. Ori. +Cont +Fold +SSP Avg.

Function Prediction
Flu ↑ 0.643 0.612 0.648 0.656 0.638 0.701 0.704 0.702 0.704 0.703 0.703 0.702 0.703 0.704 0.703
Sta ↑ 0.649 0.620 0.672 0.667 0.653 0.779 0.782 0.783 0.789 0.785 0.785 0.781 0.788 0.787 0.786
β-lac ↑ 0.261 0.142 0.276 0.197 0.205 0.855 0.899 0.882 0.881 0.887 0.897 0.899 0.893 0.891 0.894
Sol ↑ 70.12 70.03 68.85 69.81 69.56 70.23 70.46 64.80 70.03 68.43 70.65 71.08 70.61 71.07 70.92

Localization Prediction
Sub ↑ 56.02 52.92 56.74 56.70 55.45 78.13 78.86 78.43 78.00 78.43 85.20 85.70 85.65 85.33 85.56
Bin ↑ 75.74 74.98 76.27 75.20 75.48 92.40 92.50 91.83 92.26 92.19 93.55 93.51 93.57 93.50 93.53

Structure Prediction
Cont ↑ 17.50 — 2.04 12.76 7.40 45.78 — 35.86 32.03 33.94 55.15 — 55.21 55.17 55.19
Fold ↑ 8.52 9.16 — 8.14 8.65 28.17 32.10 — 28.63 30.36 32.60 33.21 — 33.18 33.19
SSP ↑ 59.62 63.10 50.93 — 57.00 82.73 83.21 82.27 — 82.74 83.11 83.15 83.10 — 83.13

Protein-Protein Interaction Prediction
Yst ↑ 54.12 52.86 54.00 54.00 53.62 57.00 58.50 64.76 62.06 61.77 68.45 68.41 68.44 68.37 68.41
PPI ↑ 59.58 60.76 67.33 54.80 60.96 78.17 81.66 80.28 83.00 81.64 79.12 79.05 79.11 79.01 79.06
Aff ↓ 2.499 2.733 2.524 2.651 2.636 2.281 1.893 2.002 2.031 1.975 2.073 2.077 2.085 2.071 2.078

Protein-Ligand Interaction Prediction
PDB ↓ 1.455 1.574 1.531 1.387 1.497 1.559 1.458 1.435 1.419 1.437 1.153 1.155 1.153 1.151 1.153
BDB ↓ 1.566 1.490 1.464 1.519 1.491 1.556 1.490 1.511 1.482 1.494 1.344 1.339 1.331 1.340 1.337

Pseudo 3D Structures. Additionally, we further evaluate the performance with multi-level inputs on
the Stability Prediction and Fold Classification tasks. We use a pretrained structure prediction network
ESMFold (Lin et al., 2022) to obtain pseudo-3D labels as structure inputs (see Section 4.2). The
compared methods are conducted with the same predicted structures for a fair comparison. Table 5
shows that our performance is further improved with additional structural information, indicating the
effectiveness of our ProteinAdapter in learning multi-level representations.

4.5 DISCUSSION

Ablation Study. To fully validate the effectiveness of our proposed multi-level adapter and multi-
scale predictor, we conducted ablation experiments on two paired protein sequence-structure tasks:
Gene Ontology Term Prediction and Enzyme Commission Number Prediction. 1. multi-level adapter:
We first directly remove the adapter and input the concatenated embeddings of the two LPMs into the
predictor (a). Additionally, we also conduct tests by replacing the pre-alignment module (b) with
direct concatenation after respective MLP, and replacing each MFBlock (c) with a three-layer MLP. 2.
multi-scale predictor: Subsequently, we remove the predictor and directly input the fused embedding
from the adapter into a three-layer MLP (d). Performances are compared with various multi-level
methods. Fmax accuracy is used as the evaluation metric for these two tasks.
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Table 5: Experiments with pseudo structures on the PEER benchmark. ↑ indicates higher values
correspond to better performance. (3+1)D represents methods with sequence-structure inputs. We
also show the performance gap before and after using pseudo-structure labels.

Input Method Stability
Prediction ↑

Fold
Classification ↑

1D
ResNet (Rao et al., 2019b) 0.655 18.20
ProteinMamba (Xu et al., 2024) 0.753 —
ProteinAdapter w/o structure 0.785 32.60

(3+1)D

IEConv (Hermosilla et al., 2020) 0.785 53.10
GearNet-Edge (Zhang et al., 2023b) 0.793 56.50
CDConv (Fan et al., 2022) 0.801 63.70
ESM-GearNet (Zhang et al., 2023a) 0.818 68.20
ProteinAdapter w/ pseudo structure 0.823 (+0.038) 68.40 (+35.80)

Table 6: Ablation and efficiency study on Gene Ontology (GO) term prediction and Enzyme Com-
mission (EC) number prediction tasks. ↑ indicates higher values correspond to better performance.
The best performance is marked in blod and the second performance is underlined.

Methods & Variants GO EC ↑
BP ↑ MF ↑ CC ↑

GearNet-Edge (Zhang et al., 2023b) (63.5M) 0.403 0.580 0.450 0.810
CDConv (Fan et al., 2022) (40.7M) 0.453 0.654 0.479 0.820
SaProt-PDB (Su et al., 2024) (35M) 0.465 0.669 0.415 0.888
ESM-GearNet (Zhang et al., 2023a) (60M) 0.491 0.677 0.501 0.883
a. w/o adapter, directly removed (15.5M) 0.457 0.658 0.477 0.868
b. w/o pre-alignment module, MLP instead (21.1M) 0.463 0.665 0.482 0.872
c. w/o MFBlock, MLP instead (25.5M) 0.468 0.667 0.486 0.874
d. w/o predictor, MLP instead (13.8M) 0.475 0.674 0.492 0.879
ProteinAdapter w/ GT structure (22.5M) 0.495 0.681 0.501 0.885

As shown in Table 6, it can be seen that both the multi-level adapter and multi-scale predictor are
indispensable in our method. Without our mamba-based feature processing and integration, there
is a clear performance drop on variant a due to the absence of our ProteinAdapter. Replacing the
pre-alignment module with MLPs provides some mitigation (b), but its representation quality is not
as good as the features after initial integration (c). Note that unlike single-scale MLP (d) or previous
methods e.g., CDConv (Fan et al., 2022) that use pooling layers to reduce the number of nodes and
learn representations at different scales, our multi-scale predictor does not disrupt the continuity of
amino acids. In contrast, our method represents proteins at various scales and then combines these
representations to ensure a comprehensive understanding.

Efficiency. By integrating two pre-trained LPMs with our lightweight ProteinAdapter, our method
can achieve higher performance with fewer parameters compared to training a single-level large
model from scratch. As shown in Table 6, with the default setting of three MFBlocks in the adapter
and three downsampling times in the predictor, our model has 20× fewer parameters than the previous
LPMs (22.5M of ProteinAdapter vs 650M of ESM-1b).

5 CONCLUSION

The proposed ProteinAdapter offers a scalable solution for parameter-efficient fine-tuning on pre-
trained Large Protein Models (LPMs). The multi-level adapter seamlessly merges protein embeddings,
eliminating the need for resource-intensive pretraining. The method demonstrates superior computing
efficiency through frozen models and a lightweight Mamba-based adapter. Extensive experiments
across over 20 tasks showcase its substantial performance gains over existing methods. In a multi-
task setting, ProteinAdapter consistently outperforms its counterparts, establishing its versatility
and generalization capabilities. We will consider combining more powerful protein representation
structure prediction models in the future.
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A DETAILS ON MAMBA

State Space Models (SSM). State space models are typically regarded as linear time-invariant systems
that map input signals from x(t) ∈ RN to output responses y(t) ∈ RN through an intermediate
hidden state h(t) ∈ RN . These systems are mathematically described by linear ordinary differential
equations (ODEs):

h′(t) = Ah(t) +Bx(t), (2)

y(t) = Ch(t), (3)

where N is the state dimension, A ∈ RN×N denotes the evolution parameter, B ∈ RN×1 and
C ∈ RN×1 are projection parameters. This equation suggests that the SSM exhibits global awareness,
as the current output is influenced by all preceding input data.

Discretization. To integrate time-continuous SSM into deep learning frameworks, discretization
is essential. A method often used is zero-order hold (ZOH), allowing us to discretize the system
described above. The discretized equations can be written as:

ht = Āht−1 + B̄xt, (4)

yt = Cht, (5)

where Ā = exp(∆A) and B̄ = (∆A)−1(exp(∆A)− I) ·∆B are the discretized system matrices,
and ∆ represents the discretization step size.

Selective Scan. In Mamba, the Selective Scan Mechanism is introduced to overcome the challenge
of parallelizing SSM operations due to input-dependent parameters, which prevent reformulating
them in a convolutional form. This mechanism combines kernel fusion, parallel scan, and recom-
putation to improve efficiency. Kernel fusion minimizes memory access overhead, parallel scan
speeds up sequence processing, and recomputation reduces memory usage by recalculating values as
needed. Together, these techniques enable Mamba to achieve faster computation with lower memory
requirements.

B DETAILS ON THE MAMBA FUSION BLOCK (MFBLOCK)

Algorithm 1 Mamba Fusion Block (MFBlock).
B: batch size, N: length of the protein sequence, C: number of channels
Disc and SSM represent Eq. 4 and Eq. 5 implemented by selective scan in Mamba (Gu & Dao, 2023).

Input: single-level protein embedding E
′

seq: (B, N, C), E
′

str: (B, N, C),
initial fused embedding E

′

fusion: (B, N, C)
Output: fused embedding El

fusion: (B, N, C) after the l-th MFBlock, and l ∈ {0, 1, 2, . . . , M-1}.

1: for i in seq, str, fusion do
2: E

′′

i : (B,N,C)← LayerNorm(E
′

i)

3: xi : (B,N,C
′
)← MLPxi(E

′′

i ).
4: x

′

i : (B,N,C
′
)← SiLU(Convi(xi)).

5: Ā : (B,N,C ′, D), B̄ : (B,N,C ′, D), C : (B,N,C ′, D)← Disc(x′
i)

6: yi : (B,N,C ′)← SSM(Ā, B̄,C)(x′
i)

7: end for
8: z : (B,N,C ′)← MLPz(E

′′

fusion)

9: y′
seq : (B,N,C ′)← yseq ⊙ SiLU(z)

10: y′
str : (B,N,C ′)← ystr ⊙ SiLU(z)

11: El
fusion : (B,N,C)← MLPF (y

′
seq + y′

str) + El−1
fusion

Return El
fusion.
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C DETAILS ON EVALUATION TASKS

PEER (Xu et al., 2022) is a comprehensive and multi-task benchmark for protein sequence under-
standing. ATOM3D (Townshend et al., 2020) is a structure-based benchmark designed primarily
for 3D structural prediction and related tasks in molecular biology. The benchmark encompasses a
wide array of 3D structures of proteins, small molecules, and protein-ligand complexes. We select 22
kinds of the most common tasks from these two benchmarks, focusing on different tasks including
localization prediction, function prediction, structure prediction, Protein-Protein Interaction (PPI)
prediction, and Protein-Ligand Interaction (PLI) prediction.

Table 7: Task descriptions. Each task, along with its acronym, category, the size of each dataset split
(train/valid/test), and evaluation metric are shown below. Abbr., Reg.: regression; Cls.: classification;
RS : Spearman correlation; RP : Pearson correlation; Acc: accuracy; RMSE: root-mean-square error;
AUROC: area under the receiver operating characteristic curve; MAE: mean absolute error.

Name (Acronym) Task Category Dataset Split Metric
PEER Benchmark

Fluorescence prediction (Flu) Protein-wise Reg. 21,446 / 5,362 / 27,217 RS

Stability prediction (Sta) Protein-wise Reg. 53,571 / 2,512 / 12,851 RS

β-lactamase activity prediction (β-lac) Protein-wise Reg. 4,158 / 520 / 520 RS

GB1 fitness (GB1) Protein-wise Reg. 381 / 43 / 8,309 RS

AAV fitness (AAV) Protein-wise Reg. 28,626 / 3,181 / 50,776 RS

Thermostability (Thermo) Protein-wise Reg. 5,149 / 643 / 1,366 RS

Contact prediction (Cont) Residue-pair Cls. 25,299 / 224 / 40 L/5 precision
Subcellular localization prediction (Sub) Protein-wise Cls. 8,945 / 2,248 / 2,768 Acc

Binary localization prediction (Bin) Protein-wise Cls. 5,161 / 1,727 / 1,746 Acc
Solubility prediction (Sol) Protein-wise Cls. 62,478 / 6,942 / 1,999 Acc
Fold classification (Fold) Protein-wise Cls. 12,312 / 736 / 718 Acc

Secondary structure prediction (SSP) Residue-wise Cls. 8,678 / 2,170 / 513 Acc
Yeast PPI prediction (Yst) Protein-pair Cls. 1,668 / 131 / 373 Acc

Human PPI prediction (PPI) Protein-pair Cls. 6,844 / 277 / 227 Acc
PPI affinity prediction (Aff) Protein-pair Reg. 2,127 / 212 / 343 RMSE

PLI prediction on PDBbind (PDB) Protein-ligand Reg. 16,436 / 937 / 285 RMSE
PLI prediction on BindingDB (BDB) Protein-ligand Reg. 7,900 / 878 / 5,230 RMSE

ATOM3D Benchmark
Small Molecule Properties (SMP) Protein-wise Reg. 103,547 / 12,943 / 12,943 MAE
Protein Interface Prediction (PIP) Protein-pair Cls. 1,240 / 155 / 155 AUROC

Residue Identity (RES) Protein-wise Cls. 21,147 / 964 / 3,319 Acc
Mutation Stability Prediction (MSP) Protein-wise Cls. 1,660 / 210 / 210 AUROC

Ligand Binding Affinity (LBA) Protein-ligand Reg. 3,678 / 460 / 460 RMSE
Ligand Efficacy Prediction (LEP) Protein-ligand Cls. 4,220 / 501 / 870 AUROC
Protein Structure Ranking (PSR) Protein-wise Reg. 508 / 85 / 56 RS

RNA Structure Ranking (RSR) Protein-wise Reg. 13,182 / 4,056 / 4,056 RS

C.1 PEER BENCHMARK

Subcellular localization prediction (Sub).

Impact: Determining the subcellular positioning of a protein can significantly enhance target pinpoint-
ing in drug development (Rajagopal & Simon, 2003). A tool that predicts subcellular localization
swiftly and precisely can expedite this procedure. This endeavor aids in the creation of such an
instrument.

Target: The task requires the model to determine the cellular location of a native protein. For instance,
proteins inherently present in the lysosome will be designated with a category tag “lysosome”. Ten
potential localizations exist, leading to the label y ∈ {0, 1, ..., 9}.
Split: We randomly split out a validation set from the training set with a 4:1 training/validation ratio.

Binary Protein Localization (Bin).
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Impact: Identifying whether a protein is "soluble" or "membrane-bound" plays a pivotal role in
comprehending its function. "Soluble" proteins operate as free molecules in organisms, while
"membrane-bound" proteins might exhibit catalytic functions upon membrane attachment (Gimpelev
et al., 2004). Efficiently distinguishing these two protein categories via computational methods can
streamline biological research.

Target: The primary objective of the model in this task is a coarse classification of proteins into one
of two categories: “membrane-bound” or “soluble”. Consequently, the label for these proteins is
y ∈ {0, 1}.
Split: For validation, we allocate a subset from the training data, maintaining a 4:1 ratio from
training to validation. This task also assesses the model’s capability to generalize over related protein
sequences.

Fluorescence Prediction (FLu).

Impact: The green fluorescent protein acts as a crucial marker, allowing researchers to identify the
existence of specific proteins in organic entities through its green glow (Tsien, 1998). This task aims
to uncover the mutation trends that amplify or diminish such a biological characteristic.

Target: This challenge tasks the model to forecast the fitness of green fluorescent protein variants.
The target label y ∈ R corresponds to the logarithmic value of the fluorescence intensity as annotated
by Sarkisyan et al. (Sarkisyan et al., 2016).

Split: We retain the division strategy from TAPE, emphasizing training on simpler mutants (with up
to three mutations) and evaluating the model’s performance on more complex mutants (with four or
more mutations).

Stability Prediction (Sta).

Impact: The stability of a protein is pivotal for its functional efficacy in the body (Sarkisyan et al.,
2016). This benchmarking task mirrors the practical application setting where functional mutants
with satisfactory stability are chosen.

Target: The challenge here is to assess the stability of proteins in their natural environments. The
target label y ∈ R reflects the experimental stability measurement.

Split: We align with TAPE’s splitting method, emphasizing training on proteins with multiple
mutations and testing the model’s capabilities on top-tier candidates having only a single mutation.

β-lactamase activity prediction (β-lac).

Impact: The TEM-1 beta-lactamase is the predominant enzyme granting gram-negative bacteria
resistance to beta-lactam antibiotics (Palzkill & Botstein, 1992). This task delves into the improvement
of this critical enzyme’s activity through singular mutations.

Target: The aim is to analyze the activity among primary mutants of the TEM-1 beta-lactamase
protein. The target label y ∈ R corresponds to the empirically determined fitness score, which
captures the proportional effect of mutations for each variant.

Split: High-capacity models are anticipated to discern proteins that differ by only a single amino acid
residue in the dataset.

GB1 fitness (GB1).

Impact: GB1 fitness assesses the fitness values of potential mutants of the GB1 protein, which plays
a crucial role in protein engineering. Specifically, the goal of this research is to understand how
different mutations affect the protein’s functionality.

Target: The study focuses on protein G, which is an immunoglobulin-binding protein. The GB1
domain within protein G is essential for its binding function. The research aims to enhance the fitness
of this domain by exploring the interactions between mutations, ultimately improving the engineered
protein’s performance.

Split: The data source is from the FLIP benchmark (Dallago et al., 2021). The ground truth is a
continuous fitness value. The training, validation, and test set contain 381, 43, and 8309 data points,
respectively.
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AAV fitness (AAV).

Impact: AAV fitness is critical in the field of gene therapy, as it evaluates the fitness scores of
mutants in the VP-1 AAV capsid proteins. By optimizing these capsid proteins, the manipulation of
Adeno-associated virus (AAV) holds significant promise for improving gene delivery efficiency. This
can greatly enhance the ability of the virus to deliver therapeutic DNA to target cells, making gene
therapy treatments more effective.

Target: The goal of evaluating AAV fitness is to understand how different mutations in these proteins
affect the virus’s capacity to effectively deliver its genetic payload into specific target cells.

Split: The data source is from the FLIP benchmark (Dallago et al., 2021). The ground truth (fitness
score) is a continuous value. The training, validation, and test sets contain 28,626/3,181/50,776 data
points, respectively.

Thermostability (Thermo).

Impact: Thermostability is vital for enhancing the durability of proteins in drug development and
industrial processes, allowing them to maintain functionality under high-temperature conditions.

Target: The focus is on improving protein structure to withstand heat, making proteins more suitable
for therapeutic use and industrial applications like enzyme catalysis.

Split: The data source is from the FLIP benchmark (Dallago et al., 2021). The ground truth
(temperature) is a continuous value. The training/validation/test sets consist of 5149, 643,and 1366
data samples, respectively.

Solubility prediction (Sol).

Impact: In the realms of pharmaceutical research and industry, protein solubility stands as a paramount
attribute, as optimal solubility is indispensable for a protein’s functionality (Khurana et al., 2018).
This endeavor seeks to enhance the design of efficient computational tools that predict protein
solubility based on sequences.

Target: The challenge revolves around forecasting a protein’s solubility. To specify, it determines if a
protein is soluble, resulting in a label y ∈ {0, 1}.
Split: The division of data evaluates the proficiency of models in extrapolating across diverse protein
sequences.

Contact prediction (Cont).

Impact: Estimating amino acid contacts derived from protein sequences is pivotal in predicting
folded protein structures (Billings et al., 2021). This benchmark emphasizes medium- and long-range
contacts, which play an instrumental role in the protein folding process.

Target: This assignment seeks to determine the contact likelihood between residue pairs. Each pair of
residues is labeled with a binary value,y ∈ {0, 1}, signifying whether they establish contact within a
predefined distance threshold δ or remain distant.

Split: In line with the CASP criteria (Kryshtafovych et al., 2019), our assessment hones in on the
precision of the top L/5 contact predictions for medium and long-range contacts within the test dataset,
thereby evaluating the prowess of contact prediction models in discerning the folded conformations
of a diverse array of protein sequences.

Fold classification (Fold).

Impact: Discerning the overarching structural topology of a protein at the fold level is invaluable
for functional elucidation and drug design initiatives (Chen et al., 2016). Given that the SCOPe
database (Fox et al., 2014) only categorizes a fractional segment of proteins in PDB (Berman et al.,
2000a), there’s a pronounced need to harness machine learning for automated fold classification
directly from protein sequences.

Target: The objective is to classify the protein based on its global structural contour at the fold tier.
This is denoted by a categorical label, y ∈ {0, 1, ..., 1194}, defined by the backbone coordinates of
its structure.
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Split: Superfamilies in entirety are excluded from the training phase and make up the test set. Such
an arrangement offers a unique opportunity to assess the model’s competency in recognizing proteins
with structurally akin attributes but sequence differences, which is a hallmark of remote homology
detection (Rao et al., 2019a).

Secondary structure prediction (SSP).

Impact: Accurately discerning the local structures of protein residues in their native conformation has
multifaceted benefits, including insights into protein functionality (Klausen et al., 2019) and refining
multiple sequence alignments (Simossis & Heringa, 2004). This benchmark exercise seeks to foster
the development and testing of machine learning models tailored for such predictions.

Target: The mission is to prognosticate the local configurations of protein residues as they exist
naturally. Each residue is earmarked with a secondary structure label y ∈ {0, 1, 2}, corresponding to
coil, strand, or helix.

Split: While the primary source of data is Klausen’s dataset for training, evaluation pivots on the
CB513 dataset, ensuring a rigorous assessment of model generalization across variegated protein
sequences.

Yeast PPI prediction (Yst).

Impact: Constructing comprehensive and accurate yeast interactome network maps is of paramount
scientific significance (Yu et al., 2008; Pu et al., 2009; Baryshnikova et al., 2010). By forecasting
binary yeast protein interactions using machine learning models, this benchmark task makes strides
towards realizing this ambitious objective.

Target: The challenge mandates the model to ascertain whether a pair of yeast proteins engages in
interaction. Pairs of proteins are designated with a binary label, symbolized as y ∈ {0, 1}, indicating
the presence or absence of an interaction.

Split: We commence by pruning redundancies from all protein sequences in the dataset, setting a 90%
sequence identity threshold. Following this, these refined sequences are indiscriminately apportioned
into training, validation, and test segments. Subsequently, redundancy elimination is carried out
between each pair of these segments, with a stricter 40% sequence identity cut-off. This ensures
rigorous appraisal of the model’s capacity for generalization across disparate protein sequences.

Human PPI prediction (PPI).

Impact: Deciphering the intricate web of the human protein interactome plays a crucial role in
shedding light on disease mechanisms and unearthing novel disease-associated genes (Rual et al.,
2005; Yu et al., 2011; Rolland et al., 2014). With this benchmark task, there’s a hopeful anticipation
of enhancing potent machine learning models adept at predicting human protein-protein interactions.

Target: The objective at hand is for the model to discern if a pair of human proteins is interactive.
Each pairing is accompanied by a binary label, represented as y ∈ {0, 1}, indicating their interactive
status.

Split: Our data partitioning strategy mirrors that of the yeast PPI prediction. However, we opt for
an 8:1:1 division ratio for train, validation, and test segments, respectively. Just as before, this task
evaluates the model’s proficiency in generalizing across diverse protein sequences.

PPI affinity prediction (Aff).

Impact: The capability to forecast the relative binding vigor among potential binding candidates holds
paramount importance in the realm of protein binder design (Liu et al., 2021; Shan et al., 2022). This
task seeks to provide a pragmatic arena for machine learning models to demonstrate their efficacy in
such a tangible application.

Target: The primary objective for the model is to compute the binding affinity, denoted as y ∈ R,
gauged through pKd, between two protein entities.

Split: Delving deeper into the dataset segmentation, our training set amalgamates wild-type complexes
alongside mutants possessing a maximum of two mutations. The validation set envelops mutants
with a mutation count of three or four. Lastly, the test set encompasses mutants that exhibit more
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than four mutations. With this delineation, the task is positioned to assess the model’s generalization
prowess in a phased protein binder design context.

PLI prediction on PDBbind (PDB).

Impact: The elucidation of interactions between minor molecular entities and their corresponding
target proteins emerges as a salient focus in drug discovery research (Yamanishi et al., 2010; Wen
et al., 2017). This benchmark task is meticulously crafted to gauge the prowess of machine learning
models in realizing this intricate objective.

Target: The onus is on the model to predict the interactions between small molecules and target
proteins.

Split: To initiate, we diligently eradicate training sequences that parallel test sequences, deploying a
90% sequence identity threshold. Subsequently, the remaining training sequences undergo clustering.
These clusters are then randomly apportioned into training and validation sets, abiding by a 9:1
distribution ratio. For assessment of model generalizability, the CASF-2016 benchmark (Su et al.,
2018) is the chosen paradigm.

PLI prediction on BindingDB (BDB).

Impact: Recognizing the interactions between ligands and specific protein classes remains a pivotal
endeavor in the realm of drug discovery. This benchmark task resonates with the aspirations of
the drug discovery fraternity, emphasizing the evaluation of ligand interactions across four distinct
protein classes.

Target: The core objective is for the model to ascertain ligand interactions, particularly focusing on
four protein classes: ER, GPCR, ion channels, and receptor tyrosine kinases.

Split: The dataset segregation strategy, mirroring that of DeepAffinity, ensures that the aforementioned
four protein classes are excluded from the training and validation phases, earmarking them exclusively
for the generalization test.

C.2 ATOM3D BENCHMARK

Ligand Efficacy Prediction (LEP).

Impact: Proteins often activate or deactivate by altering their form. Determining the shape a
medication will encourage is pivotal in drug creation.

Target: This is approached as a binary classification challenge, where the goal is to ascertain if a
molecule, when bound to these structures, will stimulate the protein’s function.

Split: We categorize the complex pairs based on their protein targets.

Small Molecule Properties (SMP).

Impact: Estimating the physicochemical attributes of tiny molecules is a standard procedure in
pharmaceutical chemistry and materials creation. While quantum-chemical assessments can reveal
specific physicochemical characteristics, they are resource-intensive.

Target: Our goal is to forecast the properties of the molecules based on their ground-state configura-
tions.

Split: We divide the molecules arbitrarily.

Protein Structure Ranking (PSR).

Impact: Proteins serve as fundamental agents within cells, and discerning their structure is typically
vital for comprehending and tailoring their role.

Target: We approach this as a regression challenge, aiming to predict the global distance test for each
structural blueprint relative to its experimentally defined structure.

Split: We segregate structures based on the year of competition.
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RNA Structure Ranking (RSR). Impact: RNA, much like proteins, has pivotal functional responsi-
bilities such as gene regulation and can take on distinct 3D configurations. However, the available
data is limited, with only a handful of identified structures.

Target: Our aim is to estimate the root-mean-squared deviation (RMSD) for each structural model in
comparison to its lab-verified structure.

Split: Structures are divided based on the respective year of the competition.

Protein Interface Prediction (PIP).

Impact: In many situations, proteins interact with one another. For instance, antibodies detect
diseases by attaching to antigens. One fundamental challenge in comprehending these interactions is
pinpointing the specific amino acids in two proteins that will engage upon binding.

Target: Our goal is to determine if two amino acids will come into contact when their parent proteins
bind together.

Split: Protein complexes are divided ensuring that no protein from the training set shares above 30%
sequence similarity with any protein in the DIPS validation set or the DB5 set.

Ligand Binding Affinity (LBA).

Impact: Proteins often modulate their functions by altering their structures. Determining the favored
shape of a drug is crucial in the realm of drug design.

Target: We approach this as a binary classification challenge, aiming to discern if a molecule, when
attached to these structures, will stimulate the protein’s function.

Split: We categorize the complex pairs based on their specific protein targets.

Residue Identity (RES).

Impact: Comprehending the structural contribution of specific amino acids is pivotal for the creation
of new proteins. This understanding can be achieved by forecasting the likelihood of various amino
acids at a particular protein location, considering the adjacent structural backdrop (Torng & Altman,
2017).

Target: We approach this as a classification challenge, aiming to determine the central amino acid’s
identity by analyzing the surrounding atoms.

Split: We segregate environments based on the protein’s topological category, as outlined in CATH
4.2 (Dawson et al., 2017), ensuring that environments from proteins of a similar class belong to the
same divided dataset.

Mutation Stability Prediction (MSP).

Impact: Pinpointing mutations that reinforce protein interactions is crucial for crafting new proteins.
Given that experimental methods to investigate these mutations are resource-intensive (Antikainen &
Martin, 2005), there’s a compelling need for streamlined computational approaches.

Target: We treat this as a binary classification challenge, aiming to determine if the complex’s stability
is enhanced due to the mutation.

Split: We categorize protein complexes ensuring that no protein in the evaluation set shares more
than 30% sequence similarity with any protein in the instructional dataset.

C.3 MULTI-LEVEL TASKS

Protein Fold Classification.

Impact: Protein fold classification is important in the study of the relationship between protein
structure and protein evolution. The fold classes indicate protein secondary structure compositions,
orientations and connection orders.

Target: The target is to predict the fold class or category of a protein based on its sequence or structure.
This involves assigning the protein to one of several predefined fold types that represent its overall
three-dimensional arrangement.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Split: We follow IEConv (Hermosilla et al., 2020) to conduct protein fold classification on the
training/validation/test splits of the SCOPe 1.75 dataset (Hou et al., 2018), which in total contains
16,712 proteins with 1,195 fold classes. The 3D coordinates of the proteins were collected from the
SCOPe 1.75 database (Murzin et al., 1995). The data set provides three different evaluation scenarios.
1) Fold, in which proteins from the same superfamily are not used during training. 2) Superfamily, in
which proteins from the same family are not provided during training. 3) Family, in which proteins of
the same family are available during training. Mean accuracy is used as the evaluation metric.

Enzyme Reaction Classification.

Impact: Enzyme Reaction Classification is essential for understanding how enzymes catalyze specific
biochemical reactions. Accurate classification helps in predicting enzyme function, aiding drug
discovery, metabolic engineering, and biotechnology, where enzymes are used to speed up chemical
processes.

Target: The goal is to categorize enzymes based on the types of chemical reactions they catalyze,
often following the Enzyme Commission (EC) number system, which defines reactions into distinct
classes such as oxidoreductases, transferases, and hydrolases.

Split: We use the dataset from IEConv (Hermosilla et al., 2020), which includes 384 four-level EC
classes and 29,215/2,562/5,651 proteins for training/validation/test, respectively.

Gene Ontology Term Prediction (GO).

Impact: Accurately predicting a protein’s functions using Gene Ontology (GO) terms is pivotal for
enhancing our understanding of biological systems. By categorizing proteins based on their specific
functions, we can gain deeper insights into cellular processes and mechanisms.

Target: The challenge lies in predicting multiple GO terms associated with a protein, effectively
making it a multi-label classification task. Specifically, we delve into three ontologies: biological
process (BP) with 1,943 categories, molecular function (MF) boasting 489 categories, and cellular
component (CC) encompassing 320 categories.

Split: The dataset’s division earmarks 29,898 proteins for training, 3,322 for validation, and 3,415 for
testing. The F max accuracy metric is harnessed to evaluate the predictions.

Enzyme Commission Number Prediction (EC).

Impact: Predicting the Enzyme Commission (EC) numbers efficiently and accurately plays a pivotal
role in understanding enzyme functions and categorizations. This task deviates from merely classify-
ing enzyme reactions and strives to pinpoint the specific three-level and four-level 538 EC numbers,
adding granularity to the enzymatic categorization.

Target: The overarching goal of this task is to predict the detailed EC numbers associated with each
enzyme, which is a multi-label classification task. Such predictions give valuable insights into the
specific reactions and pathways these enzymes partake in.

Split: The dataset splits are aligned with those detailed in (Gligorijević et al., 2021). As an additional
note, in tasks like GO term and EC number predictions, measures are taken to ensure that the test set
is comprised only of PDB chains with a sequence identity that doesn’t exceed 95% compared to the
training set, a standard adhered to in several studies such as (Wang et al., 2021b).

D DETAILS ON METRICS

Pearson correlation. Pearson correlation (Pearson, 1900) is a statistic that measures the linear
relationship between two continuous variables.

The mathematical formulation of Pearson correlation is given by:

RP =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
∑

(Yi − Ȳ )2
(6)

where RP is the Pearson correlation coefficient, Xi and Yi are individual data points from the X and
Y variables,X̄ and Ȳ are the averages of the X and Y variables.
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Spearman correlation. Spearman correlation (Spearman, 1904) is a statistical measure of the
strength and direction of association between two variables. It is a non-parametric method used to
assess the monotonic relationship between variables, meaning it doesn’t assume a linear relationship
between the variables as the Pearson correlation does.

The mathematical formulation of Spearman correlation is given by:

RS = 1− 6
∑

d2

n(n2 − 1)
(7)

where RS is the Spearman correlation coefficient, d is the difference between the ranks of each pair
of corresponding values, n represents the number of data points.

Root Mean Square Error. Root Mean Square Error (RMSE) is a common metric used to evaluate
the accuracy of a predictive model. It measures the average magnitude of the errors in a set of data.

RMSE is mathematically represented as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (8)

where yi is the actual or observed value for data point i, ŷi is is the predicted value for data point i

AUROC. Area Under the Receiver Operating Characteristic curve (AUROC) is a metric used to
evaluate the performance of binary classification models. The ROC curve is a graphical representation
of a model’s ability to discriminate between the positive and negative classes across different threshold
values. A higher AUROC suggests better model performance in distinguishing between the two
classes.

Protein-centric maximum F-score. Protein-centric maximum F-score (Fmax) is the prediction
probability for the j-th class of the i-th protein, bji ∈ {0, 1} is the corresponding binary class label
and J is the number of classes. F-Score is based on the precision and recall of the predictions for
each protein.

precisioni(λ) =

∑J
j ((p

J
i ) ∩ bji )∑J

j (p
J
i ≥ λ)

, recalli(λ) =

∑J
j (p

J
i ≥ λ)∑J
j bji

(9)

Fmax mathematically represented as:

Fmax = max
x∈[0,1]

{
2× precision(λ)× recall(λ)

precision(λ) + recall(λ)

}
(10)

where precision(λ) and recall(λ) represent average precision and recall over all proteins. They are
defined as follows:

precision(λ) =
∑N

i precisioni(λ)∑N
i ((

∑J
j (p

J
i ≥ λ)) ≥ 1)

, recall(λ) =
∑N

i recalli(λ)
N

(11)
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